1
|
Perez R, Park Y, Hirano A, Brecha N, Frankfort B, Zuniga-Sanchez E. Modeling subcellular specificity in the developing retina. RESEARCH SQUARE 2023:rs.3.rs-3214285. [PMID: 37609217 PMCID: PMC10441513 DOI: 10.21203/rs.3.rs-3214285/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The precise wiring of the nervous system relies on neurons extending their processes at the right time and place to find their appropriate synaptic partner. The mechanisms that determine when and where neurons extend their neurites during synaptogenesis remains a central question in the field. In the present study, we developed a cell culture system coupled with live imaging to investigate the wiring mechanisms in the developing nervous system. We focused on horizontal cells which are interneurons in the mammalian outer retina known to synapse selectively to distinct photoreceptors. Our data shows cultured horizontal cells extend neurites in a similar manner as in vivo with horizontal cells isolated from young mice extending more complex processes compared to those from adult retinas. In addition, horizontal cells cultured alone do not extend neurites and require other retinal cells for neurite extension suggesting that there must be extrinsic cues that promote neurite outgrowth. Moreover, these extrinsic cues do not appear to be solely secreted factors as supernatant from wild-type retinas is not sufficient to promote neurite outgrowth. In summary, we established a new system that can be used to decipher the mechanisms involved in neuronal wiring of the developing central nervous system.
Collapse
|
2
|
Navarro-Calvo J, Esquiva G, Gómez-Vicente V, Valor LM. MicroRNAs in the Mouse Developing Retina. Int J Mol Sci 2023; 24:ijms24032992. [PMID: 36769311 PMCID: PMC9918188 DOI: 10.3390/ijms24032992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The retina is among the highest organized tissues of the central nervous system. To achieve such organization, a finely tuned regulation of developmental processes is required to form the retinal layers that contain the specialized neurons and supporting glial cells to allow precise phototransduction. MicroRNAs are a class of small RNAs with undoubtful roles in fundamental biological processes, including neurodevelopment of the brain and the retina. This review provides a short overview of the most important findings regarding microRNAs in the regulation of retinal development, from the developmental-dependent rearrangement of the microRNA expression program to the key roles of particular microRNAs in the differentiation and maintenance of retinal cell subtypes.
Collapse
Affiliation(s)
- Jorge Navarro-Calvo
- Unidad de Investigación, Hospital General Universitario Dr. Balmis, ISABIAL, 03010 Alicante, Spain
| | - Gema Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Violeta Gómez-Vicente
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Luis M. Valor
- Unidad de Investigación, Hospital General Universitario Dr. Balmis, ISABIAL, 03010 Alicante, Spain
- Correspondence: ; Tel.: +34-965-913-988
| |
Collapse
|
3
|
Yan J, Li Y, Zhang T, Shen Y. Numb deficiency impairs retinal structure and visual function in mice. Exp Eye Res 2022; 219:109066. [DOI: 10.1016/j.exer.2022.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
|
4
|
Veldman MB, Park CS, Eyermann CM, Zhang JY, Zuniga-Sanchez E, Hirano AA, Daigle TL, Foster NN, Zhu M, Langfelder P, Lopez IA, Brecha NC, Zipursky SL, Zeng H, Dong HW, Yang XW. Brainwide Genetic Sparse Cell Labeling to Illuminate the Morphology of Neurons and Glia with Cre-Dependent MORF Mice. Neuron 2020; 108:111-127.e6. [PMID: 32795398 PMCID: PMC7572760 DOI: 10.1016/j.neuron.2020.07.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022]
Abstract
Cajal recognized that the elaborate shape of neurons is fundamental to their function in the brain. However, there are no simple and generalizable genetic methods to study neuronal or glial cell morphology in the mammalian brain. Here, we describe four mouse lines conferring Cre-dependent sparse cell labeling based on mononucleotide repeat frameshift (MORF) as a stochastic translational switch. Notably, the optimized MORF3 mice, with a membrane-bound multivalent immunoreporter, confer Cre-dependent sparse and bright labeling of thousands of neurons, astrocytes, or microglia in each brain, revealing their intricate morphologies. MORF3 mice are compatible with imaging in tissue-cleared thick brain sections and with immuno-EM. An analysis of 151 MORF3-labeled developing retinal horizontal cells reveals novel morphological cell clusters and axonal maturation patterns. Our study demonstrates a conceptually novel, simple, generalizable, and scalable mouse genetic solution to sparsely label and illuminate the morphology of genetically defined neurons and glia in the mammalian brain.
Collapse
Affiliation(s)
- Matthew B Veldman
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, and Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chang Sin Park
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, and Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Charles M Eyermann
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, and Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Y Zhang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, and Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elizabeth Zuniga-Sanchez
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Arlene A Hirano
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Veterans Administration of Greater Los Angeles Health System, Los Angeles, CA 90073, USA
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nicholas N Foster
- Center for Integrative Connectomics, University of Southern California Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, Los Angeles, CA, 90033, USA
| | - Muye Zhu
- Center for Integrative Connectomics, University of Southern California Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, Los Angeles, CA, 90033, USA
| | - Peter Langfelder
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, and Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ivan A Lopez
- Cellular and Molecular Biology of the Inner Ear Laboratory, Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Veterans Administration of Greater Los Angeles Health System, Los Angeles, CA 90073, USA; Departments of Medicine and Ophthalmology, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hong-Wei Dong
- Center for Integrative Connectomics, University of Southern California Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, Los Angeles, CA, 90033, USA; Zilkha Neurogenetic Institute, and Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, and Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Persiconi I, Cosmi F, Guadagno NA, Lupo G, De Stefano ME. Dystrophin Is Required for the Proper Timing in Retinal Histogenesis: A Thorough Investigation on the mdx Mouse Model of Duchenne Muscular Dystrophy. Front Neurosci 2020; 14:760. [PMID: 32982660 PMCID: PMC7487415 DOI: 10.3389/fnins.2020.00760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked muscular disease caused by defective expression of the cytoskeletal protein dystrophin (Dp427). Selected autonomic and central neurons, including retinal neurons, express Dp427 and/or dystrophin shorter isoforms. Because of this, DMD patients may also experience different forms of cognitive impairment, neurological and autonomic disorders, and specific visual defects. DMD-related damages to the nervous system are established during development, suggesting a role for all dystrophin isoforms in neural circuit development and differentiation; however, to date, their function in retinogenesis has never been investigated. In this large-scale study, we analyzed whether the lack of Dp427 affects late retinogenesis in the mdx mouse, the most well studied animal model of DMD. Retinal gene expression and layer maturation, as well as neural cell proliferation, apoptosis, and differentiation, were evaluated in E18 and/or P0, P5, P10, and adult mice. In mdx mice, expression of Capn3, Id3 (E18-P5), and Dtnb (P5) genes, encoding proteins involved in different aspects of retina development and synaptogenesis (e.g., Calpain 3, DNA-binding protein inhibitor-3, and β-dystrobrevin, respectively), was transiently reduced compared to age-matched wild type mice. Concomitantly, a difference in the time required for the retinal ganglion cell layer to reach appropriate thickness was observed (P0–P5). Immunolabeling for specific cell markers also evidenced a significant dysregulation in the number of GABAergic amacrine cells (P5–P10), a transient decrease in the area immunopositive for the Vesicular Glutamate Transporter 1 (VGluT1) during ribbon synapse maturation (P10) and a reduction in the number of calretinin+ retinal ganglion cells (RGCs) (adults). Finally, the number of proliferating retinal progenitor cells (P5–P10) and apoptotic cells (P10) was reduced. These results support the hypothesis of a role for Dp427 during late retinogenesis different from those proposed in consolidated neural circuits. In particular, Dp427 may be involved in shaping specific steps of retina differentiation. Notably, although most of the above described quantitative alterations recover over time, the number of calretinin+ RGCs is reduced only in the mature retina. This suggests that alterations subtler than the timing of retinal maturation may occur, a hypothesis that demands further in-depth functional studies.
Collapse
Affiliation(s)
- Irene Persiconi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Francesca Cosmi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | | | - Giuseppe Lupo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Maria Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Center for Research in Neurobiology "Daniel Bovet", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Ghinia MG, Novelli E, Sajgo S, Badea TC, Strettoi E. Brn3a and Brn3b knockout mice display unvaried retinal fine structure despite major morphological and numerical alterations of ganglion cells. J Comp Neurol 2019; 527:187-211. [PMID: 27391320 PMCID: PMC5219957 DOI: 10.1002/cne.24072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/07/2016] [Accepted: 06/30/2016] [Indexed: 01/21/2023]
Abstract
Ganglion cells (GCs), the retinal output neurons, receive synaptic inputs from bipolar and amacrine cells in the inner plexiform layer (IPL) and send information to the brain nuclei via the optic nerve. Although GCs constitute less than 1% of the total retinal cells, they occur in numerous types and are the first neurons formed during retinal development. Using Brn3a and Brn3b mutant mice in which the alkaline phosphatase gene was knocked-in (Badea et al. [Neuron] 2009;61:852-864; Badea and Nathans [Vision Res] 2011;51:269-279), we studied the general effects after gene removal on the retinal neuropil together with the consequences of lack of development of large numbers of GCs onto the remaining retinal neurons of the same class. We analyzed the morphology, number, and general architecture of various neuronal types presynaptic to GCs, searching for changes secondary to the decrement in the number of their postsynaptic partners, as well as the morphology and distribution of retinal astrocytes, for their strong topographical relation to GCs. We found that, despite GC losses, retinal organization in Brn3 null mice is remarkably similar to that of wild-type controls. J. Comp. Neurol. 527:187-211, 2019. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Miruna Georgiana Ghinia
- Neuroscience Institute of the Italian National Research Council, Pisa Research Campus, 56124 Pisa, Italy
- Retinal CIrcuit Development & Genetics Unit, Neurobiology–Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
- Babeş Bolyai University, 400084 Cluj Napoca, Romania
| | - Elena Novelli
- Neuroscience Institute of the Italian National Research Council, Pisa Research Campus, 56124 Pisa, Italy
| | - Szilard Sajgo
- Retinal CIrcuit Development & Genetics Unit, Neurobiology–Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Tudor Constantin Badea
- Retinal CIrcuit Development & Genetics Unit, Neurobiology–Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Enrica Strettoi
- Neuroscience Institute of the Italian National Research Council, Pisa Research Campus, 56124 Pisa, Italy
| |
Collapse
|
7
|
Reese BE. Axon Terminal Arbors of Retinal Horizontal Cells Lose Control. Front Neural Circuits 2018; 12:82. [PMID: 30364242 PMCID: PMC6193083 DOI: 10.3389/fncir.2018.00082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/18/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- Benjamin E Reese
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
8
|
Zhang C, Kolodkin AL, Wong RO, James RE. Establishing Wiring Specificity in Visual System Circuits: From the Retina to the Brain. Annu Rev Neurosci 2017; 40:395-424. [PMID: 28460185 DOI: 10.1146/annurev-neuro-072116-031607] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retina is a tremendously complex image processor, containing numerous cell types that form microcircuits encoding different aspects of the visual scene. Each microcircuit exhibits a distinct pattern of synaptic connectivity. The developmental mechanisms responsible for this patterning are just beginning to be revealed. Furthermore, signals processed by different retinal circuits are relayed to specific, often distinct, brain regions. Thus, much work has focused on understanding the mechanisms that wire retinal axonal projections to their appropriate central targets. Here, we highlight recently discovered cellular and molecular mechanisms that together shape stereotypic wiring patterns along the visual pathway, from within the retina to the brain. Although some mechanisms are common across circuits, others play unconventional and circuit-specific roles. Indeed, the highly organized connectivity of the visual system has greatly facilitated the discovery of novel mechanisms that establish precise synaptic connections within the nervous system.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Rebecca E James
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| |
Collapse
|
9
|
Dendritic stratification differs among retinal OFF bipolar cell types in the absence of rod photoreceptors. PLoS One 2017; 12:e0173455. [PMID: 28257490 PMCID: PMC5336283 DOI: 10.1371/journal.pone.0173455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/22/2017] [Indexed: 01/09/2023] Open
Abstract
Retinal OFF bipolar cells show distinct connectivity patterns with photoreceptors in the wild-type mouse retina. Some types are cone-specific while others penetrate further through the outer plexiform layer (OPL) to contact rods in addition to cones. To explore dendritic stratification of OFF bipolar cells in the absence of rods, we made use of the 'cone-full' Nrl-/- mouse retina in which all photoreceptor precursor cells commit to a cone fate including those which would have become rods in wild-type retinas. The dendritic distribution of OFF bipolar cell types was investigated by confocal and electron microscopic imaging of immunolabeled tissue sections. The cells' dendrites formed basal contacts with cone terminals and expressed the corresponding glutamate receptor subunits at those sites, indicating putative synapses. All of the four analyzed cell populations showed distinctive patterns of vertical dendritic invasion through the OPL. This disparate behavior of dendritic extension in an environment containing only cone terminals demonstrates type-dependent specificity for dendritic outgrowth in OFF bipolar cells: rod terminals are not required for inducing dendritic extension into distal areas of the OPL.
Collapse
|
10
|
Deming JD, Pak JS, Shin JA, Brown BM, Kim MK, Aung MH, Lee EJ, Pardue MT, Craft CM. Arrestin 1 and Cone Arrestin 4 Have Unique Roles in Visual Function in an All-Cone Mouse Retina. Invest Ophthalmol Vis Sci 2016; 56:7618-28. [PMID: 26624493 DOI: 10.1167/iovs.15-17832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Previous studies discovered cone phototransduction shutoff occurs normally for Arr1-/- and Arr4-/-; however, it is defective when both visual arrestins are simultaneously not expressed (Arr1-/-Arr4-/-). We investigated the roles of visual arrestins in an all-cone retina (Nrl-/-) since each arrestin has differential effects on visual function, including ARR1 for normal light adaptation, and ARR4 for normal contrast sensitivity and visual acuity. METHODS We examined Nrl-/-, Nrl-/-Arr1-/-, Nrl-/-Arr4-/-, and Nrl-/-Arr1-/-Arr4-/- mice with photopic electroretinography (ERG) to assess light adaptation and retinal responses, immunoblot and immunohistochemical localization analysis to measure retinal expression levels of M- and S-opsin, and optokinetic tracking (OKT) to measure the visual acuity and contrast sensitivity. RESULTS Study results indicated that Nrl-/- and Nrl-/-Arr4-/- mice light adapted normally, while Nrl-/-Arr1-/- and Nrl-/-Arr1-/-Arr4-/- mice did not. Photopic ERG a-wave, b-wave, and flicker amplitudes followed a general pattern in which Nrl-/-Arr4-/- amplitudes were higher than the amplitudes of Nrl-/-, while the amplitudes of Nrl-/-Arr1-/- and Nrl-/-Arr1-/-Arr4-/- were lower. All three visual arrestin knockouts had faster implicit times than Nrl-/- mice. M-opsin expression is lower when ARR1 is not expressed, while S-opsin expression is lower when ARR4 is not expressed. Although M-opsin expression is mislocalized throughout the photoreceptor cells, S-opsin is confined to the outer segments in all genotypes. Contrast sensitivity is decreased when ARR4 is not expressed, while visual acuity was normal except in Nrl-/-Arr1-/-Arr4-/-. CONCLUSIONS Based on the opposite visual phenotypes in an all-cone retina in the Nrl-/-Arr1-/- and Nrl-/-Arr4-/- mice, we conclude that ARR1 and ARR4 perform unique modulatory roles in cone photoreceptors.
Collapse
Affiliation(s)
- Janise D Deming
- Mary D. Allen Laboratory for Vision Research, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, USC Eye Institute, Los Angeles, California, United States
| | - Joseph S Pak
- Mary D. Allen Laboratory for Vision Research, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, USC Eye Institute, Los Angeles, California, United States
| | - Jung-A Shin
- Mary D. Allen Laboratory for Vision Research, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, USC Eye Institute, Los Angeles, California, United States 2Department of Anatomy, School of Medicine, Ewha Womans
| | - Bruce M Brown
- Mary D. Allen Laboratory for Vision Research, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, USC Eye Institute, Los Angeles, California, United States
| | - Moon K Kim
- Rehabilitation Research & Development Center of Excellence, Atlanta VA Medical Center, Decatur, Georgia, United States
| | - Moe H Aung
- Neuroscience/Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Eun-Jin Lee
- Mary D. Allen Laboratory for Vision Research, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, USC Eye Institute, Los Angeles, California, United States 5Department of Biomedical Engineering, University of Sou
| | - Machelle T Pardue
- Rehabilitation Research & Development Center of Excellence, Atlanta VA Medical Center, Decatur, Georgia, United States 4Neuroscience/Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Cheryl Mae Craft
- Mary D. Allen Laboratory for Vision Research, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, USC Eye Institute, Los Angeles, California, United States 6Department of Cell & Neurobiology, Keck School of Medic
| |
Collapse
|
11
|
Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo. Nat Commun 2016; 7:10590. [PMID: 26838932 PMCID: PMC4742908 DOI: 10.1038/ncomms10590] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
Whether neurons can restore their original connectivity patterns during circuit repair is unclear. Taking advantage of the regenerative capacity of zebrafish retina, we show here the remarkable specificity by which surviving neurons reassemble their connectivity upon regeneration of their major input. H3 horizontal cells (HCs) normally avoid red and green cones, and prefer ultraviolet over blue cones. Upon ablation of the major (ultraviolet) input, H3 HCs do not immediately increase connectivity with other cone types. Instead, H3 dendrites retract and re-extend to contact new ultraviolet cones. But, if regeneration is delayed or absent, blue-cone synaptogenesis increases and ectopic synapses are made with red and green cones. Thus, cues directing synapse specificity can be maintained following input loss, but only within a limited time period. Further, we postulate that signals from the major input that shape the H3 HC's wiring pattern during development persist to restrict miswiring after damage. Neurons in the zebrafish retina regenerate. Here, Yoshimatsu and colleagues show that retinal horizontal cells maintain their synaptic preferences for a limited period before circuit remodeling is triggered after photoreceptor loss.
Collapse
|
12
|
Reese BE, Keeley PW, Lee SCS, Whitney IE. Developmental plasticity of dendritic morphology and the establishment of coverage and connectivity in the outer retina. Dev Neurobiol 2015; 71:1273-85. [PMID: 21557509 DOI: 10.1002/dneu.20903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Developing retinal neurons differentiate their distinctive dendritic morphologies through cell-intrinsic instructions and cellular interactions within the local environment. This review examines the contributions of interactions with afferents and with homotypic neighbors upon the dendritic morphogenesis of retinal bipolar cells in four different mouse models that modulate the frequency of these interactions. Comparisons with horizontal cell differentiation are discussed, and differences between the dendritic plasticity within the outer versus inner plexiform layers are highlighted. Finally, the developmental plasticity of the bipolar and horizontal cells is considered in light of the natural variation in afferent and target cell number, ensuring a uniformity of coverage and connectivity across the retinal surface.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute and Departments of Psychology and Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106-5060.
| | | | | | | |
Collapse
|
13
|
Effects of mGluR6-deficiency on photoreceptor ribbon synapse formation: comparison of electron microscopic analysis of serial sections with random sections. Vis Neurosci 2015; 31:39-46. [PMID: 24801622 DOI: 10.1017/s0952523813000473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study examined the effects of metabotropic glutamate receptor 6 (mGluR6) deficiency on ribbon synapse formation in rod spherules and cone pedicles using serial-section electron microscopy. In a wild-type (WT) mouse, only 3% of spherules had one invaginating bipolar dendrite (1B-type) and 97% of spherules were 2B-type. In contrast, in an mGluR6-knockout (KO) mouse, 29% of spherules were 1B-type and 71% of spherules were 2B-type. Spherules without bipolar invagination were not observed in either genotype. The single invaginating dendrites in 1B-type spherules were larger and the surface areas of synaptic ribbons were 23% smaller in the mGluR6-KO mouse than in the WT mouse. In cones, the number of invaginating bipolar dendrites decreased from 12 in the WT mouse to 9.5 in the mGluR6-KO mouse. This decrease correlated with a decrease in the number of cone synaptic ribbons from 10 in the WT mouse to 8 in the mGluR6-KO mouse. The mGluR6-KO phenotype showed negative effects on ribbon synapse formation. This negativity was similar to those in mGluR6-nob4, Gβ3-KO, Gβ5-KO, and RGS-7:RGS-11 double-KO mice, but the detailed manners and degrees of alterations appeared to vary depending on different missing components. Two published morphological assessments of the RGS-7:RGS-11 double-KO phenotype reported conflicting data; therefore, we tested the statistical techniques used in the two analyses. One statistical evaluation measure was effective in identifying a significant difference in structure between the mutant and WT phenotypes, whereas the other measure was ineffective. Conventional random section analysis using the effective measure provided sufficient data for a statistical test of the occurrence of structural changes. However, serial section analysis was required to determine the absolute numbers of ribbons and invaginating dendrites and to estimate structural parameters such as ribbon surface area.
Collapse
|
14
|
Yan X, Ma L, Hovakimyan M, Lukas J, Wree A, Frank M, Guthoff R, Rolfs A, Witt M, Luo J. Defects in the retina of Niemann-pick type C 1 mutant mice. BMC Neurosci 2014; 15:126. [PMID: 25472750 PMCID: PMC4267119 DOI: 10.1186/s12868-014-0126-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/12/2014] [Indexed: 11/24/2022] Open
Abstract
Background Niemann-Pick type C1 (NPC1) disease is an inherited lysosomal storage disease caused by mutation of the Npc1 gene, resulting in a progressive accumulation of unesterified cholesterol and glycolipids in lysosomes of multiple tissues and leading to neurodegeneration and other disease. In Npc1 mutant mice, retinal degeneration including impaired visual function, lipofuscin accumulation in the pigment epithelium and ganglion cells as well as photoreceptor defects has been found. However, the pathologies of other individual cell types of the retina in Npc1 mutant mice are still not fully clear. We hypothesized that horizontal cells, amacrine cells, bipolar cells and glial cells are also affected in the retina of Npc1 mutant mice. Results Immunohistochemistry and electron microscopy were used to investigate pathologies of ganglion cells, horizontal cells, amacrine cells, bipolar cells, and optic nerves as well as altered activity of glial cells in Npc1 mutant mice. Electron microscopy reveals that electron-dense inclusions are generally accumulated in ganglion cells, bipolar cells, Müller cells, and in the optic nerve. Furthermore, abnormal arborisation and ectopic processes of horizontal and amacrine cells as well as defective bipolar cells are observed by immunohistochemistry for specific cellular markers. Furthermore, hyperactivity of glial cells, including astrocytes, microglial cells, and Müller cells, is also revealed. Conclusions Our data extend previous findings to show multiple defects in the retina of Npc1 mutant mice, suggesting an important role of Npc1 protein in the normal function of the retina. Electronic supplementary material The online version of this article (doi:10.1186/s12868-014-0126-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Yan
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, D-18147, Rostock, Germany.
| | - Lucy Ma
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, D-18147, Rostock, Germany.
| | - Marina Hovakimyan
- Institute for Biomedical Engineering, Rostock University Medical Center, F.-Barnewitz Strasse 4, D-18119, Rostock, Germany.
| | - Jan Lukas
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, D-18147, Rostock, Germany.
| | - Andreas Wree
- Department of Anatomy, Rostock University Medical Center, Gertrudenstrsse 9, D-18055, Rostock, Germany.
| | - Marcus Frank
- Electron Microscopy Center, Rostock University Medical Center, Strempelstr. 14, D-18057, Rostock, Germany.
| | - Rudolf Guthoff
- Department of Ophthalmology, Rostock University Medical Center, Doberaner Strasse 140, D-18057, Rostock, Germany.
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, D-18147, Rostock, Germany.
| | - Martin Witt
- Department of Anatomy, Rostock University Medical Center, Gertrudenstrsse 9, D-18055, Rostock, Germany.
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, D-18147, Rostock, Germany.
| |
Collapse
|
15
|
Hoon M, Okawa H, Della Santina L, Wong ROL. Functional architecture of the retina: development and disease. Prog Retin Eye Res 2014; 42:44-84. [PMID: 24984227 DOI: 10.1016/j.preteyeres.2014.06.003] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/08/2014] [Accepted: 06/22/2014] [Indexed: 12/22/2022]
Abstract
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina.
Collapse
Affiliation(s)
- Mrinalini Hoon
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Luca Della Santina
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Transmission from the dominant input shapes the stereotypic ratio of photoreceptor inputs onto horizontal cells. Nat Commun 2014; 5:3699. [PMID: 24832361 PMCID: PMC4061492 DOI: 10.1038/ncomms4699] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 03/20/2014] [Indexed: 11/21/2022] Open
Abstract
Many neurons receive synapses in stereotypic proportions from converging but functionally distinct afferents. However, developmental mechanisms regulating synaptic convergence are not well understood. Here we describe a heterotypic mechanism by which one afferent controls synaptogenesis of another afferent, but not vice-versa. Like other CNS circuits, zebrafish retinal H3 horizontal cells undergo an initial period of remodeling, establishing synapses with UV and blue cones while eliminating red and green cone contacts. As development progresses, the horizontal cells selectively synapse with UV cones to generate a 5:1 UV-to-blue cone synapse ratio. Blue cone synaptogenesis increases in mutants lacking UV cones, and when transmitter release or visual stimulation of UV cones is perturbed. Connectivity is unaltered when blue cone transmission is suppressed. Moreover, there is no homotypic regulation of cone synaptogenesis by neurotransmission. Thus, biased connectivity in this circuit is established by an unusual activity-dependent, unidirectional control of synaptogenesis exerted by the dominant input.
Collapse
|
17
|
Nguyen-Ba-Charvet KT, Chédotal A. Development of retinal layers. C R Biol 2014; 337:153-9. [PMID: 24702841 DOI: 10.1016/j.crvi.2013.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 11/26/2022]
Abstract
A noticeable characteristic of nervous systems is the arrangement of synapses into distinct layers. Such laminae are fundamental for the spatial organisation of synaptic connections transmitting different kinds of information. A major example of this is the inner plexiform layer (IPL) of the vertebrate retina, which is subdivided into at least ten sublayers. Another noticeable characteristic of these retina layers is that neurons are displayed in the horizontal plane in a non-random array termed as mosaic patterning. Recent studies of vertebrate and invertebrate systems have identified molecules that mediate these interactions. Here, we review the last mechanisms and molecules mediating retinal layering.
Collapse
Affiliation(s)
- Kim Tuyen Nguyen-Ba-Charvet
- Institut national de la santé et de la recherche médicale, UMR S968, CNRS UMR 7210, Université Pierre et Marie Curie (Paris-6), Institut de la vision, 17, rue Moreau, 75012 Paris, France
| | - Alain Chédotal
- Institut national de la santé et de la recherche médicale, UMR S968, CNRS UMR 7210, Université Pierre et Marie Curie (Paris-6), Institut de la vision, 17, rue Moreau, 75012 Paris, France.
| |
Collapse
|
18
|
NGL-2 regulates pathway-specific neurite growth and lamination, synapse formation, and signal transmission in the retina. J Neurosci 2013; 33:11949-59. [PMID: 23864682 DOI: 10.1523/jneurosci.1521-13.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parallel processing is an organizing principle of many neural circuits. In the retina, parallel neuronal pathways process signals from rod and cone photoreceptors and support vision over a wide range of light levels. Toward this end, rods and cones form triad synapses with dendrites of distinct bipolar cell types, and the axons or dendrites, respectively, of horizontal cells (HCs). The molecular cues that promote the formation of specific neuronal pathways remain largely unknown. Here, we discover that developing and mature HCs express the leucine-rich repeat (LRR)-containing protein netrin-G ligand 2 (NGL-2). NGL-2 localizes selectively to the tips of HC axons, which form reciprocal connections with rods. In mice with null mutations in Ngl-2 (Ngl-2⁻/⁻), many branches of HC axons fail to stratify in the outer plexiform layer (OPL) and invade the outer nuclear layer. In addition, HC axons expand lateral territories and increase coverage of the OPL, but establish fewer synapses with rods. NGL-2 can form transsynaptic adhesion complexes with netrin-G2, which we show to be expressed by photoreceptors. In Ngl-2⁻/⁻ mice, we find specific defects in the assembly of presynaptic ribbons in rods, indicating that reverse signaling of complexes involving NGL-2 regulates presynaptic maturation. The development of HC dendrites and triad synapses of cone photoreceptors proceeds normally in the absence of NGL-2 and in vivo electrophysiology reveals selective defects in rod-mediated signal transmission in Ngl-2⁻/⁻ mice. Thus, our results identify NGL-2 as a central component of pathway-specific development in the outer retina.
Collapse
|
19
|
Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish. J Neurosci 2013; 33:1804-14. [PMID: 23365220 DOI: 10.1523/jneurosci.2910-12.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry, and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second-order neurons, bipolar cells, and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6c(w59) larval retina but not rod degeneration in the Xops:mCFP(q13) line. In adults, rods and cones are present in approximately equal numbers, and in pde6c(w59) mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2b(p25bbtl) or six7 morpholino-injected larvae protect from pde6c(w59)-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes, provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease.
Collapse
|
20
|
Guidance-cue control of horizontal cell morphology, lamination, and synapse formation in the mammalian outer retina. J Neurosci 2012; 32:6859-68. [PMID: 22593055 DOI: 10.1523/jneurosci.0267-12.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the vertebrate retina, neuronal circuitry required for visual perception is organized within specific laminae. Photoreceptors convey external visual information to bipolar and horizontal cells at triad ribbon synapses established within the outer plexiform layer (OPL), initiating retinal visual processing. However, the molecular mechanisms that organize these three classes of neuronal processes within the OPL, thereby ensuring appropriate ribbon synapse formation, remain largely unknown. Here we show that mice with null mutations in Sema6A or PlexinA4 (PlexA4) exhibit a pronounced defect in OPL stratification of horizontal cell axons without any apparent deficits in bipolar cell dendrite or photoreceptor axon targeting. Furthermore, these mutant horizontal cells exhibit aberrant dendritic arborization and reduced dendritic self-avoidance within the OPL. Ultrastructural analysis shows that the horizontal cell contribution to rod ribbon synapse formation in PlexA4⁻/⁻ retinas is disrupted. These findings define molecular components required for outer retina lamination and ribbon synapse formation.
Collapse
|
21
|
Zheng L, Yan Y, An J, Zhang L, Liu W, Xia F, Zhang Z. Retinal horizontal cells reduced in a rat model of congenital stationary night blindness. Neurosci Lett 2012; 521:26-30. [DOI: 10.1016/j.neulet.2012.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/29/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
22
|
Preservation of cone photoreceptors after a rapid yet transient degeneration and remodeling in cone-only Nrl-/- mouse retina. J Neurosci 2012; 32:528-41. [PMID: 22238088 DOI: 10.1523/jneurosci.3591-11.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cone photoreceptors are the primary initiator of visual transduction in the human retina. Dysfunction or death of rod photoreceptors precedes cone loss in many retinal and macular degenerative diseases, suggesting a rod-dependent trophic support for cone survival. Rod differentiation and homeostasis are dependent on the basic motif leucine zipper transcription factor neural retina leucine zipper (NRL). The loss of Nrl (Nrl(-/-)) in mice results in a retina with predominantly S-opsin-containing cones that exhibit molecular and functional characteristics of wild-type cones. Here, we report that Nrl(-/-) retina undergoes a rapid but transient period of degeneration in early adulthood, with cone apoptosis, retinal detachment, alterations in retinal vessel structure, and activation and translocation of retinal microglia. However, cone degeneration stabilizes by 4 months of age, resulting in a thinner but intact outer nuclear layer with residual cones expressing S- and M-opsins and a preserved photopic electroretinogram. At this stage, microglia translocate back to the inner retina and reacquire a quiescent morphology. Gene profiling analysis during the period of transient degeneration reveals misregulation of genes related to stress response and inflammation, implying their involvement in cone death. The Nrl(-/-) mouse illustrates the long-term viability of cones in the absence of rods and retinal pigment epithelium defects in a rodless retina. We propose that Nrl(-/-) retina may serve as a model for elucidating mechanisms of cone homeostasis and degeneration that would be relevant to understanding diseases of the cone-dominant human macula.
Collapse
|
23
|
Jones BW, Kondo M, Terasaki H, Watt CB, Rapp K, Anderson J, Lin Y, Shaw MV, Yang JH, Marc RE. Retinal remodeling in the Tg P347L rabbit, a large-eye model of retinal degeneration. J Comp Neurol 2011; 519:2713-33. [PMID: 21681749 DOI: 10.1002/cne.22703] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinitis pigmentosa (RP) is an inherited blinding disease characterized by progressive loss of retinal photoreceptors. There are numerous rodent models of retinal degeneration, but most are poor platforms for interventions that will translate into clinical practice. The rabbit possesses a number of desirable qualities for a model of retinal disease including a large eye and an existing and substantial knowledge base in retinal circuitry, anatomy, and ophthalmology. We have analyzed degeneration, remodeling, and reprogramming in a rabbit model of retinal degeneration, expressing a rhodopsin proline 347 to leucine transgene in a TgP347L rabbit as a powerful model to study the pathophysiology and treatment of retinal degeneration. We show that disease progression in the TgP347L rabbit closely tracks human cone-sparing RP, including the cone-associated preservation of bipolar cell signaling and triggering of reprogramming. The relatively fast disease progression makes the TgP347L rabbit an excellent model for gene therapy, cell biological intervention, progenitor cell transplantation, surgical interventions, and bionic prosthetic studies.
Collapse
Affiliation(s)
- B W Jones
- Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Reese BE. Development of the retina and optic pathway. Vision Res 2010; 51:613-32. [PMID: 20647017 DOI: 10.1016/j.visres.2010.07.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/04/2010] [Accepted: 07/13/2010] [Indexed: 12/30/2022]
Abstract
Our understanding of the development of the retina and visual pathways has seen enormous advances during the past 25years. New imaging technologies, coupled with advances in molecular biology, have permitted a fuller appreciation of the histotypical events associated with proliferation, fate determination, migration, differentiation, pathway navigation, target innervation, synaptogenesis and cell death, and in many instances, in understanding the genetic, molecular, cellular and activity-dependent mechanisms underlying those developmental changes. The present review considers those advances associated with the lineal relationships between retinal nerve cells, the production of retinal nerve cell diversity, the migration, patterning and differentiation of different types of retinal nerve cells, the determinants of the decussation pattern at the optic chiasm, the formation of the retinotopic map, and the establishment of ocular domains within the thalamus.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute and Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA.
| |
Collapse
|
25
|
Abstract
To establish dendritic arbors that integrate properly into a neural circuit, neurons must rely on cues from the local environment. The neurons presynaptic to these arbors, the afferents, are one potential source of these cues, but the particular dendritic features they regulate remain unclear. Retinal bipolar cells can be classified by the type of photoreceptor, cone or rod, forming synaptic contacts with their dendrites, suggesting a potential role of these afferents in shaping the bipolar cell dendritic arbor. In the present investigation, the role of photoreceptors in directing the differentiation of bipolar cells has been studied using two genetically modified "coneless" and "conefull" mice. Single cone (Type 7/CB4a) and rod bipolar cells were labeled with DiI to reveal the entire dendritic arbor and subsequently analyzed for several morphological features. For both cone and rod bipolar cells, the dendritic field area, number of dendritic terminals, and stratification of terminals in the outer plexiform layer were comparable among coneless, conefull, and wild-type retinas, and the overall morphological appearance of each type of cell was essentially conserved, indicating an independence from afferent specification. The presence of normal afferents was, however, found to be critical for the proper spatial distribution of dendritic terminals, exhibiting a clustered distribution for the cone bipolar cells and a dispersed distribution for the rod bipolar cells. These results demonstrate a selectivity in the afferent dependency of bipolar cell differentiation, their basic morphogenetic plan commanded cell intrinsically, and their fine terminal connectivity directed by the afferents themselves.
Collapse
|
26
|
GABAergic amacrine cells and visual function are reduced in PAC1 transgenic mice. Neuropharmacology 2010; 58:215-25. [DOI: 10.1016/j.neuropharm.2009.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/25/2009] [Accepted: 07/02/2009] [Indexed: 01/22/2023]
|
27
|
Poché RA, Reese BE. Retinal horizontal cells: challenging paradigms of neural development and cancer biology. Development 2009; 136:2141-51. [PMID: 19502480 DOI: 10.1242/dev.033175] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A group of retinal interneurons known as horizontal cells has recently been shown to exhibit a variety of unique biological properties, as compared with other nerve cells, that challenge many long-standing assumptions in the fields of neural development and cancer biology. These features include their unusual migratory behavior, their unique morphological plasticity, and their propensity to divide at a relatively late stage during development. Here, we review these novel features, discuss their relevance for other cell types, outline open questions in our understanding of horizontal cell development and consider their implications.
Collapse
Affiliation(s)
- Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
28
|
Huckfeldt RM, Schubert T, Morgan JL, Godinho L, Di Cristo G, Huang ZJ, Wong ROL. Transient neurites of retinal horizontal cells exhibit columnar tiling via homotypic interactions. Nat Neurosci 2008; 12:35-43. [PMID: 19060895 PMCID: PMC2743396 DOI: 10.1038/nn.2236] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 11/05/2008] [Indexed: 01/07/2023]
Abstract
Sensory neurons with common function are often non-randomly arranged and form dendritic territories that exhibit little overlap or tiling. Repulsive homotypic interactions underlie such patterns in cell organization in invertebrate neurons. In mammalian retinal horizontal cells, however, it is unclear how dendro-dendritic repulsive interactions can produce a non-random distribution of cells and their spatial territories because mature horizontal cell dendrites overlap substantially. By imaging developing mouse horizontal cells, we found that upon reaching their final laminar positions, these cells transiently elaborate vertical neurites that form non-overlapping columnar territories. Targeted cell ablation revealed that the vertical neurites engage in homotypic interactions resulting in tiling of neighboring cells prior to establishment of their dendritic fields. This developmental tiling of transient neurites correlates with the emergence of a non-random distribution of the cells, and could represent a mechanism that organizes neighbor relationships and territories of neurons of the same type before circuit assembly.
Collapse
Affiliation(s)
- Rachel M Huckfeldt
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Matveev AV, Quiambao AB, Browning Fitzgerald J, Ding XQ. Native cone photoreceptor cyclic nucleotide-gated channel is a heterotetrameric complex comprising both CNGA3 and CNGB3: a study using the cone-dominant retina of Nrl-/- mice. J Neurochem 2008; 106:2042-55. [PMID: 18665891 DOI: 10.1111/j.1471-4159.2008.05548.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cone vision mediated by photoreceptor cyclic nucleotide-gated (CNG) channel activation is essential for central and color vision and visual acuity. Mutations in genes encoding the cone CNG channel subunits, CNGA3 and CNGB3, have been linked to various forms of achromatopsia and progressive cone dystrophy in humans. This study investigates the biochemical components of native cone CNG channels, using the cone-dominant retina in mice deficient in the transcription factor neural retina leucine zipper (Nrl). Abundant expression of CNGA3 and CNGB3 but no rod CNG channel expression was detected in Nrl-/- retina by western blotting and immunolabeling. Localization of cone CNG channel in both blue (S)- and red/green (M)-cones was shown by double immunolabeling using antibodies against the channel subunits and against the S- and M-opsins. Immunolabeling also showed co-localization of CNGA3 and CNGB3 in the mouse retina. Co-immunoprecipitation demonstrated the direct interaction between CNGA3 and CNGB3. Chemical cross-linking readily generated products at sizes consistent with oligomers of the channel complexes ranging from dimeric to tetrameric complexes, in a concentration- and time-dependent pattern. Thus this work provides the first biochemical evidence showing the inter-subunit interaction between CNGA3 and CNGB3 and the presence of heterotetrameric complexes of the native cone CNG channel in retina. No association between CNGA3 and the cone Na(+)/Ca(2+)-K(+) exchanger (NCKX2) was shown by co-immunoprecipitation and chemical cross-linking. This may implicate a distinct modulatory mechanism for Ca(2+) homeostasis in cones compared to rods.
Collapse
Affiliation(s)
- Alexander V Matveev
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
30
|
Poché RA, Raven MA, Kwan KM, Furuta Y, Behringer RR, Reese BE. Somal positioning and dendritic growth of horizontal cells are regulated by interactions with homotypic neighbors. Eur J Neurosci 2008; 27:1607-14. [PMID: 18380663 DOI: 10.1111/j.1460-9568.2008.06132.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retinal neurons extend their dendritic fields to achieve a degree of dendritic overlap with homotypic neighbors that is cell-type specific. How these neurons regulate their dendritic growth is unclear. The dendritic field of a retinal horizontal cell varies inversely with horizontal cell density across different strains of mice, suggesting that proximity to neighboring cells regulates dendritic growth. To test this directly, we have employed the Cre-loxP conditional gene targeting strategy to achieve inactivation of Lim1 function in developing horizontal cells. Through this approach, Lim1 function was prevented within a subset of horizontal cells that in turn fail to migrate to the horizontal cell layer and differentiate normally. For those remaining horizontal cells with Lim1 intact (about half of the normal population in these mice), we show that they spread themselves out tangentially and differentiate a dendritic morphology that is essentially normal but for the fact that it has nearly doubled in area. Such larger horizontal cells, sampling from an area of retina containing twice their normal afferent number, differentiate a dendritic field with nearly double the number of higher order branches and terminal clusters. These results demonstrate directly that positioning and dendritic growth are regulated by interactions with homotypic neighbors, whereas afferents instruct the differentiation of dendritic patterning.
Collapse
Affiliation(s)
- Ross A Poché
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
31
|
Galli-Resta L, Leone P, Bottari D, Ensini M, Rigosi E, Novelli E. The genesis of retinal architecture: an emerging role for mechanical interactions? Prog Retin Eye Res 2008; 27:260-83. [PMID: 18374618 DOI: 10.1016/j.preteyeres.2008.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Patterns in nature have always fascinated human beings. They convey the idea of order, organization and optimization, and, to the enquiring mind, the alluring promise that understanding their building rules may uncover the forces that shaped them. In the retina, two patterns are outstanding: the stacking of cells in layers and, within the layers, the prevalent arrangement of neurons of the same type in orderly arrays, often referred to as mosaics for the crystalline-like order that some can display. Layers and mosaics have been essential keys to our present understanding of retinal circuital organization and function. Now, they may also be a precious guide in our exploration of how the retina is built. Here, we will review studies addressing the mechanisms controlling the formation of retinal mosaics and layers, illustrating common themes and unsolved problems. Among the intricacies of the building process, a world of physical forces is making its appearance. Cells are extremely complex to model as "physical entities", and many aspects of cell mechanotransduction are still obscure. Yet, recent experiments, focusing on the mechanical aspects of growth and differentiation, suggest that adopting this viewpoint will open new ways of understanding retinal formation and novel possibilities to approach retinal pathologies and repair.
Collapse
|
32
|
Raven MA, Orton NC, Nassar H, Williams GA, Stell WK, Jacobs GH, Bech-Hansen NT, Reese BE. Early afferent signaling in the outer plexiform layer regulates development of horizontal cell morphology. J Comp Neurol 2008; 506:745-58. [DOI: 10.1002/cne.21526] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Oh ECT, Cheng H, Hao H, Jia L, Khan NW, Swaroop A. Rod differentiation factor NRL activates the expression of nuclear receptor NR2E3 to suppress the development of cone photoreceptors. Brain Res 2008; 1236:16-29. [PMID: 18294621 DOI: 10.1016/j.brainres.2008.01.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 12/21/2007] [Accepted: 01/09/2008] [Indexed: 01/22/2023]
Abstract
Neural developmental programs require a high level of coordination between the decision to exit cell cycle and acquisition of cell fate. The Maf-family transcription factor NRL is essential for rod photoreceptor specification in the mammalian retina as its loss of function converts rod precursors to functional cones. Ectopic expression of NRL or a photoreceptor-specific orphan nuclear receptor NR2E3 completely suppresses cone development while concurrently directing the post-mitotic photoreceptor precursors towards rod cell fate. Given that NRL and NR2E3 have overlapping functions and NR2E3 expression is abolished in the Nrl(-/-) retina, we wanted to clarify the distinct roles of NRL and NR2E3 during retinal differentiation. Here, we demonstrate that NRL binds to a sequence element in the Nr2e3 promoter and enhances its activity synergistically with the homeodomain protein CRX. Using transgenic mice, we show that NRL can only partially suppress cone development in the absence of NR2E3. Gene profiling of retinas from transgenic mice that ectopically express NR2E3 or NRL in cone precursors reveals overlapping and unique targets of these two transcription factors. Together with previous reports, our findings establish the hierarchy of transcriptional regulators in determining rod versus cone cell fate in photoreceptor precursors during the development of mammalian retina.
Collapse
Affiliation(s)
- Edwin C T Oh
- Program in Neuroscience, University of Michigan, Ann Arbor MI, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Although much is known about the transcriptional regulation that coordinates retinal cell fate determination, very little is known about the developmental processes that establish the characteristic laminar architecture of the retina, in particular, the specification of neuronal positioning. The LIM class homeodomain transcription factor Lim1 (Lhx1) is expressed in postmitotic, differentiating, and mature retinal horizontal cells. We show that conditional ablation of Lim1 results in the ectopic localization of horizontal cells to inner aspects of the inner nuclear layer, among the retinal amacrine cells. The ectopic cells maintain a molecular phenotype consistent with horizontal cell identity; however, these neurons adopt a unique morphology more reminiscent of amacrine cells, including a dendritic arbor positioned within the inner plexiform layer. All other retinal cell populations appear unaltered. Our data suggest a model whereby Lim1 lies downstream of horizontal cell fate determination factors and functions cell autonomously to instruct differentiating horizontal cells to the appropriate laminar position in the developing retina. This study is the first to describe a cell type-specific genetic program that is essential for targeting a discrete retinal neuron population to the proper lamina.
Collapse
|