1
|
Jiang S, Guo P, Cai L, Qian C, Yu J, Xu L, Li X, Chen X, Bing F, Yuan Y, Tan Z, Xu J, Li J. Emergency Admission Plasma D-Dimer and Prothrombin Activity: Novel Predictors for Clinical Outcomes After Thrombectomy in Acute Ischemic Stroke With Large Artery Occlusion. CNS Neurosci Ther 2025; 31:e70267. [PMID: 39945229 PMCID: PMC11822457 DOI: 10.1111/cns.70267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/21/2024] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND The coagulation system is intrinsically linked to pathological mechanisms and progression of ischemic stroke. However, the role of preoperative coagulation function in determining the functional outcomes of acute ischemic stroke patients following large artery occlusion (AIS-LVO) has not been extensively evaluated in peer-reviewed literature. METHODS We utilized logistic regression analyses, complemented by the construction of receiver operating characteristic (ROC) curves, to identify significant predictive factors for poor prognosis following endovascular thrombectomy (EVT). Additionally, subgroup analyses were conducted to further assess the prognostic efficacy of coagulation function across different subgroups. RESULTS A total of 607 patients were enrolled, with 335 (55.19%) experiencing an unfavorable outcome. Multivariate regression analysis identified preoperative D-dimer and PTA as independent predictors of 3-month prognosis. After adjusting for confounders, elevated preoperative D-dimer levels (≥ 715 mg/L), identified by cut-off value, were a significant predictor of poor prognosis, with 2.51-fold higher risk compared to the normal range. Conversely, elevated PTA levels (≥ 85.5%) were significantly and inversely associated with poor prognosis, indicating a reduced risk of 0.39 times. Furthermore, the combination of elevated D-dimer and reduced PTA demonstrated a synergistic effect, markedly increasing the risk of poor outcomes in AIS-LVO patients. Subgroup analyses revealed that failed recanalization, comorbid diabetes, and non-middle cerebral artery (MCA) occlusion significantly influence the predictive value of D-dimer and PTA for clinical outcomes. CONCLUSION Elevated admission D-dimer and reduced PTA levels are independent predictors of poor prognosis in patients with AIS-LVO, and there is a synergistic interaction between the two variables.
Collapse
Affiliation(s)
- Shandong Jiang
- Department of Neurological SurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Peizheng Guo
- Department of Neurological SurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Linxin Cai
- Department of Neurological SurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Cong Qian
- Department of Neurological SurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Jun Yu
- Department of Neurological SurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Liang Xu
- Department of Neurological SurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xu Li
- Department of Neurological SurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xianyi Chen
- Department of Neurological SurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Fang Bing
- Department of Neurological SurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Yuan Yuan
- Department of Neurological SurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Zhongju Tan
- Department of GeriatricsThe First Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Jing Xu
- Department of Neurological SurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Jianru Li
- Department of Neurological SurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
2
|
Yan J, Yu S, Feng H, Zhao H, Dong X, Xu Q, Xu G, Cheng Q, Tan X, Gui Q, Wu G. Safety and efficacy of argatroban combined with antiplatelet therapy for acute mild-to-moderate ischemic stroke with large artery atherosclerosis. J Stroke Cerebrovasc Dis 2025; 34:108151. [PMID: 39613198 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Patients with stroke due to large artery atherosclerosis are at risk of early progression and recurrence. The efficacy and safety of argatroban in stroke patients who did not receive reperfusion therapy, and which patients may benefit from it, are uncertain. METHODS We conducted a cohort study to assess whether argatroban given within 72 hours of symptom onset, combined with antiplatelet therapy, improved neurological outcomes of patients with acute mild to moderate ischemic stroke in China. Patients were divided into the combined treatment group and the control group. Inverse probability of treatment weighting was used to balance baseline covariates. The primary efficacy outcome is the proportion of mRS score 0-2 at 90 days. The secondary efficacy outcomes included END proportion, change in NIHSS score from the baseline to day 7, recurrent cardiovascular events, and cardiovascular death. The safety outcomes were hemorrhagic transformation (HT) of infarction and organ hemorrhage at 7 days. RESULTS Compared with the control group, a higher proportion of mRS (0-2) at 90 days was found in patients in the combined treatment group (85.3% vs 74.5%, p=0.042). There was no significant difference in the safety outcomes between the two groups. Exploratory subgroup analysis showed positive associations with argatroban combined therapy and good prognosis in NIHSS score ≥5 and age ≥70 subgroups. CONCLUSIONS Our study suggested that argatroban can improve neurological outcomes for mild to moderate LAA patients but not increase the risk of bleeding.
Collapse
Affiliation(s)
- Jia Yan
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University/Suzhou Municipal Hospital, Suzhou 215000, Jiangsu Province, PR China.
| | - Shuai Yu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University/Suzhou Municipal Hospital, Suzhou 215000, Jiangsu Province, PR China.
| | - Hongxuan Feng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University/Suzhou Municipal Hospital, Suzhou 215000, Jiangsu Province, PR China.
| | - Huimin Zhao
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University/Suzhou Municipal Hospital, Suzhou 215000, Jiangsu Province, PR China.
| | - Xiaofeng Dong
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University/Suzhou Municipal Hospital, Suzhou 215000, Jiangsu Province, PR China.
| | - Qinrong Xu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University/Suzhou Municipal Hospital, Suzhou 215000, Jiangsu Province, PR China.
| | - Guoli Xu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou 215000, Jiangsu Province, PR China.
| | - Qingzhang Cheng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University/Suzhou Municipal Hospital, Suzhou 215000, Jiangsu Province, PR China.
| | - Xin Tan
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University/Suzhou Municipal Hospital, Suzhou 215000, Jiangsu Province, PR China.
| | - Qian Gui
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University/Suzhou Municipal Hospital, Suzhou 215000, Jiangsu Province, PR China.
| | - Guanhui Wu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University/Suzhou Municipal Hospital, Suzhou 215000, Jiangsu Province, PR China.
| |
Collapse
|
3
|
Monjazeb S, Chang HV, Lyden PD. Before, during, and after: An Argument for Safety and Improved Outcome of Thrombolysis in Acute Ischemic Stroke with Direct Oral Anticoagulant Treatment. Ann Neurol 2024; 96:871-886. [PMID: 39258443 PMCID: PMC11496014 DOI: 10.1002/ana.27058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/12/2024]
Abstract
Direct oral anticoagulants are the primary stroke prevention option in patients with atrial fibrillation. Anticoagulant use before stroke, however, might inhibit clinician comfort with thrombolysis if a stroke does occur. Resuming anticoagulants after ischemic stroke is also problematic for fear of hemorrhage. We describe extensive literature showing that thrombolysis is safe after stroke with direct anticoagulant use. Early reinstitution of direct anticoagulant treatment is associated with lower risk of embolic recurrence and lower hemorrhage risk. The use of direct anticoagulants before, during, and after thrombolysis appears to be safe and is likely to promote improved outcomes after ischemic stroke. ANN NEUROL 2024;96:871-886.
Collapse
Affiliation(s)
- Sanaz Monjazeb
- Department of Neurology, Zilkha Neurogenetic Institute of the Keck School of Medicine, 1501 San Pablo Ave, ZNI 245, Los Angeles, CA 90089
| | - Heather V. Chang
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute of the Keck School of Medicine, 1501 San Pablo Ave, ZNI 245, Los Angeles, CA 90089
| | - Patrick D. Lyden
- Department of Neurology, Zilkha Neurogenetic Institute of the Keck School of Medicine, 1501 San Pablo Ave, ZNI 245, Los Angeles, CA 90089
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute of the Keck School of Medicine, 1501 San Pablo Ave, ZNI 245, Los Angeles, CA 90089
| |
Collapse
|
4
|
Fleischer M, Szepanowski RD, Pesara V, Bihorac JS, Oehler B, Dobrev D, Kleinschnitz C, Fender AC. Direct neuronal protection by the protease-activated receptor PAR4 antagonist ML354 after experimental stroke in mice. Br J Pharmacol 2024; 181:3364-3379. [PMID: 38760890 DOI: 10.1111/bph.16415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND AND PURPOSE Thrombo-inflammation is a key feature of stroke pathophysiology and provides multiple candidate drug targets. Thrombin exerts coagulation-independent actions via protease-activated receptors (PAR), of which PAR1 has been implicated in stroke-associated neuroinflammation. The role of PAR4 in this context is less clear. This study examined if the selective PAR4 antagonist ML354 provides neuroprotection in experimental stroke and explored the underlying mechanisms. EXPERIMENTAL APPROACH Mouse primary cortical neurons were exposed to oxygen-glucose deprivation (OGD) and simulated reperfusion ± ML354. For comparison, functional Ca2+-imaging was performed upon acute stimulation with a PAR4 activating peptide or glutamate. Male mice underwent sham operation or transient middle cerebral artery occlusion (tMCAO), with ML354 or vehicle treatment beginning at recanalization. A subset of mice received a platelet-depleting antibody. Stroke size and functional outcomes were assessed. Abundance of target genes, proteins, and cell markers was determined in cultured cells and tissues by qPCR, immunoblotting, and immunofluorescence. KEY RESULTS Stroke up-regulated PAR4 expression in cortical neurons in vitro and in vivo. OGD augments spontaneous and PAR4-mediated neuronal activity; ML354 suppresses OGD-induced neuronal excitotoxicity and apoptosis. ML354 applied in vivo after tMCAO reduced infarct size, apoptotic markers, macrophage accumulation, and interleukin-1β expression. Platelet depletion did not affect infarct size in mice with tMCAO ± ML354. CONCLUSIONS AND IMPLICATIONS Selective PAR4 inhibition during reperfusion improves infarct size and neurological function after experimental stroke by blunting neuronal excitability, apoptosis, and local inflammation. PAR4 antagonists may provide additional neuroprotective benefits in patients with acute stroke beyond their canonical antiplatelet action.
Collapse
Affiliation(s)
- Michael Fleischer
- Department of Neurology, Center for Translational Neuro- and Behavioral Science (C-TNBS), University Hospital Essen, Essen, Germany
| | - Rebecca D Szepanowski
- Department of Neurology, Center for Translational Neuro- and Behavioral Science (C-TNBS), University Hospital Essen, Essen, Germany
| | - Valeria Pesara
- Department of Neurology, Center for Translational Neuro- and Behavioral Science (C-TNBS), University Hospital Essen, Essen, Germany
| | - Julia Sophie Bihorac
- Department of Neurology, Center for Translational Neuro- and Behavioral Science (C-TNBS), University Hospital Essen, Essen, Germany
| | - Beatrice Oehler
- Department of Anaesthesiology, University of Heidelberg, Heidelberg, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, University Hospital Essen, Essen, Germany
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine and Research Center, Montréal Heart Institute and Université de Montréal, Montréal, Canada
| | - Christoph Kleinschnitz
- Department of Neurology, Center for Translational Neuro- and Behavioral Science (C-TNBS), University Hospital Essen, Essen, Germany
| | - Anke C Fender
- Institute of Pharmacology, University Hospital Essen, Essen, Germany
| |
Collapse
|
5
|
Rajput P, Brookshier A, Kothari S, Eckstein L, Chang H, Liska S, Lamb J, Sances S, Lyden P. Differential Vulnerability and Response to Injury among Brain Cell Types Comprising the Neurovascular Unit. J Neurosci 2024; 44:e1093222024. [PMID: 38548341 PMCID: PMC11140689 DOI: 10.1523/jneurosci.1093-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 05/31/2024] Open
Abstract
The neurovascular unit (NVU) includes multiple different cell types, including neurons, astrocytes, endothelial cells, and pericytes, which respond to insults on very different time or dose scales. We defined differential vulnerability among these cell types, using response to two different insults: oxygen-glucose deprivation (OGD) and thrombin-mediated cytotoxicity. We found that neurons are most vulnerable, followed by endothelial cells and astrocytes. After temporary focal cerebral ischemia in male rats, we found significantly more injured neurons, compared with astrocytes in the ischemic area, consistent with differential vulnerability in vivo. We sought to illustrate different and shared mechanisms across all cell types during response to insult. We found that gene expression profiles in response to OGD differed among the cell types, with a paucity of gene responses shared by all types. All cell types activated genes relating to autophagy, apoptosis, and necroptosis, but the specific genes differed. Astrocytes and endothelial cells also activated pathways connected to DNA repair and antiapoptosis. Taken together, the data support the concept of differential vulnerability in the NVU and suggest that different elements of the unit will evolve from salvageable to irretrievable on different time scales while residing in the same brain region and receiving the same (ischemic) blood flow. Future work will focus on the mechanisms of these differences. These data suggest future stroke therapy development should target different elements of the NVU differently.
Collapse
Affiliation(s)
- Padmesh Rajput
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Allison Brookshier
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Shweta Kothari
- Chinook Therapeutics, Inc., Vancouver, British Columbia V5T 4T5, Canada
- Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Lillie Eckstein
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Heather Chang
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Sophie Liska
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Jessica Lamb
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| | - Samuel Sances
- Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Patrick Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90089-2821
| |
Collapse
|
6
|
Liu Y, Cui W, Liu H, Yao M, Shen W, Miao L, Wei J, Liang X, Zhang Y. Exploring the "gene-metabolite" network of ischemic stroke with blood stasis and toxin syndrome by integrated transcriptomics and metabolomics strategy. Sci Rep 2024; 14:11947. [PMID: 38789486 PMCID: PMC11126742 DOI: 10.1038/s41598-024-61633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
A research model combining a disease and syndrome can provide new ideas for the treatment of ischemic stroke. In the field of traditional Chinese medicine, blood stasis and toxin (BST) syndrome is considered an important syndrome seen in patients with ischemic stroke (IS). However, the biological basis of IS-BST syndrome is currently not well understood. Therefore, this study aimed to explore the biological mechanism of IS-BST syndrome. This study is divided into two parts: (1) establishment of an animal model of ischemic stroke disease and an animal model of BST syndrome in ischemic stroke; (2) use of omics methods to identify differentially expressed genes and metabolites in the models. We used middle cerebral artery occlusion (MCAO) surgery to establish the disease model, and utilized carrageenan combined with active dry yeast and MCAO surgery to construct the IS-BST syndrome model. Next, we used transcriptomics and metabolomics methods to explore the differential genes and metabolites in the disease model and IS-BST syndrome model. It is found that the IS-BST syndrome model exhibited more prominent characteristics of IS disease and syndrome features. Both the disease model and the IS-BST syndrome model share some common biological processes, such as thrombus formation, inflammatory response, purine metabolism, sphingolipid metabolism, and so on. Results of the "gene-metabolite" network revealed that the IS-BST syndrome model exhibited more pronounced features of complement-coagulation cascade reactions and amino acid metabolism disorders. Additionally, the "F2 (thrombin)-NMDAR/glutamate" pathway was coupled with the formation process of the blood stasis and toxin syndrome. This study reveals the intricate mechanism of IS-BST syndrome, offering a successful model for investigating the combination of disease and syndrome.
Collapse
Affiliation(s)
- Yue Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wenqiang Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongxi Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Mingjiang Yao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Shen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Lina Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jingjing Wei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Xiao Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
7
|
Liang H, Zhang X, Hou Y, Zheng K, Hao H, He B, Li H, Sun C, Yang T, Song H, Cai R, Wang Y, Jiang H, Qi L, Wang Y. Super-high procoagulant activity of gecko thrombin: A gift from sky dragon. CNS Neurosci Ther 2023; 29:3081-3093. [PMID: 37144588 PMCID: PMC10493662 DOI: 10.1111/cns.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Gecko, the "sky dragon" named by Traditional Chinese Medicine, undergoes rapid coagulation and scarless regeneration following tail amputation in the natural ecology, providing a perfect opportunity to develop the efficient and safe drug for blood clotting. Here, gecko thrombin (gthrombin) was recombinantly prepared and comparatively studied on its procoagulant activity. METHODS The 3D structure of gthrombin was constructed using the homology modeling method of I-TASSER. The active gthrombin was prepared by the expression of gecko prethrombin-2 in 293 T cells, followed by purification with Ni2+ -chelating column chromatography prior to activation by snake venom-derived Ecarin. The enzymatic activities of gthrombin were assayed by hydrolysis of synthetic substrate S-2238 and the fibrinogen clotting. The vulnerable nerve cells were used to evaluate the toxicity of gthrombin at molecular and cellular levels. RESULTS The active recombinant gthrombin showed super-high catalytic and fibrinogenolytic efficiency than those of human under different temperatures and pH conditions. In addition, gthrombin made nontoxic effects on the central nerve cells including neurons, contrary to those of mammalian counterparts, which contribute to neuronal damage, astrogliosis, and demyelination. CONCLUSIONS A super-high activity but safe procoagulant candidate drug was identified from reptiles, which provided a promising perspective for clinical application in rapid blood clotting.
Collapse
Affiliation(s)
- Hao Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Yuxuan Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Kang Zheng
- Anti‐aging & Regenerative Medicine Research Institution, School of Life Sciences and MedicineShandong University of TechnologyZiboPR China
| | - Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Hui Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Chunshuai Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Ting Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Rixin Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Haiyan Jiang
- Department of Emergency MedicineAffiliated Hospital of Nantong UniversityNantongPR China
| | - Lei Qi
- Department of Emergency MedicineAffiliated Hospital of Nantong UniversityNantongPR China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| |
Collapse
|
8
|
Denorme F, Armstrong ND, Stoller ML, Portier I, Tugolukova EA, Tanner RM, Montenont E, Bhatlekar S, Cody M, Rustad JL, Ajanel A, Tolley ND, Murray DC, Boyle JL, Nieman MT, McKenzie SE, Yost CC, Lange LA, Cushman M, Irvin MR, Bray PF, Campbell RA. The predominant PAR4 variant in individuals of African ancestry worsens murine and human stroke outcomes. J Clin Invest 2023; 133:e169608. [PMID: 37471144 PMCID: PMC10503801 DOI: 10.1172/jci169608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023] Open
Abstract
Protease-activated receptor 4 (PAR4) (gene F2RL3) harbors a functional dimorphism, rs773902 A/G (encoding Thr120/Ala120, respectively) and is associated with greater platelet aggregation. The A allele frequency is more common in Black individuals, and Black individuals have a higher incidence of ischemic stroke than White individuals. However, it is not known whether the A allele is responsible for worse stroke outcomes. To directly test the in vivo effect of this variant on stroke, we generated mice in which F2rl3 was replaced by F2RL3, thereby expressing human PAR4 (hPAR4) with either Thr120 or Ala120. Compared with hPAR4 Ala120 mice, hPAR4 Thr120 mice had worse stroke outcomes, mediated in part by enhanced platelet activation and platelet-neutrophil interactions. Analyses of 7,620 Black subjects with 487 incident ischemic strokes demonstrated the AA genotype was a risk for incident ischemic stroke and worse functional outcomes. In humanized mice, ticagrelor with or without aspirin improved stroke outcomes in hPAR4 Ala120 mice, but not in hPAR4 Thr120 mice. P selectin blockade improved stroke outcomes and reduced platelet-neutrophil interactions in hPAR4 Thr120 mice. Our results may explain some of the racial disparity in stroke and support the need for studies of nonstandard antiplatelet therapies for patients expressing PAR4 Thr120.
Collapse
Affiliation(s)
- Frederik Denorme
- Program in Molecular Medicine and
- Department of Neurology, Division of Vascular Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Nicole D. Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | - Rikki M. Tanner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | | - Julie L. Boyle
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Marvin T. Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Steven E. McKenzie
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christian Con Yost
- Program in Molecular Medicine and
- Department of Pediatrics, Division of Neonatology, University of Utah, Salt Lake City, Utah, USA
| | - Leslie A. Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| | - Marguerite R. Irvin
- Department of Neurology, Division of Vascular Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Paul F. Bray
- Program in Molecular Medicine and
- Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, and
| | - Robert A. Campbell
- Program in Molecular Medicine and
- Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, and
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Lee I, Tantisirivat P, Edgington-Mitchell LE. Chemical Tools to Image the Activity of PAR-Cleaving Proteases. ACS BIO & MED CHEM AU 2023; 3:295-304. [PMID: 37599791 PMCID: PMC10436261 DOI: 10.1021/acsbiomedchemau.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 08/22/2023]
Abstract
Protease-activated receptors (PARs) comprise a family of four G protein-coupled receptors (GPCRs) that have broad functions in health and disease. Unlike most GPCRs, PARs are uniquely activated by proteolytic cleavage of their extracellular N termini. To fully understand PAR activation and function in vivo, it is critical to also study the proteases that activate them. As proteases are heavily regulated at the post-translational level, measures of total protease abundance have limited utility. Measures of protease activity are instead required to inform their function. This review will introduce several classes of chemical probes that have been developed to measure the activation of PAR-cleaving proteases. Their strengths, weaknesses, and applications will be discussed, especially as applied to image protease activity at the whole organism, tissue, and cellular level.
Collapse
Affiliation(s)
- Irene
Y. Lee
- Department
of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology
Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
| | - Piyapa Tantisirivat
- Department
of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology
Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
| | - Laura E. Edgington-Mitchell
- Department
of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology
Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
| |
Collapse
|
10
|
Kudryashev JA, Madias MI, Kandell RM, Lin QX, Kwon EJ. An Activity-Based Nanosensor for Minimally-Invasive Measurement of Protease Activity in Traumatic Brain Injury. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2300218. [PMID: 37873031 PMCID: PMC10586543 DOI: 10.1002/adfm.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Indexed: 10/25/2023]
Abstract
Current screening and diagnostic tools for traumatic brain injury (TBI) have limitations in sensitivity and prognostication. Aberrant protease activity is a central process that drives disease progression in TBI and is associated with worsened prognosis; thus direct measurements of protease activity could provide more diagnostic information. In this study, a nanosensor is engineered to release a measurable signal into the blood and urine in response to activity from the TBI-associated protease calpain. Readouts from the nanosensor were designed to be compatible with ELISA and lateral flow assays, clinically-relevant assay modalities. In a mouse model of TBI, the nanosensor sensitivity is enhanced when ligands that target hyaluronic acid are added. In evaluation of mice with mild or severe injuries, the nanosensor identifies mild TBI with a higher sensitivity than the biomarker GFAP. This nanosensor technology allows for measurement of TBI-associated proteases without the need to directly access brain tissue, and has the potential to complement existing TBI diagnostic tools.
Collapse
Affiliation(s)
- Julia A Kudryashev
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Marianne I Madias
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Rebecca M Kandell
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Queenie X Lin
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ester J Kwon
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Berkowitz S, Gofrit SG, Aharoni SA, Golderman V, Qassim L, Goldberg Z, Dori A, Maggio N, Chapman J, Shavit-Stein E. LPS-Induced Coagulation and Neuronal Damage in a Mice Model Is Attenuated by Enoxaparin. Int J Mol Sci 2022; 23:ijms231810472. [PMID: 36142385 PMCID: PMC9499496 DOI: 10.3390/ijms231810472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background. Due to the interactions between neuroinflammation and coagulation, the neural effects of lipopolysaccharide (LPS)-induced inflammation (1 mg/kg, intraperitoneal (IP), n = 20) and treatment with the anti-thrombotic enoxaparin (1 mg/kg, IP, 15 min, and 12 h following LPS, n = 20) were studied in C57BL/6J mice. Methods. One week after LPS injection, sensory, motor, and cognitive functions were assessed by a hot plate, rotarod, open field test (OFT), and Y-maze. Thrombin activity was measured with a fluorometric assay; hippocampal mRNA expression of coagulation and inflammation factors were measured by real-time-PCR; and serum neurofilament-light-chain (NfL), and tumor necrosis factor-α (TNF-α) were measured by a single-molecule array (Simoa) assay. Results. Reduced crossing center frequency was observed in both LPS groups in the OFT (p = 0.02), along with a minor motor deficit between controls and LPS indicated by the rotarod (p = 0.057). Increased hippocampal thrombin activity (p = 0.038) and protease-activated receptor 1 (PAR1) mRNA (p = 0.01) were measured in LPS compared to controls, but not in enoxaparin LPS-treated mice (p = 0.4, p = 0.9, respectively). Serum NfL and TNF-α levels were elevated in LPS mice (p < 0.05) and normalized by enoxaparin treatment. Conclusions. These results indicate that inflammation, coagulation, neuronal damage, and behavior are linked and may regulate each other, suggesting another pharmacological mechanism for intervention in neuroinflammation.
Collapse
Affiliation(s)
- Shani Berkowitz
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
| | - Shay Anat Aharoni
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
| | - Valery Golderman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lamis Qassim
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zehavit Goldberg
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Goldschleger Eye Institute, Sheba Medical Center, Ramat Gan 52626202, Israel
| | - Amir Dori
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence:
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Xu L, Yang X, Gao H, Wang X, Zhou B, Li Y, Li L, Guo X, Ren L. Clinical efficacy and safety analysis of argatroban and alteplase treatment regimens for acute cerebral infarction. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
13
|
Krzeszewski M, Modrzycka S, Bousquet MHE, Jacquemin D, Drąg M, Gryko DT. Green-Emitting 4,5-Diaminonaphthalimides in Activity-Based Probes for the Detection of Thrombin. Org Lett 2022; 24:5602-5607. [PMID: 35863755 PMCID: PMC9361357 DOI: 10.1021/acs.orglett.2c02320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The natures of electron-donating groups as well as the bridge between them determine the fate of substituted 1,8-naphthalimide molecules in the excited state. An activity-based probe constructed from a selective peptide sequence, a reactive warhead, and the brightest green-emitting fluorophore displays impressive performance for thrombin protease detection in a newly constructed series of 1,8-naphthalimides.
Collapse
Affiliation(s)
- Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Sylwia Modrzycka
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wybrezeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | | | - Denis Jacquemin
- CEISAM UMR CNRS 6230, Nantes University, Nantes 44000, France
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wybrezeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
14
|
Modrzycka S, Kołt S, Polderdijk SGI, Adams TE, Potoczek S, Huntington JA, Kasperkiewicz P, Drąg M. Parallel imaging of coagulation pathway proteases activated protein C, thrombin, and factor Xa in human plasma. Chem Sci 2022; 13:6813-6829. [PMID: 35774156 PMCID: PMC9200056 DOI: 10.1039/d2sc01108e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Activated protein C (APC), thrombin, and factor (f) Xa are vitamin K-dependent serine proteases that are key factors in blood coagulation. Moreover, they play important roles in inflammation, apoptosis, fibrosis, angiogenesis, and viral infections. Abnormal activity of these coagulation factors has been related to multiple conditions, such as bleeding and thrombosis, Alzheimer's disease, sepsis, multiple sclerosis, and COVID-19. The individual activities of APC, thrombin, and fXa in coagulation and in various diseases are difficult to establish since these proteases are related and have similar substrate preferences. Therefore, the development of selective chemical tools that enable imaging and discrimination between coagulation factors in biological samples may provide better insight into their roles in various conditions and potentially aid in the establishment of novel diagnostic tests. In our study, we used a large collection of unnatural amino acids, and this enabled us to extensively explore the binding pockets of the enzymes' active sites. Based on the specificity profiles obtained, we designed highly selective substrates, inhibitors, and fluorescent activity-based probes (ABPs) that were used for fast, direct, and simultaneous detection of APC, thrombin, and fXa in human plasma. Using a collection of natural and unnatural amino acids, we synthesized a set of fluorescent activity-based probes for the fast, direct, and simultaneous detection of coagulation factors in human plasma.![]()
Collapse
Affiliation(s)
- Sylwia Modrzycka
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Sonia Kołt
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Stéphanie G I Polderdijk
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge The Keith Peters Building, Hills Road Cambridge CB2 0XY UK
| | - Ty E Adams
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge The Keith Peters Building, Hills Road Cambridge CB2 0XY UK
| | - Stanisław Potoczek
- Department of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wrocław Medical University Pasteura 1 50-367 Wrocław Poland
| | - James A Huntington
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge The Keith Peters Building, Hills Road Cambridge CB2 0XY UK
| | - Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| |
Collapse
|
15
|
Chen X, Zhang H, Hao H, Zhang X, Song H, He B, Wang Y, Zhou Y, Zhu Z, Hu Y, Wang Y. Thrombin induces morphological and inflammatory astrocytic responses via activation of PAR1 receptor. Cell Death Dis 2022; 8:189. [PMID: 35399122 PMCID: PMC8995373 DOI: 10.1038/s41420-022-00997-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 12/30/2022]
Abstract
AbstractSpinal cord injury (SCI) will result in the significant elevation of thrombin production at lesion site via either breakage of blood-spinal cord barrier or upregulated expression within nerve cells. Thrombin-induced activation of the protease activated receptors (PARs) evokes various pathological effects that deteriorate the functional outcomes of the injured cord. The cellular consequences of thrombin action on the astrocytes, as well as the underlying mechanism are not fully elucidated by far. In the present study, SCI model of rats was established by contusion, and primary astrocytes were isolated for culture from newborn rats. The expression levels of thrombin and PAR1 receptor at lesion sites of the spinal cord were determined. The primary astrocytes cultured in vitro were stimulated with different concentration of thrombin, and the resultant morphological changes, inflammatory astrocytic responses, as well as PAR1-activated signal pathway of astrocytes were accordingly examined using various agonists or antagonists of the receptor. Thrombin was found to reverse astrocytic stellation, promote proliferation but inhibit migration of astrocytes. Furthermore, the serine protease was shown to facilitate inflammatory response of astrocytes through regulation of MAPKs/NFκB pathway. Our results have provided the morphological evidence of astrocytic reactivity in response to thrombin stimulation and its neuroinflammatory effects following SCI, which will be indicative for the fundamental insights of thrombin-induced neuropathology.
Collapse
|
16
|
Tuo QZ, Liu Y, Xiang Z, Yan HF, Zou T, Shu Y, Ding XL, Zou JJ, Xu S, Tang F, Gong YQ, Li XL, Guo YJ, Zheng ZY, Deng AP, Yang ZZ, Li WJ, Zhang ST, Ayton S, Bush AI, Xu H, Dai L, Dong B, Lei P. Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion. Signal Transduct Target Ther 2022; 7:59. [PMID: 35197442 PMCID: PMC8866433 DOI: 10.1038/s41392-022-00917-z] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/14/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
Ischemic stroke represents a significant danger to human beings, especially the elderly. Interventions are only available to remove the clot, and the mechanism of neuronal death during ischemic stroke is still in debate. Ferroptosis is increasingly appreciated as a mechanism of cell death after ischemia in various organs. Here we report that the serine protease, thrombin, instigates ferroptotic signaling by promoting arachidonic acid mobilization and subsequent esterification by the ferroptotic gene, acyl-CoA synthetase long-chain family member 4 (ACSL4). An unbiased multi-omics approach identified thrombin and ACSL4 genes/proteins, and their pro-ferroptotic phosphatidylethanolamine lipid products, as prominently altered upon the middle cerebral artery occlusion in rodents. Genetically or pharmacologically inhibiting multiple points in this pathway attenuated outcomes of models of ischemia in vitro and in vivo. Therefore, the thrombin-ACSL4 axis may be a key therapeutic target to ameliorate ferroptotic neuronal injury during ischemic stroke.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yu Liu
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Zheng Xiang
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hong-Fa Yan
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Zou
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yang Shu
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xu-Long Ding
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jin-Jun Zou
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Shuo Xu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Fei Tang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yan-Qiu Gong
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xiao-Lan Li
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yu-Jie Guo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Zhao-Yue Zheng
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ai-Ping Deng
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Zhang-Zhong Yang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Wen-Jing Li
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Heng Xu
- Department of Laboratory Medicine, Precision Medicine Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Lunzhi Dai
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| | - Biao Dong
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| | - Peng Lei
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China. .,Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Shavit-Stein E, Berkowitz S, Gofrit SG, Altman K, Weinberg N, Maggio N. Neurocoagulation from a Mechanistic Point of View in the Central Nervous System. Semin Thromb Hemost 2022; 48:277-287. [PMID: 35052009 DOI: 10.1055/s-0041-1741569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coagulation mechanisms are critical for maintaining homeostasis in the central nervous system (CNS). Thrombin, an important player of the coagulation cascade, activates protease activator receptors (PARs), members of the G-protein coupled receptor family. PAR1 is located on neurons and glia. Following thrombin activation, PAR1 signals through the extracellular signal-regulated kinase pathway, causing alterations in neuronal glutamate release and astrocytic morphological changes. Similarly, the anticoagulation factor activated protein C (aPC) can cleave PAR1, following interaction with the endothelial protein C receptor. Both thrombin and aPC are expressed on endothelial cells and pericytes in the blood-brain barrier (BBB). Thrombin-induced PAR1 activation increases cytosolic Ca2+ concentration in brain vessels, resulting in nitric oxide release and increasing F-actin stress fibers, damaging BBB integrity. aPC also induces PAR1 activation and preserves BBB vascular integrity via coupling to sphingosine 1 phosphate receptors. Thrombin-induced PAR1 overactivation and BBB disruption are evident in CNS pathologies. During epileptic seizures, BBB disruption promotes thrombin penetration. Thrombin induces PAR1 activation and potentiates N-methyl-D-aspartate receptors, inducing glutamate-mediated hyperexcitability. Specific PAR1 inhibition decreases status epilepticus severity in vivo. In stroke, the elevation of brain thrombin levels further compromises BBB integrity, with direct parenchymal damage, while systemic factor Xa inhibition improves neurological outcomes. In multiple sclerosis (MS), brain thrombin inhibitory capacity correlates with clinical presentation. Both thrombin inhibition by hirudin and the use of recombinant aPC improve disease severity in an MS animal model. This review presents the mechanisms underlying the effects of coagulation on the physiology and pathophysiology of the CNS.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shani Berkowitz
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Keren Altman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nitai Weinberg
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
18
|
Padrick MM, Brown W, Lyden PD. Intravenous Thrombolysis. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Abstract
We search for ischemic stroke treatment knowing we have failed-intensely and often-to translate mechanistic knowledge into treatments that alleviate our patients' functional impairments. Lessons can be derived from our shared failures that may point to new directions and new strategies. First, the principle criticisms of both preclinical and clinical assessments are summarized. Next, previous efforts to develop single-mechanism treatments are reviewed. Finally, new definitions, novel approaches, and different directions are presented. In previous development efforts, the basic science and preclinical assessment of candidate treatments often lacked rigor and sufficiency; the clinical trials may have lacked power, rigor, or rectitude; or most likely both preclinical and clinical investigations were flawed. Single-target agents directed against specific molecular mechanisms proved unsuccessful. The term neuroprotection should be replaced as it has become ambiguous: protection of the entire neurovascular unit may be called cerebral cytoprotection or cerebroprotection. Success in developing cerebroprotection-either as an adjunct to recanalization or as stand-alone treatment-will require new definitions that recognize the importance of differential vulnerability in the neurovascular unit. Recent focus on pleiotropic multi-target agents that act via multiple mechanisms of action to interrupt ischemia at multiple steps may be more fruitful. Examples of pleiotropic treatments include therapeutic hypothermia and 3K3A-APC (activated protein C). Alternatively, the single-target drug NA-1 triggers multiple downstream signaling events. Renewed commitment to scientific rigor is essential, and funding agencies and journals may enforce quality principles of rigor in preclinical science. Appropriate animal models should be selected that are suited to the purpose of the investigation. Before clinical trials, preclinical assessment could include subjects that are aged, of both sexes, and harbor comorbid conditions such as diabetes or hypertension. With these new definitions, novel approaches, and renewed attention to rigor, the prospect for successful cerebroprotective therapy should improve.
Collapse
Affiliation(s)
- Patrick D Lyden
- Department of Physiology and Neuroscience, Department of Neurology, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA
| |
Collapse
|
20
|
Gangar K, Bhatt LK. Therapeutic Targets for the Treatment of Comorbidities Associated with Epilepsy. Curr Mol Pharmacol 2021; 13:85-93. [PMID: 31793425 DOI: 10.2174/1874467212666191203101606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
One of the most common neurological disorders, which occurs among 1% of the population worldwide, is epilepsy. Therapeutic failure is common with epilepsy and nearly about 30% of patients fall in this category. Seizure suppression should not be the only goal while treating epilepsy but associated comorbidities, which can further worsen the condition, should also be considered. Treatment of such comorbidities such as depression, anxiety, cognition, attention deficit hyperactivity disorder and, various other disorders which co-exist with epilepsy or are caused due to epilepsy should also be treated. Novel targets or the existing targets are needed to be explored for the dual mechanism which can suppress both the disease and the comorbidity. New therapeutic targets such as IDO, nNOS, PAR1, NF-κb are being explored for their role in epilepsy and various comorbidities. This review explores recent therapeutic targets for the treatment of comorbidities associated with epilepsy.
Collapse
Affiliation(s)
- Kinjal Gangar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India
| |
Collapse
|
21
|
Shavit-Stein E, Mindel E, Gofrit SG, Chapman J, Maggio N. Ischemic stroke in PAR1 KO mice: Decreased brain plasmin and thrombin activity along with decreased infarct volume. PLoS One 2021; 16:e0248431. [PMID: 33720950 PMCID: PMC7959388 DOI: 10.1371/journal.pone.0248431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
Background Ischemic stroke is a common and debilitating disease with limited treatment options. Protease activated receptor 1 (PAR1) is a fundamental cell signaling mediator in the central nervous system (CNS). It can be activated by many proteases including thrombin and plasmin, with various down-stream effects, following brain ischemia. Methods A permanent middle cerebral artery occlusion (PMCAo) model was used in PAR1 KO and WT C57BL/6J male mice. Mice were evaluated for neurological deficits (neurological severity score, NSS), infarct volume (Tetrazolium Chloride, TTC), and for plasmin and thrombin activity in brain slices. Results Significantly low levels of plasmin and thrombin activities were found in PAR1 KO compared to WT (1.6±0.4 vs. 3.2±0.6 ng/μl, p<0.05 and 17.2±1.0 vs. 21.2±1.0 mu/ml, p<0.01, respectively) along with a decreased infarct volume (178.9±14.3, 134.4±13.3 mm3, p<0.05). Conclusions PAR1 KO mice have smaller infarcts, with lower thrombin and plasmin activity levels. These findings may suggest that modulation of PAR1 is a potential target for future pharmacological treatment of ischemic stroke.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- * E-mail:
| | - Ekaterina Mindel
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Joab Chapman
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Cheng HR, Chen YB, Zeng YY, Ruan YT, Yuan CX, Cheng QQ, Chen HJ, Luan XQ, Huang GQ, He JC. Hemostasis functions are associated with hemorrhagic transformation in non-atrial fibrillation patients: a case-control study. BMC Neurol 2021; 21:36. [PMID: 33499823 PMCID: PMC7836156 DOI: 10.1186/s12883-021-02065-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Background Hemorrhagic transformation (HT) is a serious neurological complication of acute ischemic stroke (AIS) after revascularization. The majority of AIS patients do not have atrial fibrillation (AF) which could also develop into HT. In this study, we aimed to explore whether hemostasis parameters are risk factors of HT in non-AF patients. Methods We consecutively enrolled 285 AIS patients with HT. Meanwhile, age- and sex-matched 285 AIS patients without HT were included. The diagnosis of HT was determined by brain CT or MRI during hospitalization. All patients were divided into two subgroups based on the presence of AF and explore the differences between the two subgroups. Blood samples were obtained within 24 h of admission, and all patients were evenly classified into three tertiles according to platelet counts (PLT) levels. Results In this study, we found the first PLT tertile (OR = 3.509, 95%CI = 1.268–9.711, P = 0.016) was independently associated with HT in non-AF patients, taking the third tertile as a reference. Meanwhile, we also found mean platelet volume (MPV) (OR = 0.605, 95%CI = 0.455–0.805, P = 0.001) and fibrinogen (FIB) (OR = 1.928, 95%CI = 1.346–2.760, P < 0.001) were significantly associated with HT in non-AF patients. But in AF patients, hemostasis parameters showed no significant difference. Meanwhile, we found the MPV (OR = 1.314, 95%CI = 1.032–1.675, P = 0.027) and FIB (OR = 1.298, 95%CI = 1.047–1.610, P = 0.018) were significantly associated with long-term outcomes in non-AF HT patients. Conclusions Low PLT, low MPV, and high FIB levels were independently associated with HT in non-AF patients. Additionally, MPV and FIB levels were significantly associated with unfavorable long-term outcomes in non-AF HT patients. Our study showed that hemostasis functions at admission may be beneficial for clinicians to recognize patients with a high risk of HT at an early stage and improve unfavorable long-term outcomes in non-AF patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02065-3.
Collapse
Affiliation(s)
- Hao-Ran Cheng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yun-Bin Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ya-Ying Zeng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yi-Ting Ruan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Cheng-Xiang Yuan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qian-Qian Cheng
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hui-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiao-Qian Luan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Gui-Qian Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Jin-Cai He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
23
|
Cao H, Seto SW, Bhuyan DJ, Chan HH, Song W. Effects of Thrombin on the Neurovascular Unit in Cerebral Ischemia. Cell Mol Neurobiol 2021; 42:973-984. [PMID: 33392917 DOI: 10.1007/s10571-020-01019-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia is a cerebrovascular disease with high morbidity and mortality that poses a significant burden on society and the economy. About 60% of cerebral ischemia is caused by thrombus, and the formation of thrombus proceeds from insoluble fibrin, following its transformation from liquid fibrinogen. In thrombus-induced ischemia, increased permeability of the blood-brain barrier (BBB), followed by the extravasation of blood components into the brain results in an altered brain microenvironment. Changes in the brain microenvironment affect brain function and the neurovascular unit (NVU), the working unit of the brain. Recent studies have reported that coagulation factors interact with the NVU and its components, but the specific function of this interaction is highly speculative and warrants further investigations. In this article, we reviewed the role of coagulation factors in cerebral ischemia and the role of coagulation factors in thrombosis. Additionally, the influence of thrombin on the NVU is introduced, as well as in the function of NVU, which may help to explore part of brain injury mechanism during ischemia. Lastly, we propose some novel therapeutic approaches on ischemic stroke by reducing the risk of coagulation.
Collapse
Affiliation(s)
- Hui Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China
| | - Sai Wang Seto
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China.,NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Hoi Huen Chan
- Hong Kong Community College, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wenting Song
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China.
| |
Collapse
|
24
|
Chen S, Cai D, Huang P, Liu J, Lai Y, He J, Zhou L, Sun H. Early and long-term outcomes of argatroban use in patients with acute noncardioembolic stroke. Clin Neurol Neurosurg 2020; 198:106233. [DOI: 10.1016/j.clineuro.2020.106233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/28/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
|
25
|
Ye F, Garton HJL, Hua Y, Keep RF, Xi G. The Role of Thrombin in Brain Injury After Hemorrhagic and Ischemic Stroke. Transl Stroke Res 2020; 12:496-511. [PMID: 32989665 DOI: 10.1007/s12975-020-00855-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Thrombin is increased in the brain after hemorrhagic and ischemic stroke primarily due to the prothrombin entry from blood either with a hemorrhage or following blood-brain barrier disruption. Increasing evidence indicates that thrombin and its receptors (protease-activated receptors (PARs)) play a major role in brain pathology following ischemic and hemorrhagic stroke (including intracerebral, intraventricular, and subarachnoid hemorrhage). Thrombin and PARs affect brain injury via multiple mechanisms that can be detrimental or protective. The cleavage of prothrombin into thrombin is the key step of hemostasis and thrombosis which takes place in every stroke and subsequent brain injury. The extravascular effects and direct cellular interactions of thrombin are mediated by PARs (PAR-1, PAR-3, and PAR-4) and their downstream signaling in multiple brain cell types. Such effects include inducing blood-brain-barrier disruption, brain edema, neuroinflammation, and neuronal death, although low thrombin concentrations can promote cell survival. Also, thrombin directly links the coagulation system to the immune system by activating interleukin-1α. Such effects of thrombin can result in both short-term brain injury and long-term functional deficits, making extravascular thrombin an understudied therapeutic target for stroke. This review examines the role of thrombin and PARs in brain injury following hemorrhagic and ischemic stroke and the potential treatment strategies which are complicated by their role in both hemostasis and brain.
Collapse
Affiliation(s)
- Fenghui Ye
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Hugh J L Garton
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
26
|
Iannucci J, Renehan W, Grammas P. Thrombin, a Mediator of Coagulation, Inflammation, and Neurotoxicity at the Neurovascular Interface: Implications for Alzheimer's Disease. Front Neurosci 2020; 14:762. [PMID: 32792902 PMCID: PMC7393221 DOI: 10.3389/fnins.2020.00762] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
The societal burden of Alzheimer’s disease (AD) is staggering, with current estimates suggesting that 50 million people world-wide have AD. Identification of new therapeutic targets is a critical barrier to the development of disease-modifying therapies. A large body of data implicates vascular pathology and cardiovascular risk factors in the development of AD, indicating that there are likely shared pathological mediators. Inflammation plays a role in both cardiovascular disease and AD, and recent evidence has implicated elements of the coagulation system in the regulation of inflammation. In particular, the multifunctional serine protease thrombin has been found to act as a mediator of vascular dysfunction and inflammation in both the periphery and the central nervous system. In the periphery, thrombin contributes to the development of cardiovascular disease, including atherosclerosis and diabetes, by inducing endothelial dysfunction and related inflammation. In the brain, thrombin has been found to act on endothelial cells of the blood brain barrier, microglia, astrocytes, and neurons in a manner that promotes vascular dysfunction, inflammation, and neurodegeneration. Thrombin is elevated in the AD brain, and thrombin signaling has been linked to both tau and amyloid beta, pathological hallmarks of the disease. In AD mouse models, inhibiting thrombin preserves cognition and endothelial function and reduces neuroinflammation. Evidence linking atrial fibrillation with AD and dementia indicates that anticoagulant therapy may reduce the risk of dementia, with targeting thrombin shown to be particularly effective. It is time for “outside-the-box” thinking about how vascular risk factors, such as atherosclerosis and diabetes, as well as the coagulation and inflammatory pathways interact to promote increased AD risk. In this review, we present evidence that thrombin is a convergence point for AD risk factors and as such that thrombin-based therapeutics could target multiple points of AD pathology, including neurodegeneration, vascular activation, and neuroinflammation. The urgent need for disease-modifying drugs in AD demands new thinking about disease pathogenesis and an exploration of novel drug targets, we propose that thrombin inhibition is an innovative tactic in the therapeutic battle against this devastating disease.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - William Renehan
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States
| | - Paula Grammas
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
27
|
Krenzlin H, Gresser E, Jussen D, Riede N, Taylor L, Vogelaar CF, Ringel F, Kempski O, Alessandri B. The Cerebral Thrombin System Is Activated after Intracerebral Hemorrhage and Contributes to Secondary Lesion Growth and Poor Neurological Outcome in C57Bl/6 Mice. J Neurotrauma 2020; 37:1481-1490. [PMID: 31830857 DOI: 10.1089/neu.2019.6582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With increasing evidence for the existence of a cerebral thrombin system, coagulation factor IIa (thrombin) is suspected to influence the pathogenesis of secondary injury progression after intracerebral hemorrhage (ICH). We hypothesized that mechanisms associated with local volume expansion after ICH, rather than blood constituents, activate the cerebral thrombin system and are responsible for detrimental neurological outcome. To test this hypothesis, we examine the local thrombin expression after ICH in a C57BL/6N mouse model in the presence and absence of blood constituents. ICH was established using stereotaxic orthotopic injection of utologous blood (n = 10) or silicone oil as inert volume substance (n = 10) into the striatum. Intracranial pressure (ICP), cerebral blood flow (CBF), and mean arterial blood pressure (MAP) were monitored during and 30 min after the procedure. No significant differences between ICP, CBF, and MAP were found between both groups. Prothrombin messenger RNA expression was upregulated early after ICH. Immunohistochemistry showed an increase of perilesional thrombin in both groups (blood, 4.24-fold; silicone, 3.10-fold), whereas prothrombin fragment (F1.2) was elevated only in the absence of whole blood. Thrombin expression is colocalized with neuronal antigen expression. After 24 h, lesion size and neuronal loss were similar. Perihematomal thrombin correlated with increased neuronal loss and detrimental neurological outcome in vivo. In our study, we demonstrate, for the first time, that the local cerebral thrombin system is activated after ICH and that this activation is independent of the presence of whole-blood constituents. In our study, neuronal damage is driven by local thrombin expression and leads to an adverse clinical outcome.
Collapse
Affiliation(s)
- Harald Krenzlin
- Institute of Neurosurgical Pathophysiology, Johannes Gutenberg-University Mainz, Mainz, Germany.,Department of Neurosurgery, and Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Eva Gresser
- Institute of Neurosurgical Pathophysiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Daniel Jussen
- Institute of Neurosurgical Pathophysiology, Johannes Gutenberg-University Mainz, Mainz, Germany.,Department of Neurosurgery, HELIOS Dr. Horst-Schmidt-Kliniken, Wiesbaden, Germany
| | - Nicole Riede
- Institute of Neurosurgical Pathophysiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Louise Taylor
- Institute of Neurosurgical Pathophysiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Florian Ringel
- Institute of Neurosurgical Pathophysiology, Johannes Gutenberg-University Mainz, Mainz, Germany.,Department of Neurosurgery, and Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Oliver Kempski
- Institute of Neurosurgical Pathophysiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Beat Alessandri
- Institute of Neurosurgical Pathophysiology, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
28
|
Wang S, Head BP. Caveolin-1 in Stroke Neuropathology and Neuroprotection: A Novel Molecular Therapeutic Target for Ischemic-Related Injury. Curr Vasc Pharmacol 2020; 17:41-49. [PMID: 29412114 DOI: 10.2174/1570161116666180206112215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/18/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease and associated cerebral stroke are a global epidemic attributed to genetic and epigenetic factors, such as diet, life style and an increasingly sedentary existence due to technological advances in both the developing and developed world. There are approximately 5.9 million stroke-related deaths worldwide annually. Current epidemiological data indicate that nearly 16.9 million people worldwide suffer a new or recurrent stroke yearly. In 2014 alone, 2.4% of adults in the United States (US) were estimated to experience stroke, which is the leading cause of adult disability and the fifth leading cause of death in the US There are 2 main types of stroke: Hemorrhagic (HS) and ischemic stroke (IS), with IS occurring more frequently. HS is caused by intra-cerebral hemorrhage mainly due to high blood pressure, while IS is caused by either embolic or thrombotic stroke. Both result in motor impairments, numbness or abnormal sensations, cognitive deficits, and mood disorders (e.g. depression). This review focuses on the 1) pathophysiology of stroke (neuronal cell loss, defective blood brain barrier, microglia activation, and inflammation), 2) the role of the membrane protein caveolin- 1 (Cav-1) in normal brain physiology and stroke-induced changes, and, 3) we briefly discussed the potential therapeutic role of Cav-1 in recovery following stroke.
Collapse
Affiliation(s)
- Shanshan Wang
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, United States.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, United States.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
29
|
Ghali GZ, Ghali MGZ. Nafamostat mesylate attenuates the pathophysiologic sequelae of neurovascular ischemia. Neural Regen Res 2020; 15:2217-2234. [PMID: 32594033 PMCID: PMC7749469 DOI: 10.4103/1673-5374.284981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nafamostat mesylate, an apparent soi-disant panacea of sorts, is widely used to anticoagulate patients undergoing hemodialysis or cardiopulmonary bypass, mitigate the inflammatory response in patients diagnosed with acute pancreatitis, and reverse the coagulopathy of patients experiencing the commonly preterminal disseminated intravascular coagulation in the Far East. The serine protease inhibitor nafamostat mesylate exhibits significant neuroprotective effects in the setting of neurovascular ischemia. Nafamostat mesylate generates neuroprotective effects by attenuating the enzymatic activity of serine proteases, neuroinflammatory signaling cascades, and the endoplasmic reticulum stress responses, downregulating excitotoxic transient receptor membrane channel subfamily 7 cationic currents, modulating the activity of intracellular signal transduction pathways, and supporting neuronal survival (brain-derived neurotrophic factor/TrkB/ERK1/2/CREB, nuclear factor kappa B. The effects collectively reduce neuronal necrosis and apoptosis and prevent ischemia mediated disruption of blood-brain barrier microarchitecture. Investigational clinical applications of these compounds may mitigate ischemic reperfusion injury in patients undergoing cardiac, hepatic, renal, or intestinal transplant, preventing allograft rejection, and treating solid organ malignancies. Neuroprotective effects mediated by nafamostat mesylate support the wise conduct of randomized prospective controlled trials in Western countries to evaluate the clinical utility of this compound.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA; Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
30
|
Shiga Y, Shiga A, Mesci P, Kwon H, Brifault C, Kim JH, Jeziorski JJ, Nasamran C, Ohtori S, Muotri AR, Gonias SL, Campana WM. Tissue-type plasminogen activator-primed human iPSC-derived neural progenitor cells promote motor recovery after severe spinal cord injury. Sci Rep 2019; 9:19291. [PMID: 31848365 PMCID: PMC6917728 DOI: 10.1038/s41598-019-55132-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023] Open
Abstract
The goal of stem cell therapy for spinal cord injury (SCI) is to restore motor function without exacerbating pain. Induced pluripotent stem cells (iPSC) may be administered by autologous transplantation, avoiding immunologic challenges. Identifying strategies to optimize iPSC-derived neural progenitor cells (hiNPC) for cell transplantation is an important objective. Herein, we report a method that takes advantage of the growth factor-like and anti-inflammatory activities of the fibrinolysis protease, tissue plasminogen activator tPA, without effects on hemostasis. We demonstrate that conditioning hiNPC with enzymatically-inactive tissue-type plasminogen activator (EI-tPA), prior to grafting into a T3 lesion site in a clinically relevant severe SCI model, significantly improves motor outcomes. EI-tPA-primed hiNPC grafted into lesion sites survived, differentiated, acquired markers of motor neuron maturation, and extended βIII-tubulin-positive axons several spinal segments below the lesion. Importantly, only SCI rats that received EI-tPA primed hiNPC demonstrated significantly improved motor function, without exacerbating pain. When hiNPC were treated with EI-tPA in culture, NMDA-R-dependent cell signaling was initiated, expression of genes associated with stemness (Nestin, Sox2) was regulated, and thrombin-induced cell death was prevented. EI-tPA emerges as a novel agent capable of improving the efficacy of stem cell therapy in SCI.
Collapse
Affiliation(s)
- Yasuhiro Shiga
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA.,Department of Orthopaedic Surgery and Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Akina Shiga
- Department of Orthopaedic Surgery and Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Pinar Mesci
- Departments of Pediatrics and Cellular and Molecular Medicine, and the Stem Cell Program, University of California, San Diego, CA, 92037-0695, USA
| | - HyoJun Kwon
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Coralie Brifault
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA.,Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - John H Kim
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA.,Department of Chemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jacob J Jeziorski
- Departments of Pediatrics and Cellular and Molecular Medicine, and the Stem Cell Program, University of California, San Diego, CA, 92037-0695, USA
| | - Chanond Nasamran
- Center for Computational Biology & Bioinformatics (CCBB), University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seiji Ohtori
- Department of Orthopaedic Surgery and Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Alysson R Muotri
- Departments of Pediatrics and Cellular and Molecular Medicine, and the Stem Cell Program, University of California, San Diego, CA, 92037-0695, USA
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wendy M Campana
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA. .,Veterans Administration San Diego HealthCare System, San Diego, CA, 92161, USA.
| |
Collapse
|
31
|
Altman K, Shavit-Stein E, Maggio N. Post Stroke Seizures and Epilepsy: From Proteases to Maladaptive Plasticity. Front Cell Neurosci 2019; 13:397. [PMID: 31607864 PMCID: PMC6755337 DOI: 10.3389/fncel.2019.00397] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/16/2019] [Indexed: 12/02/2022] Open
Abstract
Post stroke epilepsy (PSE) is the most common cause of seizures in the elderly, yet its underlying mechanism is poorly understood. The classification of PSE is confusing, and there is neither a clear agreement on its incidence and prognosis nor a consensus about specific treatments. The diagnosis of PSE requires the occurrence of late seizures: epileptic events occurring 1 week or more after an ischemic stroke. Late seizures differ from early seizures by the presence of permanent structural changes in the brain. Those structural changes cause a shift in the regulation of neuronal firing and lead to circuit dysfunctions, and thus to a long-term epileptic condition. The coagulation cascade and some of its major components, serine proteases such as thrombin, are known to participate in the acute phase of a stroke. Recent discoveries found that thrombin and its protease-activated receptor 1 (PAR1), are involved in the development of maladaptive plasticity. Therefore, we suggest that thrombin and PAR1 may have a role in the development of PSE by inducing permanent structural changes after the ischemic events toward the development of epileptic focuses. We are confident that future studies will lead to a better understanding of the pathophysiology of PSE, as well as development of more directed therapies for its treatment.
Collapse
Affiliation(s)
- Keren Altman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
32
|
Lyden PD, Lamb J, Kothari S, Toossi S, Boitano P, Rajput PS. Differential effects of hypothermia on neurovascular unit determine protective or toxic results: Toward optimized therapeutic hypothermia. J Cereb Blood Flow Metab 2019; 39:1693-1709. [PMID: 30461327 PMCID: PMC6727141 DOI: 10.1177/0271678x18814614] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Therapeutic hypothermia (TH) benefits survivors of cardiac arrest and neonatal hypoxic-ischemic injury and may benefit stroke patients. Large TH clinical trials, however, have shown mixed results. Given the substantial pre-clinical literature supporting TH, we explored possible mechanisms for clinical trial variability. Using a standard rodent stroke model (n = 20 per group), we found smaller infarctions after 2 h pre- or post-reperfusion TH compared to 4 h. To explore the mechanism of this discrepancy, we used primary cell cultures of rodent neurons, astrocytes, or endothelial cells subjected to oxygen-glucose deprivation (OGD). Then, cells were randomly assigned to 33℃, 35℃ or 37℃ for varying durations after varying delay times. Both 33 and 35℃ TH effectively preserved all cell types, although 33℃ was superior. Longer cooling durations overcame moderate delays to cooling initiation. In contrast, TH interfered with astrocyte paracrine protection of neurons in a temperature-dependent manner. These findings suggest that longer TH is needed to overcome delays to TH onset, but shorter TH durations may be superior to longer, perhaps due to suppression of astrocytic paracrine support of neurons during injury. We propose a scheme for optimizing TH after cerebral injury to stimulate further studies of cardiac arrest and stroke.
Collapse
Affiliation(s)
- Patrick D Lyden
- 1 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica Lamb
- 1 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shweta Kothari
- 1 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shahed Toossi
- 1 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,2 Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul Boitano
- 1 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Padmesh S Rajput
- 1 Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
33
|
Rajput PS, Lamb J, Kothari S, Pereira B, Soetkamp D, Wang Y, Tang J, Van Eyk JE, Mullins ES, Lyden PD. Neuron-generated thrombin induces a protective astrocyte response via protease activated receptors. Glia 2019; 68:246-262. [PMID: 31453648 DOI: 10.1002/glia.23714] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 08/02/2019] [Accepted: 08/15/2019] [Indexed: 01/08/2023]
Abstract
Astrocytes protect neurons during cerebral injury through several postulated mechanisms. Recent therapeutic attention has focused on enhancing or augmenting the neuroprotective actions of astrocytes but in some instances astrocytes can assume a neurotoxic phenotype. The signaling mechanisms that drive astrocytes toward a protective versus toxic phenotype are not fully known but cell-cell signaling via proteases acting on cell-specific receptors underlies critical mechanistic steps in neurodevelopment and disease. The protease activated receptor (PAR), resides in multiple brain cell types, and most PARs are found on astrocytes. We asked whether neuron-generated thrombin constituted an important astrocyte activation signal because our previous studies have shown that neurons contain prothrombin gene and transcribed protein. We used neuron and astrocyte mono-cell cultures exposed to oxygen-glucose deprivation and a model of middle cerebral artery occlusion. We found that ischemic neurons secrete thrombin into culture media, which leads to astrocyte activation; such astrocyte activation can be reproduced with low doses of thrombin. Media from prothrombin-deficient neurons failed to activate astrocytes and adding thrombin to such media restored activation. Astrocytes lacking PAR1 did not respond to neuron-generated thrombin. Induced astrocyte activation was antagonized dose-dependently with thrombin inhibitors or PAR1 antagonists. Ischemia-induced astrocyte activation in vivo was inhibited after neuronal prothrombin knockout, resulting in larger strokes. Restoring prothrombin to neurons with a lentiviral gene vector restored astrocyte activation and reduced stroke damage. We conclude that neuron-generated thrombin, released during ischemia, acts via PAR1 and may cause astrocyte activation and paracrine neuroprotection.
Collapse
Affiliation(s)
- Padmesh S Rajput
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jessica Lamb
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shweta Kothari
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Benedict Pereira
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Daniel Soetkamp
- The Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yizhou Wang
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jie Tang
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Eric S Mullins
- Division of Hematology and Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Patrick D Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
34
|
Gou ZP, Song ZH, Chen XG, Hu XC, Wang Y, Fan K, Cai YM, Zheng L. Safety, Pharmacokinetics and Pharmacodynamics of TNHH, a Novel Targeted Neutrophil-Inhibitory Hirulog Hybrid Glycoprotein, in Healthy Volunteers. CNS Drugs 2019; 33:605-614. [PMID: 31093952 DOI: 10.1007/s40263-019-00628-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Targeted neutrophil inhibitory-hirulog (TNHH) is a novel hybrid glycoprotein that may be a potential drug candidate for acute ischaemic stroke. OBJECTIVE The aim of this study was to evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of TNHH in healthy volunteers and thereby determine the dose range for future clinical studies. METHODS This randomized, placebo-controlled study was a single ascending dose design with dose levels of 0.05-1.8 mg/kg (n = 4-6 active, 2 placebos per cohort) in 68 participants. In the TNHH 0.2-1.8 mg/kg and control cohorts, pharmacokinetic and pharmacodynamic blood samples were collected over 168 h after intravenous (IV) administration. TNHH occupancy in peripheral blood neutrophils and blood coagulation were evaluated as the markers of target engagement. RESULTS Two subjects withdrew from the trial before administration of the study treatment, 66 subjects are included in the data analysis. TNHH was well tolerated in all dose regimens. In total, five mild, self-limiting adverse events (AEs) were observed in 4 of the 66 study subjects. Dose-proportional increases in maximum plasma concentration (Cmax) and area under the curve (AUC0-t) of TNHH were observed. Traces of TNHH were excreted in urine. The elimination half-life (t½) ranged from 0.6 to 1.3 h in the eight groups with ascending dose levels. TNHH combined with CD11b/CD18 quickly achieved > 90% receptor occupancy in groups with doses above 0.2 mg/kg. The Cmax and AUC of binding TNHH with CD11b/CD18 increased with the dose. A significant prolongation with dose was observed on thrombin time (TT), and weak influences were observed on prothrombin time (PT) and activated partial thromboplastin time (APTT). CONCLUSION TNHH was well-tolerated following IV infusion. The pharmacokinetic and pharmacodynamic characteristics of TNHH indicate that it merits clinical trials. It is recommended that the single dose of TNHH should be 1.0 mg/kg in future studies, and the expected effect may be achieved after 5-7 days of continuous administration. TRIAL REGISTRATION The study is registered at http://www.chictr.org.cn as ChiCTR-TQR-14004752.
Collapse
Affiliation(s)
- Zhong Ping Gou
- GCP Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Zi Hui Song
- Tianjin Institute of Pharmaceutical Research New Drug Evaluation Co. Ltd, Tianjin, 300301, China
| | - Xiao Gang Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao Cheng Hu
- Tianjin Institute of Pharmaceutical Research New Drug Evaluation Co. Ltd, Tianjin, 300301, China
| | - Ying Wang
- GCP Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Kai Fan
- Chongqing Fagen Biomedical INC., Chongqing, 400010, China
| | - Yong Ming Cai
- Tianjin Institute of Pharmaceutical Research New Drug Evaluation Co. Ltd, Tianjin, 300301, China
| | - Li Zheng
- GCP Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
35
|
Rajput PS, Lamb JA, Fernández JÁ, Bai J, Pereira BR, Lei IF, Leung J, Griffin JH, Lyden PD. Neuroprotection and vasculoprotection using genetically targeted protease-ligands. Brain Res 2019; 1715:13-20. [PMID: 30880117 DOI: 10.1016/j.brainres.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022]
Abstract
Thrombin and activated protein C (APC) are known coagulation factors that exhibit profound effects in brain by acting on the protease activated receptor (PAR). The wild type (WT) proteases appear to impact cell survival powerfully, and therapeutic forms of APC are under development. Engineered recombinant thrombin or APC were designed to separate their procoagulant or anticoagulant effects from their cytoprotective properties. We measured vascular disruption and neuronal degeneration after a standard rodent filament stroke model. For comparison to a robust anticoagulant, we used a GpIIb/IIIa inhibitor, GR144053. During 2 h MCAo both WT murine APC and its mutant, 5A-APC, significantly decreased neuronal death 30 min after reperfusion. During 4 h MCAo, only 5A-APC significantly protected neurons but both WT-APC and 5A-APC exacerbated vascular disruption during 4 h MCAo. Human APC mutants appeared to reduce 24 h neuronal injury significantly when given after 2 h delay after MCAo. In contrast, 24 h vascular damage was worsened by high doses of WT and mutant APCs, although only statistically significantly for high dose 3K3A-APC. Mutated thrombin worsened vascular damage significantly without affecting neuron damage. GR144053 failed to ameliorate vascular disruption or neuronal injury despite significant anticoagulation. Differential effects on neurons and the vasculature were demonstrated using wild-type and mutated proteases. The mutants murine 3K3A-APC and 5A-APC protected neurons in this rodent model but in high doses worsened vascular leakage. Cytoactive effects of plasma proteases may be separated from their coagulation effects. Further studies should explore impact of dose and timing on cytoactive and vasculoactive properties of these drugs.
Collapse
Affiliation(s)
- Padmesh S Rajput
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Jessica A Lamb
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Jose Á Fernández
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Jilin Bai
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Benedict R Pereira
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - I-Farn Lei
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Jennifer Leung
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Patrick D Lyden
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States.
| |
Collapse
|
36
|
Astrocytic thrombin-evoked VEGF release is dependent on p44/42 MAPKs and PAR1. Biochem Biophys Res Commun 2018; 509:585-589. [PMID: 30606478 DOI: 10.1016/j.bbrc.2018.12.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 11/21/2022]
Abstract
Intracerebral haemorrhage (ICH) often causes severe neurological deficits in survived patients, although its underlying mechanisms remain elusive. A common feature of ICH is the accumulation of thrombin around the lesion site. Previous studies showed that thrombin promotes VEGF release and angiogenesis at a late stage post ICH [1]. In current study, we explored the source for thrombin-induced VEGF release by adding thrombin or its receptor agonist peptide to the neuronal or astrocytic primarily cultures. We identified that astrocytes specifically respond to thrombin by up-regulating and releasing VEGF. Furthermore, such release is dependent on p44/42 MAPKs and PAR1, a thrombin specific receptor. Our study therefore helps clarifying the underlying mechanisms of thrombin-induced VEGF release in ICH, which will further provide novel insights into the designing principles for treating ICH and traumatic brain injuries.
Collapse
|
37
|
Park JH, Han SW, Lee KY, Choi HY, Cheon K, Cho HJ, Jung YH, Park HJ, Nam HS, Heo JH, Lee HS, Saposnik G, Kim YD. Impact of Non-vitamin K Antagonist Oral Anticoagulant Withdrawal on Stroke Outcomes. Front Neurol 2018; 9:1095. [PMID: 30619054 PMCID: PMC6305496 DOI: 10.3389/fneur.2018.01095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/29/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: Discontinuation of oral anticoagulants such as non-vitamin K antagonist oral anticoagulants (NOACs) may induce a hypercoagulable state, leading to severe stroke and poor outcomes. This study aimed to compare stroke outcomes between NOACs withdrawal and other prior medication statuses in patients with non-valvular atrial fibrillation (NVAF). Methods: Consecutive patients who had pre-existing NVAF and were admitted for an acute ischemic stroke or transient ischemic attack- at five hospitals between January 2013 and December 2016 were included. Prior medication status was categorized into seven groups such as no antithrombotics, antiplatelet-only, warfarin with subtherapeutic intensity, warfarin with therapeutic intensity, NOAC, warfarin withdrawal, and NOAC withdrawal. We compared initial National Institute of Health Stroke Scale (NIHSS) scores between groups Results: Among 719 patients with NVAF, The median NIHSS score at admission was 5 (IQR 1-13). The NOAC withdrawal group had the highest median NIHSS scores at stroke onset [16, interquartile range, IQR (1–17)], followed by the warfarin withdrawal group [11, IQR (1–14, 18)], the no antithrombotic group [5, IQR (1–13, 18, 19)], and the warfarin with subtherapeutic intensity group [5, IQR (1–10, 18, 19)]. A Multivariable analysis demonstrated that NOAC withdrawal was independently associated with higher NIHSS scores at stroke onset (B 4.645, 95% confidence interval 0.384–8.906, P = 0.033). The median interval from drug withdrawal to ischemic stroke or TIA was 7 days (IQR 4-15) in the NOAC group. Conclusions: Stroke that occurred after stopping oral anticoagulants, especially NOAC, and was more severe at presentation and associated with poorer outcomes.
Collapse
Affiliation(s)
- Joong Hyun Park
- Department of Neurology, Inje University College of Medicine, Seoul, South Korea
| | - Sang Won Han
- Department of Neurology, Inje University College of Medicine, Seoul, South Korea
| | - Kyung-Yul Lee
- Department of Neurology, Gangnam Severance Hospital, Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye-Yeon Choi
- Department of Neurology, Kyung Hee University School of Medicine, Kyung Hee University Hospital, Seoul, South Korea
| | - Kyeongyeol Cheon
- Department of Neurology, Gangnam Severance Hospital, Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Han-Jin Cho
- Department of Neurology, Pusan National University Hospital, Pusan National University College of Medicine and Biomedical Research Institute, Busan, South Korea
| | - Yo Han Jung
- Department of Neurology, Changwon Fatima Hospital, Changwon, South Korea
| | - Hyung Jong Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Suk Nam
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Hoe Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Gustavo Saposnik
- Stroke Outcomes and Decision Neuroscience Research Unit, Division of Neurology, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Young Dae Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
38
|
Galangin Inhibits Thrombin-Induced MMP-9 Expression in SK-N-SH Cells via Protein Kinase-Dependent NF-κB Phosphorylation. Int J Mol Sci 2018; 19:ijms19124084. [PMID: 30562971 PMCID: PMC6321481 DOI: 10.3390/ijms19124084] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022] Open
Abstract
Galangin, a member of the flavonol compounds of the flavonoids, could exert anti-inflammatory effects in various cell types. It has been used for the treatment of arthritis, airway inflammation, stroke, and cognitive impairment. Thrombin, one of the regulators of matrix metalloproteinase (MMPs), has been known as a vital factor of physiological and pathological processes, including cell migration, the blood–brain barrier breakdown, brain edema formation, neuroinflammation, and neuronal death. MMP-9 especially may contribute to neurodegenerative diseases. However, the effect of galangin in combating thrombin-induced MMP-9 expression is not well understood in neurons. Therefore, we attempted to explore the molecular mechanisms by which galangin inhibited MMP-9 expression and cell migration induced by thrombin in SK-N-SH cells (a human neuroblastoma cell line). Gelatin zymography, western blot, real-time PCR, and cell migration assay were used to elucidate the inhibitory effects of galangin on the thrmbin-mediated responses. The results showed that galangin markedly attenuated the thrombin-stimulated phosphorylation of proto-oncogene tyrosine-protein kinase (c-Src), proline-rich tyrosine kinase 2 (Pyk2), protein kinase C (PKC)α/β/δ, protein kinase B (Akt), mammalian target of rapamycin (mTOR), p42/p44 mitogen-activated protein kinase (MAPK), Jun amino-terminal kinases (JNK)1/2, p38 MAPK, forkhead box protein O1 (FoxO1), p65, and c-Jun and suppressed MMP-9 expression and cell migration in SK-N-SH cells. Our results concluded that galangin blocked the thrombin-induced MMP-9 expression in SK-N-SH cells via inhibiting c-Src, Pyk2, PKCα/βII/δ, Akt, mTOR, p42/p44 MAPK, JNK1/2, p38 MAPK, FoxO1, c-Jun, and p65 phosphorylation and ultimately attenuated cell migration. Therefore, galangin may be a potential candidate for the management of brain inflammatory diseases.
Collapse
|
39
|
Overexpression of miR-582-5p Inhibits the Apoptosis of Neuronal Cells after Cerebral Ischemic Stroke Through Regulating PAR-1/Rho/Rho Axis. J Stroke Cerebrovasc Dis 2018; 28:149-155. [PMID: 30327244 DOI: 10.1016/j.jstrokecerebrovasdis.2018.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE The purpose of this study was to explore the role of miR-582-5p/proteinase-activated receptors type I (PAR-1)/Rho/Rho in neuronal cell apoptosis after cerebral ischemic stroke (CIS). METHODS In vivo mouse model of CIS induced by middle cerebral artery occlusion and in vitro model induced by oxygen-glucose deprivation/reoxygenation (OGD/R) in N2A cells was established. The expressions of miR-582-5p, PAR-1, RhoA, and ROCKII in brain tissues and N2A cells were detected. Neuronal cell apoptosis was detected by flow cytometry. RESULTS We found that miR-582-5p expression was decreased and the expressions of PAR-1, RhoA, and ROCKII were increased in CIS mice and OGD/R model. Moreover, miR-582-5p negatively regulated PAR-1, and overexpression of miR-582-5p inhibited the activation of Rho/Rho pathway by downregulating PAR-1, thus reducing OGD/R-induced neuronal cell apoptosis. CONCLUSIONS Our results suggested that miR-582-5p overexpression could regulate Rho/Rho-kinase signaling pathway via targeting PAR-1, thereby governing the apoptosis of neuronal cells after CIS.
Collapse
|
40
|
Hu S, Kang H, Baek Y, El Fakhri G, Kuang A, Choi HS. Real-Time Imaging of Brain Tumor for Image-Guided Surgery. Adv Healthc Mater 2018; 7:e1800066. [PMID: 29719137 PMCID: PMC6105507 DOI: 10.1002/adhm.201800066] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/22/2018] [Indexed: 02/05/2023]
Abstract
The completion of surgical resection is a key prognostic factor in brain tumor treatment. This requires surgeons to identify residual tumors in theater as well as to margin the proximity of the tumor to adjacent normal tissue. Subjective assessments, such as texture palpation or visual tissue differences, are commonly used by oncology surgeons during resection to differentiate cancer lesions from normal tissue, which can potentially result in either an incomplete tumor resection, or accidental removal of normal tissue. Moreover, malignant brain tumors are even more difficult to distinguish from normal brain tissue, and resecting noncancerous tissue may create neurological defects after surgery. To optimize the resection margin in brain tumors, a variety of intraoperative guidance techniques are developed, such as neuronavigation, magnetic resonance imaging, ultrasound, Raman spectroscopy, and optical fluorescence imaging. When combined with appropriate contrast agents, optical fluorescence imaging can provide the neurosurgeon real-time image guidance to improve resection completeness and to decrease surgical complications.
Collapse
Affiliation(s)
- Shuang Hu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yoonji Baek
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anren Kuang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
41
|
Lyden PD. Can an anticoagulant reduce brain hemorrhage: Invited comment on "Dabigatran reduces endothelial permeability through inhibition of thrombin-induced cytoskeleton reorganization". Thromb Res 2018; 167:S0049-3848(18)30379-7. [PMID: 29935770 DOI: 10.1016/j.thromres.2018.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick D Lyden
- Department of Neurology, 127 S. San Vicente Blvd, Room A6417, Los Angeles, CA 90048, United States.
| |
Collapse
|
42
|
Bushi D, Chapman J, Wohl A, Stein ES, Feingold E, Tanne D. Apixaban decreases brain thrombin activity in a male mouse model of acute ischemic stroke. J Neurosci Res 2018; 96:1406-1411. [PMID: 29761540 DOI: 10.1002/jnr.24253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Abstract
Factor Xa (FXa) plays a critical role in the coagulation cascade by generation of thrombin. During focal ischemia thrombin levels increase in the brain tissue and cause neural damage. This study examined the hypothesis that administration of the FXa inhibitor, apixaban, following focal ischemic stroke may have therapeutic potential by decreasing brain thrombin activity and infarct volume. Male mice were divided into a treated groups that received different doses of apixaban (2, 20, 100 mg/kg administered I.P.) or saline (controls) immediately after blocking the middle cerebral artery (MCA). Thrombin activity was measured by a fluorescence assay on fresh coronal slices taken from the mice brains 24 hr following the MCA occlusion. Infarct volume was assessed using triphenyltetrazolium chloride staining. A high dose of apixaban (100 mg/kg) significantly decreased thrombin activity levels in the ipsilateral hemisphere compared to the control group (Slice#5, p = .016; Slice#6, p = .016; Slice#7, p = .016; Slice#8, p = .036; by the nonparametric Mann-Whitney test). In addition, treatment with apixaban doses of both 100 mg/kg (32 ± 8% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .005 by the nonparametric Mann-Whitney test) and 20 mg/kg (43 ± 7% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .019 by the nonparametric Mann-Whitney test) decreased infarct volumes in areas surrounding the ischemic core (Slices #3 and #8). No brain hemorrhages were observed either in the treated or control groups. In summary, I.P. administration of high dose of apixaban immediately after MCA occlusion decreases brain thrombin activity and reduces infarct size.
Collapse
Affiliation(s)
- Doron Bushi
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joab Chapman
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anton Wohl
- Department of Neurosurgery, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel
| | - Efrat Shavit Stein
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ekaterina Feingold
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Tanne
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
43
|
Petersen MA, Ryu JK, Akassoglou K. Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. Nat Rev Neurosci 2018; 19:283-301. [PMID: 29618808 PMCID: PMC6743980 DOI: 10.1038/nrn.2018.13] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood coagulation protein fibrinogen is deposited in the brain in a wide range of neurological diseases and traumatic injuries with blood-brain barrier (BBB) disruption. Recent research has uncovered pleiotropic roles for fibrinogen in the activation of CNS inflammation, induction of scar formation in the brain, promotion of cognitive decline and inhibition of repair. Such diverse roles are possible in part because of the unique structure of fibrinogen, which contains multiple binding sites for cellular receptors and proteins expressed in the nervous system. The cellular and molecular mechanisms underlying the actions of fibrinogen are beginning to be elucidated, providing insight into its involvement in neurological diseases, such as multiple sclerosis, Alzheimer disease and traumatic CNS injury. Selective drug targeting to suppress the damaging functions of fibrinogen in the nervous system without affecting its beneficial effects in haemostasis opens a new fibrinogen therapeutics pipeline for neurological disease.
Collapse
Affiliation(s)
- Mark A. Petersen
- Gladstone Institutes, San Francisco, CA USA
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | | | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA USA
- Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
44
|
Oguro H, Mitaki S, Takayoshi H, Abe S, Onoda K, Yamaguchi S. Retrospective Analysis of Argatroban in 353 Patients with Acute Noncardioembolic Stroke. J Stroke Cerebrovasc Dis 2018; 27:2175-2181. [PMID: 29706441 DOI: 10.1016/j.jstrokecerebrovasdis.2018.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Argatroban is a thrombin inhibitor agent for acute noncardioembolic ischemic stroke in Japan. We studied the prognosis in patients with acute stroke treated by argatroban in comparison with the control group with ozagrel in our hospital. SUBJECTS AND METHODS A total of 513 patients with acute noncardioembolic ischemic stroke were enrolled retrospectively from our hospital database. Of all patients with stroke, 353 were administered with argatroban. The other 160 control patients were administered with ozagrel. The patients were examined as to their stroke types, the neurological severity according to the National Institutes of Health Stroke Scale (NIHSS), and clinical outcomes on discharge were determined according to the modified Rankin Scale (mRS). RESULTS A total of 353 patients with acute noncardioembolic stroke, including 138 with lacunar infarction (LIs) and 215 with atherothrombotic infarction (ATI) showed functional recovery by argatroban, but the effectiveness of argatroban was not superior to ozagrel therapy defined by the control group. A total of 255 patients with ATI who were treated with both argatroban and ozagrel showed improvement by 1 point. We could not find any significant difference between argatroban and ozagrel in the 2 stroke subtypes, LI and ATI. We also found that combination therapy of argatroban and edaravone was not superior to argatroban monotherapy in clinical outcome. CONCLUSIONS Argatroban therapy was not superior to control with ozagrel therapy in acute noncardioembolic ischemic stroke, including LI and ATI, regardless of the use of edaravone.
Collapse
Affiliation(s)
- Hiroaki Oguro
- Department of Neurology, Shimane University Hospital, Izumo City, Shimane, Japan.
| | - Shingo Mitaki
- Department of Neurology, Shimane University Hospital, Izumo City, Shimane, Japan
| | - Hiroyuki Takayoshi
- Department of Neurology, Shimane University Hospital, Izumo City, Shimane, Japan
| | - Satoshi Abe
- Department of Neurology, Shimane University Hospital, Izumo City, Shimane, Japan
| | - Keiichi Onoda
- Department of Neurology, Shimane University Hospital, Izumo City, Shimane, Japan
| | - Shuhei Yamaguchi
- Department of Neurology, Shimane University Hospital, Izumo City, Shimane, Japan
| |
Collapse
|
45
|
Choi HJ, Kim NE, Kim J, An S, Yang SH, Ha J, Cho S, Kwon I, Kim YD, Nam HS, Heo JH. Dabigatran reduces endothelial permeability through inhibition of thrombin-induced cytoskeleton reorganization. Thromb Res 2018; 167:S0049-3848(18)30324-4. [PMID: 29735342 DOI: 10.1016/j.thromres.2018.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 11/23/2022]
Abstract
Dabigatran etexilate (DE), a new oral anti-coagulant, is a direct thrombin inhibitor. Clinical trials showed the favorable benefit-to-risk profile of DE compared to warfarin for the prevention of ischemic stroke in patients with atrial fibrillation. Remarkably, patients treated with dabigatran showed reduced rates of intracerebral hemorrhage compared to warfarin. As the breakdown of endothelial barrier integrity is associated with hemorrhagic events and as thrombin increases endothelial permeability, we hypothesized that dabigatran preserves the endothelial barrier by inhibiting thrombin-induced permeability. We assessed leakage of fluorescein isothiocyanate (FITC)-dextran through the endothelial monolayer and measured trans-endothelial electrical resistance of the endothelial monolayer after treatment of thrombin or thrombin pre-incubated with dabigatran. Thrombin increased the permeability of endothelial cells. Dabigatran effectively blocked the ability of thrombin to increase permeability. Dabigatran inhibited the formation of actin stress fibers induced by thrombin and inhibited consequent destabilization of junctional protein complexes and intercellular gap formation. The interaction of thrombin with protease activated receptor-1 activates the Rho A guanosine triphosphate (GTP)ase-myosin light chain (MLC) phosphorylation signaling axis, leading to actin cytoskeleton changes. This signaling pathway was effectively inhibited by dabigatran in endothelial cells. Consistently, the number of phosphorylated MLC-positive cells was significantly decreased in ischemic tissue of rat brains. These results indicate dabigatran blocks the ability of thrombin to induce vascular permeability and the resulting underlying signaling cascade in endothelial cells. Our findings provide evidence that dabigatran may confer a lower risk of intracerebral hemorrhage by preserving endothelial barrier integrity.
Collapse
Affiliation(s)
- Hyun-Jung Choi
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Na-Eun Kim
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jayoung Kim
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunho An
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Hee Yang
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jimin Ha
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Sunghee Cho
- The Burke-Cornell Medical Research Institute, White Plains, NY 10605, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, United States
| | - Il Kwon
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Dae Kim
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Suk Nam
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoe Heo
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
46
|
Local Regulation of Thrombin Activity by Factor Xa in Peripheral Nerve Schwann Cells. Neuroscience 2017; 371:445-454. [PMID: 29292076 DOI: 10.1016/j.neuroscience.2017.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 11/22/2022]
Abstract
Thrombin through its receptor plays an important role in the peripheral nervous system (PNS) but the pathways leading to its generation there are not known. In the blood, activated factor X (FXa) which is formed from factor X (FX) by tissue factor (TF) and factor VII (FVII), cleaves prothrombin into thrombin. We here studied these factors in vivo in mouse sciatic nerve and in vitro in a Schwannoma cell line and provide mRNA, immunoblot and immunohistochemistry evidence that FX and FXa are expressed in the normal and injured peripheral nerve and in Schwannoma cells. Furthermore, TF and FVII were localized histologically to the node of Ranvier in the sciatic nerve. Adding exogenous FXa increased the thrombin levels in sciatic nerve (11.6 ± 1.6 mU/ml compared to 35.2 ± 6 mU/ml p = 0.02) and in Schwannoma cell line (4.5 ± 0.2 mU/ml compared to 18.1 ± 0.5 mU/ml p < 0.001), indicating a large reserve of prothrombin. In the injured nerve, FX mRNA was upregulated 1 day after injury compared to normal nerve (103 ± 38 versus 1 ± 0.3 FOI p < 0.001). FXa protein levels increased 1 h after the injury and then decreased significantly at 1 and 2 days following injury despite an increase in its precursor, FX. Injecting the selective FXa inhibitor apixaban immediately upon injury decreased thrombin activation and improved motor function after nerve injury. The results localize the extrinsic coagulation pathway and FXa to the PNS, suggesting a critical role for FXa in PNS thrombin formation and the possible therapeutic use of selective FXa inhibitors in nerve injuries.
Collapse
|
47
|
|
48
|
Ben Shimon M, Zeimer T, Shavit Stein E, Artan-Furman A, Harnof S, Chapman J, Eisenkraft A, Pick CG, Maggio N. Recovery from trauma induced amnesia correlates with normalization of thrombin activity in the mouse hippocampus. PLoS One 2017; 12:e0188524. [PMID: 29182653 PMCID: PMC5705129 DOI: 10.1371/journal.pone.0188524] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/08/2017] [Indexed: 12/23/2022] Open
Abstract
Transient amnesia is a common consequence of minimal traumatic brain injury (mTBI). However, while recent findings have addressed the mechanisms involved in its onset, the processes contributing to its recovery have not yet been addressed. Recently, we have found that thrombin is detected at high concentrations in the brain of mice after exposure to mTBI and that in such settings amnesia is rescued by either inhibiting thrombin activity or by blockade of PAR1. Here, we report that mice spontaneously recover from amnesia after two weeks from mTBI exposure. At this time point, long term potentiation was equally evoked in injured vs. control animals with thrombin concentration in the brain being normalized at this stage. These findings, which refer to the specific aspect of memory retrieval upon mTBI, together with our previous work, hint to a strong correlation between cognitive defects in the context of mTBI and thrombin concentrations in the brain. This may suggest that a possible scavenging of thrombin in the brain at early phases following mTBI may improve memory function.
Collapse
Affiliation(s)
- Marina Ben Shimon
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Talya Zeimer
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Efrat Shavit Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | | | - Sagi Harnof
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurosurgery, Rabin Medical Center, Petah Tikva, Israel
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Arik Eisenkraft
- The Institute for Research in Military Medicine, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chaim G. Pick
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Anatomy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
- * E-mail:
| |
Collapse
|
49
|
Yoon H, Radulovic M, Walters G, Paulsen AR, Drucker K, Starski P, Wu J, Fairlie DP, Scarisbrick IA. Protease activated receptor 2 controls myelin development, resiliency and repair. Glia 2017; 65:2070-2086. [PMID: 28921694 DOI: 10.1002/glia.23215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022]
Abstract
Oligodendrocytes are essential regulators of axonal energy homeostasis and electrical conduction and emerging target cells for restoration of neurological function. Here we investigate the role of protease activated receptor 2 (PAR2), a unique protease activated G protein-coupled receptor, in myelin development and repair using the spinal cord as a model. Results demonstrate that genetic deletion of PAR2 accelerates myelin production, including higher proteolipid protein (PLP) levels in the spinal cord at birth and higher levels of myelin basic protein and thickened myelin sheaths in adulthood. Enhancements in spinal cord myelin with PAR2 loss-of-function were accompanied by increased numbers of Olig2- and CC1-positive oligodendrocytes, as well as in levels of cyclic adenosine monophosphate (cAMP), and extracellular signal related kinase 1/2 (ERK1/2) signaling. Parallel promyelinating effects were observed after blocking PAR2 expression in purified oligodendrocyte cultures, whereas inhibiting adenylate cyclase reversed these effects. Conversely, PAR2 activation reduced PLP expression and this effect was prevented by brain derived neurotrophic factor (BDNF), a promyelinating growth factor that signals through cAMP. PAR2 knockout mice also showed improved myelin resiliency after traumatic spinal cord injury and an accelerated pattern of myelin regeneration after focal demyelination. These findings suggest that PAR2 is an important controller of myelin production and regeneration, both in the developing and adult spinal cord.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905.,Department of Physiology and Biomedical Engineering, Rochester, Minnesota, 55905
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905.,Neurobiology of Disease Program, Mayo Clinic, Rochester, Minnesota, 55905
| | - Grant Walters
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - Alex R Paulsen
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - Kristen Drucker
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - Phillip Starski
- Neurobiology of Disease Program, Mayo Clinic, Rochester, Minnesota, 55905
| | - Jianmin Wu
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - David P Fairlie
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905.,Department of Physiology and Biomedical Engineering, Rochester, Minnesota, 55905.,Neurobiology of Disease Program, Mayo Clinic, Rochester, Minnesota, 55905
| |
Collapse
|
50
|
Bushi D, Stein ES, Golderman V, Feingold E, Gera O, Chapman J, Tanne D. A Linear Temporal Increase in Thrombin Activity and Loss of Its Receptor in Mouse Brain following Ischemic Stroke. Front Neurol 2017; 8:138. [PMID: 28443061 PMCID: PMC5385331 DOI: 10.3389/fneur.2017.00138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Brain thrombin activity is increased following acute ischemic stroke and may play a pathogenic role through the protease-activated receptor 1 (PAR1). In order to better assess these factors, we obtained a novel detailed temporal and spatial profile of thrombin activity in a mouse model of permanent middle cerebral artery occlusion (pMCAo). METHODS Thrombin activity was measured by fluorescence spectroscopy on coronal slices taken from the ipsilateral and contralateral hemispheres 2, 5, and 24 h following pMCAo (n = 5, 6, 5 mice, respectively). Its spatial distribution was determined by punch samples taken from the ischemic core and penumbra and further confirmed using an enzyme histochemistry technique (n = 4). Levels of PAR1 were determined using western blot. RESULTS Two hours following pMCAo, thrombin activity in the stroke core was already significantly higher than the contralateral area (11 ± 5 vs. 2 ± 1 mU/ml). At 5 and 24 h, thrombin activity continued to rise linearly (r = 0.998, p = 0.001) and to expand in the ischemic hemisphere beyond the ischemic core reaching deleterious levels of 271 ± 117 and 123 ± 14 mU/ml (mean ± SEM) in the basal ganglia and ischemic cortex, respectively. The peak elevation of thrombin activity in the ischemic core that was confirmed by fluorescence histochemistry was in good correlation with the infarcts areas. PAR1 levels in the ischemic core decreased as stroke progressed and thrombin activity increased. CONCLUSION In conclusion, there is a time- and space-related increase in brain thrombin activity in acute ischemic stroke that is closely related to the progression of brain damage. These results may be useful in the development of therapeutic strategies for ischemic stroke that involve the thrombin-PAR1 pathway in order to prevent secondary thrombin related brain damage.
Collapse
Affiliation(s)
- Doron Bushi
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit Stein
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Valery Golderman
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ekaterina Feingold
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Gera
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joab Chapman
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Tanne
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|