1
|
Lu L, Sarkar AK, Dao L, Liu Y, Ma C, Thwin PH, Chang X, Yoshida G, Li A, Wang C, Westerkamp C, Schmitt L, Chelsey M, Stephanie M, Zhao Y, Liu Y, Wang X, Zhu LQ, Liu D, Tchieu J, Miyakoshi M, Zhu H, Gross C, Pedapati E, Salomonis N, Erickson C, Guo Z. An iPSC model of fragile X syndrome reflects clinical phenotypes and reveals m 6 A- mediated epi-transcriptomic dysregulation underlying synaptic dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.14.618205. [PMID: 39464060 PMCID: PMC11507714 DOI: 10.1101/2024.10.14.618205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Fragile X syndrome (FXS), the leading genetic cause of intellectual disability, arises from FMR1 gene silencing and loss of the FMRP protein. N6-methyladenosine (m 6 A) is a prevalent mRNA modification essential for post-transcriptional regulation. FMRP is known to bind to and regulate the stability of m 6 A-containing transcripts. However, how loss of FMRP impacts on transcriptome-wide m 6 A modifications in FXS patients remains unknown. To answer this question, we generated cortical neurons differentiated from induced pluripotent stem cells (iPSC) derived from healthy subjects and FXS patients. In electrophysiology recordings, we validated that synaptic and neuronal network defects in iPSC-derived FXS neurons corresponded to the clinical EEG data of the patients from which the corresponding iPSC line was derived. In analysis of transcriptome-wide methylation, we show that FMRP deficiency led to increased translation of m 6 A writers, resulting in hypermethylation that primarily affecting synapse-associated transcripts and increased mRNA decay. Conversely, in the presence of an m 6 A writer inhibitor, synaptic defects in FXS neurons were rescued. Taken together, our findings uncover that an FMRP-dependent epi-transcriptomic mechanism contributes to FXS pathogenesis by disrupting m 6 A modifications in FXS, suggesting a promising avenue for m 6 A- targeted therapies.
Collapse
|
2
|
Ferraguto C, Piquemal-Lagoueillat M, Lemaire V, Moreau MM, Trazzi S, Uguagliati B, Ciani E, Bertrand SS, Louette E, Bontempi B, Pietropaolo S. Therapeutic efficacy of the BKCa channel opener chlorzoxazone in a mouse model of Fragile X syndrome. Neuropsychopharmacology 2024; 49:2032-2041. [PMID: 39223257 PMCID: PMC11480417 DOI: 10.1038/s41386-024-01956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder characterized by several behavioral abnormalities, including hyperactivity, anxiety, sensory hyper-responsiveness, and autistic-like symptoms such as social deficits. Despite considerable efforts, effective pharmacological treatments are still lacking, prompting the need for exploring the therapeutic value of existing drugs beyond their original approved use. One such repurposed drug is chlorzoxazone which is classified as a large-conductance calcium-dependent potassium (BKCa) channel opener. Reduced BKCa channel functionality has been reported in FXS patients, suggesting that molecules activating these channels could serve as promising treatments for this syndrome. Here, we sought to characterize the therapeutic potential of chlorzoxazone using the Fmr1-KO mouse model of FXS which recapitulates the main phenotypes of FXS, including BKCa channel alterations. Chlorzoxazone, administered either acutely or chronically, rescued hyperactivity and acoustic hyper-responsiveness as well as impaired social interactions exhibited by Fmr1-KO mice. Chlorzoxazone was more efficacious in alleviating these phenotypes than gaboxadol and metformin, two repurposed treatments for FXS that do not target BKCa channels. Systemic administration of chlorzoxazone modulated the neuronal activity-dependent gene c-fos in selected brain areas of Fmr1-KO mice, corrected aberrant hippocampal dendritic spines, and was able to rescue impaired BKCa currents recorded from hippocampal and cortical neurons of these mutants. Collectively, these findings provide further preclinical support for BKCa channels as a valuable therapeutic target for treating FXS and encourage the repurposing of chlorzoxazone for clinical applications in FXS and other related neurodevelopmental diseases.
Collapse
Affiliation(s)
| | | | - Valerie Lemaire
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Maïté M Moreau
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | - Bruno Bontempi
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | | |
Collapse
|
3
|
Webb SM, Miller BW, Wroten MG, Sacramento A, Travis KO, Kippin TE, Ben-Shahar O, Szumlinski KK. Replication and extension of the subregion selectivity of glutamate-related changes within the nucleus accumbens associated with the incubation of cocaine-craving. Pharmacol Biochem Behav 2024; 245:173889. [PMID: 39389205 DOI: 10.1016/j.pbb.2024.173889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Cue-elicited drug-seeking behavior intensifies with the passage of time during withdrawal from drug taking and this "incubation of cocaine-craving" involves alterations in nucleus accumbens (NA) glutamate transmission. Here, we employed a combination of in vivo microdialysis and immunoblotting approaches to further examine changes in biochemical indices of glutamate transmission within NA subregions that accompany the incubation of cocaine-craving exhibited by male rats with a 10-day history of 6-h access to intravenous cocaine (0.25 mg/infusion). Immunoblotting on whole cell lysates from the core subregion (NAc core) revealed interactions between cocaine self-administration history, withdrawal and drug cue re-exposure for Homer2a/b, mGlu1, and GluN2b expression, as well as indices of Akt and ERK activity. With the exception of PKCε phosphorylation, most protein changes within the shell subregion (NAc shell) depended on drug cue re-exposure and cocaine history rather than varying in a consistent time-dependent manner. Reduced basal extracellular glutamate content was apparent only in the NAc core of cocaine-experienced rats during protracted (30 days) withdrawal and this was accompanied by a markedly blunted capacity of the mGlu1/5 agonist DHPG to elevate glutamate levels within this subregion. Finally, over-expressing neither Homer1c nor Homer2b within the NAc core during protracted cocaine withdrawal altered the magnitude of cue-elicited responding, its extinction or cocaine-primed reinstatement of drug-seeking behavior. The present findings are consistent with the extant literature implicating changes in Group 1 mGlu receptor function within the NAc core subregion as central to incubated cocaine-craving and provide further evidence against a major role for Homer proteins in gating incubated cocaine-craving. Further, our results provide novel correlational evidence implicating elevated Akt and blunted ERK activity within the NAc core as potential contributors to the expression of incubated cocaine-craving, worthy of future investigation.
Collapse
Affiliation(s)
- Sierra M Webb
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Bailey W Miller
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Melissa G Wroten
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Arianne Sacramento
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Katherine O Travis
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - Osnat Ben-Shahar
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, MC-9660, University of California Santa Barbara, Santa Barbara, CA 93106-9660, United States of America; Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America.
| |
Collapse
|
4
|
Weisz ED, Fenton AR, Jongens TA. PGC-1α integrates insulin signaling with mitochondrial physiology and behavior in a Drosophila model of Fragile X Syndrome. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:2. [PMID: 38741938 PMCID: PMC11090494 DOI: 10.1038/s44324-024-00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 05/16/2024]
Abstract
Fragile X Syndrome (FXS) is the most prevalent monogenetic form of intellectual disability and autism. Recently, dysregulation of insulin signaling (IS) and aberrations in mitochondrial function have emerged as robust, evolutionarily conserved components of FXS pathophysiology. However, the mechanisms by which altered IS and mitochondrial dysfunction impact behavior in the context of FXS remain elusive. Here, we show that normalization of IS improves mitochondrial volume and function in flies that lack expression of dfmr1, the Drosophila homolog of the causal gene of FXS in humans. Further, we demonstrate that dysregulation of IS underlies diminished expression of the mitochondrial master regulator PGC-1α/Spargel in dfmr1 mutant flies. These results are behaviorally relevant, as we show that pan-neuronal augmentation of PGC-1α/Spargel improves circadian behavior in dfmr1 mutants. Notably, we also show that modulation of PGC-1α/Spargel expression in wild-type flies phenocopies the dfmr1 mutant circadian defect. Taken together, the results presented herein provide a mechanistic link between mitochondrial function and circadian behavior both in FXS pathogenesis as well as more broadly at the interface between metabolism and behavioral output.
Collapse
Affiliation(s)
- Eliana D. Weisz
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Autism Spectrum Program of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam R. Fenton
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas A. Jongens
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Autism Spectrum Program of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Davies RA, Barbee BR, Garcia-Sifuentes Y, Butkovich LM, Gourley SL. Subunit-selective PI3-kinase control of action strategies in the medial prefrontal cortex. Neurobiol Learn Mem 2023; 203:107789. [PMID: 37328026 PMCID: PMC10527156 DOI: 10.1016/j.nlm.2023.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
PI3-kinase (PI3K) is an intracellular signaling complex that is stimulated upon cocaine exposure and linked with the behavioral consequences of cocaine. We recently genetically silenced the PI3K p110β subunit in the medial prefrontal cortex following repeated cocaine in mice, reinstating the capacity of these mice to engage in prospective goal-seeking behavior. In the present short report, we address two follow-up hypotheses: 1) The control of decision-making behavior by PI3K p110β is attributable to neuronal signaling, and 2) PI3K p110β in the healthy (i.e., drug-naïve) medial prefrontal cortex has functional consequences in the control of reward-related decision-making strategies. In Experiment 1, we found that silencing neuronal p110β improved action flexibility following cocaine. In Experiment 2, we reduced PI3K p110β in drug-naïve mice that were extensively trained to respond for food reinforcers. Gene silencing caused mice to abandon goal-seeking strategies, unmasking habit-based behaviors that were propelled by interactions with the nucleus accumbens. Thus, PI3K control of goal-directed action strategies appears to act in accordance with an inverted U-shaped function, with "too much" (following cocaine) or "too little" (following p110β subunit silencing) obstructing goal seeking and causing mice to defer to habit-like response sequences.
Collapse
Affiliation(s)
- Rachel A Davies
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA
| | - Britton R Barbee
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA; Graduate Program in Molecular and Systems Pharmacology, Emory University, USA
| | - Yesenia Garcia-Sifuentes
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA; Graduate Program in Neuroscience, Emory University, USA
| | - Laura M Butkovich
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA; Graduate Program in Molecular and Systems Pharmacology, Emory University, USA; Graduate Program in Neuroscience, Emory University, USA.
| |
Collapse
|
6
|
Winden KD, Pham TT, Teaney NA, Ruiz J, Chen R, Chen C, Sahin M. Increased degradation of FMRP contributes to neuronal hyperexcitability in tuberous sclerosis complex. Cell Rep 2023; 42:112838. [PMID: 37494191 PMCID: PMC10529098 DOI: 10.1016/j.celrep.2023.112838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder, but new therapies have been impeded by a lack of understanding of the pathological mechanisms. Tuberous sclerosis complex (TSC) and fragile X syndrome are associated with alterations in the mechanistic target of rapamycin (mTOR) and fragile X messenger ribonucleoprotein 1 (FMRP), which have been implicated in the development of ASD. Previously, we observed that transcripts associated with FMRP were down-regulated in TSC2-deficient neurons. In this study, we find that FMRP turnover is dysregulated in TSC2-deficient rodent primary neurons and human induced pluripotent stem cell (iPSC)-derived neurons and is dependent on the E3 ubiquitin ligase anaphase-promoting complex. We also demonstrate that overexpression of FMRP can partially rescue hyperexcitability in TSC2-deficient iPSC-derived neurons. These data indicate that FMRP dysregulation represents an important pathological mechanism in the development of abnormal neuronal activity in TSC and illustrate a molecular convergence between these two neurogenetic disorders.
Collapse
Affiliation(s)
- Kellen D Winden
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Truc T Pham
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole A Teaney
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juan Ruiz
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan Chen
- Human Neuron Core, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Cidi Chen
- Human Neuron Core, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Di Menna L, Orlando R, D'Errico G, Ginerete RP, Machaczka A, Bonaccorso CM, Arena A, Spatuzza M, Celli R, Alborghetti M, Ciocca E, Zuena AR, Scioli MR, Bruno V, Battaglia G, Nicoletti F, Catania MV. Blunted type-5 metabotropic glutamate receptor-mediated polyphosphoinositide hydrolysis in two mouse models of monogenic autism. Neuropharmacology 2023:109642. [PMID: 37392820 DOI: 10.1016/j.neuropharm.2023.109642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
The involvement of the mGlu5 receptors in the pathophysiology of several forms of monogenic autism has been supported by numerous studies following the seminal observation that mGlu5 receptor-dependent long-term depression was enhanced in the hippocampus of mice modeling the fragile-X syndrome (FXS). Surprisingly, there are no studies examining the canonical signal transduction pathway activated by mGlu5 receptors (i.e. polyphosphoinositide - PI - hydrolysis) in mouse models of autism. We have developed a method for in vivo assessment of PI hydrolysis based on systemic injection of lithium chloride followed by treatment with the selective mGlu5 receptor PAM, VU0360172, and measurement of endogenous inositolmonophosphate (InsP) in brain tissue. Here, we report that mGlu5 receptor-mediated PI hydrolysis was blunted in the cerebral cortex, hippocampus, and corpus striatum of Ube3am-/p+ mice modeling Angelman syndrome (AS), and in the cerebral cortex and hippocampus of fmr1 knockout mice modeling FXS. In vivo mGlu5 receptor-mediated stimulation of Akt on threonine 308 was also blunted in the hippocampus of FXS mice. These changes were associated with a significant increase in cortical and striatal Homer1 levels and striatal mGlu5 receptor and Gαq levels in AS mice, and with a reduction in cortical mGlu5 receptor and hippocampal Gαq levels, and an increase in cortical phospholipase-Cβ and hippocampal Homer1 levels in FXS mice. This is the first evidence that the canonical transduction pathway activated by mGlu5 receptors is down-regulated in brain regions of mice modeling monogenic autism.
Collapse
Affiliation(s)
| | - Rosamaria Orlando
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | | | | | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Science, Krakow, Poland
| | | | | | | | | | - Marika Alborghetti
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Italy
| | - Eleonora Ciocca
- Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | | | - Valeria Bruno
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Giuseppe Battaglia
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Maria Vincenza Catania
- Institute for Biomedical Research and Innovation, The National Research Council (IRIB-CNR), Catania, Italy.
| |
Collapse
|
8
|
Thomas SD, Jha NK, Ojha S, Sadek B. mTOR Signaling Disruption and Its Association with the Development of Autism Spectrum Disorder. Molecules 2023; 28:molecules28041889. [PMID: 36838876 PMCID: PMC9964164 DOI: 10.3390/molecules28041889] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in social interaction and communication along with repetitive stereotypic behaviors. Currently, there are no specific biomarkers for diagnostic screening or treatments available for autistic patients. Numerous genetic disorders are associated with high prevalence of ASD, including tuberous sclerosis complex, phosphatase and tensin homolog, and fragile X syndrome. Preclinical investigations in animal models of these diseases have revealed irregularities in the PI3K/Akt/mTOR signaling pathway as well as ASD-related behavioral defects. Reversal of the downstream molecular irregularities, associated with mTOR hyperactivation, improved the behavioral deficits observed in the preclinical investigations. Plant bioactive molecules have shown beneficial pre-clinical evidence in ASD treatment by modulating the PI3K/Akt/mTOR pathway. In this review, we summarize the involvement of the PI3K/Akt/mTOR pathway as well as the genetic alterations of the pathway components and its critical impact on the development of the autism spectrum disorder. Mutations in negative regulators of mTORC1, such as TSC1, TSC2, and PTEN, result in ASD-like phenotypes through the disruption of the mTORC1-mediated signaling. We further discuss the various naturally occurring phytoconstituents that have been identified to be bioactive and modulate the pathway to prevent its disruption and contribute to beneficial therapeutic effects in ASD.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
9
|
Fu MP, Merrill SM, Sharma M, Gibson WT, Turvey SE, Kobor MS. Rare diseases of epigenetic origin: Challenges and opportunities. Front Genet 2023; 14:1113086. [PMID: 36814905 PMCID: PMC9939656 DOI: 10.3389/fgene.2023.1113086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Rare diseases (RDs), more than 80% of which have a genetic origin, collectively affect approximately 350 million people worldwide. Progress in next-generation sequencing technology has both greatly accelerated the pace of discovery of novel RDs and provided more accurate means for their diagnosis. RDs that are driven by altered epigenetic regulation with an underlying genetic basis are referred to as rare diseases of epigenetic origin (RDEOs). These diseases pose unique challenges in research, as they often show complex genetic and clinical heterogeneity arising from unknown gene-disease mechanisms. Furthermore, multiple other factors, including cell type and developmental time point, can confound attempts to deconvolute the pathophysiology of these disorders. These challenges are further exacerbated by factors that contribute to epigenetic variability and the difficulty of collecting sufficient participant numbers in human studies. However, new molecular and bioinformatics techniques will provide insight into how these disorders manifest over time. This review highlights recent studies addressing these challenges with innovative solutions. Further research will elucidate the mechanisms of action underlying unique RDEOs and facilitate the discovery of treatments and diagnostic biomarkers for screening, thereby improving health trajectories and clinical outcomes of affected patients.
Collapse
Affiliation(s)
- Maggie P. Fu
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Sarah M. Merrill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Mehul Sharma
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada,Department of Pediatrics, Faculty of Medicine, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - William T. Gibson
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Stuart E. Turvey
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada,Department of Pediatrics, Faculty of Medicine, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Michael S. Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada,*Correspondence: Michael S. Kobor,
| |
Collapse
|
10
|
Sánchez-Castillo C, Cuartero MI, Fernández-Rodrigo A, Briz V, López-García S, Jiménez-Sánchez R, López JA, Graupera M, Esteban JA. Functional specialization of different PI3K isoforms for the control of neuronal architecture, synaptic plasticity, and cognition. SCIENCE ADVANCES 2022; 8:eabq8109. [PMID: 36417513 PMCID: PMC9683729 DOI: 10.1126/sciadv.abq8109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Neuronal connectivity and activity-dependent synaptic plasticity are fundamental properties that support brain function and cognitive performance. Phosphatidylinositol 3-kinase (PI3K) intracellular signaling controls multiple mechanisms mediating neuronal growth, synaptic structure, and plasticity. However, it is still unclear how these pleiotropic functions are integrated at molecular and cellular levels. To address this issue, we used neuron-specific virally delivered Cre expression to delete either p110α or p110β (the two major catalytic isoforms of type I PI3K) from the hippocampus of adult mice. We found that dendritic and postsynaptic structures are almost exclusively supported by p110α activity, whereas p110β controls neurotransmitter release and metabotropic glutamate receptor-dependent long-term depression at the presynaptic terminal. In addition to these separate functions, p110α and p110β jointly contribute to N-methyl-d-aspartate receptor-dependent postsynaptic long-term potentiation. This molecular and functional specialization is reflected in different proteomes controlled by each isoform and in distinct behavioral alterations for learning/memory and sociability in mice lacking p110α or p110β.
Collapse
Affiliation(s)
- Carla Sánchez-Castillo
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - María I. Cuartero
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Alba Fernández-Rodrigo
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Víctor Briz
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Sergio López-García
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Raquel Jiménez-Sánchez
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Juan A. López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - José A. Esteban
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| |
Collapse
|
11
|
Purushotham SS, Reddy NMN, D'Souza MN, Choudhury NR, Ganguly A, Gopalakrishna N, Muddashetty R, Clement JP. A perspective on molecular signalling dysfunction, its clinical relevance and therapeutics in autism spectrum disorder. Exp Brain Res 2022; 240:2525-2567. [PMID: 36063192 DOI: 10.1007/s00221-022-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.
Collapse
Affiliation(s)
- Sushmitha S Purushotham
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Neeharika M N Reddy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Michelle Ninochka D'Souza
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Nilpawan Roy Choudhury
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Anusa Ganguly
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Niharika Gopalakrishna
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Ravi Muddashetty
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India.
| |
Collapse
|
12
|
Cho H, Abshire ET, Popp MW, Pröschel C, Schwartz JL, Yeo GW, Maquat LE. AKT constitutes a signal-promoted alternative exon-junction complex that regulates nonsense-mediated mRNA decay. Mol Cell 2022; 82:2779-2796.e10. [PMID: 35675814 PMCID: PMC9357146 DOI: 10.1016/j.molcel.2022.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Despite a long appreciation for the role of nonsense-mediated mRNA decay (NMD) in destroying faulty, disease-causing mRNAs and maintaining normal, physiologic mRNA abundance, additional effectors that regulate NMD activity in mammalian cells continue to be identified. Here, we describe a haploid-cell genetic screen for NMD effectors that has unexpectedly identified 13 proteins constituting the AKT signaling pathway. We show that AKT supersedes UPF2 in exon-junction complexes (EJCs) that are devoid of RNPS1 but contain CASC3, defining an unanticipated insulin-stimulated EJC. Without altering UPF1 RNA binding or ATPase activity, AKT-mediated phosphorylation of the UPF1 CH domain at T151 augments UPF1 helicase activity, which is critical for NMD and also decreases the dependence of helicase activity on ATP. We demonstrate that upregulation of AKT signaling contributes to the hyperactivation of NMD that typifies Fragile X syndrome, as exemplified using FMR1-KO neural stem cells derived from induced pluripotent stem cells.
Collapse
Affiliation(s)
- Hana Cho
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Elizabeth T Abshire
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Stem Cell and Regenerative Medicine Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Joshua L Schwartz
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
13
|
Lee A, Xu J, Wen Z, Jin P. Across Dimensions: Developing 2D and 3D Human iPSC-Based Models of Fragile X Syndrome. Cells 2022; 11:1725. [PMID: 35681419 PMCID: PMC9179297 DOI: 10.3390/cells11111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism spectrum disorder. FXS is caused by a cytosine-guanine-guanine (CGG) trinucleotide repeat expansion in the untranslated region of the FMR1 gene leading to the functional loss of the gene's protein product FMRP. Various animal models of FXS have provided substantial knowledge about the disorder. However, critical limitations exist in replicating the pathophysiological mechanisms. Human induced pluripotent stem cells (hiPSCs) provide a unique means of studying the features and processes of both normal and abnormal human neurodevelopment in large sample quantities in a controlled setting. Human iPSC-based models of FXS have offered a better understanding of FXS pathophysiology specific to humans. This review summarizes studies that have used hiPSC-based two-dimensional cellular models of FXS to reproduce the pathology, examine altered gene expression and translation, determine the functions and targets of FMRP, characterize the neurodevelopmental phenotypes and electrophysiological features, and, finally, to reactivate FMR1. We also provide an overview of the most recent studies using three-dimensional human brain organoids of FXS and end with a discussion of current limitations and future directions for FXS research using hiPSCs.
Collapse
Affiliation(s)
- Azalea Lee
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA;
- MD/PhD Program, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Xu
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA;
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
D’Incal C, Broos J, Torfs T, Kooy RF, Vanden Berghe W. Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network. Cells 2022; 11:cells11081325. [PMID: 35456004 PMCID: PMC9029738 DOI: 10.3390/cells11081325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022] Open
Abstract
Absence of the Fragile X Mental Retardation Protein (FMRP) causes autism spectrum disorders and intellectual disability, commonly referred to as the Fragile X syndrome. FMRP is a negative regulator of protein translation and is essential for neuronal development and synapse formation. FMRP is a target for several post-translational modifications (PTMs) such as phosphorylation and methylation, which tightly regulate its cellular functions. Studies have indicated the involvement of FMRP in a multitude of cellular pathways, and an absence of FMRP was shown to affect several neurotransmitter receptors, for example, the GABA receptor and intracellular signaling molecules such as Akt, ERK, mTOR, and GSK3. Interestingly, many of these molecules function as protein kinases or phosphatases and thus are potentially amendable by pharmacological treatment. Several treatments acting on these kinase-phosphatase systems have been shown to be successful in preclinical models; however, they have failed to convincingly show any improvements in clinical trials. In this review, we highlight the different protein kinase and phosphatase studies that have been performed in the Fragile X syndrome. In our opinion, some of the paradoxical study conclusions are potentially due to the lack of insight into integrative kinase signaling networks in the disease. Quantitative proteome analyses have been performed in several models for the FXS to determine global molecular processes in FXS. However, only one phosphoproteomics study has been carried out in Fmr1 knock-out mouse embryonic fibroblasts, and it showed dysfunctional protein kinase and phosphatase signaling hubs in the brain. This suggests that the further use of phosphoproteomics approaches in Fragile X syndrome holds promise for identifying novel targets for kinase inhibitor therapies.
Collapse
Affiliation(s)
- Claudio D’Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Jitse Broos
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - Thierry Torfs
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Correspondence: ; Tel.: +0032-(0)-32-652-657
| |
Collapse
|
15
|
Sathyanarayana SH, Saunders JA, Slaughter J, Tariq K, Chakrabarti R, Sadanandappa MK, Luikart BW, Bosco G. Pten heterozygosity restores neuronal morphology in fragile X syndrome mice. Proc Natl Acad Sci U S A 2022; 119:e2109448119. [PMID: 35394871 PMCID: PMC9169627 DOI: 10.1073/pnas.2109448119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
Genetic studies of hippocampal granule neuron development have been used to elucidate cellular functions of Pten and Fmr1. While mutations in each gene cause neurodevelopmental disorders such as autism and fragile X syndrome, how Pten and Fmr1 function alone or together during normal development is not known. Moreover, Pten mRNA is bound by the fragile X mental retardation protein (FMRP) RNA binding protein, but how this physical interaction impinges on phosphatase and tensin homolog protein (PTEN) expression is not known. To understand the interaction of PTEN and FMRP, we investigated the dentate gyrus granule neuron development in Pten and Fmr1 knockout (KO) mice. Interestingly, heterozygosity of Pten restored Fmr1 KO cellular phenotypes, including dendritic arborization, and spine density, while PTEN protein expression was significantly increased in Fmr1 KO animals. However, complete deletion of both Pten and Fmr1 resulted in a dramatic increase in dendritic length, spine density, and spine length. In addition, overexpression of PTEN in Fmr1 KO Pten heterozygous background reduced dendritic length, arborization, spine density, and spine length including pS6 levels. Our findings suggest that PTEN levels are negatively regulated by FMRP, and some Fmr1 KO phenotypes are caused by dysregulation of PTEN protein. These observations provide evidence for the genetic interaction of PTEN and FMRP and a possible mechanistic basis for the pathogenesis of Fmr1-related fragile X neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Jasmine A. Saunders
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jacob Slaughter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Kamran Tariq
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Madhumala K. Sadanandappa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Bryan W. Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
16
|
Hale CR, Sawicka K, Mora K, Fak JJ, Kang JJ, Cutrim P, Cialowicz K, Carroll TS, Darnell RB. FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons. eLife 2021; 10:e71892. [PMID: 34939924 PMCID: PMC8820740 DOI: 10.7554/elife.71892] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Neurons rely on translation of synaptic mRNAs in order to generate activity-dependent changes in plasticity. Here, we develop a strategy combining compartment-specific crosslinking immunoprecipitation (CLIP) and translating ribosome affinity purification (TRAP) in conditionally tagged mice to precisely define the ribosome-bound dendritic transcriptome of CA1 pyramidal neurons. We identify CA1 dendritic transcripts with differentially localized mRNA isoforms generated by alternative polyadenylation and alternative splicing, including many that have altered protein-coding capacity. Among dendritic mRNAs, FMRP targets were found to be overrepresented. Cell-type-specific FMRP-CLIP and TRAP in microdissected CA1 neuropil revealed 383 dendritic FMRP targets and suggests that FMRP differentially regulates functionally distinct modules in CA1 dendrites and cell bodies. FMRP regulates ~15-20% of mRNAs encoding synaptic functions and 10% of chromatin modulators, in the dendrite and cell body, respectively. In the absence of FMRP, dendritic FMRP targets had increased ribosome association, consistent with a function for FMRP in synaptic translational repression. Conversely, downregulation of FMRP targets involved in chromatin regulation in cell bodies suggests a role for FMRP in stabilizing mRNAs containing stalled ribosomes in this compartment. Together, the data support a model in which FMRP regulates the translation and expression of synaptic and nuclear proteins within different compartments of a single neuronal cell type.
Collapse
Affiliation(s)
- Caryn R Hale
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Kirsty Sawicka
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Kevin Mora
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Jin Joo Kang
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Paula Cutrim
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Katarzyna Cialowicz
- Bio-Imaging Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
17
|
Khlebodarova TM. The molecular view of mechanical stress of brain cells, local translation, and neurodegenerative diseases. Vavilovskii Zhurnal Genet Selektsii 2021; 25:92-100. [PMID: 34901706 PMCID: PMC8629365 DOI: 10.18699/vj21.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/03/2022] Open
Abstract
The assumption that chronic mechanical stress in brain cells stemming from intracranial hypertension,
arterial hypertension, or mechanical injury is a risk factor for neurodegenerative diseases was put forward in the
1990s and has since been supported. However, the molecular mechanisms that underlie the way from cell exposure to mechanical stress to disturbances in synaptic plasticity followed by changes in behavior, cognition, and
memory are still poorly understood. Here we review (1) the current knowledge of molecular mechanisms regulating local translation and the actin cytoskeleton state at an activated synapse, where they play a key role in the
formation of various sorts of synaptic plasticity and long-term memory, and (2) possible pathways of mechanical
stress intervention. The roles of the mTOR (mammalian target of rapamycin) signaling pathway; the RNA-binding
FMRP protein; the CYFIP1 protein, interacting with FMRP; the family of small GTPases; and the WAVE regulatory
complex in the regulation of translation initiation and actin cytoskeleton rearrangements in dendritic spines of the
activated synapse are discussed. Evidence is provided that chronic mechanical stress may result in aberrant activation of mTOR signaling and the WAVE regulatory complex via the YAP/TAZ system, the key sensor of mechanical
signals, and influence the associated pathways regulating the formation of F actin filaments and the dendritic spine
structure. These consequences may be a risk factor for various neurological conditions, including autistic spectrum
disorders and epileptic encephalopathy. In further consideration of the role of the local translation system in the
development of neuropsychic and neurodegenerative diseases, an original hypothesis was put forward that one
of the possible causes of synaptopathies is impaired proteome stability associated with mTOR hyperactivity and
formation of complex dynamic modes of de novo protein synthesis in response to synapse-stimulating factors,
including chronic mechanical stress.
Collapse
Affiliation(s)
- T M Khlebodarova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
18
|
Bach S, Shovlin S, Moriarty M, Bardoni B, Tropea D. Rett Syndrome and Fragile X Syndrome: Different Etiology With Common Molecular Dysfunctions. Front Cell Neurosci 2021; 15:764761. [PMID: 34867203 PMCID: PMC8640214 DOI: 10.3389/fncel.2021.764761] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023] Open
Abstract
Rett syndrome (RTT) and Fragile X syndrome (FXS) are two monogenetic neurodevelopmental disorders with complex clinical presentations. RTT is caused by mutations in the Methyl-CpG binding protein 2 gene (MECP2) altering the function of its protein product MeCP2. MeCP2 modulates gene expression by binding methylated CpG dinucleotides, and by interacting with transcription factors. FXS is caused by the silencing of the FMR1 gene encoding the Fragile X Mental Retardation Protein (FMRP), a RNA binding protein involved in multiple steps of RNA metabolism, and modulating the translation of thousands of proteins including a large set of synaptic proteins. Despite differences in genetic etiology, there are overlapping features in RTT and FXS, possibly due to interactions between MeCP2 and FMRP, and to the regulation of pathways resulting in dysregulation of common molecular signaling. Furthermore, basic physiological mechanisms are regulated by these proteins and might concur to the pathophysiology of both syndromes. Considering that RTT and FXS are disorders affecting brain development, and that most of the common targets of MeCP2 and FMRP are involved in brain activity, we discuss the mechanisms of synaptic function and plasticity altered in RTT and FXS, and we consider the similarities and the differences between these two disorders.
Collapse
Affiliation(s)
- Snow Bach
- School of Mathematical Sciences, Dublin City University, Dublin, Ireland.,Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Stephen Shovlin
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | | | - Barbara Bardoni
- Inserm, CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Université Côte d'Azur, Valbonne, France
| | - Daniela Tropea
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland
| |
Collapse
|
19
|
Kang Y, Zhou Y, Li Y, Han Y, Xu J, Niu W, Li Z, Liu S, Feng H, Huang W, Duan R, Xu T, Raj N, Zhang F, Dou J, Xu C, Wu H, Bassell GJ, Warren ST, Allen EG, Jin P, Wen Z. A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat Neurosci 2021; 24:1377-1391. [PMID: 34413513 PMCID: PMC8484073 DOI: 10.1038/s41593-021-00913-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Fragile X syndrome (FXS) is caused by the loss of fragile X mental retardation protein (FMRP), an RNA-binding protein that can regulate the translation of specific mRNAs. In this study, we developed an FXS human forebrain organoid model and observed that the loss of FMRP led to dysregulated neurogenesis, neuronal maturation and neuronal excitability. Bulk and single-cell gene expression analyses of FXS forebrain organoids revealed that the loss of FMRP altered gene expression in a cell-type-specific manner. The developmental deficits in FXS forebrain organoids could be rescued by inhibiting the phosphoinositide 3-kinase pathway but not the metabotropic glutamate pathway disrupted in the FXS mouse model. We identified a large number of human-specific mRNAs bound by FMRP. One of these human-specific FMRP targets, CHD2, contributed to the altered gene expression in FXS organoids. Collectively, our study revealed molecular, cellular and electrophysiological abnormalities associated with the loss of FMRP during human brain development.
Collapse
Affiliation(s)
- Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Ying Zhou
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Yanfei Han
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Xu
- The Graduate Program in Genetics and Molecular Biology, Emory University, GA 30322, USA
| | - Weibo Niu
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shiying Liu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, OH 44106, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, OH 44106, USA
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Nisha Raj
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Juan Dou
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chongchong Xu
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen T Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA;,To whom correspondence should be addressed: (P.J.) and (Z.W.)
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Scieces, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA;,To whom correspondence should be addressed: (P.J.) and (Z.W.)
| |
Collapse
|
20
|
Hagerman RJ, Hagerman PJ. Fragile X Syndrome: Lessons Learned and What New Treatment Avenues Are on the Horizon. Annu Rev Pharmacol Toxicol 2021; 62:365-381. [PMID: 34499526 DOI: 10.1146/annurev-pharmtox-052120-090147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading single-gene form of autism spectrum disorder, encompassing cognitive, behavioral, and physical forms of clinical involvement. FXS is caused by large expansions of a noncoding CGG repeat (>200 repeats) in the FMR1 gene, at which point the gene is generally silenced. Absence of FMR1 protein (FMRP), important for synaptic development and maintenance, gives rise to the neurodevelopmental disorder. There is, at present, no therapeutic approach that directly reverses the loss of FMRP; however, there is an increasing number of potential treatments that target the pathways dysregulated in FXS, including those that address the enhanced activity of the mGluR5 pathway and deficits in GABA pathways. Based on studies of targeted therapeutics to date, the prospects are good for one or more effective therapies for FXS in the near future. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Randi J Hagerman
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California 95817, USA; .,MIND Institute, University of California Davis Health, Sacramento, California 95817, USA
| | - Paul J Hagerman
- MIND Institute, University of California Davis Health, Sacramento, California 95817, USA.,Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California 95616, USA;
| |
Collapse
|
21
|
Sato A, Ikeda K. Genetic and Environmental Contributions to Autism Spectrum Disorder Through Mechanistic Target of Rapamycin. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:95-105. [PMID: 36325164 PMCID: PMC9616270 DOI: 10.1016/j.bpsgos.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects an individual’s reciprocal social interaction and communication ability. Numerous genetic and environmental conditions are associated with ASD, including tuberous sclerosis complex, phosphatase and tensin homolog hamartoma tumor syndrome, fragile X syndrome, and neurofibromatosis 1. The pathogenic molecular mechanisms of these diseases are integrated into the hyperactivation of mTORC1 (mechanistic target of rapamycin complex 1). Rodent models of these diseases have shown high mTORC1 activity in the brain and ASD-related behavioral deficits, which were reversed by the mTORC1 inhibitor rapamycin. Environmental stress can also affect this signaling pathway. In utero exposure to valproate caused ASD in offspring and enhanced mTORC1 activity in the brain, which was sensitive to mTORC1 inhibition. mTORC1 is a signaling hub for diverse cellular functions, including protein synthesis, through the phosphorylation of its targets, such as ribosomal protein S6 kinases. Metabotropic glutamate receptor 5–mediated synaptic function is also affected by the dysregulation of mTORC1 activity, such as in fragile X syndrome and tuberous sclerosis complex. Reversing these downstream changes that are associated with mTORC1 activation normalizes behavioral defects in rodents. Despite abundant preclinical evidence, few clinical studies have investigated the treatment of ASD and cognitive deficits. Therapeutics other than mTORC1 inhibitors failed to show efficacy in fragile X syndrome and neurofibromatosis 1. mTORC1 inhibitors have been tested mainly in tuberous sclerosis complex, and their effects on ASD and neuropsychological deficits are promising. mTORC1 is a promising target for the pharmacological treatment of ASD associated with mTORC1 activation.
Collapse
|
22
|
Dionne O, Corbin F. A new strategy to uncover fragile X proteomic biomarkers using the nascent proteome of peripheral blood mononuclear cells (PBMCs). Sci Rep 2021; 11:15148. [PMID: 34312401 PMCID: PMC8313568 DOI: 10.1038/s41598-021-94027-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome (FXS) is the most prevalent inherited cause of intellectual disabilities and autism spectrum disorders. FXS result from the loss of expression of the FMRP protein, an RNA-binding protein that regulates the expression of key synaptic effectors. FXS is also characterized by a wide array of behavioural, cognitive and metabolic impairments. The severity and penetrance of those comorbidities are extremely variable, meaning that a considerable phenotypic heterogeneity is found among fragile X individuals. Unfortunately, clinicians currently have no tools at their disposal to assay a patient prognosis upon diagnosis. Since the absence of FMRP was repeatedly associated with an aberrant protein synthesis, we decided to study the nascent proteome in order to screen for potential proteomic biomarkers of FXS. We used a BONCAT (Biorthogonal Non-canonical Amino Acids Tagging) method coupled to label-free mass spectrometry to purify and quantify nascent proteins of peripheral blood mononuclear cells (PBMCs) from 7 fragile X male patients and 7 age-matched controls. The proteomic analysis identified several proteins which were either up or downregulated in PBMCs from FXS individuals. Eleven of those proteins were considered as potential biomarkers, of which 5 were further validated by Western blot. The gene ontology enrichment analysis highlighted molecular pathways that may contribute to FXS physiopathology. Our results suggest that the nascent proteome of PBMCs is well suited for the discovery of FXS biomarkers.
Collapse
Affiliation(s)
- Olivier Dionne
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.
| | - François Corbin
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.
| |
Collapse
|
23
|
Mahaman YAR, Huang F, Embaye KS, Wang X, Zhu F. The Implication of STEP in Synaptic Plasticity and Cognitive Impairments in Alzheimer's Disease and Other Neurological Disorders. Front Cell Dev Biol 2021; 9:680118. [PMID: 34195199 PMCID: PMC8236946 DOI: 10.3389/fcell.2021.680118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a tyrosine phosphatase that has been implicated in Alzheimer’s disease (AD), the most common form of dementia, and many other neurological diseases. The protein level and activity of STEP have been found to be elevated in most of these disorders, and specifically in AD as a result of dysregulation of different pathways including PP2B/DARPP32/PP1, PKA as well as impairments of both proteasomal and lysosomal systems. The upregulation in STEP leads to increased binding to, and dephosphorylation of, its substrates which are mainly found to be synaptic plasticity and thus learning and memory related proteins. These proteins include kinases like Fyn, Pyk2, ERK1/2 and both NMDA and AMPA receptor subunits GluN2B and GluA2. The dephosphorylation of these molecules results in inactivation of these kinases and internalization of NMDA and AMPA receptor complexes leading to synapse loss and cognitive impairments. In this study, we aim to review STEP regulation and its implications in AD as well as other neurological disorders and then summarize data on targeting STEP as therapeutic strategy in these diseases.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China.,Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kidane Siele Embaye
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
24
|
Shapiro LP, Pitts EG, Li DC, Barbee BR, Hinton EA, Bassell GJ, Gross C, Gourley SL. The PI3-Kinase p110β Isoform Controls Severity of Cocaine-Induced Sequelae and Alters the Striatal Transcriptome. Biol Psychiatry 2021; 89:959-969. [PMID: 33773752 PMCID: PMC8202243 DOI: 10.1016/j.biopsych.2021.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The PI3-kinase (PI3K) complex is a well-validated target for mitigating cocaine-elicited sequelae, but pan-PI3K inhibitors are not viable long-term treatment options. The PI3K complex is composed of p110 catalytic and regulatory subunits, which can be individually manipulated for therapeutic purposes. However, this possibility has largely not been explored in behavioral contexts. METHODS Here, we inhibited PI3K p110β in the medial prefrontal cortex (mPFC) of cocaine-exposed mice. Behavioral models for studying relapse, sensitization, and decision-making biases were paired with protein quantification, RNA sequencing, and cell type-specific chemogenetic manipulation and RNA quantification to determine whether and how inhibiting PI3K p110β confers resilience to cocaine. RESULTS Viral-mediated PI3K p110β silencing reduced cue-induced reinstatement of cocaine seeking by half, blocked locomotor sensitization, and restored mPFC synaptic marker content after exposure to cocaine. Cocaine blocked the ability of mice to select actions based on their consequences, and p110β inhibition restored this ability. Silencing dopamine D2 receptor-expressing excitatory mPFC neurons mimicked cocaine, impairing goal-seeking behavior, and again, p110β inhibition restored goal-oriented action. We verified the presence of p110β in mPFC neurons projecting to the dorsal striatum and orbitofrontal cortex and found that inhibiting p110β in the mPFC altered the expression of functionally defined gene clusters within the dorsal striatum and not orbitofrontal cortex. CONCLUSIONS Subunit-selective PI3K silencing potently mitigates drug seeking, sensitization, and decision-making biases after exposure to cocaine. We suggest that inhibiting PI3K p110β provides neuroprotection against cocaine by triggering coordinated corticostriatal adaptations.
Collapse
Affiliation(s)
- Lauren P. Shapiro
- Graduate Program in Molecular and Systems Pharmacology, Emory University,Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center
| | - Elizabeth G. Pitts
- Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center,Graduate Program in Neuroscience, Emory University
| | - Dan C. Li
- Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center,Graduate Program in Neuroscience, Emory University
| | - Britton R. Barbee
- Graduate Program in Molecular and Systems Pharmacology, Emory University,Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center
| | - Elizabeth A. Hinton
- Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center,Graduate Program in Neuroscience, Emory University
| | - Gary J. Bassell
- Graduate Program in Neuroscience, Emory University,Department of Cell Biology, Emory University
| | - Christina Gross
- Division of Neurology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine
| | - Shannon L. Gourley
- Department of Pediatrics, Emory University School of Medicine; Yerkes National Primate Research Center,Graduate Program in Neuroscience, Emory University,Children’s Healthcare of Atlanta
| |
Collapse
|
25
|
Sharma A, Mehan S. Targeting PI3K-AKT/mTOR signaling in the prevention of autism. Neurochem Int 2021; 147:105067. [PMID: 33992742 DOI: 10.1016/j.neuint.2021.105067] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/16/2022]
Abstract
PI3K-AKT/mTOR signaling pathway represents an essential signaling mechanism for mammalian enzyme-related receptors in transducing signals or biological processes such as cell development, differentiation, cell survival, protein synthesis, and metabolism. Upregulation of the PI3K-AKT/mTOR signaling pathway involves many human brain abnormalities, including autism and other neurological dysfunctions. Autism is a neurodevelopmental disorder associated with behavior and psychiatric illness. This research-based review discusses the functional relationship between the neuropathogenic factors associated with PI3K-AKT/mTOR signaling pathway. Ultimately causes autism-like conditions associated with genetic alterations, neuronal apoptosis, mitochondrial dysfunction, and neuroinflammation. Therefore, inhibition of the PI3K-AKT/mTOR signaling pathway may have an effective therapeutic value for autism treatment. The current review also summarizes the involvement of PI3K-AKT/mTOR signaling pathway inhibitors in the treatment of autism and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Aarti Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
26
|
Dionne O, Corbin F. An "Omic" Overview of Fragile X Syndrome. BIOLOGY 2021; 10:433. [PMID: 34068266 PMCID: PMC8153138 DOI: 10.3390/biology10050433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 01/16/2023]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder associated with a wide range of cognitive, behavioral and medical problems. It arises from the silencing of the fragile X mental retardation 1 (FMR1) gene and, consequently, in the absence of its encoded protein, FMRP (fragile X mental retardation protein). FMRP is a ubiquitously expressed and multifunctional RNA-binding protein, primarily considered as a translational regulator. Pre-clinical studies of the past two decades have therefore focused on this function to relate FMRP's absence to the molecular mechanisms underlying FXS physiopathology. Based on these data, successful pharmacological strategies were developed to rescue fragile X phenotype in animal models. Unfortunately, these results did not translate into humans as clinical trials using same therapeutic approaches did not reach the expected outcomes. These failures highlight the need to put into perspective the different functions of FMRP in order to get a more comprehensive understanding of FXS pathophysiology. This work presents a review of FMRP's involvement on noteworthy molecular mechanisms that may ultimately contribute to various biochemical alterations composing the fragile X phenotype.
Collapse
Affiliation(s)
- Olivier Dionne
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC J1H 5H4, Canada;
| | | |
Collapse
|
27
|
Dionne O, Lortie A, Gagnon F, Corbin F. Rates of protein synthesis are reduced in peripheral blood mononuclear cells (PBMCs) from fragile X individuals. PLoS One 2021; 16:e0251367. [PMID: 33974659 PMCID: PMC8112704 DOI: 10.1371/journal.pone.0251367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/23/2021] [Indexed: 12/30/2022] Open
Abstract
Background Fragile X syndrome (FXS) is the leading inherited cause of intellectual disability and is caused by the loss of expression of the Fragile X mental retardation protein (FMRP). In animal model of FXS, the absence of FMRP leads to an aberrant rate of neuronal protein synthesis, which in turn is believed to be at the origin of defects regarding spine morphology and synaptic plasticity. Normalisation of protein synthesis in these models has been associated with a rescue of FXS behavioral and biochemicals phenotype, thus establishing the rate of protein synthesis as one of the most promising monitoring biomarker for FXS. However, rate of protein synthesis alteration in fragile X individuals is not well characterized. Method We applied a robust radiolabeled assay to measure rate of protein synthesis in freshly extracted peripheral blood mononuclear cells (PBMCs) and blood platelets. We ultimately settle on PBMCs to measure and compare rate of protein synthesis in 13 males with fragile X and 14 matched controls individuals. Results Using this method, we measured a 26.9% decrease (p = 0,0193) in the rate of protein synthesis in fragile X individuals PBMCs. Furthermore, the rate of protein synthesis measurements obtained were highly reproducible, highlighting the robustness of the method. Conclusion Our work presents the first evidence of a diminution of the rate of protein synthesis in a human peripheral model of fragile X. Our results also support the finding of previous studies using brain PET imaging in Fragile X individuals. Since our assay only requires a simple venous puncture, it could be used in other cases of intellectual disability in order to determine if an aberrant rate of protein synthesis is a common general mechanism leading to impairment in synaptic plasticity and to intellectual disability.
Collapse
Affiliation(s)
- Olivier Dionne
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
- * E-mail: (OD); (FC)
| | - Audrey Lortie
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Florence Gagnon
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - François Corbin
- Department of Biochemistry and Functional Genomic, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
- * E-mail: (OD); (FC)
| |
Collapse
|
28
|
Khayachi A, Schorova L, Alda M, Rouleau GA, Milnerwood AJ. Posttranslational modifications & lithium's therapeutic effect-Potential biomarkers for clinical responses in psychiatric & neurodegenerative disorders. Neurosci Biobehav Rev 2021; 127:424-445. [PMID: 33971223 DOI: 10.1016/j.neubiorev.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/14/2021] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
Several neurodegenerative diseases and neuropsychiatric disorders display aberrant posttranslational modifications (PTMs) of one, or many, proteins. Lithium treatment has been used for mood stabilization for many decades, and is highly effective for large subsets of patients with diverse neurological conditions. However, the differential effectiveness and mode of action are not fully understood. In recent years, studies have shown that lithium alters several protein PTMs, altering their function, and consequently neuronal physiology. The impetus for this review is to outline the links between lithium's therapeutic mode of action and PTM homeostasis. We first provide an overview of the principal PTMs affected by lithium. We then describe several neuropsychiatric disorders in which PTMs have been implicated as pathogenic. For each of these conditions, we discuss lithium's clinical use and explore the putative mechanism of how it restores PTM homeostasis, and thereby cellular physiology. Evidence suggests that determining specific PTM patterns could be a promising strategy to develop biomarkers for disease and lithium responsiveness.
Collapse
Affiliation(s)
- A Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| | - L Schorova
- McGill University Health Center Research Institute, Montréal, Quebec, Canada
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G A Rouleau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| | - A J Milnerwood
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
29
|
Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis. Cell Rep 2021; 35:108991. [PMID: 33852833 PMCID: PMC8133829 DOI: 10.1016/j.celrep.2021.108991] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Transcriptional silencing of the FMR1 gene in fragile X syndrome (FXS) leads to the loss of the RNA-binding protein FMRP. In addition to regulating mRNA translation and protein synthesis, emerging evidence suggests that FMRP acts to coordinate proliferation and differentiation during early neural development. However, whether loss of FMRP-mediated translational control is related to impaired cell fate specification in the developing human brain remains unknown. Here, we use human patient induced pluripotent stem cell (iPSC)-derived neural progenitor cells and organoids to model neurogenesis in FXS. We developed a high-throughput, in vitro assay that allows for the simultaneous quantification of protein synthesis and proliferation within defined neural subpopulations. We demonstrate that abnormal protein synthesis in FXS is coupled to altered cellular decisions to favor proliferative over neurogenic cell fates during early development. Furthermore, pharmacologic inhibition of elevated phosphoinositide 3-kinase (PI3K) signaling corrects both excess protein synthesis and cell proliferation in a subset of patient neural cells. Raj et al. developed a multiparametric assay to measure cellular and molecular phenotypes during neurogenesis in fragile X syndrome iPSC-derived neural cells. Relative to controls, FXS patient cultures have more proliferative cells with increased protein synthesis. Defects in cell fate acquisition can be normalized by inhibiting overactive PI3K signaling.
Collapse
|
30
|
Reynolds KE, Wong CR, Scott AL. Astrocyte-mediated purinergic signaling is upregulated in a mouse model of Fragile X syndrome. Glia 2021; 69:1816-1832. [PMID: 33754385 DOI: 10.1002/glia.23997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism spectrum disorders. With increasing investigation into the molecular mechanisms underlying FXS, there is growing evidence that perturbations in glial signaling are widely associated with neurological pathology. Purinergic signaling, which utilizes nucleoside triphosphates as signaling molecules, provides one of the most ubiquitous signaling systems for glial-neuronal and glial-glial crosstalk. Here, we sought to identify whether purinergic signaling is dysregulated within the FXS mouse cortex, and whether this dysregulation contributes to aberrant intercellular communication. In primary astrocyte cultures derived from the Fmr1 knockout (KO) mouse model of FXS, we found that application of exogenous ATP and UTP evoked elevated intracellular calcium responses compared to wildtype levels. Accordingly, purinergic P2Y2 and P2Y6 receptor expression was increased in Fmr1 KO astrocytes both in vitro and in acutely dissociated tissue, while P2Y antagonism via suramin prevented intracellular calcium elevations, suggesting a role for these receptors in aberrant FXS astrocyte activation. To investigate the impact of elevated purinergic signaling on astrocyte-mediated synaptogenesis, we quantified synaptogenic protein TSP-1, known to be regulated by P2Y activation. TSP-1 secretion and expression were both heightened in Fmr1 KO vs wildtype astrocytes following UTP application, while naïve TSP-1 cortical expression was also transiently elevated in vivo, indicating increased potential for excitatory TSP-1-mediated synaptogenesis in the FXS cortex. Together, our results demonstrate novel and significant purinergic signaling elevations in Fmr1 KO astrocytes, which may serve as a potential therapeutic target to mitigate the signaling aberrations observed in FXS.
Collapse
Affiliation(s)
- Kathryn E Reynolds
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Chloe R Wong
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Angela L Scott
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
31
|
Prieto M, Folci A, Poupon G, Schiavi S, Buzzelli V, Pronot M, François U, Pousinha P, Lattuada N, Abelanet S, Castagnola S, Chafai M, Khayachi A, Gwizdek C, Brau F, Deval E, Francolini M, Bardoni B, Humeau Y, Trezza V, Martin S. Missense mutation of Fmr1 results in impaired AMPAR-mediated plasticity and socio-cognitive deficits in mice. Nat Commun 2021; 12:1557. [PMID: 33692361 PMCID: PMC7946954 DOI: 10.1038/s41467-021-21820-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
Fragile X syndrome (FXS) is the most frequent form of inherited intellectual disability and the best-described monogenic cause of autism. CGG-repeat expansion in the FMR1 gene leads to FMR1 silencing, loss-of-expression of the Fragile X Mental Retardation Protein (FMRP), and is a common cause of FXS. Missense mutations in the FMR1 gene were also identified in FXS patients, including the recurrent FMRP-R138Q mutation. To investigate the mechanisms underlying FXS caused by this mutation, we generated a knock-in mouse model (Fmr1R138Q) expressing the FMRP-R138Q protein. We demonstrate that, in the hippocampus of the Fmr1R138Q mice, neurons show an increased spine density associated with synaptic ultrastructural defects and increased AMPA receptor-surface expression. Combining biochemical assays, high-resolution imaging, electrophysiological recordings, and behavioural testing, we also show that the R138Q mutation results in impaired hippocampal long-term potentiation and socio-cognitive deficits in mice. These findings reveal the functional impact of the FMRP-R138Q mutation in a mouse model of FXS.
Collapse
Affiliation(s)
- Marta Prieto
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | | | | | | | | | - Marie Pronot
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | | | | | - Norma Lattuada
- Università degli Studi di Milano, Dept. of Medical Biotechnology and Translational Medicine, Milan, Italy
| | | | | | - Magda Chafai
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | | | | | - Frédéric Brau
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | | | - Maura Francolini
- Università degli Studi di Milano, Dept. of Medical Biotechnology and Translational Medicine, Milan, Italy
| | - Barbara Bardoni
- Université Côte d'Azur, Inserm, CNRS, IPMC, Valbonne, France
| | - Yann Humeau
- University of Bordeaux, CNRS, IINS, Bordeaux, France
| | | | - Stéphane Martin
- Université Côte d'Azur, Inserm, CNRS, IPMC, Valbonne, France.
| |
Collapse
|
32
|
Lu MH, Hsueh YP. Protein synthesis as a modifiable target for autism-related dendritic spine pathophysiologies. FEBS J 2021; 289:2282-2300. [PMID: 33511762 DOI: 10.1111/febs.15733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorder (ASD) is increasingly recognized as a condition of altered brain connectivity. As synapses are fundamental subcellular structures for neuronal connectivity, synaptic pathophysiology has become one of central themes in autism research. Reports disagree upon whether the density of dendritic spines, namely excitatory synapses, is increased or decreased in ASD and whether the protein synthesis that is critical for dendritic spine formation and function is upregulated or downregulated. Here, we review recent evidence supporting a subgroup of ASD models with decreased dendritic spine density (hereafter ASD-DSD), including Nf1 and Vcp mutant mice. We discuss the relevance of branched-chain amino acid (BCAA) insufficiency in relation to unmet protein synthesis demand in ASD-DSD. In contrast to ASD-DSD, ASD models with hyperactive mammalian target of rapamycin (mTOR) may represent the opposite end of the disease spectrum, often characterized by increases in protein synthesis and dendritic spine density (denoted ASD-ISD). Finally, we propose personalized dietary leucine as a strategy tailored to balancing protein synthesis demand, thereby ameliorating dendritic spine pathophysiologies and autism-related phenotypes in susceptible patients, especially those with ASD-DSD.
Collapse
Affiliation(s)
- Ming-Hsuan Lu
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
33
|
Nie PY, Tong L, Li MD, Fu CH, Peng JB, Ji LL. miR-142 downregulation alleviates rat PTSD-like behaviors, reduces the level of inflammatory cytokine expression and apoptosis in hippocampus, and upregulates the expression of fragile X mental retardation protein. J Neuroinflammation 2021; 18:17. [PMID: 33407653 PMCID: PMC7788709 DOI: 10.1186/s12974-020-02064-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022] Open
Abstract
Background FMRP is a selective mRNA-binding protein that regulates protein synthesis at synapses, and its loss may lead to the impairment of trace fear memory. Previously, we found that FMRP levels in the hippocampus of rats with post-traumatic stress disorder (PTSD) were decreased. However, the mechanism underlying these changes remains unclear. Methods Forty-eight male Sprague-Dawley rats were randomly divided into four groups. The experimental groups were treated with the single-prolonged stress (SPS) procedure and injected with a lentivirus-mediated inhibitor of miR-142-5p. Behavior test as well as morphology and molecular biology experiments were performed to detect the effect of miR-142 downregulation on PTSD, which was further verified by in vitro experiments. Results We found that silence of miRNA-142 (miR-142), an upstream regulator of FMRP, could alleviate PTSD-like behaviors of rats exposed to the SPS paradigm. MiR-142 silence not only decreased the levels of proinflammatory mediators, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α, but also increased the expressive levels of synaptic proteins including PSD95 and synapsin I in the hippocampus, which was one of the key brain regions associated with PTSD. We further detected that miR-142 silence also downregulated the transportation of nuclear factor kappa-B (NF-κB) into the nuclei of neurons and might further affect the morphology of neurons. Conclusions The results revealed miR-142 downregulation could alleviate PTSD-like behaviors through attenuating neuroinflammation in the hippocampus of SPS rats by binding to FMRP.
Collapse
Affiliation(s)
- Peng-Yin Nie
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ming-Da Li
- Department of 1st Clinical Medicine, China Medical University, Shenyang, China
| | - Chang-Hai Fu
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jun-Bo Peng
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
34
|
Briševac D, Scholz R, Du D, Elagabani MN, Köhr G, Kornau HC. The small GTPase Arf6 is dysregulated in a mouse model for fragile X syndrome. J Neurochem 2020; 157:666-683. [PMID: 33125726 DOI: 10.1111/jnc.15230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022]
Abstract
Fragile X syndrome (FXS), the most common inherited cause of intellectual disability, results from silencing of the fragile X mental retardation gene 1 (FMR1). The analyses of FXS patients' brain autopsies revealed an increased density of immature dendritic spines in cortical areas. We hypothesize that the small GTPase Arf6, an actin regulator critical for the development of glutamatergic synapses and dendritic spines, is implicated in FXS. Here, we determined the fraction of active, GTP-bound Arf6 in cortical neuron cultures and synaptoneurosomes from Fmr1 knockout mice, measured actin polymerization in neurons expressing Arf6 mutants with variant GTP- or GDP-binding properties, and recorded hippocampal long-term depression induced by metabotropic glutamate receptors (mGluR-LTD) in acute brain slices. We detected a persistently elevated Arf6 activity, a loss of Arf6 sensitivity to synaptic stimulation and an increased Arf6-dependent dendritic actin polymerization in mature Fmr1 knockout neurons. Similar imbalances in Arf6-GTP levels and actin filament assembly were caused in wild-type neurons by RNAi-mediated depletion of the postsynaptic Arf6 guanylate exchange factors IQSEC1 (BRAG2) or IQSEC2 (BRAG1). Targeted deletion of Iqsec1 in hippocampal neurons of 3-week-old mice interfered with mGluR-LTD in wild-type, but not in Fmr1 knockout mice. Collectively, these data suggest an aberrant Arf6 regulation in Fmr1 knockout neurons with consequences for the actin cytoskeleton, spine morphology, and synaptic plasticity. Moreover, FXS and syndromes caused by genetic variants in IQSEC1 and IQSEC2 share intellectual disabilities and developmental delay as main symptoms. Therefore, dysregulation of Arf6 may contribute to the cognitive impairment in FXS.
Collapse
Affiliation(s)
- Dušica Briševac
- Neuroscience Research Center (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ralf Scholz
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dan Du
- Central Institute of Mental Health, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Georg Köhr
- Central Institute of Mental Health, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Neurophysiology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Christian Kornau
- Neuroscience Research Center (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| |
Collapse
|
35
|
Carbamazepine Restores Neuronal Signaling, Protein Synthesis, and Cognitive Function in a Mouse Model of Fragile X Syndrome. Int J Mol Sci 2020; 21:ijms21239327. [PMID: 33297570 PMCID: PMC7731004 DOI: 10.3390/ijms21239327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Fragile X syndrome (FXS) is a leading genetic disorder of intellectual disability caused by the loss of the functional fragile X mental retardation protein (FMRP). To date, there is no efficacious mechanism-based medication for FXS. With regard to potential disease mechanisms in FXS, it is widely accepted that the lack of FMRP causes elevated protein synthesis and deregulation of neuronal signaling. Abnormal enhancement of the ERK½ (extracellular signal-regulated kinase ½) and PI3K-Akt (Phosphoinositide 3 kinase-protein kinase B) signaling pathways has been identified in both FXS patients and FXS mouse models. In this study, we show that carbamazepine, which is an FDA-approved drug and has been mainly used to treat seizure and neuropathic pain, corrects cognitive deficits including passive avoidance and object location memory in FXS mice. Carbamazepine also rescues hyper locomotion and social deficits. At the cellular level, carbamazepine dampens the elevated level of ERK½ and Akt signaling as well as protein synthesis in FXS mouse neurons. Together, these results advocate repurposing carbamazepine for FXS treatment.
Collapse
|
36
|
Feuge J, Scharkowski F, Michaelsen-Preusse K, Korte M. FMRP Modulates Activity-Dependent Spine Plasticity by Binding Cofilin1 mRNA and Regulating Localization and Local Translation. Cereb Cortex 2020; 29:5204-5216. [PMID: 30953439 DOI: 10.1093/cercor/bhz059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/14/2019] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
Multiple variants of intellectual disability, e.g., the Fragile X Syndrome are associated with alterations in dendritic spine morphology, thereby pointing to dysregulated actin dynamics during development and processes of synaptic plasticity. Surprisingly, although the necessity of spine actin remodeling was demonstrated repeatedly, the importance and precise role of actin regulators is often undervalued. Here, we provide evidence that structural and functional plasticity are severely impaired after NMDAR-dependent LTP in the hippocampus of Fmr1 KO mice. We can link these defects to an aberrant activity-dependent regulation of Cofilin 1 (cof1) as activity-dependent modulations of local cof1 mRNA availability, local cof1 translation as well as total cof1 expression are impaired in the absence of FMRP. Finally, we can rescue activity-dependent structural plasticity in KO neurons by mimicking the regulation of cof1 observed in WT cells, thereby illustrating the potential of actin modulators to provide novel treatment strategies for the Fragile X Syndrome.
Collapse
Affiliation(s)
- Jonas Feuge
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Germany
| | | | | | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Germany.,Helmholtz Center for Infection Research, Research group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| |
Collapse
|
37
|
Kim JE, Lee DS, Kim TH, Park H, Kim MJ, Kang TC. PLPP/CIN-mediated Mdm2 dephosphorylation increases seizure susceptibility via abrogating PSD95 ubiquitination. Exp Neurol 2020; 331:113383. [DOI: 10.1016/j.expneurol.2020.113383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 01/29/2023]
|
38
|
Hooshmandi M, Wong C, Khoutorsky A. Dysregulation of translational control signaling in autism spectrum disorders. Cell Signal 2020; 75:109746. [PMID: 32858122 DOI: 10.1016/j.cellsig.2020.109746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/27/2022]
Abstract
Deviations from the optimal level of mRNA translation are linked to disorders with high rates of autism. Loss of function mutations in genes encoding translational repressors such as PTEN, TSC1, TSC2, and FMRP are associated with autism spectrum disorders (ASDs) in humans and their deletion in animals recapitulates many ASD-like phenotypes. Importantly, the activity of key translational control signaling pathways such as PI3K-mTORC1 and ERK is frequently dysregulated in autistic patients and animal models and their normalization rescues many abnormal phenotypes, suggesting a causal relationship. Mutations in several genes encoding proteins not directly involved in translational control have also been shown to mediate ASD phenotypes via altered signaling upstream of translation. This raises the possibility that the dysregulation of translational control signaling is a converging mechanism not only in familiar but also in sporadic forms of autism. Here, we overview the current knowledge on translational signaling in ASD and highlight how correcting the activity of key pathways upstream of translation reverses distinct ASD-like phenotypes.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Calvin Wong
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
39
|
White AR, Tiwari D, MacLeod MC, Danzer SC, Gross C. PI3K isoform-selective inhibition in neuron-specific PTEN-deficient mice rescues molecular defects and reduces epilepsy-associated phenotypes. Neurobiol Dis 2020; 144:105026. [PMID: 32712265 DOI: 10.1016/j.nbd.2020.105026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 01/16/2023] Open
Abstract
Epilepsy affects all ages, races, genders, and socioeconomic groups. In about one third of patients, epilepsy is uncontrolled with current medications, leaving a vast need for improved therapies. The causes of epilepsy are diverse and not always known but one gene mutated in a small subpopulation of patients is phosphatase and tensin homolog (PTEN). Moreover, focal cortical dysplasia, which constitutes a large fraction of refractory epilepsies, has been associated with signaling defects downstream of PTEN. So far, most preclinical attempts to reverse PTEN deficiency-associated neurological deficits have focused on mTOR, a signaling hub several steps downstream of PTEN. Phosphoinositide 3-kinases (PI3Ks), by contrast, are the direct enzymatic counteractors of PTEN, and thus may be alternative treatment targets. PI3K activity is mediated by four different PI3K catalytic isoforms. Studies in cancer, where PTEN is commonly mutated, have demonstrated that inhibition of only one isoform, p110β, reduces progression of PTEN-deficient tumors. Importantly, inhibition of a single PI3K isoform leaves critical functions of general PI3K signaling throughout the body intact. Here, we show that this disease mechanism-targeted strategy borrowed from cancer research rescues or ameliorates neuronal phenotypes in male and female mice with neuron-specific PTEN deficiency. These phenotypes include cell signaling defects, protein synthesis aberrations, seizures, and cortical dysplasia. Of note, p110β is also dysregulated and a promising treatment target in the intellectual disability Fragile X syndrome, pointing towards a shared biological mechanism that is therapeutically targetable in neurodevelopmental disorders of different etiologies. Overall, this work advocates for further assessment of p110β inhibition not only in PTEN deficiency-associated neurodevelopmental diseases but also other brain disorders characterized by defects in the PI3K/mTOR pathway.
Collapse
Affiliation(s)
- Angela R White
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, OH 45229, USA
| | - Molly C MacLeod
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Anesthesiology, University of Cincinnati College of Medicine, OH 45229, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, OH 45229, USA.
| |
Collapse
|
40
|
Ribosomes: An Exciting Avenue in Stem Cell Research. Stem Cells Int 2020; 2020:8863539. [PMID: 32695182 PMCID: PMC7362291 DOI: 10.1155/2020/8863539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cell research has focused on genomic studies. However, recent evidence has indicated the involvement of epigenetic regulation in determining the fate of stem cells. Ribosomes play a crucial role in epigenetic regulation, and thus, we focused on the role of ribosomes in stem cells. Majority of living organisms possess ribosomes that are involved in the translation of mRNA into proteins and promote cellular proliferation and differentiation. Ribosomes are stable molecular machines that play a role with changes in the levels of RNA during translation. Recent research suggests that specific ribosomes actively regulate gene expression in multiple cell types, such as stem cells. Stem cells have the potential for self-renewal and differentiation into multiple lineages and, thus, require high efficiency of translation. Ribosomes induce cellular transdifferentiation and reprogramming, and disrupted ribosome synthesis affects translation efficiency, thereby hindering stem cell function leading to cell death and differentiation. Stem cell function is regulated by ribosome-mediated control of stem cell-specific gene expression. In this review, we have presented a detailed discourse on the characteristics of ribosomes in stem cells. Understanding ribosome biology in stem cells will provide insights into the regulation of stem cell function and cellular reprogramming.
Collapse
|
41
|
Lai A, Valdez-Sinon AN, Bassell GJ. Regulation of RNA granules by FMRP and implications for neurological diseases. Traffic 2020; 21:454-462. [PMID: 32374065 PMCID: PMC7377269 DOI: 10.1111/tra.12733] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
RNA granule formation, which can be regulated by RNA-binding proteins (RBPs) such as fragile X mental retardation protein (FMRP), acts as a mechanism to control both the repression and subcellular localization of translation. Dysregulated assembly of RNA granules has been implicated in multiple neurological disorders, such as amyotrophic lateral sclerosis. Thus, it is crucial to understand the cellular pathways impinging upon granule assembly or disassembly. The goal of this review is to summarize recent advances in our understanding of the role of the RBP, FMRP, in translational repression underlying RNA granule dynamics, mRNA transport and localized. We summarize the known mechanisms of translational regulation by FMRP, the role of FMRP in RNA transport granules, fragile X granules and stress granules. Focusing on the emerging link between FMRP and stress granules, we propose a model for how hyperassembly and hypoassembly of RNA granules may contribute to neurological diseases.
Collapse
Affiliation(s)
- Austin Lai
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
42
|
Woon EP, Sequeira MK, Barbee BR, Gourley SL. Involvement of the rodent prelimbic and medial orbitofrontal cortices in goal-directed action: A brief review. J Neurosci Res 2020; 98:1020-1030. [PMID: 31820488 PMCID: PMC7392403 DOI: 10.1002/jnr.24567] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/13/2019] [Accepted: 11/15/2019] [Indexed: 01/15/2023]
Abstract
Goal-directed action refers to selecting behaviors based on the expectation that they will be reinforced with desirable outcomes. It is typically conceptualized as opposing habit-based behaviors, which are instead supported by stimulus-response associations and insensitive to consequences. The prelimbic prefrontal cortex (PL) is positioned along the medial wall of the rodent prefrontal cortex. It is indispensable for action-outcome-driven (goal-directed) behavior, consolidating action-outcome relationships and linking contextual information with instrumental behavior. In this brief review, we will discuss the growing list of molecular factors involved in PL function. Ventral to the PL is the medial orbitofrontal cortex (mOFC). We will also summarize emerging evidence from rodents (complementing existing literature describing humans) that it too is involved in action-outcome conditioning. We describe experiments using procedures that quantify responding based on reward value, the likelihood of reinforcement, or effort requirements, touching also on experiments assessing food consumption more generally. We synthesize these findings with the argument that the mOFC is essential to goal-directed action when outcome value information is not immediately observable and must be recalled and inferred.
Collapse
Affiliation(s)
- Ellen P. Woon
- Graduate Program in Neuroscience
- Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Center for Translational and Social Neuroscience
| | - Michelle K. Sequeira
- Graduate Program in Neuroscience
- Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Center for Translational and Social Neuroscience
| | - Britton R. Barbee
- Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Center for Translational and Social Neuroscience
- Graduate Program in Molecular and Systems Pharmacology Emory University, Atlanta, GA
| | - Shannon L. Gourley
- Graduate Program in Neuroscience
- Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Center for Translational and Social Neuroscience
- Graduate Program in Molecular and Systems Pharmacology Emory University, Atlanta, GA
| |
Collapse
|
43
|
Valdez-Sinon AN, Lai A, Shi L, Lancaster CL, Gokhale A, Faundez V, Bassell GJ. Cdh1-APC Regulates Protein Synthesis and Stress Granules in Neurons through an FMRP-Dependent Mechanism. iScience 2020; 23:101132. [PMID: 32434143 PMCID: PMC7236060 DOI: 10.1016/j.isci.2020.101132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/22/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Maintaining a balance between protein degradation and protein synthesis is necessary for neurodevelopment. Although the E3 ubiquitin ligase anaphase promoting complex and its regulatory subunit Cdh1 (Cdh1-APC) has been shown to regulate learning and memory, the underlying mechanisms are unclear. Here, we have identified a role of Cdh1-APC as a regulator of protein synthesis in neurons. Proteomic profiling revealed that Cdh1-APC interacts with known regulators of translation, including stress granule proteins. Inhibition of Cdh1-APC activity caused an increase in stress granule formation that is dependent on fragile X mental retardation protein (FMRP). We propose a model in which Cdh1-APC targets stress granule proteins, such as FMRP, and inhibits the formation of stress granules, leading to protein synthesis. Elucidation of a role for Cdh1-APC in regulation of stress granules and protein synthesis in neurons has implications for how Cdh1-APC can regulate protein-synthesis-dependent synaptic plasticity underlying learning and memory.
Collapse
Affiliation(s)
| | - Austin Lai
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Liang Shi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Carly L. Lancaster
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Avanti Gokhale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA,Corresponding author
| |
Collapse
|
44
|
Thurman AJ, Potter LA, Kim K, Tassone F, Banasik A, Potter SN, Bullard L, Nguyen V, McDuffie A, Hagerman R, Abbeduto L. Controlled trial of lovastatin combined with an open-label treatment of a parent-implemented language intervention in youth with fragile X syndrome. J Neurodev Disord 2020; 12:12. [PMID: 32316911 PMCID: PMC7175541 DOI: 10.1186/s11689-020-09315-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/27/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The purpose of this study was to conduct a 20-week controlled trial of lovastatin (10 to 40 mg/day) in youth with fragile X syndrome (FXS) ages 10 to 17 years, combined with an open-label treatment of a parent-implemented language intervention (PILI), delivered via distance video teleconferencing to both treatment groups, lovastatin and placebo. METHOD A randomized, double-blind trial was conducted at one site in the Sacramento, California, metropolitan area. Fourteen participants were assigned to the lovastatin group; two participants terminated early from the study. Sixteen participants were assigned to the placebo group. Lovastatin or placebo was administered orally in a capsule form, starting at 10 mg and increasing weekly or as tolerated by 10 mg increments, up to a maximum dose of 40 mg daily. A PILI was delivered to both groups for 12 weeks, with 4 activities per week, through video teleconferencing by an American Speech-Language Association-certified Speech-Language Pathologist, in collaboration with a Board-Certified Behavior Analyst. Parents were taught to use a set of language facilitation strategies while interacting with their children during a shared storytelling activity. The main outcome measures included absolute change from baseline to final visit in the means for youth total number of story-related utterances, youth number of different word roots, and parent total number of story-related utterances. RESULTS Significant increases in all primary outcome measures were observed in both treatment groups. Significant improvements were also observed in parent reports of the severity of spoken language and social impairments in both treatment groups. In all cases, the amount of change observed did not differ across the two treatment groups. Although gains in parental use of the PILI-targeted intervention strategies were observed in both treatment groups, parental use of the PILI strategies was correlated with youth gains in the placebo group and not in the lovastatin group. CONCLUSION Participants in both groups demonstrated significant changes in the primary outcome measures. The magnitude of change observed across the two groups was comparable, providing additional support for the efficacy of the use of PILI in youth with FXS. TRIAL REGISTRATION US National Institutes of Health (ClinicalTrials.gov), NCT02642653. Registered 12/30/2015.
Collapse
Affiliation(s)
- Angela John Thurman
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA.
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento, USA.
| | - Laura A Potter
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, USA
| | - Kyoungmi Kim
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Public Health Sciences, University of California Davis Health, Sacramento, USA
| | - Flora Tassone
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis Health, Sacramento, USA
| | - Amy Banasik
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento, USA
| | - Sarah Nelson Potter
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Human Ecology, University of California Davis, Davis, USA
| | - Lauren Bullard
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Human Ecology, University of California Davis, Davis, USA
| | - Vivian Nguyen
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento, USA
| | - Andrea McDuffie
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento, USA
| | - Randi Hagerman
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, USA
| | - Leonard Abbeduto
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento, USA
| |
Collapse
|
45
|
Ding Q, Sethna F, Wu XT, Miao Z, Chen P, Zhang Y, Xiao H, Feng W, Feng Y, Li X, Wang H. Transcriptome signature analysis repurposes trifluoperazine for the treatment of fragile X syndrome in mouse model. Commun Biol 2020; 3:127. [PMID: 32179850 PMCID: PMC7075969 DOI: 10.1038/s42003-020-0833-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome (FXS) is a prevailing genetic disorder of intellectual disability and autism. There is no efficacious medication for FXS. Through in silico screening with a public database, computational analysis of transcriptome profile in FXS mouse neurons predicts therapeutic value of an FDA-approved drug trifluoperazine. Systemic administration of low-dose trifluoperazine at 0.05 mg/kg attenuates multiple FXS- and autism-related behavioral symptoms. Moreover, computational analysis of transcriptome alteration caused by trifluoperazine suggests a new mechanism of action against PI3K (Phosphatidylinositol-4,5-bisphosphate 3-kinase) activity. Consistently, trifluoperazine suppresses PI3K activity and its down-stream targets Akt (protein kinase B) and S6K1 (S6 kinase 1) in neurons. Further, trifluoperazine normalizes the aberrantly elevated activity of Akt and S6K1 and enhanced protein synthesis in FXS mouse. Together, our data demonstrate a promising value of transcriptome-based computation in identification of therapeutic strategy and repurposing drugs for neurological disorders, and suggest trifluoperazine as a potential treatment for FXS. Qi Ding, Ferzin Sethna et al. perform a computational analysis of the transcriptome profile of Fmr1−/− neurons and identify trifluoperazine as potential therapeutic agent against Fragile X Syndrome. Next, they show that low doses of trifluoperazine ameliorate some of the behavioral and molecular phenotypes present in Fmr1−/− mice.
Collapse
Affiliation(s)
- Qi Ding
- Department of Physiology, Michigan State University, East Lansing, USA
| | - Ferzin Sethna
- Genetics Program, Michigan State University, East Lansing, USA
| | - Xue-Ting Wu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zhuang Miao
- Genetics Program, Michigan State University, East Lansing, USA
| | - Ping Chen
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yueqi Zhang
- Department of Physiology, Michigan State University, East Lansing, USA
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, USA
| | - Wei Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Hongbing Wang
- Department of Physiology, Michigan State University, East Lansing, USA. .,Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
46
|
Li M, Shin J, Risgaard RD, Parries MJ, Wang J, Chasman D, Liu S, Roy S, Bhattacharyya A, Zhao X. Identification of FMR1-regulated molecular networks in human neurodevelopment. Genome Res 2020; 30:361-374. [PMID: 32179589 PMCID: PMC7111522 DOI: 10.1101/gr.251405.119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
RNA-binding proteins (RNA-BPs) play critical roles in development and disease to regulate gene expression. However, genome-wide identification of their targets in primary human cells has been challenging. Here, we applied a modified CLIP-seq strategy to identify genome-wide targets of the FMRP translational regulator 1 (FMR1), a brain-enriched RNA-BP, whose deficiency leads to Fragile X Syndrome (FXS), the most prevalent inherited intellectual disability. We identified FMR1 targets in human dorsal and ventral forebrain neural progenitors and excitatory and inhibitory neurons differentiated from human pluripotent stem cells. In parallel, we measured the transcriptomes of the same four cell types upon FMR1 gene deletion. We discovered that FMR1 preferentially binds long transcripts in human neural cells. FMR1 targets include genes unique to human neural cells and associated with clinical phenotypes of FXS and autism. Integrative network analysis using graph diffusion and multitask clustering of FMR1 CLIP-seq and transcriptional targets reveals critical pathways regulated by FMR1 in human neural development. Our results demonstrate that FMR1 regulates a common set of targets among different neural cell types but also operates in a cell type-specific manner targeting distinct sets of genes in human excitatory and inhibitory neural progenitors and neurons. By defining molecular subnetworks and validating specific high-priority genes, we identify novel components of the FMR1 regulation program. Our results provide new insights into gene regulation by a critical neuronal RNA-BP in human neurodevelopment.
Collapse
Affiliation(s)
- Meng Li
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.,Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Junha Shin
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Ryan D Risgaard
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.,Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Molly J Parries
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.,Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Jianyi Wang
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.,Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Deborah Chasman
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.,Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
47
|
Evidence for a Contribution of the Nlgn3/Cyfip1/Fmr1 Pathway in the Pathophysiology of Autism Spectrum Disorders. Neuroscience 2019; 445:31-41. [PMID: 31705895 DOI: 10.1016/j.neuroscience.2019.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022]
Abstract
Autism Spectrum Disorders (ASD) are characterized by heterogeneity both in their presentation and their genetic aetiology. In order to discover points of convergence common to different cases of ASD, attempts were made to identify the biological pathways genes associated with ASD contribute to. Many of these genes were found to play a role in neuronal and synaptic development and function. Among these genes are FMR1, CYFIP1 and NLGN3, all present at the synapse and reliably linked to ASD. In this review, we evaluate the evidence for the contribution of these genes to the same biological pathway responsible for the regulation of structural and physiological plasticity. Alterations in dendritic spine density and turnover, as well as long-term depression (LTD), were found in mouse models of mutations of all three genes. This overlap in the phenotypes associated with these mouse models likely arises from the molecular interaction between the protein products of FMR1, CYFIP1, and NLG3. A number of other proteins linked to ASD are also likely to participate in these pathways, resulting in further downstream effects. Overall, a synaptic pathway centered around FMR1, CYFIP1, and NLG3 is likely to contribute to the phenotypes associated with structural and physiological plasticity characteristic of ASD.
Collapse
|
48
|
Disruption of GpI mGluR-Dependent Cav2.3 Translation in a Mouse Model of Fragile X Syndrome. J Neurosci 2019; 39:7453-7464. [PMID: 31350260 DOI: 10.1523/jneurosci.1443-17.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome (FXS) is an inherited intellectual impairment that results from the loss of fragile X mental retardation protein (FMRP), an mRNA binding protein that regulates mRNA translation at synapses. The absence of FMRP leads to neuronal and circuit-level hyperexcitability that is thought to arise from the aberrant expression and activity of voltage-gated ion channels, although the identification and characterization of these ion channels have been limited. Here, we show that FMRP binds the mRNA of the R-type voltage-gated calcium channel Cav2.3 in mouse brain synaptoneurosomes and represses Cav2.3 translation under basal conditions. Consequently, in hippocampal neurons from male and female FMRP KO mice, we find enhanced Cav2.3 protein expression by western blotting and abnormally large R currents in whole-cell voltage-clamp recordings. In agreement with previous studies showing that FMRP couples Group I metabotropic glutamate receptor (GpI mGluR) signaling to protein translation, we find that GpI mGluR stimulation results in increased Cav2.3 translation and R current in hippocampal neurons which is disrupted in FMRP KO mice. Thus, FMRP serves as a key translational regulator of Cav2.3 expression under basal conditions and in response to GpI mGluR stimulation. Loss of regulated Cav2.3 expression could underlie the neuronal hyperactivity and aberrant calcium spiking in FMRP KO mice and contribute to FXS, potentially serving as a novel target for future therapeutic strategies.SIGNIFICANCE STATEMENT Patients with fragile X syndrome (FXS) exhibit signs of neuronal and circuit hyperexcitability, including anxiety and hyperactive behavior, attention deficit disorder, and seizures. FXS is caused by the loss of fragile X mental retardation protein (FMRP), an mRNA binding protein, and the neuronal hyperexcitability observed in the absence of FMRP likely results from its ability to regulate the expression and activity of voltage-gated ion channels. Here we find that FMRP serves as a key translational regulator of the voltage-gated calcium channel Cav2.3 under basal conditions and following activity. Cav2.3 impacts cellular excitability and calcium signaling, and the alterations in channel translation and expression observed in the absence of FMRP could contribute to the neuronal hyperactivity that underlies FXS.
Collapse
|
49
|
Kang H, Zhao J, Jiang X, Li G, Huang W, Cheng H, Duan R. Drosophila Netrin-B controls mushroom body axon extension and regulates courtship-associated learning and memory of a Drosophila fragile X syndrome model. Mol Brain 2019; 12:52. [PMID: 31138234 PMCID: PMC6540430 DOI: 10.1186/s13041-019-0472-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/06/2019] [Indexed: 01/29/2023] Open
Abstract
Mushroom body (MB) is a prominent structure essential for olfactory learning and memory in the Drosophila brain. The development of the MB involves the appropriate guidance of axon lobes and sister axon branches. Appropriate guidance that accurately shapes MB development requires the integration of various guidance cues provided by a series of cell types, which guide axons to reach their final positions within the MB neuropils. Netrins are axonal guidance molecules that are conserved regulators of embryonic nerve cord patterning. However, whether they contribute to MB morphogenesis has not yet been evaluated. Here, we find that Netrin-B (NetB) is highly expressed in the MB lobes, regulating lobe length through genetic interactions with the receptors Frazzled and Uncoordinated-5 from 24 h after pupal formation onwards. We observe that overexpression of NetB causes severe β lobe fusion in the MB, which is similar to the MB defects seen in the Drosophila model of fragile X syndrome (FXS). Our results further show that fragile-X mental retardation protein FMRP inhibits the translational activity of human ortholog Netrin-1 (NTN1). Knock-down of NetB significantly rescues the MB defects and ameliorates deficits in the learning and memory in FXS model Drosophila. These results indicate a critical role for NetB in MB lobe extension and identify NetB as a novel target of FMRP which contributes to learning and memory.
Collapse
Affiliation(s)
- Huaixing Kang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Juan Zhao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xuan Jiang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Guangxu Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Huili Cheng
- Changchun Children' Hospital, Changchun, 130000, Jilin, China.
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China. .,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, 410078, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
50
|
Zafarullah M, Tassone F. Molecular Biomarkers in Fragile X Syndrome. Brain Sci 2019; 9:E96. [PMID: 31035599 PMCID: PMC6562871 DOI: 10.3390/brainsci9050096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability (ID) and a known monogenic cause of autism spectrum disorder (ASD). It is a trinucleotide repeat disorder, in which more than 200 CGG repeats in the 5' untranslated region (UTR) of the fragile X mental retardation 1 (FMR1) gene causes methylation of the promoter with consequent silencing of the gene, ultimately leading to the loss of the encoded fragile X mental retardation 1 protein, FMRP. FMRP is an RNA binding protein that plays a primary role as a repressor of translation of various mRNAs, many of which are involved in the maintenance and development of neuronal synaptic function and plasticity. In addition to intellectual disability, patients with FXS face several behavioral challenges, including anxiety, hyperactivity, seizures, repetitive behavior, and problems with executive and language performance. Currently, there is no cure or approved medication for the treatment of the underlying causes of FXS, but in the past few years, our knowledge about the proteins and pathways that are dysregulated by the loss of FMRP has increased, leading to clinical trials and to the path of developing molecular biomarkers for identifying potential targets for therapies. In this paper, we review candidate molecular biomarkers that have been identified in preclinical studies in the FXS mouse animal model and are now under validation for human applications or have already made their way to clinical trials.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, 95817 CA, USA.
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, 95817 CA, USA.
- MIND Institute, University of California Davis Medical Center, Sacramento, 95817 CA, USA.
| |
Collapse
|