1
|
Jiang YQ, Lee DK, Guo W, Li M, Sun Q. Hypothalamic regulation of hippocampal CA1 interneurons by the supramammillary nucleus. Cell Rep 2024; 43:114898. [PMID: 39446584 PMCID: PMC11644823 DOI: 10.1016/j.celrep.2024.114898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/14/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
The hypothalamic supramammillary nucleus (SuM) projects heavily to the hippocampus to regulate hippocampal activity and plasticity. Although the projections from the SuM to the dentate gyrus (DG) and CA2 have been extensively studied, whether the SuM projects to CA1, the main hippocampal output region, is unclear. Here, we report a glutamatergic pathway from the SuM that selectively excites CA1 interneurons in the border between the stratum radiatum (SR) and the stratum lacunosum-moleculare (SLM). We find that the SuM projects selectively to a narrow band in the CA1 SR/SLM and monosynaptically excites SR/SLM interneurons, including vasoactive intestinal peptide-expressing (VIP+) and neuron-derived neurotrophic factor-expressing (NDNF+) cells, but completely avoids making monosynaptic contacts with CA1 pyramidal neurons (PNs) or parvalbumin-expressing (PV+) or somatostatin-expressing (SOM+) cells. Moreover, SuM activation drives spikes in most SR/SLM interneurons to suppress CA1 PN excitability. Taken together, our findings reveal that the SuM can directly regulate hippocampal output region CA1, bypassing CA2, CA3, and the DG.
Collapse
Affiliation(s)
- Yu-Qiu Jiang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Daniel K Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wanyi Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Minghua Li
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Qian Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
2
|
Buss EW, Jiang YQ, Santoro B, Brann DH, Nicholson DA, Siegelbaum SA, Sun Q. Regulation by Presynaptic NMDA Receptors of Non-Linear Postsynaptic Summation of the Cortical Input to CA1 Pyramidal Neurons. Neuroscience 2024:S0306-4522(24)00262-8. [PMID: 38878815 PMCID: PMC11638401 DOI: 10.1016/j.neuroscience.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
Entorhinal cortex (EC) LIII and LII glutamatergic neurons make monosynaptic connections onto distal apical dendrites of hippocampal CA1 and CA2 pyramidal neurons (PNs), respectively, through perforant path (PP) projections. We previously reported that a brief train of PP stimuli evokes strong supralinear temporal summation of excitatory postsynaptic potentials (EPSPs) in CA1 PNs that requires NMDAR activation, with relatively little summation in CA2 PNs in mice of either sex. Here we provide evidence from combined immunogold electron microscopy, cell-type specific genetic deletion and pharmacology that the NMDARs required for supralinear temporal summation of the CA1 PP EPSP are presynaptic, located in the PP terminals. Moreover, we found that the number of NMDARs in PP terminals innervating CA1 PNs is significantly greater than that found in PP terminals innervating CA2 PNs, providing a potential explanation for the difference in temporal summation in these two classes of hippocampal PNs.
Collapse
Affiliation(s)
- Eric W Buss
- Department of Neuroscience, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yu-Qiu Jiang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Bina Santoro
- Department of Neuroscience, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - David H Brann
- Department of Neuroscience, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Daniel A Nicholson
- Department of Neuroscience, Rush University Medical Center, Chicago, IL, USA
| | - Steven A Siegelbaum
- Department of Neuroscience, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Qian Sun
- Department of Neuroscience, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Bonzanni M, Braga A, Saito T, Saido TC, Tesco G, Haydon PG. Adenosine deficiency facilitates CA1 synaptic hyperexcitability in the presymptomatic phase of a knock in mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590882. [PMID: 38712028 PMCID: PMC11071633 DOI: 10.1101/2024.04.24.590882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The disease's trajectory of Alzheimer's disease (AD) is associated with and worsened by hippocampal hyperexcitability. Here we show that during the asymptomatic stage in a knock in mouse model of Alzheimer's disease (APPNL-G-F/NL-G-F; APPKI), hippocampal hyperactivity occurs at the synaptic compartment, propagates to the soma and is manifesting at low frequencies of stimulation. We show that this aberrant excitability is associated with a deficient adenosine tone, an inhibitory neuromodulator, driven by reduced levels of CD39/73 enzymes, responsible for the extracellular ATP-to-adenosine conversion. Both pharmacologic (adenosine kinase inhibitor) and non-pharmacologic (ketogenic diet) restorations of the adenosine tone successfully normalize hippocampal neuronal activity. Our results demonstrated that neuronal hyperexcitability during the asymptomatic stage of a KI model of Alzheimer's disease originated at the synaptic compartment and is associated with adenosine deficient tone. These results extend our comprehension of the hippocampal vulnerability associated with the asymptomatic stage of Alzheimer's disease.
Collapse
Affiliation(s)
- Mattia Bonzanni
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Alice Braga
- Department of Neuroscience, Tufts University, Boston, MA, USA
- Current address: Centre for Cardiovascular and 811 Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Philip G Haydon
- Department of Neuroscience, Tufts University, Boston, MA, USA
| |
Collapse
|
4
|
Ratigan HC, Krishnan S, Smith S, Sheffield MEJ. A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination. Nat Commun 2023; 14:6758. [PMID: 37875465 PMCID: PMC10598272 DOI: 10.1038/s41467-023-42429-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
The adaptive regulation of fear memories is a crucial neural function that prevents inappropriate fear expression. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic nucleus reuniens (NR) is necessary to extinguish contextual fear and innervates hippocampal CA1. However, the role of the NR-CA1 pathway in contextual fear is unknown. We developed a head-restrained virtual reality CFC paradigm, and demonstrate that mice can acquire and extinguish context-dependent fear responses. We found that inhibiting the NR-CA1 pathway following CFC lengthens the duration of fearful freezing epochs, increases fear generalization, and delays fear extinction. Using in vivo imaging, we recorded NR-axons innervating CA1 and found that NR-axons become tuned to fearful freezing following CFC. We conclude that the NR-CA1 pathway actively suppresses fear by disrupting contextual fear memory retrieval in CA1 during fearful freezing behavior, a process that also reduces fear generalization and accelerates extinction.
Collapse
Affiliation(s)
- Heather C Ratigan
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60615, USA
| | - Seetha Krishnan
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60615, USA
| | - Shai Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL, 60615, USA
| | - Mark E J Sheffield
- Department of Neurobiology, University of Chicago, Chicago, IL, 60615, USA.
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL, 60615, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60615, USA.
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL, 60615, USA.
| |
Collapse
|
5
|
Ratigan HC, Krishnan S, Smith S, Sheffield MEJ. Direct Thalamic Inputs to Hippocampal CA1 Transmit a Signal That Suppresses Ongoing Contextual Fear Memory Retrieval. RESEARCH SQUARE 2023:rs.3.rs-2729263. [PMID: 37034716 PMCID: PMC10081386 DOI: 10.21203/rs.3.rs-2729263/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Memory retrieval of fearful experiences is essential for survival but can be maladaptive if not appropriately suppressed. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic subregion Nucleus Reuniens (NR) is necessary for contextual fear extinction and strongly projects to hippocampal subregion CA1. However, the NR-CA1 pathway has not been investigated during behavior, leaving unknown its role in contextual fear memory retrieval. We implement a novel head-restrained virtual reality CFC paradigm and show that inactivation of the NR-CA1 pathway prolongs fearful freezing epochs, induces fear generalization, and delays extinction. We use in vivo sub-cellular imaging to specifically record NR-axons innervating CA1 before and after CFC. We find NR-axons become selectively tuned to freezing only after CFC, and this activity is well-predicted by an encoding model. We conclude that the NR-CA1 pathway actively suppresses fear responses by disrupting ongoing hippocampal-dependent contextual fear memory retrieval.
Collapse
Affiliation(s)
- Heather C. Ratigan
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| | - Seetha Krishnan
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| | - Shai Smith
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL 60615, USA
| | - Mark E. J. Sheffield
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| |
Collapse
|
6
|
Ratigan HC, Krishnan S, Smith S, Sheffield MEJ. Direct Thalamic Inputs to Hippocampal CA1 Transmit a Signal That Suppresses Ongoing Contextual Fear Memory Retrieval. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534420. [PMID: 37034812 PMCID: PMC10081195 DOI: 10.1101/2023.03.27.534420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Memory retrieval of fearful experiences is essential for survival but can be maladaptive if not appropriately suppressed. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic subregion Nucleus Reuniens (NR) is necessary for contextual fear extinction and strongly projects to hippocampal subregion CA1. However, the NR-CA1 pathway has not been investigated during behavior, leaving unknown its role in contextual fear memory retrieval. We implement a novel head-restrained virtual reality CFC paradigm and show that inactivation of the NR-CA1 pathway prolongs fearful freezing epochs, induces fear generalization, and delays extinction. We use in vivo sub-cellular imaging to specifically record NR-axons innervating CA1 before and after CFC. We find NR-axons become selectively tuned to freezing only after CFC, and this activity is well-predicted by an encoding model. We conclude that the NR-CA1 pathway actively suppresses fear responses by disrupting ongoing hippocampal-dependent contextual fear memory retrieval.
Collapse
Affiliation(s)
- Heather C. Ratigan
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| | - Seetha Krishnan
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| | - Shai Smith
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL 60615, USA
| | - Mark E. J. Sheffield
- Department of Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Doctoral Program in Neurobiology, University of Chicago, Chicago, IL 60615, USA
- Undergraduate Program in Neuroscience, University of Chicago, Chicago, IL 60615, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60615, USA
| |
Collapse
|
7
|
Pannoni K, Gil D, Cawley M, Alsalman M, Campbell L, Farris S. Layer-specific mitochondrial diversity across hippocampal CA2 dendrites. Hippocampus 2023; 33:182-196. [PMID: 36762797 PMCID: PMC9974919 DOI: 10.1002/hipo.23512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/11/2023]
Abstract
CA2 is an understudied subregion of the hippocampus that is critical for social memory. Previous studies identified multiple components of the mitochondrial calcium uniporter (MCU) complex as selectively enriched in CA2. The MCU complex regulates calcium entry into mitochondria, which in turn regulates mitochondrial transport and localization to active synapses. We found that MCU is strikingly enriched in CA2 distal apical dendrites, precisely where CA2 neurons receive entorhinal cortical input carrying social information. Furthermore, MCU-enriched mitochondria in CA2 distal dendrites are larger compared to mitochondria in CA2 proximal apical dendrites and neighboring CA1 apical dendrites, which was confirmed in CA2 with genetically labeled mitochondria and electron microscopy. MCU overexpression in neighboring CA1 led to a preferential localization of MCU in the proximal dendrites of CA1 compared to the distal dendrites, an effect not seen in CA2. Our findings demonstrate that mitochondria are molecularly and structurally diverse across hippocampal cell types and circuits, and suggest that MCU can be differentially localized within dendrites, possibly to meet local energy demands.
Collapse
Affiliation(s)
- Katy Pannoni
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
| | - Daniela Gil
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
| | - Mikel Cawley
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia
| | - Mayd Alsalman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
| | - Logan Campbell
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
| | - Shannon Farris
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| |
Collapse
|
8
|
Radzicki D, Chong S, Dudek SM. Morphological and molecular markers of mouse area CA2 along the proximodistal and dorsoventral hippocampal axes. Hippocampus 2023; 33:133-149. [PMID: 36762588 PMCID: PMC10443601 DOI: 10.1002/hipo.23509] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
Abstract
Hippocampal area CA2 is a molecularly and functionally distinct region of the hippocampus that has classically been defined as the area with large pyramidal neurons lacking input from the dentate gyrus and the thorny excrescences (TEs) characteristic of CA3 neurons. A modern definition of CA2, however, makes use of the expression of several molecular markers that distinguish it from neighboring CA3 and CA1. Using immunohistochemistry, we sought to characterize the staining patterns of commonly used CA2 markers along the dorsal-ventral hippocampal axis and determine how these markers align along the proximodistal axis. We used a region of CA2 that stained for both Regulator of G-protein Signaling 14 (RGS14) and Purkinje Cell Protein 4 (PCP4; "double-labeled zone" [DLZ]) as a reference. Here, we report that certain commonly used CA2 molecular markers may be better suited for drawing distinct boundaries between CA2/3 and CA2/1. For example, RGS14+ and STEP+ neurons showed minimal to no extension into area CA1 while areas stained with VGluT2 and Wisteria Floribunda agglutinin were consistently smaller than the DLZ/CA2 borders by ~100 μ on the CA1 or CA3 sides respectively. In addition, these patterns are dependent on position along the dorsal-ventral hippocampal axis such that PCP4 labeling often extended beyond the distal border of the DLZ into CA1. Finally, we found that, consistent with previous findings, mossy fibers innervate a subset of RGS14 positive neurons (~65%-70%) and that mossy fiber bouton number and relative size in CA2 are less than that of boutons in CA3. Unexpectedly, we did find evidence of some complex spines on apical dendrites in CA2, though much fewer in number than in CA3. Our results indicate that certain molecular markers may be better suited than others when defining the proximal and distal borders of area CA2 and that the presence or absence of complex spines alone may not be suitable as a distinguishing feature differentiating CA3 from CA2 neurons.
Collapse
Affiliation(s)
- Daniel Radzicki
- Neurobiology Laboratory, National Institute of Environmental Health SciencesNational Institute of HealthResearch Triangle ParkNorth CarolinaUSA
| | - Sarah Chong
- Neurobiology Laboratory, National Institute of Environmental Health SciencesNational Institute of HealthResearch Triangle ParkNorth CarolinaUSA
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health SciencesNational Institute of HealthResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
9
|
Leung LS, Moallem S, Prado MAM, Prado VF, Chu L. Muscarinic and N‐methyl‐D‐aspartate receptor blockade reveal differences in hippocampal local field potentials in mice with low cholinergic tone. Hippocampus 2022; 32:731-751. [DOI: 10.1002/hipo.23462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/11/2022] [Accepted: 07/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- L. Stan Leung
- Department of Physiology and Pharmacology University of Western Ontario London Ontario Canada
- Graduate Program in Neuroscience University of Western Ontario London Ontario Canada
| | - Shahin Moallem
- Graduate Program in Neuroscience University of Western Ontario London Ontario Canada
| | - Marco A. M. Prado
- Department of Physiology and Pharmacology University of Western Ontario London Ontario Canada
- Graduate Program in Neuroscience University of Western Ontario London Ontario Canada
- Department of Anatomy and Cell Biology University of Western Ontario London Ontario Canada
- Robarts Research Institute University of Western Ontario London Ontario Canada
| | - Vania F. Prado
- Department of Physiology and Pharmacology University of Western Ontario London Ontario Canada
- Graduate Program in Neuroscience University of Western Ontario London Ontario Canada
- Department of Anatomy and Cell Biology University of Western Ontario London Ontario Canada
- Robarts Research Institute University of Western Ontario London Ontario Canada
| | - Liangwei Chu
- Department of Physiology and Pharmacology University of Western Ontario London Ontario Canada
| |
Collapse
|