1
|
Xu C, Fu X, Qin H, Yao K. Traversing the epigenetic landscape: DNA methylation from retina to brain in development and disease. Front Cell Neurosci 2024; 18:1499719. [PMID: 39678047 PMCID: PMC11637887 DOI: 10.3389/fncel.2024.1499719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
DNA methylation plays a crucial role in development, aging, degeneration of various tissues and dedifferentiated cells. This review explores the multifaceted impact of DNA methylation on the retina and brain during development and pathological processes. First, we investigate the role of DNA methylation in retinal development, and then focus on retinal diseases, detailing the changes in DNA methylation patterns in diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. Since the retina is considered an extension of the brain, its unique structure allows it to exhibit similar immune response mechanisms to the brain. We further extend our exploration from the retina to the brain, examining the role of DNA methylation in brain development and its associated diseases, such as Alzheimer's disease (AD) and Huntington's disease (HD) to better understand the mechanistic links between retinal and brain diseases, and explore the possibility of communication between the visual system and the central nervous system (CNS) from an epigenetic perspective. Additionally, we discuss neurodevelopmental brain diseases, including schizophrenia (SZ), autism spectrum disorder (ASD), and intellectual disability (ID), focus on how DNA methylation affects neuronal development, synaptic plasticity, and cognitive function, providing insights into the molecular mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Ma A, Mu Y, Wei Z, Sun M, Li J, Jiang H, Zhu C, Chen X. SRSF10 regulates migration of neural progenitor cells and granule cells and affects the formation of dentate gyrus during the development of mouse hippocampus. Neuroscience 2024; 552:142-151. [PMID: 38960088 DOI: 10.1016/j.neuroscience.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Hippocampus is a critical component of the central nervous system. SRSF10 is expressed in central nervous system and plays important roles in maintaining normal brain functions. However, its role in hippocampus development is unknown. In this study, using SRSF10 conditional knock-out mice in neural progenitor cells (NPCs), we found that dysfunction of SRSF10 leads to developmental defects in the dentate gyrus of hippocampus, which manifests as the reduced length and wider suprapyramidal blade and infrapyramidal blade.Furthermore, we proved that loss of SRSF10 in NPCs caused inhibition of the differentiation activity and the abnormal migration of NPCs and granule cells, resulting in reduced granule cells and more ectopic granule cells dispersed in the molecular layer and hilus. Finally, we found that the abnormal migration may be caused by the radial glia scaffold and the reduced DISC1 expression in NPCs. Together, our results indicate that SRSF10 is required for the cell migration and formation of dentate gyrus during the development of hippocampus.
Collapse
Affiliation(s)
- Ankangzhi Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yawei Mu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zixuan Wei
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Menghan Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Junjie Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hanyang Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Cuiqing Zhu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xianhua Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Murao N, Matsuda T, Kadowaki H, Matsushita Y, Tanimoto K, Katagiri T, Nakashima K, Nishitoh H. The Derlin-1-Stat5b axis maintains homeostasis of adult hippocampal neurogenesis. EMBO Rep 2024; 25:3678-3706. [PMID: 39080439 PMCID: PMC11316036 DOI: 10.1038/s44319-024-00205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/11/2024] Open
Abstract
Adult neural stem cells (NSCs) in the hippocampal dentate gyrus continuously proliferate and generate new neurons throughout life. Although various functions of organelles are closely related to the regulation of adult neurogenesis, the role of endoplasmic reticulum (ER)-related molecules in this process remains largely unexplored. Here we show that Derlin-1, an ER-associated degradation component, spatiotemporally maintains adult hippocampal neurogenesis through a mechanism distinct from its established role as an ER quality controller. Derlin-1 deficiency in the mouse central nervous system leads to the ectopic localization of newborn neurons and impairs NSC transition from active to quiescent states, resulting in early depletion of hippocampal NSCs. As a result, Derlin-1-deficient mice exhibit phenotypes of increased seizure susceptibility and cognitive dysfunction. Reduced Stat5b expression is responsible for adult neurogenesis defects in Derlin-1-deficient NSCs. Inhibition of histone deacetylase activity effectively induces Stat5b expression and restores abnormal adult neurogenesis, resulting in improved seizure susceptibility and cognitive dysfunction in Derlin-1-deficient mice. Our findings indicate that the Derlin-1-Stat5b axis is indispensable for the homeostasis of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Naoya Murao
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Tokushima University, Tokushima, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kousuke Tanimoto
- High-risk Infectious Disease Control, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Tokushima University, Tokushima, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan.
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
4
|
Daks A, Parfenyev S, Shuvalov O, Fedorova O, Nazarov A, Melino G, Barlev NA. Lysine-specific methyltransferase Set7/9 in stemness, differentiation, and development. Biol Direct 2024; 19:41. [PMID: 38812048 PMCID: PMC11137904 DOI: 10.1186/s13062-024-00484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
The enzymes performing protein post-translational modifications (PTMs) form a critical post-translational regulatory circuitry that orchestrates literally all cellular processes in the organism. In particular, the balance between cellular stemness and differentiation is crucial for the development of multicellular organisms. Importantly, the fine-tuning of this balance on the genetic level is largely mediated by specific PTMs of histones including lysine methylation. Lysine methylation is carried out by special enzymes (lysine methyltransferases) that transfer the methyl group from S-adenosyl-L-methionine to the lysine residues of protein substrates. Set7/9 is one of the exemplary protein methyltransferases that however, has not been fully studied yet. It was originally discovered as histone H3 lysine 4-specific methyltransferase, which later was shown to methylate a number of non-histone proteins that are crucial regulators of stemness and differentiation, including p53, pRb, YAP, DNMT1, SOX2, FOXO3, and others. In this review we summarize the information available to date on the role of Set7/9 in cellular differentiation and tissue development during embryogenesis and in adult organisms. Finally, we highlight and discuss the role of Set7/9 in pathological processes associated with aberrant cellular differentiation and self-renewal, including the formation of cancer stem cells.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064.
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Alexander Nazarov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064.
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, 001000, Astana, Kazakhstan.
| |
Collapse
|
5
|
Xing B, Barbour AJ, Vithayathil J, Li X, Dutko S, Fawcett-Patel J, Lancaster E, Talos DM, Jensen FE. Reversible synaptic adaptations in a subpopulation of murine hippocampal neurons following early-life seizures. J Clin Invest 2024; 134:e175167. [PMID: 38227384 PMCID: PMC10904056 DOI: 10.1172/jci175167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
Early-life seizures (ELSs) can cause permanent cognitive deficits and network hyperexcitability, but it is unclear whether ELSs induce persistent changes in specific neuronal populations and whether these changes can be targeted to mitigate network dysfunction. We used the targeted recombination of activated populations (TRAP) approach to genetically label neurons activated by kainate-induced ELSs in immature mice. The ELS-TRAPed neurons were mainly found in hippocampal CA1, remained uniquely susceptible to reactivation by later-life seizures, and displayed sustained enhancement in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated (AMPAR-mediated) excitatory synaptic transmission and inward rectification. ELS-TRAPed neurons, but not non-TRAPed surrounding neurons, exhibited enduring decreases in Gria2 mRNA, responsible for encoding the GluA2 subunit of the AMPARs. This was paralleled by decreased synaptic GluA2 protein expression and heightened phosphorylated GluA2 at Ser880 in dendrites, indicative of GluA2 internalization. Consistent with increased GluA2-lacking AMPARs, ELS-TRAPed neurons showed premature silent synapse depletion, impaired long-term potentiation, and impaired long-term depression. In vivo postseizure treatment with IEM-1460, an inhibitor of GluA2-lacking AMPARs, markedly mitigated ELS-induced changes in TRAPed neurons. These findings show that enduring modifications of AMPARs occur in a subpopulation of ELS-activated neurons, contributing to synaptic dysplasticity and network hyperexcitability, but are reversible with early IEM-1460 intervention.
Collapse
|
6
|
Yan L, Geng Q, Cao Z, Liu B, Li L, Lu P, Lin L, Wei L, Tan Y, He X, Li L, Zhao N, Lu C. Insights into DNMT1 and programmed cell death in diseases. Biomed Pharmacother 2023; 168:115753. [PMID: 37871559 DOI: 10.1016/j.biopha.2023.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
DNMT1 (DNA methyltransferase 1) is the predominant member of the DNMT family and the most abundant DNMT in various cell types. It functions as a maintenance DNMT and is involved in various diseases, including cancer and nervous system diseases. Programmed cell death (PCD) is a fundamental mechanism that regulates cell proliferation and maintains the development and homeostasis of multicellular organisms. DNMT1 plays a regulatory role in various types of PCD, including apoptosis, autophagy, necroptosis, ferroptosis, and others. DNMT1 is closely associated with the development of various diseases by regulating key genes and pathways involved in PCD, including caspase 3/7 activities in apoptosis, Beclin 1, LC3, and some autophagy-related proteins in autophagy, glutathione peroxidase 4 (GPX4) and nuclear receptor coactivator 4 (NCOA4) in ferroptosis, and receptor-interacting protein kinase 1-receptor-interacting protein kinase 3-mixed lineage kinase domain-like protein (RIPK1-RIPK3-MLKL) in necroptosis. Our study summarizes the regulatory relationship between DNMT1 and different types of PCD in various diseases and discusses the potential of DNMT1 as a common regulatory hub in multiple types of PCD, offering a perspective for therapeutic approaches in disease.
Collapse
Affiliation(s)
- Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lini Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Yildiz CB, Zimmer-Bensch G. Role of DNMTs in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:363-394. [DOI: 10.1007/978-3-031-11454-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Wakizono T, Nakashima H, Yasui T, Noda T, Aoyagi K, Okada K, Yamada Y, Nakagawa T, Nakashima K. Growth factors with valproic acid restore injury-impaired hearing by promoting neuronal regeneration. JCI Insight 2021; 6:139171. [PMID: 34806649 PMCID: PMC8663787 DOI: 10.1172/jci.insight.139171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spiral ganglion neurons (SGNs) are primary auditory neurons in the spiral ganglion that transmit sound information from the inner ear to the brain and play an important role in hearing. Impairment of SGNs causes sensorineural hearing loss (SNHL), and it has been thought until now that SGNs cannot be regenerated once lost. Furthermore, no fundamental therapeutic strategy for SNHL has been established other than inserting devices such as hearing aids and cochlear implants. Here we show that the mouse spiral ganglion contains cells that are able to proliferate and indeed differentiate into neurons in response to injury. We suggest that SRY-box transcription factor 2/SRY-box transcription factor 10-double-positive (Sox2/Sox10-double-positive) Schwann cells sequentially started to proliferate, lost Sox10 expression, and became neurons, although the number of new neurons generated spontaneously was very small. To increase the abundance of new neurons, we treated mice with 2 growth factors in combination with valproic acid, which is known to promote neuronal differentiation and survival. This treatment resulted in a dramatic increase in the number of SGNs, accompanied by a partial recovery of the hearing loss induced by injury. Taken together, our findings offer a step toward developing strategies for treatment of SNHL.
Collapse
Affiliation(s)
- Takahiro Wakizono
- Department of Stem Cell Biology and Medicine and.,Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | - Tetsuro Yasui
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Teppei Noda
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kei Aoyagi
- Department of Stem Cell Biology and Medicine and.,Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kanako Okada
- Department of Stem Cell Biology and Medicine and
| | - Yasuhiro Yamada
- Division of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | |
Collapse
|
9
|
Gutherz OR, Deyssenroth M, Li Q, Hao K, Jacobson JL, Chen J, Jacobson SW, Carter RC. Potential roles of imprinted genes in the teratogenic effects of alcohol on the placenta, somatic growth, and the developing brain. Exp Neurol 2021; 347:113919. [PMID: 34752786 DOI: 10.1016/j.expneurol.2021.113919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
Despite several decades of research and prevention efforts, fetal alcohol spectrum disorders (FASD) remain the most common preventable cause of neurodevelopmental disabilities worldwide. Animal and human studies have implicated fetal alcohol-induced alterations in epigenetic programming as a chief mechanism in FASD. Several studies have demonstrated fetal alcohol-related alterations in methylation and expression of imprinted genes in placental, brain, and embryonic tissue. Imprinted genes are epigenetically regulated in a parent-of-origin-specific manner, in which only the maternal or paternal allele is expressed, and the other allele is silenced. The chief functions of imprinted genes are in placental development, somatic growth, and neurobehavior-three domains characteristically affected in FASD. In this review, we summarize the growing body of literature characterizing prenatal alcohol-related alterations in imprinted gene methylation and/or expression and discuss potential mechanistic roles for these alterations in the teratogenic effects of prenatal alcohol exposure. Future research is needed to examine potential physiologic mechanisms by which alterations in imprinted genes disrupt development in FASD, which may, in turn, elucidate novel targets for intervention. Furthermore, mechanistic alterations in imprinted gene expression and/or methylation in FASD may inform screening assays that identify individuals with FASD neurobehavioral deficits who may benefit from early interventions.
Collapse
Affiliation(s)
- Olivia R Gutherz
- Institute of Human Nutrition, Columbia University Medical Center, United States of America
| | - Maya Deyssenroth
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, United States of America
| | - Qian Li
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Ke Hao
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, United States of America; Department of Human Biology, University of Cape Town Faculty of Health Sciences, South Africa
| | - Jia Chen
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, United States of America; Department of Human Biology, University of Cape Town Faculty of Health Sciences, South Africa
| | - R Colin Carter
- Institute of Human Nutrition, Columbia University Medical Center, United States of America; Departments of Emergency Medicine and Pediatrics, Columbia University Medical Center, United States of America.
| |
Collapse
|
10
|
Tay EXY, Chia K, Ong DST. Epigenetic plasticity and redox regulation of neural stem cell state and fate. Free Radic Biol Med 2021; 170:116-130. [PMID: 33684459 DOI: 10.1016/j.freeradbiomed.2021.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/20/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
The neural stem cells (NSCs) are essential for normal brain development and homeostasis. The cell state (i.e. quiescent versus activated) and fate (i.e. the cell lineage of choice upon differentiation) of NSCs are tightly controlled by various redox and epigenetic regulatory mechanisms. There is an increasing appreciation that redox and epigenetic regulations are intimately linked, but how this redox-epigenetics crosstalk affects NSC activity remains poorly understood. Another unresolved topic is whether the NSCs actually contribute to brain ageing and neurodegenerative diseases. In this review, we aim to 1) distill concepts that underlie redox and epigenetic regulation of NSC state and fate; 2) provide examples of the redox-epigenetics crosstalk in NSC biology; and 3) highlight potential redox- and epigenetic-based therapeutic opportunities to rescue NSC dysfunctions in ageing and neurodegenerative diseases.
Collapse
Affiliation(s)
- Emmy Xue Yun Tay
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
| | - Kimberly Chia
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore; National Neuroscience Institute, Singapore, 308433, Singapore.
| |
Collapse
|
11
|
Different Flavors of Astrocytes: Revising the Origins of Astrocyte Diversity and Epigenetic Signatures to Understand Heterogeneity after Injury. Int J Mol Sci 2021; 22:ijms22136867. [PMID: 34206710 PMCID: PMC8268487 DOI: 10.3390/ijms22136867] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are a specific type of neuroglial cells that confer metabolic and structural support to neurons. Astrocytes populate all regions of the nervous system and adopt a variety of phenotypes depending on their location and their respective functions, which are also pleiotropic in nature. For example, astrocytes adapt to pathological conditions with a specific cellular response known as reactive astrogliosis, which includes extensive phenotypic and transcriptional changes. Reactive astrocytes may lose some of their homeostatic functions and gain protective or detrimental properties with great impact on damage propagation. Different astrocyte subpopulations seemingly coexist in reactive astrogliosis, however, the source of such heterogeneity is not completely understood. Altered cellular signaling in pathological compared to healthy conditions might be one source fueling astrocyte heterogeneity. Moreover, diversity might also be encoded cell-autonomously, for example as a result of astrocyte subtype specification during development. We hypothesize and propose here that elucidating the epigenetic signature underlying the phenotype of each astrocyte subtype is of high relevance to understand another regulative layer of astrocyte heterogeneity, in general as well as after injury or as a result of other pathological conditions. High resolution methods should allow enlightening diverse cell states and subtypes of astrocyte, their adaptation to pathological conditions and ultimately allow controlling and manipulating astrocyte functions in disease states. Here, we review novel literature reporting on astrocyte diversity from a developmental perspective and we focus on epigenetic signatures that might account for cell type specification.
Collapse
|
12
|
Zhang Q, Liu F, Yan W, Wu Y, Wang M, Wei J, Wang S, Zhu X, Chai X, Zhao S. Prolonged maternal separation alters neurogenesis and synaptogenesis in postnatal dentate gyrus of mice. Bipolar Disord 2021; 23:376-390. [PMID: 32805776 DOI: 10.1111/bdi.12986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES As a common model for adverse early experience and depression, maternal separation (MS) is always used to investigate the psychological disease. Despite extensive and strong evidence verified the depression-like state induced by MS, little is known about the specific mechanism of MS. Therefore, the present study aimed to investigate the neurobiology mechanism of the MS-induced depression-like state. METHODS To verify the depression-like behaviors of offspring induced by MS, a series of behavioral tests were performed. Then, in vivo electroporation and three-dimensional reconstruction, combining with immunohistochemistry and BrdU labeling, were mainly used to explore the neurogenesis and synaptogenesis in postnatal dentate gyrus. RESULTS Prolonged MS indeed induced the depression-like behaviors of offspring in adulthood. Surprisingly, learning and memory were enhanced by prolonged MS. Further investigation indicated that prolonged MS inhibited the proliferation of neural stem cells, impaired the survival, and altered the fate decision of newborn cells, whereas the total length and terminal tips of dendrite, and the spine density, especially thin spine, were significantly increased in prolonged MS mice. CONCLUSIONS Our results elucidated that prolonged MS induced the depression-like state by impairing postnatal neurogenesis of dentate gyrus. Importantly, our results emphasized that prolonged MS increased the spine density, especially thin spine, by increasing the total length and number of terminal tips of dendrite, thereby enhancing learning and memory.
Collapse
Affiliation(s)
- Qianru Zhang
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Feng Liu
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Wenyong Yan
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Yongji Wu
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Mengli Wang
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Jingjing Wei
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Shuzhong Wang
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Shanting Zhao
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Salmina AB, Gorina YV, Erofeev AI, Balaban PM, Bezprozvanny IB, Vlasova OL. Optogenetic and chemogenetic modulation of astroglial secretory phenotype. Rev Neurosci 2021; 32:459-479. [PMID: 33550788 DOI: 10.1515/revneuro-2020-0119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022]
Abstract
Astrocytes play a major role in brain function and alterations in astrocyte function that contribute to the pathogenesis of many brain disorders. The astrocytes are attractive cellular targets for neuroprotection and brain tissue regeneration. Development of novel approaches to monitor and to control astroglial function is of great importance for further progress in basic neurobiology and in clinical neurology, as well as psychiatry. Recently developed advanced optogenetic and chemogenetic techniques enable precise stimulation of astrocytes in vitro and in vivo, which can be achieved by the expression of light-sensitive channels and receptors, or by expression of receptors exclusively activated by designer drugs. Optogenetic stimulation of astrocytes leads to dramatic changes in intracellular calcium concentrations and causes the release of gliotransmitters. Optogenetic and chemogenetic protocols for astrocyte activation aid in extracting novel information regarding the function of brain's neurovascular unit. This review summarizes current data obtained by this approach and discusses a potential mechanistic connection between astrocyte stimulation and changes in brain physiology.
Collapse
Affiliation(s)
- Alla B Salmina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Yana V Gorina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Alexander I Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Pavel M Balaban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Olga L Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
14
|
Abstract
Neural stem cells (NSCs) persist into adulthood in the subgranular zone (SGZ) of the dentate gyrus in the hippocampus and in the ventricular-subventricular zone (V-SVZ) of the lateral ventricles, where they generate new neurons and glia cells that contribute to neural plasticity. A better understanding of the developmental process that enables NSCs to persist beyond development will provide insight into factors that determine the size and properties of the adult NSC pool and thus the capacity for life-long neurogenesis in the adult mammalian brain. We review current knowledge regarding the developmental origins of adult NSCs and the developmental process by which embryonic NSCs transition into their adult form. We also discuss potential mechanisms that might regulate proper establishment of the adult NSC pool, and propose future directions of research that will be key to unraveling how NSCs transform to establish the adult NSC pool in the mammalian brain.
Collapse
Affiliation(s)
- Allison M Bond
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
15
|
Saw G, Tang FR. Epigenetic Regulation of the Hippocampus, with Special Reference to Radiation Exposure. Int J Mol Sci 2020; 21:ijms21249514. [PMID: 33327654 PMCID: PMC7765140 DOI: 10.3390/ijms21249514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
The hippocampus is crucial in learning, memory and emotion processing, and is involved in the development of different neurological and neuropsychological disorders. Several epigenetic factors, including DNA methylation, histone modifications and non-coding RNAs, have been shown to regulate the development and function of the hippocampus, and the alteration of epigenetic regulation may play important roles in the development of neurocognitive and neurodegenerative diseases. This review summarizes the epigenetic modifications of various cell types and processes within the hippocampus and their resulting effects on cognition, memory and overall hippocampal function. In addition, the effects of exposure to radiation that may induce a myriad of epigenetic changes in the hippocampus are reviewed. By assessing and evaluating the current literature, we hope to prompt a more thorough understanding of the molecular mechanisms that underlie radiation-induced epigenetic changes, an area which can be further explored.
Collapse
|
16
|
Linde J, Zimmer-Bensch G. DNA Methylation-Dependent Dysregulation of GABAergic Interneuron Functionality in Neuropsychiatric Diseases. Front Neurosci 2020; 14:586133. [PMID: 33041771 PMCID: PMC7525021 DOI: 10.3389/fnins.2020.586133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 12/30/2022] Open
Abstract
Neuropsychiatric diseases, such as mood disorders, schizophrenia, and autism, represent multifactorial disorders, differing in causes, disease onset, severity, and symptoms. A common feature of numerous neuropsychiatric conditions are defects in the cortical inhibitory GABAergic system. The balance of excitation and inhibition is fundamental for proper and efficient information processing in the cerebral cortex. Thus, altered inhibition is suggested to account for pathological symptoms like cognitive impairments and dysfunctional multisensory integration. While it became apparent that most of these diseases have a clear genetic component, environmental influences emerged as an impact of disease manifestation, onset, and severity. Epigenetic mechanisms of transcriptional control, such as DNA methylation, are known to be responsive to external stimuli, and are suspected to be implicated in the functional impairments of GABAergic interneurons, and hence, the pathophysiology of neuropsychiatric diseases. Here, we provide an overview about the multifaceted functional implications of DNA methylation and DNA methyltransferases in cortical interneuron development and function in health and disease. Apart from the regulation of gamma-aminobutyric acid-related genes and genes relevant for interneuron development, we discuss the role of DNA methylation-dependent regulation of synaptic transmission by the modulation of endocytosis-related genes as potential pathophysiological mechanisms underlying neuropsychiatric conditions. Deciphering the hierarchy and mechanisms of changes in epigenetic signatures is crucial to develop effective strategies for treatment and prevention.
Collapse
Affiliation(s)
- Jenice Linde
- Division of Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Division of Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
17
|
dnmt1 function is required to maintain retinal stem cells within the ciliary marginal zone of the zebrafish eye. Sci Rep 2020; 10:11293. [PMID: 32647199 PMCID: PMC7347529 DOI: 10.1038/s41598-020-68016-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
The ciliary marginal zone (CMZ) of the zebrafish retina contains a population of actively proliferating resident stem cells, which generate retinal neurons throughout life. The maintenance methyltransferase, dnmt1, is expressed within the CMZ. Loss of dnmt1 function results in gene misregulation and cell death in a variety of developmental contexts, however, its role in retinal stem cell (RSC) maintenance is currently unknown. Here, we demonstrate that zebrafish dnmt1s872 mutants possess severe defects in RSC maintenance within the CMZ. Using a combination of immunohistochemistry, in situ hybridization, and a transgenic reporter assay, our results demonstrate a requirement for dnmt1 activity in the regulation of RSC proliferation, gene expression and in the repression of endogenous retroelements (REs). Ultimately, cell death is elevated in the dnmt1−/− CMZ, but in a p53-independent manner. Using a transgenic reporter for RE transposition activity, we demonstrate increased transposition in the dnmt1−/− CMZ. Taken together our data identify a critical role for dnmt1 function in RSC maintenance in the vertebrate eye.
Collapse
|
18
|
Pavlou MAS, Grandbarbe L, Buckley NJ, Niclou SP, Michelucci A. Transcriptional and epigenetic mechanisms underlying astrocyte identity. Prog Neurobiol 2018; 174:36-52. [PMID: 30599178 DOI: 10.1016/j.pneurobio.2018.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
Astrocytes play a significant role in coordinating neural development and provide critical support for the function of the CNS. They possess important adaptation capacities that range from their transition towards reactive astrocytes to their ability to undergo reprogramming, thereby revealing their potential to retain latent features of neural progenitor cells. We propose that the mechanisms underlying reactive astrogliosis or astrocyte reprogramming provide an opportunity for initiating neuronal regeneration, a process that is notably reduced in the mammalian nervous system throughout evolution. Conversely, this plasticity may also affect normal astrocytic functions resulting in pathologies ranging from neurodevelopmental disorders to neurodegenerative diseases and brain tumors. We postulate that epigenetic mechanisms linking extrinsic cues and intrinsic transcriptional programs are key factors to maintain astrocyte identity and function, and critically, to control the balance of regenerative and degenerative activity. Here, we will review the main evidences supporting this concept. We propose that unravelling the epigenetic and transcriptional mechanisms underlying the acquisition of astrocyte identity and plasticity, as well as understanding how these processes are modulated by the local microenvironment under specific threatening or pathological conditions, may pave the way to new therapeutic avenues for several neurological disorders including neurodegenerative diseases and brain tumors of astrocytic lineage.
Collapse
Affiliation(s)
- Maria Angeliki S Pavlou
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Luc Grandbarbe
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Noel J Buckley
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.
| |
Collapse
|
19
|
Diverse facets of cortical interneuron migration regulation – Implications of neuronal activity and epigenetics. Brain Res 2018; 1700:160-169. [DOI: 10.1016/j.brainres.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023]
|
20
|
Fan SJ, Sun AB, Liu L. Epigenetic modulation during hippocampal development. Biomed Rep 2018; 9:463-473. [PMID: 30546873 DOI: 10.3892/br.2018.1160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/11/2018] [Indexed: 12/24/2022] Open
Abstract
The hippocampus is located in the limbic system and is vital in learning ability, memory formation and emotion regulation, and is associated with depression, epilepsy and mental retardation in an abnormal developmental situation. Several factors have been found to modulate the development of the hippocampus, and epigenetic modification have a crucial effect in this progress. The present review summarizes the epigenetic modifications, including DNA methylation, histone acetylation, and non-coding RNAs, regulating all stages of hippocampal development, focusing on the growth of Ammons horn and the dentate gyrus in humans and rodents. These modifications may significantly affect hippocampal development and health in addition to cognitive processes.
Collapse
Affiliation(s)
- Si-Jing Fan
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China.,Laboratory of Neuronal and Brain Diseases Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - An-Bang Sun
- Laboratory of Neuronal and Brain Diseases Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China.,Department of Anatomy, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China.,Laboratory of Neuronal and Brain Diseases Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
21
|
Pensold D, Symmank J, Hahn A, Lingner T, Salinas-Riester G, Downie BR, Ludewig F, Rotzsch A, Haag N, Andreas N, Schubert K, Hübner CA, Pieler T, Zimmer G. The DNA Methyltransferase 1 (DNMT1) Controls the Shape and Dynamics of Migrating POA-Derived Interneurons Fated for the Murine Cerebral Cortex. Cereb Cortex 2018; 27:5696-5714. [PMID: 29117290 DOI: 10.1093/cercor/bhw341] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Indexed: 01/24/2023] Open
Abstract
The proliferative niches in the subpallium generate a rich cellular variety fated for diverse telencephalic regions. The embryonic preoptic area (POA) represents one of these domains giving rise to the pool of cortical GABAergic interneurons and glial cells, in addition to striatal and residual POA cells. The migration from sites of origin within the subpallium to the distant targets like the cerebral cortex, accomplished by the adoption and maintenance of a particular migratory morphology, is a critical step during interneuron development. To identify factors orchestrating this process, we performed single-cell transcriptome analysis and detected Dnmt1 expression in murine migratory GABAergic POA-derived cells. Deletion of Dnmt1 in postmitotic immature cells of the POA caused defective migration and severely diminished adult cortical interneuron numbers. We found that DNA methyltransferase 1 (DNMT1) preserves the migratory shape in part through negative regulation of Pak6, which stimulates neuritogenesis at postmigratory stages. Our data underline the importance of DNMT1 for the migration of POA-derived cells including cortical interneurons.
Collapse
Affiliation(s)
- Daniel Pensold
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Judit Symmank
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Anne Hahn
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Thomas Lingner
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany
| | - Gabriela Salinas-Riester
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany
| | - Bryan R Downie
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany
| | - Fabian Ludewig
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany
| | - Anne Rotzsch
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Natja Haag
- Institute of Biochemistry I, University Hospital Jena, 07743 Jena, Germany.,Institute of Human Genetics, University Hospital RWTH Aachen, Aachen, Germany
| | - Nico Andreas
- FACS Core Facility, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Katrin Schubert
- FACS Core Facility, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Tomas Pieler
- Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany
| | - Geraldine Zimmer
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| |
Collapse
|
22
|
Np95/Uhrf1 regulates tumor suppressor gene expression of neural stem/precursor cells, contributing to neurogenesis in the adult mouse brain. Neurosci Res 2018; 143:31-43. [PMID: 29859850 DOI: 10.1016/j.neures.2018.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/30/2023]
Abstract
Adult neurogenesis is a process of generating new neurons from neural stem/precursor cells (NS/PCs) in restricted adult brain regions throughout life. It is now generally known that adult neurogenesis in the hippocampal dentate gyrus (DG) and subventricular zone participates in various higher brain functions, such as learning and memory formation, olfactory discrimination and repair after brain injury. However, the mechanisms underlying adult neurogenesis remain to be fully understood. Here, we show that Nuclear protein 95 KDa (Np95, also known as UHRF1 or ICBP90), which is an essential protein for maintaining DNA methylation during cell division, is involved in multiple processes of adult neurogenesis. Specific ablation of Np95 in adult NS/PCs (aNS/PCs) led to a decrease in their proliferation and an impairment of neuronal differentiation and to suppression of neuronal maturation associated with the impairment of dendritic formation in the hippocampal DG. We also found that deficiency of Np95 in NS/PCs increased the expression of tumor suppressor genes p16 and p53, and confirmed that expression of these genes in NS/PCs recapitulates the phenotype of Np95-deficient NS/PCs. Taken together, our findings suggest that Np95 plays an essential role in proliferation and differentiation of aNS/PCs through the regulation of tumor suppressor gene expression in adult neurogenesis.
Collapse
|
23
|
Canonical TGF-β Signaling Negatively Regulates Neuronal Morphogenesis through TGIF/Smad Complex-Mediated CRMP2 Suppression. J Neurosci 2018; 38:4791-4810. [PMID: 29695415 DOI: 10.1523/jneurosci.2423-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 11/21/2022] Open
Abstract
Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases.SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our results suggest that proper control of TGF-β/Smads/CRMP2 signaling pathways is critical for the precise execution of neuronal morphogenesis, whose impairment eventually results in neurodevelopmental disorders.
Collapse
|
24
|
Ectopic neurogenesis induced by prenatal antiepileptic drug exposure augments seizure susceptibility in adult mice. Proc Natl Acad Sci U S A 2018; 115:4270-4275. [PMID: 29610328 PMCID: PMC5910824 DOI: 10.1073/pnas.1716479115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent clinical studies suggest that environmental insults, such as valproic acid (VPA) exposure, in utero can have adverse effects on brain function of the offspring in later life, although the underlying mechanisms of these impairments remain poorly understood. By focusing on the property of neural stem/progenitor cells (NS/PCs) residing in the adult hippocampus, we identified the mechanism of increased seizure sensitivity in prenatally VPA-exposed adult mice. Furthermore, we found that voluntary exercise can overcome the adverse effects through normalizing VPA-induced transcriptome alterations in NS/PCs. We believe that our study provides insights for further understanding and developing treatment strategies for neurological disorders induced by prenatal environmental insults. Epilepsy is a neurological disorder often associated with seizure that affects ∼0.7% of pregnant women. During pregnancy, most epileptic patients are prescribed antiepileptic drugs (AEDs) such as valproic acid (VPA) to control seizure activity. Here, we show that prenatal exposure to VPA in mice increases seizure susceptibility in adult offspring through mislocalization of newborn neurons in the hippocampus. We confirmed that neurons newly generated from neural stem/progenitor cells (NS/PCs) are integrated into the granular cell layer in the adult hippocampus; however, prenatal VPA treatment altered the expression in NS/PCs of genes associated with cell migration, including CXC motif chemokine receptor 4 (Cxcr4), consequently increasing the ectopic localization of newborn neurons in the hilus. We also found that voluntary exercise in a running wheel suppressed this ectopic neurogenesis and countered the enhanced seizure susceptibility caused by prenatal VPA exposure, probably by normalizing the VPA-disrupted expression of multiple genes including Cxcr4 in adult NS/PCs. Replenishing Cxcr4 expression alone in NS/PCs was sufficient to overcome the aberrant migration of newborn neurons and increased seizure susceptibility in VPA-exposed mice. Thus, prenatal exposure to an AED, VPA, has a long-term effect on the behavior of NS/PCs in offspring, but this effect can be counteracted by a simple physical activity. Our findings offer a step to developing strategies for managing detrimental effects in offspring exposed to VPA in utero.
Collapse
|
25
|
Liu B, Zhou K, Wu X, Zhao C. Foxg1 deletion impairs the development of the epithalamus. Mol Brain 2018; 11:5. [PMID: 29394901 PMCID: PMC5797387 DOI: 10.1186/s13041-018-0350-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022] Open
Abstract
The epithalamus, which is dorsal to the thalamus, consists of the habenula, pineal gland and third ventricle choroid plexus and plays important roles in the stress response and sleep-wake cycle in vertebrates. During development, the epithalamus arises from the most dorsal part of prosomere 2. However, the mechanism underlying epithalamic development remains largely unknown. Foxg1 is critical for the development of the telencephalon, but its role in diencephalic development has been under-investigated. Patients suffering from FOXG1-related disorders exhibit severe anxiety, sleep disturbance and choroid plexus cysts, indicating that Foxg1 likely plays a role in epithalamic development. In this study, we identified the specific expression of Foxg1 in the developing epithalamus. Using a "self-deletion" approach, we found that the habenula significantly expanded and included an increased number of habenular subtype neurons. The innervations, particularly the habenular commissure, were severely impaired. Meanwhile, the Foxg1 mutants exhibited a reduced pineal gland and more branched choroid plexus. After ablation of Foxg1 no obvious changes in Shh and Fgf signalling were observed, suggesting that Foxg1 regulates the development of the epithalamus without the involvement of Shh and Fgfs. Our findings provide new insights into the regulation of the development of the epithalamus.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Kaixing Zhou
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xiaojing Wu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China. .,Depression Center, Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
26
|
Loo SK, Ch'ng ES, Lawrie CH, Muruzabal MA, Gaafar A, Pomposo MP, Husin A, Md Salleh MS, Banham AH, Pedersen LM, Møller MB, Green TM, Wong KK. DNMT1 is predictive of survival and associated with Ki-67 expression in R-CHOP-treated diffuse large B-cell lymphomas. Pathology 2017; 49:731-739. [PMID: 29074044 DOI: 10.1016/j.pathol.2017.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 11/26/2022]
Abstract
DNMT1 is a target of approved anti-cancer drugs including decitabine. However, the prognostic value of DNMT1 protein expression in R-CHOP-treated diffuse large B-cell lymphomas (DLBCLs) remains unexplored. Here we showed that DNMT1 was expressed in the majority of DLBCL cases (n = 209/230, 90.9%) with higher expression in germinal centre B-cell-like (GCB)-DLBCL subtype. Low and negative DNMT1 expression (20% cut-off, n = 33/230, 14.3%) was predictive of worse overall survival (OS; p < 0.001) and progression-free survival (PFS; p < 0.001). Nonetheless, of the 209 DNMT1 positive patients, 33% and 42% did not achieve 5-year OS and PFS, respectively, indicating that DNMT1 positive patients showed considerably heterogeneous outcomes. Moreover, DNMT1 was frequently expressed in mitotic cells and significantly correlated with Ki-67 or BCL6 expression (r = 0.60 or 0.44, respectively; p < 0.001). We demonstrate that DNMT1 is predictive of DLBCL patients' survival, and suggest that DNMT1 could be a DLBCL therapeutic target due to its significant association with Ki-67.
Collapse
Affiliation(s)
- Suet Kee Loo
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ewe Seng Ch'ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Charles H Lawrie
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oncology Department, Biodonostia Research Institute, San Sebastian, Spain
| | | | - Ayman Gaafar
- Department of Pathology, Hospital Universitario Cruces, Barakaldo, Spain
| | | | - Azlan Husin
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Md Salzihan Md Salleh
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lars M Pedersen
- Department of Haematology, Herlev University Hospital, Copenhagen, Denmark
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Tina M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
| |
Collapse
|
27
|
Podobinska M, Szablowska-Gadomska I, Augustyniak J, Sandvig I, Sandvig A, Buzanska L. Epigenetic Modulation of Stem Cells in Neurodevelopment: The Role of Methylation and Acetylation. Front Cell Neurosci 2017; 11:23. [PMID: 28223921 PMCID: PMC5293809 DOI: 10.3389/fncel.2017.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
The coordinated development of the nervous system requires fidelity in the expression of specific genes determining the different neural cell phenotypes. Stem cell fate decisions during neurodevelopment are strictly correlated with their epigenetic status. The epigenetic regulatory processes, such as DNA methylation and histone modifications discussed in this review article, may impact both neural stem cell (NSC) self-renewal and differentiation and thus play an important role in neurodevelopment. At the same time, stem cell decisions regarding fate commitment and differentiation are highly dependent on the temporospatial expression of specific genes contingent on the developmental stage of the nervous system. An interplay between the above, as well as basic cell processes, such as transcription regulation, DNA replication, cell cycle regulation and DNA repair therefore determine the accuracy and function of neuronal connections. This may significantly impact embryonic health and development as well as cognitive processes such as neuroplasticity and memory formation later in the adult.
Collapse
Affiliation(s)
- Martyna Podobinska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | | | - Justyna Augustyniak
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Leonora Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| |
Collapse
|
28
|
Noguchi H, Kimura A, Murao N, Namihira M, Nakashima K. Prenatal deletion of DNA methyltransferase 1 in neural stem cells impairs neurogenesis and causes anxiety-like behavior in adulthood. NEUROGENESIS 2016; 3:e1232679. [PMID: 27844025 DOI: 10.1080/23262133.2016.1232679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/25/2022]
Abstract
Despite recent advances in our understanding of epigenetic regulation of central nervous system development, little is known regarding the effects of epigenetic dysregulation on neurogenesis and brain function in adulthood. In the present study, we show that prenatal deletion of DNA methyltransferase 1 (Dnmt1) in neural stem cells results in impaired neurogenesis as well as increases in inflammatory features (e.g., elevated glial fibrillary acidic protein [GFAP] expression in astrocytes and increased numbers of microglia) in the adult mouse brain. Moreover, these mice exhibited anxiety-like behavior during an open-field test. These findings suggest that Dnmt1 plays a critical role in regulating neurogenesis and behavior in the developing brain and into adulthood.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka, Japan
| | - Ayaka Kimura
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka, Japan
| | - Naoya Murao
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka, Japan
| | - Masakazu Namihira
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology , Ibaraki, Japan
| | - Kinichi Nakashima
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka, Japan
| |
Collapse
|
29
|
Zhao L, Zhou C, Li L, Liu J, Shi H, Kan B, Li Z, Li Y, Han J, Yu J. Acupuncture Improves Cerebral Microenvironment in Mice with Alzheimer's Disease Treated with Hippocampal Neural Stem Cells. Mol Neurobiol 2016; 54:5120-5130. [PMID: 27558235 DOI: 10.1007/s12035-016-0054-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022]
Abstract
Transplantation with neural stem cells (NSCs) is a promising clinical therapy for Alzheimer's disease (AD). However, the final fate of grafted NSCs is mainly determined by the host microenvironment. Therefore, this study investigated the role of Sanjiao acupuncture in the NSCs-treated hippocampus of a mouse model, senescence-accelerated mouse prone 8 (SAMP8) using Western blot, real-time fluorescent PCR, and immunofluorescence techniques. Meanwhile, we developed a co-culture model of hippocampal tissue specimens and NSCs in vitro, to observe the effects of acupuncture on survival, proliferation and differentiation of grafted NSCs using flow cytometry. Results showed that acupuncture pre- and post-NSCs transplantation significantly improved senescence-induced cognitive dysfunction (P < 0.05); upregulated the expression of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and brain-derived neurotrophic factor (BDNF) (P < 0.05); and also increased the count of neuron-specific nuclear protein (NeuN)- and glial fibrillary acidic protein (GFAP)-positive cells (P < 0.05). Therapeutic acupuncture may regulate the cytokine levels associated with survival, proliferation, and differentiation of NSCs in hippocampal microenvironment, to promote the repair of damaged cells, resulting in improved cognitive performance in mice.
Collapse
Affiliation(s)
- Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China. .,Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Chunlei Zhou
- Tianjin First Center Hospital, Tianjin, 300192, China
| | - Li Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Huiyan Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Bohong Kan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zhen Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yunzhu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jingxian Han
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jianchun Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|