1
|
Galasko D, Farlow MR, Lucey BP, Honig LS, Elbert D, Bateman R, Momper J, Thomas RG, Rissman RA, Pa J, Aslanyan V, Balasubramanian A, West T, Maccecchini M, Feldman HH. A multicenter, randomized, double-blind, placebo-controlled ascending dose study to evaluate the safety, tolerability, pharmacokinetics (PK) and pharmacodynamic (PD) effects of Posiphen in subjects with early Alzheimer's Disease. Alzheimers Res Ther 2024; 16:151. [PMID: 38970127 PMCID: PMC11225352 DOI: 10.1186/s13195-024-01490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Amyloid beta protein (Aβ) is a treatment target in Alzheimer's Disease (AD). Lowering production of its parent protein, APP, has benefits in preclinical models. Posiphen, an orally administered small molecule, binds to an iron-responsive element in APP mRNA and decreases translation of APP and Aβ. To augment human data for Posiphen, we evaluated safety, tolerability and pharmacokinetic and pharmacodynamic (PD) effects on Aβ metabolism using Stable Isotope Labeling Kinetic (SILK) analysis. METHODS Double-blind phase 1b randomized ascending dose clinical trial, at five sites, under an IRB-approved protocol. Participants with mild cognitive impairment or mild AD (Early AD) confirmed by low CSF Aβ42/40 were randomized (within each dose arm) to Posiphen or placebo. Pretreatment assessment included lumbar puncture for CSF. Participants took Posiphen or placebo for 21-23 days, then underwent CSF catheter placement, intravenous infusion of 13C6-leucine, and CSF sampling for 36 h. Safety and tolerability were assessed through participant reports, EKG and laboratory tests. CSF SILK analysis measured Aβ40, 38 and 42 with immunoprecipitation-mass spectrometry. Baseline and day 21 CSF APP, Aβ and other biomarkers were measured with immunoassays. The Mini-Mental State Exam and ADAS-cog12 were given at baseline and day 21. RESULTS From June 2017 to December 2021, 19 participants were enrolled, randomized within dose cohorts (5 active: 3 placebo) of 60 mg once/day and 60 mg twice/day; 1 participant was enrolled and completed 60 mg three times/day. 10 active drug and 5 placebo participants completed all study procedures. Posiphen was safe and well-tolerated. 8 participants had headaches related to CSF catheterization; 5 needed blood patches. Prespecified SILK analyses of Fractional Synthesis Rate (FSR) for CSF Aβ40 showed no significant overall or dose-dependent effects of Posiphen vs. placebo. Comprehensive multiparameter modeling of APP kinetics supported dose-dependent lowering of APP production by Posiphen. Cognitive measures and CSF biomarkers did not change significantly from baseline to 21 days in Posiphen vs. placebo groups. CONCLUSIONS Posiphen was safe and well-tolerated in Early AD. A multicenter SILK study was feasible. Findings are limited by small sample size but provide additional supportive safety and PK data. Comprehensive modeling of biomarker dynamics using SILK data may reveal subtle drug effects. TRIAL REGISTRATION NCT02925650 on clinicaltrials.gov (registered on 10-24-2016).
Collapse
Affiliation(s)
- Douglas Galasko
- Department of Neurosciences, UC San Diego, 9444 Medical Center Drive, Suite 1-100, La Jolla, San Diego, CA, 9209, USA.
| | | | | | | | | | | | - Jeremiah Momper
- Department of Neurosciences, UC San Diego, 9444 Medical Center Drive, Suite 1-100, La Jolla, San Diego, CA, 9209, USA
| | - Ronald G Thomas
- Department of Neurosciences, UC San Diego, 9444 Medical Center Drive, Suite 1-100, La Jolla, San Diego, CA, 9209, USA
| | - Robert A Rissman
- Department of Neurosciences, UC San Diego, 9444 Medical Center Drive, Suite 1-100, La Jolla, San Diego, CA, 9209, USA
| | - Judy Pa
- Department of Neurosciences, UC San Diego, 9444 Medical Center Drive, Suite 1-100, La Jolla, San Diego, CA, 9209, USA
| | | | - Archana Balasubramanian
- Department of Neurosciences, UC San Diego, 9444 Medical Center Drive, Suite 1-100, La Jolla, San Diego, CA, 9209, USA
| | - Tim West
- C2N Diagnostics, St Louis, MO, USA
| | | | - Howard H Feldman
- Department of Neurosciences, UC San Diego, 9444 Medical Center Drive, Suite 1-100, La Jolla, San Diego, CA, 9209, USA
| |
Collapse
|
2
|
Huang Z, Hamblin MR, Zhang Q. Photobiomodulation in experimental models of Alzheimer's disease: state-of-the-art and translational perspectives. Alzheimers Res Ther 2024; 16:114. [PMID: 38773642 PMCID: PMC11106984 DOI: 10.1186/s13195-024-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024]
Abstract
Alzheimer's disease (AD) poses a significant public health problem, affecting millions of people across the world. Despite decades of research into therapeutic strategies for AD, effective prevention or treatment for this devastating disorder remains elusive. In this review, we discuss the potential of photobiomodulation (PBM) for preventing and alleviating AD-associated pathologies, with a focus on the biological mechanisms underlying this therapy. Future research directions and guidance for clinical practice for this non-invasive and non-pharmacological therapy are also highlighted. The available evidence indicates that different treatment paradigms, including transcranial and systemic PBM, along with the recently proposed remote PBM, all could be promising for AD. PBM exerts diverse biological effects, such as enhancing mitochondrial function, mitigating the neuroinflammation caused by activated glial cells, increasing cerebral perfusion, improving glymphatic drainage, regulating the gut microbiome, boosting myokine production, and modulating the immune system. We suggest that PBM may serve as a powerful therapeutic intervention for AD.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
3
|
Galasko D, Farlow MR, Lucey BP, Honig LS, Elbert D, Bateman R, Momper J, Thomas R, Rissman RA, Pa J, Aslanyan V, Balasubramanian A, West T, Maccecchini M, Feldman HH. A multicenter, randomized, double-blind, placebo-controlled ascending dose study to evaluate the safety, tolerability, pharmacokinetics (PK) and pharmacodynamic (PD) effects of Posiphen in subjects with Early Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.20.24304638. [PMID: 38562783 PMCID: PMC10984053 DOI: 10.1101/2024.03.20.24304638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Amyloid beta protein (Aβ) is a treatment target in Alzheimer's Disease (AD). Lowering production of its parent protein, APP, has benefits in preclinical models. Posiphen binds to an iron-responsive element in APP mRNA and decreases translation of APP and Aβ. To augment human data for Posiphen, we evaluated safety, tolerability and pharmacokinetic and pharmacodynamic (PD) effects on Aβ metabolism using Stable Isotope Labeling Kinetic (SILK) analysis. Methods Double-blind phase 1b randomized ascending dose clinical trial, at five sites, under an IRB-approved protocol. Participants with mild cognitive impairment or mild AD (Early AD) with positive CSF biomarkers were randomized (within each dose arm) to Posiphen or placebo. Pretreatment assessment included lumbar puncture for CSF. Participants took Posiphen or placebo for 21-23 days, then underwent CSF catheter placement, intravenous infusion of 13C6-leucine, and CSF sampling for 36 hours. Safety and tolerability were assessed through participant reports, EKG and laboratory tests. CSF SILK analysis measured Aβ40, 38 and 42 with immunoprecipitation-mass spectrometry. Baseline and day 21 CSF APP, Aβ and other biomarkers were measured with immunoassays. The Mini-Mental State Exam and ADAS-cog12 were given at baseline and day 21. Results From June 2017 to December 2021, 19 participants were enrolled, in dose cohorts (6 active: 2 placebo) of 60 mg once/day and 60 mg twice/day; 1 participant was enrolled and completed 60 mg three times/day. 10 active drug and 5 placebo participants completed all study procedures. Posiphen was safe and well-tolerated. 8 participants had headaches related to CSF catheterization; 5 needed blood patches. Prespecified SILK analyses of Fractional Synthesis Rate (FSR) for CSF Aβ40 showed no significant overall or dose-dependent effects of Posiphen vs. placebo. Comprehensive multiparameter modeling of APP kinetics supported dose-dependent lowering of APP production by Posiphen. Cognitive measures and CSF biomarkers did not change significantly from baseline to 21 days in Posiphen vs placebo groups. Conclusions Posiphen was safe and well-tolerated in Early AD. A multicenter SILK study was feasible. Findings are limited by small sample size but provide additional supportive safety and PK data. Comprehensive modeling of biomarker dynamics using SILK data may reveal subtle drug effects. Trial registration NCT02925650 on clinicaltrials.gov.
Collapse
|
4
|
Xie Z, Li T, Su W, Lou Y, Zhang Y, Zhou X, Li Z, Bai X, Liu X. Extension domain of amyloid processor protein inhibits amyloidogenic cleavage and balances neural activity in a traumatic brain injury mouse model. CNS Neurosci Ther 2024; 30:e14402. [PMID: 37592823 PMCID: PMC10848085 DOI: 10.1111/cns.14402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Mechanisms underlying cognitive dysfunction following traumatic brain injury (TBI) partially due to abnormal amyloid processor protein (APP) cleavage and neural hyperactivity. Binding of the extension domain of APP (ExD17) to the GABAbR1 receptor results in reduced neural activity, which might play a role in the mechanisms of cognitive dysfunction caused by TBI. METHODS Stretch-induced injury was utilized to establish a cell injury model in HT22 cells. The TBI model was created by striking the exposed brain tissue with a free-falling weight. Topical or intraperitoneal administration of ExD17 was performed. Cell viability was assessed through a cell counting kit-8 assay, while intracellular Ca2+ was measured using Fluo-4. Western blotting was used to investigate the expression of APP amyloidogenic cleavage proteins, GABAbR1, phospholipase C (PLC), PLCB3, and synaptic proteins. ELISA was performed to analyze the levels of Aβ42. Seizures were assessed using electroencephalography (EEG). Behaviors were evaluated through the novel object recognition test, open field test, elevated plus maze test, and nest-building test. RESULTS ExD17 improved cell viability and reduced intracellular calcium in the cell injury model. The treatment also suppressed the increased expression of APP amyloidogenic cleavage proteins and Aβ42 in both cell injury and TBI models. ExD17 treatment reversed the abnormal expression of GABAbR1, GRIA2, p-PLCG1/PLCG1 ratio, and p-PLCB3/PLCB3 ratio. In addition, ExD17 treatment reduced neural activity, seizure events, and their duration in TBI. Intraperitoneal injection of ExD17 improved behavioral outcomes in the TBI mouse model. CONCLUSIONS ExD17 treatment results in a reduction of amyloidogenic APP cleavage and neuroexcitotoxicity, ultimately leading to an improvement in the behavioral deficits observed in TBI mice.
Collapse
Affiliation(s)
- Zhenxing Xie
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tianyu Li
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Su
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanyun Lou
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yongsheng Zhang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiyuan Zhou
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhanfei Li
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiangjun Bai
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xinghua Liu
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Müller SA, Shmueli MD, Feng X, Tüshaus J, Schumacher N, Clark R, Smith BE, Chi A, Rose-John S, Kennedy ME, Lichtenthaler SF. The Alzheimer's disease-linked protease BACE1 modulates neuronal IL-6 signaling through shedding of the receptor gp130. Mol Neurodegener 2023; 18:13. [PMID: 36810097 PMCID: PMC9942414 DOI: 10.1186/s13024-023-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The protease BACE1 is a major drug target for Alzheimer's disease, but chronic BACE1 inhibition is associated with non-progressive cognitive worsening that may be caused by modulation of unknown physiological BACE1 substrates. METHODS To identify in vivo-relevant BACE1 substrates, we applied pharmacoproteomics to non-human-primate cerebrospinal fluid (CSF) after acute treatment with BACE inhibitors. RESULTS Besides SEZ6, the strongest, dose-dependent reduction was observed for the pro-inflammatory cytokine receptor gp130/IL6ST, which we establish as an in vivo BACE1 substrate. Gp130 was also reduced in human CSF from a clinical trial with a BACE inhibitor and in plasma of BACE1-deficient mice. Mechanistically, we demonstrate that BACE1 directly cleaves gp130, thereby attenuating membrane-bound gp130 and increasing soluble gp130 abundance and controlling gp130 function in neuronal IL-6 signaling and neuronal survival upon growth-factor withdrawal. CONCLUSION BACE1 is a new modulator of gp130 function. The BACE1-cleaved, soluble gp130 may serve as a pharmacodynamic BACE1 activity marker to reduce the occurrence of side effects of chronic BACE1 inhibition in humans.
Collapse
Affiliation(s)
- Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Merav D Shmueli
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Xiao Feng
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Ryan Clark
- Neuroscience, Merck & Co. Inc., Boston, MA, USA
| | - Brad E Smith
- Laboratory Animal Resources, Merck & Co. Inc., West Point, PA, USA
| | - An Chi
- Chemical Biology, Merck & Co. Inc., Boston, MA, USA
| | | | | | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
6
|
Rem PD, Sereikaite V, Fernández-Fernández D, Reinartz S, Ulrich D, Fritzius T, Trovo L, Roux S, Chen Z, Rondard P, Pin JP, Schwenk J, Fakler B, Gassmann M, Barkat TR, Strømgaard K, Bettler B. Soluble amyloid-β precursor peptide does not regulate GABA B receptor activity. eLife 2023; 12:82082. [PMID: 36688536 PMCID: PMC9917443 DOI: 10.7554/elife.82082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/22/2023] [Indexed: 01/24/2023] Open
Abstract
Amyloid-β precursor protein (APP) regulates neuronal activity through the release of secreted APP (sAPP) acting at cell surface receptors. APP and sAPP were reported to bind to the extracellular sushi domain 1 (SD1) of GABAB receptors (GBRs). A 17 amino acid peptide (APP17) derived from APP was sufficient for SD1 binding and shown to mimic the inhibitory effect of sAPP on neurotransmitter release and neuronal activity. The functional effects of APP17 and sAPP were similar to those of the GBR agonist baclofen and blocked by a GBR antagonist. These experiments led to the proposal that sAPP activates GBRs to exert its neuronal effects. However, whether APP17 and sAPP influence classical GBR signaling pathways in heterologous cells was not analyzed. Here, we confirm that APP17 binds to GBRs with nanomolar affinity. However, biochemical and electrophysiological experiments indicate that APP17 does not influence GBR activity in heterologous cells. Moreover, APP17 did not regulate synaptic GBR localization, GBR-activated K+ currents, neurotransmitter release, or neuronal activity in vitro or in vivo. Our results show that APP17 is not a functional GBR ligand and indicate that sAPP exerts its neuronal effects through receptors other than GBRs.
Collapse
Affiliation(s)
- Pascal Dominic Rem
- Department of Biomedicine, Pharmazentrum, University of BaselBaselSwitzerland
| | - Vita Sereikaite
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, UniversitetsparkenCopenhagenDenmark
| | | | - Sebastian Reinartz
- Department of Biomedicine, Pharmazentrum, University of BaselBaselSwitzerland
| | - Daniel Ulrich
- Department of Biomedicine, Pharmazentrum, University of BaselBaselSwitzerland
| | - Thorsten Fritzius
- Department of Biomedicine, Pharmazentrum, University of BaselBaselSwitzerland
| | - Luca Trovo
- Department of Biomedicine, Pharmazentrum, University of BaselBaselSwitzerland
| | - Salomé Roux
- Institut de Génomique Fonctionnelle, Université de MontpellierMontpellierFrance
| | - Ziyang Chen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, UniversitetsparkenCopenhagenDenmark
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Université de MontpellierMontpellierFrance
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université de MontpellierMontpellierFrance
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
- CIBSS Center for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
- Center for Basics in NeuroModulationFreiburgGermany
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of BaselBaselSwitzerland
| | | | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, UniversitetsparkenCopenhagenDenmark
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of BaselBaselSwitzerland
| |
Collapse
|
7
|
Dobrowolska Zakaria JA, Bateman RJ, Lysakowska M, Khatri A, Jean-Gilles D, Kennedy ME, Vassar R. The metabolism of human soluble amyloid precursor protein isoforms is quantifiable by a stable isotope labeling-tandem mass spectrometry method. Sci Rep 2022; 12:14985. [PMID: 36056033 PMCID: PMC9440206 DOI: 10.1038/s41598-022-18869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Evidence suggests that β-secretase (BACE1), which cleaves Amyloid Precursor Protein (APP) to form sAPPβ and amyloid-β, is elevated in Alzheimer's disease (AD) brains and biofluids and, thus, BACE1 is a therapeutic target for this devastating disease. The direct product of BACE1 cleavage of APP, sAPPβ, serves as a surrogate marker of BACE1 activity in the central nervous system. This biomarker could be utilized to better understand normal APP processing, aberrant processing in the disease setting, and modulations to processing during therapeutic intervention. In this paper, we present a method for measuring the metabolism of sAPPβ and another APP proteolytic product, sAPPα, in vivo in humans using stable isotope labeling kinetics, paired with immunoprecipitation and liquid chromatography/tandem mass spectrometry. The method presented herein is robust, reproducible, and precise, and allows for the study of these analytes by taking into account their full dynamic potential as opposed to the traditional methods of absolute concentration quantitation that only provide a static view of a dynamic system. A study of in vivo cerebrospinal fluid sAPPβ and sAPPα kinetics using these methods could reveal novel insights into pathophysiological mechanisms of AD, such as increased BACE1 processing of APP.
Collapse
Affiliation(s)
- Justyna A Dobrowolska Zakaria
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- SILQ Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Monika Lysakowska
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ammaarah Khatri
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Matthew E Kennedy
- Deparment of Neuroscience, Merck & Co., Inc., Boston, MA, 02115, USA
| | - Robert Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Elbert DL, Patterson BW, Lucey BP, Benzinger TLS, Bateman RJ. Importance of CSF-based Aβ clearance with age in humans increases with declining efficacy of blood-brain barrier/proteolytic pathways. Commun Biol 2022; 5:98. [PMID: 35087179 PMCID: PMC8795390 DOI: 10.1038/s42003-022-03037-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
The kinetics of amyloid beta turnover within human brain is still poorly understood. We previously found a dramatic decline in the turnover of Aβ peptides in normal aging. It was not known if brain interstitial fluid/cerebrospinal fluid (ISF/CSF) fluid exchange, CSF turnover, blood-brain barrier function or proteolysis were affected by aging or the presence of β amyloid plaques. Here, we describe a non-steady state physiological model developed to decouple CSF fluid transport from other processes. Kinetic parameters were estimated using: (1) MRI-derived brain volumes, (2) stable isotope labeling kinetics (SILK) of amyloid-β peptide (Aβ), and (3) lumbar CSF Aβ concentration during SILK. Here we show that changes in blood-brain barrier transport and/or proteolysis were largely responsible for the age-related decline in Aβ turnover rates. CSF-based clearance declined modestly in normal aging but became increasingly important due to the slowing of other processes. The magnitude of CSF-based clearance was also lower than that due to blood-brain barrier function plus proteolysis. These results suggest important roles for blood-brain barrier transport and proteolytic degradation of Aβ in the development Alzheimer’s Disease in humans. To understand if brain interstitial fluid/cerebrospinal fluid (ISF/CSF) exchange, CSF turnover, blood-brain barrier function or proteolysis were affected by aging or the presence of β amyloid plaques, Elbert et al. develop a non-steady state physiological model using MRI-derived brain volumes, stable isotope labeling kinetics of Aβ, and lumbar CSF Aβ concentration. Their model suggests an important role for blood-brain barrier transport and proteolytic degradation of Aβ in the development Alzheimer’s Disease in humans.
Collapse
Affiliation(s)
- Donald L Elbert
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| | - Bruce W Patterson
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Tammie L S Benzinger
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
9
|
Hark TJ, Savas JN. Using stable isotope labeling to advance our understanding of Alzheimer's disease etiology and pathology. J Neurochem 2021; 159:318-329. [PMID: 33434345 PMCID: PMC8273190 DOI: 10.1111/jnc.15298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
Stable isotope labeling with mass spectrometry (MS)-based proteomic analysis has become a powerful strategy to assess protein steady-state levels, protein turnover, and protein localization. Applying these analyses platforms to neurodegenerative disorders may uncover new aspects of the etiology of these devastating diseases. Recently, stable isotopes-MS has been used to investigate early pathological mechanisms of Alzheimer's disease (AD) with mouse models of AD-like pathology. In this review, we summarize these stable isotope-MS experimental designs and the recent application in the context of AD pathology. We also describe our current efforts aimed at using nuclear magnetic resonance (NMR) analysis of stable isotope-labeled amyloid fibrils from AD mouse model brains. Collectively, these methodologies offer new opportunities to study proteome changes in AD and other neurodegenerative diseases by elucidating mechanisms to target for treatment and prevention.
Collapse
Affiliation(s)
- Timothy J Hark
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
10
|
Yuede CM, Wallace CE, Davis TA, Gardiner WD, Hettinger JC, Edwards HM, Hendrix RD, Doherty BM, Yuede KM, Burstein ES, Cirrito JR. Pimavanserin, a 5HT 2A receptor inverse agonist, rapidly suppresses Aβ production and related pathology in a mouse model of Alzheimer's disease. J Neurochem 2021; 156:658-673. [PMID: 33278025 DOI: 10.1111/jnc.15260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
Amyloid-β (Aβ) peptide aggregation into soluble oligomers and insoluble plaques is a precipitating event in the pathogenesis of Alzheimer's disease (AD). Given that synaptic activity can regulate Aβ generation, we postulated that 5HT2A -Rs may regulate Aβ as well. We treated APP/PS1 transgenic mice with the selective 5HT2A inverse agonists M100907 or Pimavanserin systemically and measured brain interstitial fluid (ISF) Aβ levels in real-time using in vivo microdialysis. Both compounds reduced ISF Aβ levels by almost 50% within hours, but had no effect on Aβ levels in 5HT2A -R knock-out mice. The Aβ-lowering effects of Pimavanserin were blocked by extracellular-regulated kinase (ERK) and NMDA receptor inhibitors. Chronic administration of Pimavanserin by subcutaneous osmotic pump to aged APP/PS1 mice significantly reduced CSF Aβ levels and Aβ pathology and improved cognitive function in these mice. Pimavanserin is FDA-approved to treat Parkinson's disease psychosis, and also has been shown to reduce psychosis in a variety of other dementia subtypes including Alzheimer's disease. These data demonstrate that Pimavanserin may have disease-modifying benefits in addition to its efficacy against neuropsychiatric symptoms of Alzheimer's disease. Read the Editorial Highlight for this article on page 560.
Collapse
Affiliation(s)
- Carla M Yuede
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Clare E Wallace
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Todd A Davis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Woodrow D Gardiner
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Jane C Hettinger
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah M Edwards
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel D Hendrix
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Brookelyn M Doherty
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Kayla M Yuede
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | | | - John R Cirrito
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Yang CC, Jia XY, Zhang L, Li YL, Zhang ZJ, Li L, Zhang L. Shenqi Xingnao Granules ameliorates cognitive impairments and Alzheimer’s disease-like pathologies in APP/PS1 mouse model. CHINESE HERBAL MEDICINES 2020; 12:421-429. [PMID: 36120170 PMCID: PMC9476633 DOI: 10.1016/j.chmed.2020.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/06/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Alzheimer's disease (AD) is along with cognitive decline due to amyloid-β (Aβ) plaques, tau hyperphosphorylation, and neuron loss. Shenqi Xingnao Granules (SQXN), a traditional Chinese medicine, significantly ameliorated the cognitive function and daily living abilities of patients with AD. However, till date, no study has investigated the mechanism of action of SQXN on AD. The present study aimed to verify the effects of SQXN treatment on cognitive impairments and AD-like pathologies in APP/PS1 mice. Methods Four-month-old APP/PS1 transgenic (Tg) mice were randomly divided into a model group and SQXN-treated (3.5, 7, 14 g/kg per day) groups. Learning-memory abilities were determined by Morris water maze and object recognition test. All mice were sacrificed and the brain samples were collected after 75 d. The soluble Aβ contents were detected by Elisa kit; The levels of expression of NeuN, APP, phosphorylated tau and related protein were measured by Western blotting; The inflammation factors were detected by the proinflammatory panel kit. Results Four-month-old APP/PS1 mice were administered SQXN by oral gavage for 2.5 months. Using the Morris water maze tests and Novel object recognition, we found that SQXN restored behavioral deficits in the experimental group of Tg mice when compared with the controls. SQXN also inhibited neuronal loss (NeuN marker). SQXN treatment decreased soluble Aβ42 through inhibiting the expression of sAPPβ and BACE-1 without regulating full-length amyloid precursor protein (FL APP). Insulin degrading enzyme (IDE), the Aβ degrading enzyme, were increased by SQXN. In addition, SQXN reduced hyperphosphorylated tau protein levels and prevented excessive activation of p-GSK-3β in the brain of APP/PS1 mice. Compared with APP/PS1 transgenic negative mice, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-12p70, KC/GRO and TNF-α were not obviously changed in the brain of 6.5-month-old APP/PS1 transgenic (Tg) mice. However, SQXN could inhibited the expression of IL-2. Conclusion These results demonstrate that SQXN ameliorates the cognitive impairments in APP/PS1 mice. The possible mechanisms involve its inhibition of neuronal loss, soluble Aβ deposition, tau hyperphosphorylation and inflammation.
Collapse
|
12
|
Mihardja M, Roy J, Wong KY, Aquili L, Heng BC, Chan YS, Fung ML, Lim LW. Therapeutic potential of neurogenesis and melatonin regulation in Alzheimer's disease. Ann N Y Acad Sci 2020; 1478:43-62. [PMID: 32700392 DOI: 10.1111/nyas.14436] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the hallmark pathologies of amyloid-beta plaques and neurofibrillary tangles. Symptoms of this devastating disease include behavioral changes and deterioration of higher cognitive functions. Impairment of neurogenesis has also been shown to occur in AD, which adversely impacts new neuronal cell growth, differentiation, and survival. This impairment possibly results from the cumulative effects of the various pathologies of AD. Preclinical studies have suggested that the administration of melatonin-the pineal hormone primarily responsible for the regulation of the circadian rhythm-targets the effects of AD pathologies and improves cognitive impairment. It is postulated that by mitigating the effect of these pathologies, melatonin can also rescue neurogenesis impairment. This review aims to explore the effect of AD pathologies on neurogenesis, as well as the mechanisms by which melatonin is able to ameliorate AD pathologies to potentially promote neurogenesis.
Collapse
Affiliation(s)
- Mazel Mihardja
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jaydeep Roy
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kan Yin Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Luca Aquili
- Division of Psychology, College of Health and Human Sciences, Charles Darwin University, Darwin, Australia
| | - Boon Chin Heng
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.,Peking University School of Stomatology, Beijing, China
| | - Ying-Shing Chan
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
13
|
Abstract
The amyloid precursor protein (APP) is not only processed to the neurotoxic amyloid-β peptide but also to various types of secreted APP variants. In a recent issue of Science, Rice et al. (2019) now demonstrate that secreted APP functions as a modulator of synaptic transmission by binding to GABABR1a.
Collapse
|
14
|
Paterson RW, Gabelle A, Lucey BP, Barthélemy NR, Leckey CA, Hirtz C, Lehmann S, Sato C, Patterson BW, West T, Yarasheski K, Rohrer JD, Wildburger NC, Schott JM, Karch CM, Wray S, Miller TM, Elbert DL, Zetterberg H, Fox NC, Bateman RJ. SILK studies - capturing the turnover of proteins linked to neurodegenerative diseases. Nat Rev Neurol 2019; 15:419-427. [PMID: 31222062 PMCID: PMC6876864 DOI: 10.1038/s41582-019-0222-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 01/12/2023]
Abstract
Alzheimer disease (AD) is one of several neurodegenerative diseases characterized by dysregulation, misfolding and accumulation of specific proteins in the CNS. The stable isotope labelling kinetics (SILK) technique is based on generating amino acids labelled with naturally occurring stable (that is, nonradioactive) isotopes of carbon and/or nitrogen. These labelled amino acids can then be incorporated into proteins, enabling rates of protein production and clearance to be determined in vivo and in vitro without the use of radioactive or chemical labels. Over the past decade, SILK studies have been used to determine the turnover of key pathogenic proteins amyloid-β (Aβ), tau and superoxide dismutase 1 (SOD1) in the cerebrospinal fluid of healthy individuals, patients with AD and those with other neurodegenerative diseases. These studies led to the identification of several factors that alter the production and/or clearance of these proteins, including age, sleep and disease-causing genetic mutations. SILK studies have also been used to measure Aβ turnover in blood and within brain tissue. SILK studies offer the potential to elucidate the mechanisms underlying various neurodegenerative disease mechanisms, including neuroinflammation and synaptic dysfunction, and to demonstrate target engagement of novel disease-modifying therapies.
Collapse
Affiliation(s)
- Ross W Paterson
- Dementia Research Centre, Department of Neurodegeneration, University College London (UCL) Institute of Neurology, London, UK.
| | - Audrey Gabelle
- Department of Neurology, Memory Research and Resources Centre, Centre Hospitalier Universitaire (CHU), Montpellier, France
- University of Montpellier, Campus Universitaire du Triolet, Montpellier, France
- INSERM U1163, Institut de Médecine Régénérative, Saint Eloi Hospital, Montpellier, France
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Claire A Leckey
- Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London, UK
| | - Christophe Hirtz
- Department of Neurology, Memory Research and Resources Centre, Centre Hospitalier Universitaire (CHU), Montpellier, France
- University of Montpellier, Campus Universitaire du Triolet, Montpellier, France
- INSERM U1163, Institut de Médecine Régénérative, Saint Eloi Hospital, Montpellier, France
| | - Sylvain Lehmann
- Department of Neurology, Memory Research and Resources Centre, Centre Hospitalier Universitaire (CHU), Montpellier, France
- University of Montpellier, Campus Universitaire du Triolet, Montpellier, France
- INSERM U1163, Institut de Médecine Régénérative, Saint Eloi Hospital, Montpellier, France
| | - Chihiro Sato
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Bruce W Patterson
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Tim West
- C2N Diagnostics, Center for Emerging Technologies, St Louis, MO, USA
| | - Kevin Yarasheski
- C2N Diagnostics, Center for Emerging Technologies, St Louis, MO, USA
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegeneration, University College London (UCL) Institute of Neurology, London, UK
| | - Norelle C Wildburger
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegeneration, University College London (UCL) Institute of Neurology, London, UK
| | - Celeste M Karch
- Department of Psychiatry, Washington University, St Louis, MO, USA
| | - Selina Wray
- Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London, UK
| | - Timothy M Miller
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Donald L Elbert
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Henrik Zetterberg
- Dementia Research Centre, Department of Neurodegeneration, University College London (UCL) Institute of Neurology, London, UK
- UK Dementia Research Institute at University College London (UCL), London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegeneration, University College London (UCL) Institute of Neurology, London, UK
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
15
|
Cummings J, Ritter A, Zhong K. Clinical Trials for Disease-Modifying Therapies in Alzheimer's Disease: A Primer, Lessons Learned, and a Blueprint for the Future. J Alzheimers Dis 2019; 64:S3-S22. [PMID: 29562511 PMCID: PMC6004914 DOI: 10.3233/jad-179901] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer’s disease (AD) has no currently approved disease-modifying therapies (DMTs), and treatments to prevent, delay the onset, or slow the progression are urgently needed. A delay of 5 years if available by 2025 would decrease the total number of patients with AD by 50% in 2050. To meet the definition of DMT, an agent must produce an enduring change in the course of AD; clinical trials of DMTs have the goal of demonstrating this effect. AD drug discovery entails target identification followed by high throughput screening and lead optimization of drug-like compounds. Once an optimized agent is available and has been assessed for efficacy and toxicity in animals, it progresses through Phase I testing with healthy volunteers, Phase II learning trials to establish proof-of-mechanism and dose, and Phase III confirmatory trials to demonstrate efficacy and safety in larger populations. Phase III is followed by Food and Drug Administration review and, if appropriate, market access. Trial populations include cognitively normal at-risk participants in prevention trials, mildly impaired participants with biomarker evidence of AD in prodromal AD trials, and subjects with cognitive and functional impairment in AD dementia trials. Biomarkers are critical in trials of DMTs, assisting in participant characterization and diagnosis, target engagement and proof-of-pharmacology, demonstration of disease-modification, and monitoring side effects. Clinical trial designs include randomized, parallel group; delayed start; staggered withdrawal; and adaptive. Lessons learned from completed trials inform future trials and increase the likelihood of success.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Kate Zhong
- Global Alzheimer Platform, Washington, DC, USA
| |
Collapse
|
16
|
Central pharmacodynamic activity of solanezumab in mild Alzheimer's disease dementia. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:652-660. [PMID: 30511011 PMCID: PMC6258891 DOI: 10.1016/j.trci.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction Solanezumab treatment was previously shown to significantly increase total (bound + unbound) cerebrospinal fluid (CSF) levels of amyloid β (Aβ)1–40 and Aβ1–42 in patients with mild to moderate Alzheimer's disease dementia yet did not produce meaningful cognitive effects. This analysis assessed solanezumab's central nervous system target engagement by evaluating changes in CSF total and free Aβ isoforms and their relationship with solanezumab exposure. Methods CSF Aβ isoform concentrations were measured in patients with mild Alzheimer's disease dementia from a pooled EXPEDITION + EXPEDITION2 population and from EXPEDITION3. CSF solanezumab concentrations were determined from EXPEDITION3. Results Solanezumab produced statistically significant increases in CSF total Aβ isoforms versus placebo, which correlated with CSF solanezumab concentration. Inconsistent effects on free Aβ isoforms were observed. Solanezumab penetration into the central nervous system was low. Discussion Solanezumab administration engaged the central molecular target, and molar ratio analyses demonstrated that higher exposures may further increase CSF total Aβ concentrations. Solanezumab increased cerebrospinal fluid levels of total amyloid β isoforms. Central pharmacodynamics of solanezumab were inconsistent. Penetration of solanezumab into the central nervous system was limited. Increased dosing may improve target engagement.
Collapse
|
17
|
Lee JH, Jahrling JB, Denner L, Dineley KT. Targeting Insulin for Alzheimer’s Disease: Mechanisms, Status and Potential Directions. J Alzheimers Dis 2018; 64:S427-S453. [DOI: 10.3233/jad-179923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jung Hyun Lee
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jordan B. Jahrling
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Larry Denner
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelly T. Dineley
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
18
|
Villarreal S, Zhao F, Hyde LA, Holder D, Forest T, Sondey M, Chen X, Sur C, Parker EM, Kennedy ME. Chronic Verubecestat Treatment Suppresses Amyloid Accumulation in Advanced Aged Tg2576-AβPPswe Mice Without Inducing Microhemorrhage. J Alzheimers Dis 2018; 59:1393-1413. [PMID: 28800329 PMCID: PMC5611839 DOI: 10.3233/jad-170056] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Verubecestat is a potent BACE1 enzyme inhibitor currently being investigated in Phase III trials for the treatment of mild-to-moderate and prodromal Alzheimer's disease. Multiple anti-amyloid immunotherapies have been dose-limited by adverse amyloid related imaging abnormalities such as vasogenic edema (ARIA-E) and microhemorrhage (ARIA-H) observed in human trials and mice. Verubecestat was tested in a 12-week nonclinical study for the potential to exacerbate microhemorrhage (ARIA-H) profiles in 18-22-month-old post-plaque Tg2576-AβPPswe mice. Animals were treated with verubecestat or controls including the anti-Aβ antibody analog of bapineuzumab (3D6) as a positive control for ARIA induction. ARIA-H was measured using in-life longitudinal T2*-MRI and Prussian blue histochemistry at study end. Verubecestat reduced plasma and cerebrospinal fluid Aβ40 and Aβ42 by >90% and 62% to 68%, respectively. The ARIA-H profile of verubecestat-treated mice was not significantly different than controls. Anti-Aβ treatment significantly increased ARIA-H detected by Prussian blue staining; however, anti-Aβ antibody treatment did not impact plaque status. Verubecestat treatment significantly suppressed the accumulation of total levels of brain Aβ40 and Aβ42 and Thioflavin S positive plaque load. Stereological analysis of cortex and hippocampus plaque load similarly revealed significantly reduced area of Aβ immunoreactivity and reduced plaque number in verubecestat-treated animals compared to controls. The absence of elevated ARIA events in verubecestat-treated mice was associated with a significant reduction in the level of accumulated CNS amyloid pathology and brain Aβ peptides; effects consistent with the desired therapeutic mechanism of verubecestat in AD patients. These data will be compared with longitudinal MRI profiles from ongoing clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Forest
- Safety Assessment and Laboratory Animal Research, MRL, West Point, PA, USA
| | | | - Xia Chen
- Pharmacology, MRL, Kenilworth, NJ, USA
| | | | | | | |
Collapse
|
19
|
van Maanen EMT, van Steeg TJ, Ahsman MJ, Michener MS, Savage MJ, Kennedy ME, Kleijn HJ, Stone J, Danhof M. Extending a Systems Model of the APP Pathway: Separation of β- and γ-Secretase Sequential Cleavage Steps of APP. J Pharmacol Exp Ther 2018; 365:507-518. [PMID: 29563326 DOI: 10.1124/jpet.117.244699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 02/05/2018] [Indexed: 11/22/2022] Open
Abstract
The abnormal accumulation of amyloid-β (Aβ) in the brain parenchyma has been posited as a central event in the pathophysiology of Alzheimer's disease. Recently, we have proposed a systems pharmacology model of the amyloid precursor protein (APP) pathway, describing the Aβ APP metabolite responses (Aβ40, Aβ42, sAPPα, and sAPPβ) to β-secretase 1 (BACE1) inhibition. In this investigation this model was challenged to describe Aβ dynamics following γ-secretase (GS) inhibition. This led an extended systems pharmacology model, with separate descriptions to characterize the sequential cleavage steps of APP by BACE1 and GS, to describe the differences in Aβ response to their respective inhibition. Following GS inhibition, a lower Aβ40 formation rate constant was observed, compared with BACE1 inhibition. Both BACE1 and GS inhibition were predicted to lower Aβ oligomer levels. Further model refinement and new data may be helpful to fully understand the difference in Aβ dynamics following BACE1 versus GS inhibition.
Collapse
Affiliation(s)
- Eline M T van Maanen
- Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (E.M.T.v.M., M.D.); Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics, Leiden, The Netherlands (E.M.T.v.M., T.J.v.S., M.J.A.); and Merck & Company, Inc., Kenilworth, New Jersey (M.S.M., M.J.S., M.E.K., H.J.K., J.S.)
| | - Tamara J van Steeg
- Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (E.M.T.v.M., M.D.); Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics, Leiden, The Netherlands (E.M.T.v.M., T.J.v.S., M.J.A.); and Merck & Company, Inc., Kenilworth, New Jersey (M.S.M., M.J.S., M.E.K., H.J.K., J.S.)
| | - Maurice J Ahsman
- Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (E.M.T.v.M., M.D.); Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics, Leiden, The Netherlands (E.M.T.v.M., T.J.v.S., M.J.A.); and Merck & Company, Inc., Kenilworth, New Jersey (M.S.M., M.J.S., M.E.K., H.J.K., J.S.)
| | - Maria S Michener
- Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (E.M.T.v.M., M.D.); Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics, Leiden, The Netherlands (E.M.T.v.M., T.J.v.S., M.J.A.); and Merck & Company, Inc., Kenilworth, New Jersey (M.S.M., M.J.S., M.E.K., H.J.K., J.S.)
| | - Mary J Savage
- Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (E.M.T.v.M., M.D.); Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics, Leiden, The Netherlands (E.M.T.v.M., T.J.v.S., M.J.A.); and Merck & Company, Inc., Kenilworth, New Jersey (M.S.M., M.J.S., M.E.K., H.J.K., J.S.)
| | - Matthew E Kennedy
- Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (E.M.T.v.M., M.D.); Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics, Leiden, The Netherlands (E.M.T.v.M., T.J.v.S., M.J.A.); and Merck & Company, Inc., Kenilworth, New Jersey (M.S.M., M.J.S., M.E.K., H.J.K., J.S.)
| | - Huub Jan Kleijn
- Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (E.M.T.v.M., M.D.); Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics, Leiden, The Netherlands (E.M.T.v.M., T.J.v.S., M.J.A.); and Merck & Company, Inc., Kenilworth, New Jersey (M.S.M., M.J.S., M.E.K., H.J.K., J.S.)
| | - Julie Stone
- Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (E.M.T.v.M., M.D.); Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics, Leiden, The Netherlands (E.M.T.v.M., T.J.v.S., M.J.A.); and Merck & Company, Inc., Kenilworth, New Jersey (M.S.M., M.J.S., M.E.K., H.J.K., J.S.)
| | - Meindert Danhof
- Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (E.M.T.v.M., M.D.); Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics, Leiden, The Netherlands (E.M.T.v.M., T.J.v.S., M.J.A.); and Merck & Company, Inc., Kenilworth, New Jersey (M.S.M., M.J.S., M.E.K., H.J.K., J.S.)
| |
Collapse
|
20
|
Daurio NA, Wang SP, Chen Y, Zhou H, McLaren DG, Roddy TP, Johns DG, Milot D, Kasumov T, Erion MD, Kelley DE, Previs SF. Enhancing Studies of Pharmacodynamic Mechanisms via Measurements of Metabolic Flux: Fundamental Concepts and Guiding Principles for Using Stable Isotope Tracers. J Pharmacol Exp Ther 2017; 363:80-91. [DOI: 10.1124/jpet.117.241091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/14/2017] [Indexed: 11/22/2022] Open
|
21
|
Eketjäll S, Janson J, Kaspersson K, Bogstedt A, Jeppsson F, Fälting J, Haeberlein SB, Kugler AR, Alexander RC, Cebers G. AZD3293: A Novel, Orally Active BACE1 Inhibitor with High Potency and Permeability and Markedly Slow Off-Rate Kinetics. J Alzheimers Dis 2016; 50:1109-23. [PMID: 26890753 PMCID: PMC4927864 DOI: 10.3233/jad-150834] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A growing body of pathological, biomarker, genetic, and mechanistic data suggests that amyloid accumulation, as a result of changes in production, processing, and/or clearance of brain amyloid-β peptide (Aβ) concentrations, plays a key role in the pathogenesis of Alzheimer’s disease (AD). Beta-secretase 1 (BACE1) mediates the first step in the processing of amyloid-β protein precursor (AβPP) to Aβ peptides, with the soluble N terminal fragment of AβPP (sAβPPβ) as a direct product, and BACE1 inhibition is an attractive target for therapeutic intervention to reduce the production of Aβ. Here, we report the in vitro and in vivo pharmacological profile of AZD3293, a potent, highly permeable, orally active, blood-brain barrier (BBB) penetrating, BACE1 inhibitor with unique slow off-rate kinetics. The in vitro potency of AZD3293 was demonstrated in several cellular models, including primary cortical neurons. In vivo in mice, guinea pigs, and dogs, AZD3293 displayed significant dose- and time-dependent reductions in plasma, cerebrospinal fluid, and brain concentrations of Aβ40, Aβ42, and sAβPPβ. The in vitro potency of AZD3293 in mouse and guinea pig primary cortical neuronal cells was correlated to the in vivo potency expressed as free AZD3293 concentrations in mouse and guinea pig brains. In mice and dogs, the slow off-rate from BACE1 may have translated into a prolongation of the observed effect beyond the turnover rate of Aβ. The preclinical data strongly support the clinical development of AZD3293, and patients with AD are currently being recruited into a combined Phase 2/3 study to test the disease-modifying properties of AZD3293.
Collapse
Affiliation(s)
- Susanna Eketjäll
- AstraZeneca Translational Sciences Centre, Science for Life Laboratory, Personal Healthcare and Biomarkers, AstraZeneca, Solna, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Juliette Janson
- AstraZeneca Translational Sciences Centre, Science for Life Laboratory, Personal Healthcare and Biomarkers, AstraZeneca, Solna, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | | | - Anna Bogstedt
- AstraZeneca Translational Sciences Centre, Science for Life Laboratory, Personal Healthcare and Biomarkers, AstraZeneca, Solna, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Fredrik Jeppsson
- CNS and Pain iMed, AstraZeneca, Södertälje, Sweden.,Operations Global Quality, AstraZeneca, Södertälje, Sweden
| | | | | | - Alan R Kugler
- Neuroscience iMed, IMED Biotech Unit, AstraZeneca, Cambridge, MA, USA
| | | | - Gvido Cebers
- Neuroscience iMed, IMED Biotech Unit, AstraZeneca, Cambridge, MA, USA
| |
Collapse
|
22
|
Kennedy ME, Stamford AW, Chen X, Cox K, Cumming JN, Dockendorf MF, Egan M, Ereshefsky L, Hodgson RA, Hyde LA, Jhee S, Kleijn HJ, Kuvelkar R, Li W, Mattson BA, Mei H, Palcza J, Scott JD, Tanen M, Troyer MD, Tseng JL, Stone JA, Parker EM, Forman MS. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS -amyloid in animal models and in Alzheimers disease patients. Sci Transl Med 2016; 8:363ra150. [DOI: 10.1126/scitranslmed.aad9704] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 10/14/2016] [Indexed: 01/18/2023]
|
23
|
Timmers M, Van Broeck B, Ramael S, Slemmon J, De Waepenaert K, Russu A, Bogert J, Stieltjes H, Shaw LM, Engelborghs S, Moechars D, Mercken M, Liu E, Sinha V, Kemp J, Van Nueten L, Tritsmans L, Streffer JR. Profiling the dynamics of CSF and plasma Aβ reduction after treatment with JNJ-54861911, a potent oral BACE inhibitor. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 2:202-212. [PMID: 29067308 PMCID: PMC5651349 DOI: 10.1016/j.trci.2016.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Safety, tolerability, pharmacokinetics, and pharmacodynamics of a novel β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor, JNJ-54861911, were assessed after single and multiple dosing in healthy participants. METHODS Two randomized, placebo-controlled, double-blind studies were performed using single and multiple ascending JNJ-54861911 doses (up to 14 days) in young and elderly healthy participants. Regular blood samples and frequent CSF samples, up to 36 hours after last dose, were collected to assess the pharmacokinetic and pharmacodynamic (Aβ, sAPPα,β,total levels) profiles of JNJ-54861911. RESULTS JNJ-54861911 was well-tolerated, adverse events were uncommon and unrelated to JNJ-54861911. JNJ-54861911 showed dose-proportional CSF and plasma pharmacokinetic profiles. Plasma- and CSF-Aβ and CSF-sAPPβ were reduced in a dose-dependent manner. Aβ reductions (up to 95%) outlasted exposure to JNJ-54861911. APOE ε4 carrier status and baseline Aβ levels did not influence Aβ/sAPPβ reductions. CONCLUSION JNJ-54861911, a potent brain-penetrant BACE1 inhibitor, achieved high and stable Aβ reductions after single and multiple dosing in healthy participants.
Collapse
Affiliation(s)
- Maarten Timmers
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium.,Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Bianca Van Broeck
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | | | - John Slemmon
- Janssen Research and Development LLC, La Jolla, CA, USA
| | - Katja De Waepenaert
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Alberto Russu
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | | | - Hans Stieltjes
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Leslie M Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Dieder Moechars
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Marc Mercken
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Enchi Liu
- Janssen Research and Development LLC, La Jolla, CA, USA
| | - Vikash Sinha
- Janssen Research and Development LLC, Titusville, NJ, USA
| | - John Kemp
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Luc Van Nueten
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Luc Tritsmans
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Johannes Rolf Streffer
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium.,Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
24
|
Andrew RJ, Kellett KAB, Thinakaran G, Hooper NM. A Greek Tragedy: The Growing Complexity of Alzheimer Amyloid Precursor Protein Proteolysis. J Biol Chem 2016; 291:19235-44. [PMID: 27474742 DOI: 10.1074/jbc.r116.746032] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proteolysis of the amyloid precursor protein (APP) liberates various fragments including the proposed initiator of Alzheimer disease-associated dysfunctions, amyloid-β. However, recent evidence suggests that the accepted view of APP proteolysis by the canonical α-, β-, and γ-secretases is simplistic, with the discovery of a number of novel APP secretases (including δ- and η-secretases, alternative β-secretases) and additional metabolites, some of which may also cause synaptic dysfunction. Furthermore, various proteins have been identified that interact with APP and modulate its cleavage by the secretases. Here, we give an overview of the increasingly complex picture of APP proteolysis.
Collapse
Affiliation(s)
- Robert J Andrew
- From the Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, Illinois 60637 and
| | - Katherine A B Kellett
- the Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Gopal Thinakaran
- From the Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, Illinois 60637 and
| | - Nigel M Hooper
- the Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
25
|
Hartl D, Gu W, Mayhaus M, Pichler S, Schöpe J, Wagenpfeil S, Riemenschneider M. Amyloid-β Protein Precursor Cleavage Products in Postmortem Ventricular Cerebrospinal Fluid of Alzheimer's Disease Patients. J Alzheimers Dis 2016; 47:365-72. [PMID: 26401559 DOI: 10.3233/jad-150191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Accumulation and aggregation of amyloid-β (Aβ) are considered etiologic processes in Alzheimer's disease (AD). However, the roles of other AβPP cleavage products in disease pathology remain elusive. Here, we measured levels of the major secreted AβPP processing products sAβPPα, sAβPPβ, and Aβ species in postmortem collected ventricular CSF of 196 AD patients and 74 controls. In AD we identified Aβ₄₂ to decrease continuously with progressing Braak stages, whereas Aβ₄₀ was upregulated in early stages of the disease (Braak stage 4) and down-regulated with progressing pathology. Interestingly, both sAβPPα and sAβPPβ were upregulated in AD as compared to controls (sAβPPα, p = 0.02; sAβPPβ, p = 0.01). Moreover, we observed a strong positive correlation of both alternative AβPP processing products, sAβPPα and sAβPPβ (r²= 0.781; p < 0.0001). Together, our results argue for generally enhanced AβPP processing in AD patients and emphasize the necessity of analyzing the roles of all AβPP processing products in AD pathology.
Collapse
Affiliation(s)
- Daniela Hartl
- Department of Psychiatry and Psychotherapy, Saarland University Hospital, Saarland University, Homburg, Germany.,Institute for Human Genetics and Medical Genetics, Charité University Medicine, Berlin, Germany
| | - Wei Gu
- Department of Psychiatry and Psychotherapy, Saarland University Hospital, Saarland University, Homburg, Germany.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Manuel Mayhaus
- Department of Psychiatry and Psychotherapy, Saarland University Hospital, Saarland University, Homburg, Germany
| | - Sabrina Pichler
- Department of Psychiatry and Psychotherapy, Saarland University Hospital, Saarland University, Homburg, Germany
| | - Jakob Schöpe
- Institute for Biometrics, Epidemiology and Medical Informatics, Saarland University Hospital, Saarland University, Homburg, Germany
| | - Stefan Wagenpfeil
- Institute for Biometrics, Epidemiology and Medical Informatics, Saarland University Hospital, Saarland University, Homburg, Germany
| | - Matthias Riemenschneider
- Department of Psychiatry and Psychotherapy, Saarland University Hospital, Saarland University, Homburg, Germany
| |
Collapse
|
26
|
Hollands C, Bartolotti N, Lazarov O. Alzheimer's Disease and Hippocampal Adult Neurogenesis; Exploring Shared Mechanisms. Front Neurosci 2016; 10:178. [PMID: 27199641 PMCID: PMC4853383 DOI: 10.3389/fnins.2016.00178] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/07/2016] [Indexed: 12/22/2022] Open
Abstract
New neurons incorporate into the granular cell layer of the dentate gyrus throughout life. Neurogenesis is modulated by behavior and plays a major role in hippocampal plasticity. Along with older mature neurons, new neurons structure the dentate gyrus, and determine its function. Recent data suggest that the level of hippocampal neurogenesis is substantial in the human brain, suggesting that neurogenesis may have important implications for human cognition. In support of that, impaired neurogenesis compromises hippocampal function and plays a role in cognitive deficits in Alzheimer's disease mouse models. We review current work suggesting that neuronal differentiation is defective in Alzheimer's disease, leading to dysfunction of the dentate gyrus. Additionally, alterations in critical signals regulating neurogenesis, such as presenilin-1, Notch 1, soluble amyloid precursor protein, CREB, and β-catenin underlie dysfunctional neurogenesis in Alzheimer's disease. Lastly, we discuss the detectability of neurogenesis in the live mouse and human brain, as well as the therapeutic implications of enhancing neurogenesis for the treatment of cognitive deficits and Alzheimer's disease.
Collapse
Affiliation(s)
- Carolyn Hollands
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago Chicago, IL, USA
| | - Nancy Bartolotti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago Chicago, IL, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
27
|
van Maanen EMT, van Steeg TJ, Michener MS, Savage MJ, Kennedy ME, Kleijn HJ, Stone JA, Danhof M. Systems Pharmacology Analysis of the Amyloid Cascade after -Secretase Inhibition Enables the Identification of an A 42 Oligomer Pool. ACTA ACUST UNITED AC 2016; 357:205-16. [DOI: 10.1124/jpet.115.230565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/27/2016] [Indexed: 12/16/2022]
|
28
|
Lehmann S, Vialaret J, Combe GG, Bauchet L, Hanon O, Girard M, Gabelle A, Hirtz C. Stable Isotope Labeling by Amino acid in Vivo (SILAV): a new method to explore protein metabolism. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1917-1925. [PMID: 26411513 DOI: 10.1002/rcm.7289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Intravenous administration of stable isotope labeled amino acid ((13)C6-leucine) to humans recently made it possible to study the metabolism of specific biomarkers in cerebrospinal fluid (CSF) using targeted mass spectrometry (MS). This labeling approach could be of great interest for monitoring many leucine-containing peptides in parallel, using high-resolution MS. This will make it possible to quantify the rates of synthesis and clearance of a large range of proteins in humans with a view to obtaining new insights into protein metabolism processes and the pathophysiology of diseases such as Alzheimer's disease. METHODS Proteins from human lumbar and ventricular CSF samples collected at different times after intravenous (13)C6-leucine infusion were digested enzymatically with LysC/trypsin after being denatured, reduced and alkylated. Desalted tryptic peptides were fractionated using Strong Cation eXchange chromatography (SCX) and analyzed using nanoflow liquid chromatography (nano-LC) coupled to a QTOF Impact II (Bruker Daltonics) mass spectrometer. Data-dependent acquisition (DDA) mode was used to identify and quantify light and heavy (13)C6-leucine peptides. The ratios of (13)C6-leucine incorporation were calculated using the Skyline software program in order to determine the rates of appearance and clearance of proteins in the CSF. RESULTS After SCX fractionation and quadrupole time-of-flight (QTOF) analysis, 4528 peptides containing leucine were identified in five fractions prepared from 40 μL of CSF. Upon analyzing one of these fractions, 66 peptides (2.7%) corresponding to 61 individual proteins had significant and reproducible rate of (13)C6-leucine incorporation at various time points. The plots of the light-to-heavy peptide ratios showed the existence of proteins with different patterns of appearance and clearance in the CSF. CONCLUSIONS The Stable Isotope Labeling Amino acid in Vivo (SILAV) method presented here, which yields unprecedented information about protein metabolism in humans, constitutes a promising new approach which certainly holds great potential in the field of clinical proteomics.
Collapse
Affiliation(s)
- Sylvain Lehmann
- CHRU de Montpellier, Université de Montpellier and INSERM U1183, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| | - Jérôme Vialaret
- CHRU de Montpellier, Université de Montpellier and INSERM U1183, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| | - Guillaume Gras Combe
- Service de Neurochirurgie, CHRU de Montpellier, hôpital Gui de Chauliac, Montpellier, INSERM U 1051 and Université de Montpellier, Montpellier, France
| | - Luc Bauchet
- Service de Neurochirurgie, CHRU de Montpellier, hôpital Gui de Chauliac, Montpellier, INSERM U 1051 and Université de Montpellier, Montpellier, France
| | - Olivier Hanon
- AP-HP, Hôpital Broca, Service de Gériatrie, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marine Girard
- CHRU de Montpellier, Université de Montpellier and INSERM U1183, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| | - Audrey Gabelle
- CHRU de Montpellier, Université de Montpellier and INSERM U1183, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
- Centre Mémoire de Ressources et de Recherche Languedoc-Roussillon, Département de Neurologie, CHRU de Montpellier, hôpital Gui de Chauliac, Montpellier, and Université de Montpellier, Montpellier, France
| | - Christophe Hirtz
- CHRU de Montpellier, Université de Montpellier and INSERM U1183, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| |
Collapse
|
29
|
Willem M, Tahirovic S, Busche MA, Ovsepian SV, Chafai M, Kootar S, Hornburg D, Evans LDB, Moore S, Daria A, Hampel H, Müller V, Giudici C, Nuscher B, Wenninger-Weinzierl A, Kremmer E, Heneka MT, Thal DR, Giedraitis V, Lannfelt L, Müller U, Livesey FJ, Meissner F, Herms J, Konnerth A, Marie H, Haass C. η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature 2015; 526:443-7. [PMID: 26322584 DOI: 10.1038/nature14864] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/25/2015] [Indexed: 12/24/2022]
Abstract
Alzheimer disease (AD) is characterized by the accumulation of amyloid plaques, which are predominantly composed of amyloid-β peptide. Two principal physiological pathways either prevent or promote amyloid-β generation from its precursor, β-amyloid precursor protein (APP), in a competitive manner. Although APP processing has been studied in great detail, unknown proteolytic events seem to hinder stoichiometric analyses of APP metabolism in vivo. Here we describe a new physiological APP processing pathway, which generates proteolytic fragments capable of inhibiting neuronal activity within the hippocampus. We identify higher molecular mass carboxy-terminal fragments (CTFs) of APP, termed CTF-η, in addition to the long-known CTF-α and CTF-β fragments generated by the α- and β-secretases ADAM10 (a disintegrin and metalloproteinase 10) and BACE1 (β-site APP cleaving enzyme 1), respectively. CTF-η generation is mediated in part by membrane-bound matrix metalloproteinases such as MT5-MMP, referred to as η-secretase activity. η-Secretase cleavage occurs primarily at amino acids 504-505 of APP695, releasing a truncated ectodomain. After shedding of this ectodomain, CTF-η is further processed by ADAM10 and BACE1 to release long and short Aη peptides (termed Aη-α and Aη-β). CTFs produced by η-secretase are enriched in dystrophic neurites in an AD mouse model and in human AD brains. Genetic and pharmacological inhibition of BACE1 activity results in robust accumulation of CTF-η and Aη-α. In mice treated with a potent BACE1 inhibitor, hippocampal long-term potentiation was reduced. Notably, when recombinant or synthetic Aη-α was applied on hippocampal slices ex vivo, long-term potentiation was lowered. Furthermore, in vivo single-cell two-photon calcium imaging showed that hippocampal neuronal activity was attenuated by Aη-α. These findings not only demonstrate a major functionally relevant APP processing pathway, but may also indicate potential translational relevance for therapeutic strategies targeting APP processing.
Collapse
Affiliation(s)
- Michael Willem
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Marc Aurel Busche
- Department of Psychiatry and Psychotherapy, Technische Universität München, 81675 Munich, Germany.,Institute of Neuroscience, Technische Universität München, 80802 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Saak V Ovsepian
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Magda Chafai
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS), Université de Nice Sophia Antipolis, UMR 7275, 06560 Valbonne, France
| | - Scherazad Kootar
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS), Université de Nice Sophia Antipolis, UMR 7275, 06560 Valbonne, France
| | - Daniel Hornburg
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Lewis D B Evans
- Gurdon Institute, Cambridge Stem Cell Institute &Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Steven Moore
- Gurdon Institute, Cambridge Stem Cell Institute &Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Anna Daria
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Heike Hampel
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Veronika Müller
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Camilla Giudici
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Brigitte Nuscher
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | | | - Elisabeth Kremmer
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, 81377 Munich, Germany.,Institute of Molecular Immunology, German Research Center for Environmental Health, 81377 Munich, Germany
| | - Michael T Heneka
- Department of Neurology, Clinical Neuroscience Unit, University of Bonn, 53127 Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE) Bonn, 53175 Bonn, Germany
| | - Dietmar R Thal
- Institute of Pathology - Laboratory for Neuropathology, University of Ulm, 89081 Ulm, Germany
| | - Vilmantas Giedraitis
- Department of Public Health/Geriatrics, Uppsala University, 751 85 Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health/Geriatrics, Uppsala University, 751 85 Uppsala, Sweden
| | - Ulrike Müller
- Institute for Pharmacy and Molecular Biotechnology IPMB, Functional Genomics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Frederick J Livesey
- Gurdon Institute, Cambridge Stem Cell Institute &Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Felix Meissner
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Arthur Konnerth
- Institute of Neuroscience, Technische Universität München, 80802 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Hélène Marie
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS), Université de Nice Sophia Antipolis, UMR 7275, 06560 Valbonne, France
| | - Christian Haass
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, 81377 Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
30
|
Lopez-Font I, Cuchillo-Ibañez I, Sogorb-Esteve A, García-Ayllón MS, Sáez-Valero J. Transmembrane Amyloid-Related Proteins in CSF as Potential Biomarkers for Alzheimer's Disease. Front Neurol 2015; 6:125. [PMID: 26082753 PMCID: PMC4451586 DOI: 10.3389/fneur.2015.00125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/17/2015] [Indexed: 02/04/2023] Open
Abstract
In the continuing search for new cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease (AD), reasonable candidates are the secretase enzymes involved in the processing of the amyloid precursor protein (APP), as well as the large proteolytic cleavage fragments sAPPα and sAPPβ. The enzymatic activities of some of these secretases, such as BACE1 and TACE, have been investigated as potential AD biomarkers, and it has been assumed that these activities present in human CSF result from the soluble truncated forms of the membrane-bound enzymes. However, we and others recently identified soluble forms of BACE1 and APP in CSF containing the intracellular domains, as well as the multi-pass transmembrane presenilin-1 (PS1) and other subunits of γ-secretase. We also review recent findings that suggest that most of these soluble transmembrane proteins could display self-association properties based on hydrophobic and/or ionic interactions leading to the formation of heteromeric complexes. The oligomerization state of these potential new biomarkers needs to be taken into consideration for assessing their real potential as CSF biomarkers for AD by adequate molecular tools.
Collapse
Affiliation(s)
- Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| | - Inmaculada Cuchillo-Ibañez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| | - Aitana Sogorb-Esteve
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain ; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche , Elche , Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| |
Collapse
|
31
|
van der Kant R, Goldstein LSB. Cellular functions of the amyloid precursor protein from development to dementia. Dev Cell 2015; 32:502-15. [PMID: 25710536 DOI: 10.1016/j.devcel.2015.01.022] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amyloid precursor protein (APP) is a key player in Alzheimer's disease (AD). The Aβ fragments of APP are the major constituent of AD-associated amyloid plaques, and mutations or duplications of the gene coding for APP can cause familial AD. Here we review the roles of APP in neuronal development, signaling, intracellular transport, and other aspects of neuronal homeostasis. We suggest that APP acts as a signaling nexus that transduces information about a range of extracellular conditions, including neuronal damage, to induction of intracellular signaling events. Subtle disruptions of APP signaling functions may be major contributors to AD-causing neuronal dysfunction.
Collapse
Affiliation(s)
- Rik van der Kant
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA 92093, USA.
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Abstract
Many lines of evidence support that β-amyloid (Aβ) peptides play an important role in Alzheimer's disease (AD), the most common cause of dementia. But despite much effort the molecular mechanisms of how Aβ contributes to AD remain unclear. While Aβ is generated from its precursor protein throughout life, the peptide is best known as the main component of amyloid plaques, the neuropathological hallmark of AD. Reduction in Aβ has been the major target of recent experimental therapies against AD. Unfortunately, human clinical trials targeting Aβ have not shown the hoped-for benefits. Thus, doubts have been growing about the role of Aβ as a therapeutic target. Here we review evidence supporting the involvement of Aβ in AD, highlight the importance of differentiating between various forms of Aβ, and suggest that a better understanding of Aβ's precise pathophysiological role in the disease is important for correctly targeting it for potential future therapy.
Collapse
Affiliation(s)
- Gunnar K. Gouras
- />Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas T. Olsson
- />Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oskar Hansson
- />Clinical Memory Research Unit, Clinical Sciences Malmö, Lund University, Lund, Sweden
- />Memory Clinic, Skåne University Hospital, Skåne, Sweden
| |
Collapse
|
33
|
Insulin resistance in Alzheimer's disease. Neurobiol Dis 2014; 72 Pt A:92-103. [PMID: 25237037 DOI: 10.1016/j.nbd.2014.09.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 12/16/2022] Open
Abstract
Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD.
Collapse
|
34
|
Menting KW, Claassen JAHR. β-secretase inhibitor; a promising novel therapeutic drug in Alzheimer's disease. Front Aging Neurosci 2014; 6:165. [PMID: 25100992 PMCID: PMC4104928 DOI: 10.3389/fnagi.2014.00165] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/30/2014] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) and vascular dementia are responsible for up to 90% of dementia cases. According to the World Health Organization (WHO), a staggering number of 35.6 million people are currently diagnosed with dementia. Blocking disease progression or preventing AD altogether is desirable for both social and economic reasons and recently focus has shifted to a new and promising drug: the β-secretase inhibitor. Much of AD research has investigated the amyloid cascade hypothesis, which postulates that AD is caused by changes in amyloid beta (Aβ) stability and aggregation. Blocking Aβ production by inhibiting the first protease required for its generation, β-secretase/BACE1, may be the next step in blocking AD progression. In April 2012, promising phase I data on inhibitor MK-8931 was presented. This drug reduced Aβ cerebral spinal fluids (CSF) levels up to 92% and was well tolerated by patients. In March 2013 data was added from a one week trial in 32 mild to moderate AD patients, showing CSF Aβ levels decreased up to 84%. However, β-site APP cleaving enzyme 1 (BACE1) inhibitors require further research. First, greatly reducing Aβ levels through BACE1 inhibition may have harmful side effects. Second, BACE1 inhibitors have yet to pass clinical trial phase II/III and no data on possible side effects on AD patients are available. And third, there remains doubt about the clinical efficacy of BACE1 inhibitors. In moderate AD patients, Aβ plaques have already been formed. BACE1 inhibitors prevent production of new Aβ plaques, but hypothetically do not influence already existing Aβ peptides. Therefore, BACE1 inhibitors are potentially better at preventing AD instead of having therapeutic use.
Collapse
Affiliation(s)
- Kelly Willemijn Menting
- Department of Geriatric Medicine and Radboud Alzheimer Center, Radboud University Medical Center Nijmegen, Gelderland, Netherlands
| | - Jurgen A H R Claassen
- Department of Geriatric Medicine and Radboud Alzheimer Center, Radboud University Medical Center Nijmegen, Gelderland, Netherlands
| |
Collapse
|