1
|
Dabbagh A, Horn U, Kaptan M, Mildner T, Müller R, Lepsien J, Weiskopf N, Brooks JCW, Finsterbusch J, Eippert F. Reliability of task-based fMRI in the dorsal horn of the human spinal cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.572825. [PMID: 38187724 PMCID: PMC10769329 DOI: 10.1101/2023.12.22.572825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The application of functional magnetic resonance imaging (fMRI) to the human spinal cord is still a relatively small field of research and faces many challenges. Here we aimed to probe the limitations of task-based spinal fMRI at 3T by investigating the reliability of spinal cord blood oxygen level dependent (BOLD) responses to repeated nociceptive stimulation across two consecutive days in 40 healthy volunteers. We assessed the test-retest reliability of subjective ratings, autonomic responses, and spinal cord BOLD responses to short heat pain stimuli (1s duration) using the intraclass correlation coefficient (ICC). At the group level, we observed robust autonomic responses as well as spatially specific spinal cord BOLD responses at the expected location, but no spatial overlap in BOLD response patterns across days. While autonomic indicators of pain processing showed good-to-excellent reliability, both β-estimates and z-scores of task-related BOLD responses showed poor reliability across days in the target region (gray matter of the ipsilateral dorsal horn). When taking into account the sensitivity of gradient-echo echo planar imaging (GE-EPI) to draining vein signals by including the venous plexus in the analysis, we observed BOLD responses with fair reliability across days. Taken together, these results demonstrate that heat pain stimuli as short as one second are able to evoke a robust and spatially specific BOLD response, which is however strongly variable within participants across time, resulting in low reliability in the dorsal horn gray matter. Further improvements in data acquisition and analysis techniques are thus necessary before event-related spinal cord fMRI as used here can be reliably employed in longitudinal designs or clinical settings.
Collapse
Affiliation(s)
- Alice Dabbagh
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ulrike Horn
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Merve Kaptan
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, CA, USA
| | - Toralf Mildner
- Methods & Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Roland Müller
- Methods & Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jöran Lepsien
- Methods & Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, University of Leipzig, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Jonathan C W Brooks
- School of Psychology, University of East Anglia Wellcome Wolfson Brain Imaging Centre (UWWBIC), Norwich, United Kingdom
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
2
|
Sengupta A, Mishra A, Wang F, Chen LM, Gore JC. Characteristic BOLD signals are detectable in white matter of the spinal cord at rest and after a stimulus. Proc Natl Acad Sci U S A 2024; 121:e2316117121. [PMID: 38776372 PMCID: PMC11145258 DOI: 10.1073/pnas.2316117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 05/25/2024] Open
Abstract
We report the reliable detection of reproducible patterns of blood-oxygenation-level-dependent (BOLD) MRI signals within the white matter (WM) of the spinal cord during a task and in a resting state. Previous functional MRI studies have shown that BOLD signals are robustly detectable not only in gray matter (GM) in the brain but also in cerebral WM as well as the GM within the spinal cord, but similar signals in WM of the spinal cord have been overlooked. In this study, we detected BOLD signals in the WM of the spinal cord in squirrel monkeys and studied their relationships with the locations and functions of ascending and descending WM tracts. Tactile sensory stimulus -evoked BOLD signal changes were detected in the ascending tracts of the spinal cord using a general-linear model. Power spectral analysis confirmed that the amplitude at the fundamental frequency of the response to a periodic stimulus was significantly higher in the ascending tracts than the descending ones. Independent component analysis of resting-state signals identified coherent fluctuations from eight WM hubs which correspond closely to the known anatomical locations of the major WM tracts. Resting-state analyses showed that the WM hubs exhibited correlated signal fluctuations across spinal cord segments in reproducible patterns that correspond well with the known neurobiological functions of WM tracts in the spinal cord. Overall, these findings provide evidence of a functional organization of intraspinal WM tracts and confirm that they produce hemodynamic responses similar to GM both at baseline and under stimulus conditions.
Collapse
Affiliation(s)
- Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37235
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN37235
| |
Collapse
|
3
|
Seifert AC, Xu J, Kong Y, Eippert F, Miller KL, Tracey I, Vannesjo SJ. Thermal stimulus task fMRI in the cervical spinal cord at 7 Tesla. Hum Brain Mapp 2024; 45:e26597. [PMID: 38375948 PMCID: PMC10877664 DOI: 10.1002/hbm.26597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024] Open
Abstract
Although functional magnetic resonance imaging (fMRI) is widely applied in the brain, fMRI of the spinal cord is more technically demanding. Proximity to the vertebral column and lungs results in strong spatial inhomogeneity and temporal fluctuations in B0 . Increasing field strength enables higher spatial resolution and improved sensitivity to blood oxygenation level-dependent (BOLD) signal, but amplifies the effects of B0 inhomogeneity. In this work, we present the first task fMRI in the spinal cord at 7 T. Further, we compare the performance of single-shot and multi-shot 2D echo-planar imaging (EPI) protocols, which differ in sensitivity to spatial and temporal B0 inhomogeneity. The cervical spinal cords of 11 healthy volunteers were scanned at 7 T using single-shot 2D EPI at 0.75 mm in-plane resolution and multi-shot 2D EPI at 0.75 and 0.6 mm in-plane resolutions. All protocols used 3 mm slice thickness. For each protocol, the BOLD response to 13 10-s noxious thermal stimuli applied to the right thumb was acquired in a 10-min fMRI run. Image quality, temporal signal to noise ratio (SNR), and BOLD activation (percent signal change and z-stat) at both individual- and group-level were evaluated between the protocols. Temporal SNR was highest in single-shot and multi-shot 0.75 mm protocols. In group-level analyses, activation clusters appeared in all protocols in the ipsilateral dorsal quadrant at the expected C6 neurological level. In individual-level analyses, activation clusters at the expected level were detected in some, but not all subjects and protocols. Single-shot 0.75 mm generally produced the highest mean z-statistic, while multi-shot 0.60 mm produced the best-localized activation clusters and the least geometric distortion. Larger than expected within-subject segmental variation of BOLD activation along the cord was observed. Group-level sensory task fMRI of the cervical spinal cord is feasible at 7 T with single-shot or multi-shot EPI. The best choice of protocol will likely depend on the relative importance of sensitivity to activation versus spatial localization of activation for a given experiment. PRACTITIONER POINTS: First stimulus task fMRI results in the spinal cord at 7 T. Single-shot 0.75 mm 2D EPI produced the highest mean z-statistic. Multi-shot 0.60 mm 2D EPI provided the best-localized activation and least distortion.
Collapse
Affiliation(s)
- Alan C. Seifert
- Biomedical Engineering and Imaging InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Diagnostic, Molecular, and Interventional RadiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Graduate School of Biomedical SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Junqian Xu
- Department of RadiologyBaylor College of MedicineHoustonTexasUSA
- Department of PsychiatryBaylor College of MedicineHoustonTexasUSA
| | - Yazhuo Kong
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Institute of PsychologyChinese Academy of SciencesBeijingChina
| | - Falk Eippert
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Max Planck Research Group Pain PerceptionMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - S. Johanna Vannesjo
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Department of PhysicsNorwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
4
|
Kinany N, Pirondini E, Micera S, Van De Ville D. Spinal Cord fMRI: A New Window into the Central Nervous System. Neuroscientist 2023; 29:715-731. [PMID: 35822665 PMCID: PMC10623605 DOI: 10.1177/10738584221101827] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the brain, the spinal cord forms the central nervous system. Initially considered a passive relay between the brain and the periphery, the spinal cord is now recognized as being active and plastic. Yet, it remains largely overlooked by the human neuroscience community, in stark contrast with the wealth of research investigating the brain. In this review, we argue that fMRI, traditionally used to image cerebral function, can be extended beyond the brain to help unravel spinal mechanisms involved in human behaviors. To this end, we first outline strategies that have been proposed to tackle the challenges inherent to spinal cord fMRI. Then, we discuss how they have been utilized to provide insights into the functional organization of spinal sensorimotor circuits, highlighting their potential to address fundamental and clinical questions. By summarizing guidelines and applications of spinal cord fMRI, we hope to stimulate and support further research into this promising yet underexplored field.
Collapse
Affiliation(s)
- Nawal Kinany
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Elvira Pirondini
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of BioEngineering, University of Pittsburgh, PA, USA
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Translational Neural Engineering Area, The Biorobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
5
|
Chen LM, Wang F, Mishra A, Yang PF, Sengupta A, Reed JL, Gore JC. Longitudinal multiparametric MRI of traumatic spinal cord injury in animal models. Magn Reson Imaging 2023; 102:184-200. [PMID: 37343904 PMCID: PMC10528214 DOI: 10.1016/j.mri.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Multi-parametric MRI (mpMRI) technology enables non-invasive and quantitative assessments of the structural, molecular, and functional characteristics of various neurological diseases. Despite the recognized importance of studying spinal cord pathology, mpMRI applications in spinal cord research have been somewhat limited, partly due to technical challenges associated with spine imaging. However, advances in imaging techniques and improved image quality now allow longitudinal investigations of a comprehensive range of spinal cord pathological features by exploiting different endogenous MRI contrasts. This review summarizes the use of mpMRI techniques including blood oxygenation level-dependent (BOLD) functional MRI (fMRI), diffusion tensor imaging (DTI), quantitative magnetization transfer (qMT), and chemical exchange saturation transfer (CEST) MRI in monitoring different aspects of spinal cord pathology. These aspects include cyst formation and axonal disruption, demyelination and remyelination, changes in the excitability of spinal grey matter and the integrity of intrinsic functional circuits, and non-specific molecular changes associated with secondary injury and neuroinflammation. These approaches are illustrated with reference to a nonhuman primate (NHP) model of traumatic cervical spinal cord injuries (SCI). We highlight the benefits of using NHP SCI models to guide future studies of human spinal cord pathology, and demonstrate how mpMRI can capture distinctive features of spinal cord pathology that were previously inaccessible. Furthermore, the development of mechanism-based MRI biomarkers from mpMRI studies can provide clinically useful imaging indices for understanding the mechanisms by which injured spinal cords progress and repair. These biomarkers can assist in the diagnosis, prognosis, and evaluation of therapies for SCI patients, potentially leading to improved outcomes.
Collapse
Affiliation(s)
- Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
6
|
Sengupta A, Mishra A, Wang F, Chen L, Gore J. Identification of synchronous BOLD signal patterns in white matter of primate spinal cord. RESEARCH SQUARE 2023:rs.3.rs-2389151. [PMID: 36993492 PMCID: PMC10055542 DOI: 10.21203/rs.3.rs-2389151/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Functional MRI studies of the brain have shown that blood-oxygenation-level-dependent (BOLD) signals are robustly detectable not only in gray matter (GM) but also in white matter (WM). Here, we report the detection and characteristics of BOLD signals in WM of spinal cord (SC) of squirrel monkeys. Tactile stimulus-evoked BOLD signal changes were detected in the ascending sensory tracts of SC using a General-Linear Model (GLM) as well as Independent Component Analysis (ICA). ICA of resting state signals identified coherent fluctuations from eight WM hubs which correspond closely with known anatomical locations of SC WM tracts. Resting state analyses showed that the WM hubs exhibited correlated signal fluctuations within and between SC segments in specific patterns that correspond well with the known neurobiological functions of WM tracts in SC. Overall, these findings suggest WM BOLD signals in SC show similar features as GM both at baseline and under stimulus conditions.
Collapse
Affiliation(s)
| | | | - Feng Wang
- Vanderbilt University Medical Center
| | - Li Chen
- Vanderbilt University Medical Center
| | - John Gore
- Vanderbilt University Medical Center
| |
Collapse
|
7
|
Oliva V, Hartley-Davies R, Moran R, Pickering AE, Brooks JC. Simultaneous brain, brainstem and spinal cord pharmacological-fMRI reveals involvement of an endogenous opioid network in attentional analgesia. eLife 2022; 11:71877. [PMID: 35080494 PMCID: PMC8843089 DOI: 10.7554/elife.71877] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pain perception is decreased by shifting attentional focus away from a threatening event. This attentional analgesia engages parallel descending control pathways from anterior cingulate (ACC) to locus coeruleus, and ACC to periaqueductal grey (PAG) – rostral ventromedial medulla (RVM), indicating possible roles for noradrenergic or opioidergic neuromodulators. To determine which pathway modulates nociceptive activity in humans, we used simultaneous whole brain-spinal cord pharmacological-fMRI (N = 39) across three sessions. Noxious thermal forearm stimulation generated somatotopic-activation of dorsal horn (DH) whose activity correlated with pain report and mirrored attentional pain modulation. Activity in an adjacent cluster reported the interaction between task and noxious stimulus. Effective connectivity analysis revealed that ACC interacts with PAG and RVM to modulate spinal cord activity. Blocking endogenous opioids with Naltrexone impairs attentional analgesia and disrupts RVM-spinal and ACC-PAG connectivity. Noradrenergic augmentation with Reboxetine did not alter attentional analgesia. Cognitive pain modulation involves opioidergic ACC-PAG-RVM descending control which suppresses spinal nociceptive activity.
Collapse
Affiliation(s)
- Valeria Oliva
- Department of Anesthesiology, University of California, San Diego, La Jolla, United States
| | - Ron Hartley-Davies
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Rosalyn Moran
- Department of Neuroimaging, King's College London, London, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
8
|
Landelle C, Lungu O, Vahdat S, Kavounoudias A, Marchand-Pauvert V, De Leener B, Doyon J. Investigating the human spinal sensorimotor pathways through functional magnetic resonance imaging. Neuroimage 2021; 245:118684. [PMID: 34732324 DOI: 10.1016/j.neuroimage.2021.118684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/29/2023] Open
Abstract
Most of our knowledge about the human spinal ascending (sensory) and descending (motor) pathways comes from non-invasive electrophysiological investigations. However, recent methodological advances in acquisition and analyses of functional magnetic resonance imaging (fMRI) data from the spinal cord, either alone or in combination with the brain, have allowed us to gain further insights into the organization of this structure. In the current review, we conducted a systematic search to produced somatotopic maps of the spinal fMRI activity observed through different somatosensory, motor and resting-state paradigms. By cross-referencing these human neuroimaging findings with knowledge acquired through neurophysiological recordings, our review demonstrates that spinal fMRI is a powerful tool for exploring, in vivo, the human spinal cord pathways. We report strong cross-validation between task-related and resting-state fMRI in accordance with well-known hemicord, postero-anterior and rostro-caudal organization of these pathways. We also highlight the specific advantages of using spinal fMRI in clinical settings to characterize better spinal-related impairments, predict disease progression, and guide the implementation of therapeutic interventions.
Collapse
Affiliation(s)
- Caroline Landelle
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Ovidiu Lungu
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Anne Kavounoudias
- CNRS, UMR7291, Laboratory of Cognitive Neurosciences, Aix-Marseille University, Marseille, France
| | | | - Benjamin De Leener
- Department of Computer Engineering and Software Engineering, Polytechnique Montreal, Montreal, QC, Canada; CHU Sainte-Justine Research Centre, Montreal, QC, Canada
| | - Julien Doyon
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Claron J, Hingot V, Rivals I, Rahal L, Couture O, Deffieux T, Tanter M, Pezet S. Large-scale functional ultrasound imaging of the spinal cord reveals in-depth spatiotemporal responses of spinal nociceptive circuits in both normal and inflammatory states. Pain 2021; 162:1047-1059. [PMID: 32947542 PMCID: PMC7977620 DOI: 10.1097/j.pain.0000000000002078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Despite a century of research on the physiology/pathophysiology of the spinal cord in chronic pain condition, the properties of the spinal cord were rarely studied at the large-scale level from a neurovascular point of view. This is mostly due to the limited spatial and/or temporal resolution of the available techniques. Functional ultrasound imaging (fUS) is an emerging neuroimaging approach that allows, through the measurement of cerebral blood volume, the study of brain functional connectivity or functional activations with excellent spatial (100 μm) and temporal (1 msec) resolutions and a high sensitivity. The aim of this study was to increase our understanding of the spinal cord physiology through the study of the properties of spinal hemodynamic response to the natural or electrical stimulation of afferent fibers. Using a combination of fUS and ultrasound localization microscopy, the first step of this study was the fine description of the vascular structures in the rat spinal cord. Then, using either natural or electrical stimulations of different categories of afferent fibers (Aβ, Aδ, and C fibers), we could define the characteristics of the typical hemodynamic response of the rat spinal cord experimentally. We showed that the responses are fiber-specific, located ipsilaterally in the dorsal horn, and that they follow the somatotopy of afferent fiber entries in the dorsal horn and that the C-fiber response is an N-methyl-D-aspartate receptor-dependent mechanism. Finally, fUS imaging of the mesoscopic hemodynamic response induced by natural tactile stimulations revealed a potentiated response in inflammatory condition, suggesting an enhanced response to allodynic stimulations.
Collapse
Affiliation(s)
- Julien Claron
- Laboratory of Brain Plasticity, ESPCI Paris, PSL Research University, CNRS UMR 8249, Paris, France
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Vincent Hingot
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, CNRS UMRS 1158, Paris, France
| | - Line Rahal
- Laboratory of Brain Plasticity, ESPCI Paris, PSL Research University, CNRS UMR 8249, Paris, France
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Olivier Couture
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Thomas Deffieux
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Sophie Pezet
- Laboratory of Brain Plasticity, ESPCI Paris, PSL Research University, CNRS UMR 8249, Paris, France
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| |
Collapse
|
10
|
Wang F, Zu Z, Wu TL, Yan X, Lu M, Yang PF, Byun NE, Reed JL, Gore JC, Chen LM. Sensitivity and specificity of CEST and NOE MRI in injured spinal cord in monkeys. NEUROIMAGE-CLINICAL 2021; 30:102633. [PMID: 33780866 PMCID: PMC8039857 DOI: 10.1016/j.nicl.2021.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 11/04/2022]
Abstract
Compare sensitivity and specificity of CEST and NOE measures from 6-pool fitting. Differentiate regional molecular signatures at and around spinal cord injury. Provide parameters that improve the diagnostic accuracy of molecular alteration. Down-sampled data acquisition can capture the characteristic molecular profile. High translational potential for clinical assessment of spinal cord injury.
Purpose The sensitivity and accuracy of chemical exchange saturation transfer (CEST) and nuclear Overhauser enhancement (NOE) effects for assessing injury-associated changes in cervical spinal cords were evaluated in squirrel monkeys. Multiple interacting pools of protons, including one identified by an NOE at −1.6 ppm relative to water (NOE(-1.6)), were derived and quantified from fitting proton Z-spectra. The effects of down-sampled data acquisitions and corrections for non-specific factors including T1, semi-solid magnetization transfer, and direct saturation of free water (DS), were investigated. The overall goal is to develop a protocol for rapid data acquisition for assessing the molecular signatures of the injured spinal cord and its surrounding regions. Methods MRI scans were recorded of anesthetized squirrel monkeys at 9.4 T, before and after a unilateral dorsal column sectioning of the cervical spinal cord. Z-spectral images at 51 different RF offsets were acquired. The amplitudes of CEST and NOE effects from multiple proton pools were quantified using a six-pool Lorenzian fitting of each Z-spectrum (MTRmfit). In addition, down-sampled data using reduced selections of RF offsets were analyzed and compared. An apparent exchange-dependent relaxation (AREXmfit) method was also used to correct for non-specific factors in quantifying regional spectra around lesion sites. Results The parametric maps from multi-pool fitting using the complete sampling data (P51e) detected unilateral changes at and around the injury. The maps derived from selected twofold down-sampled data with appropriate interpolation (P26sI51) revealed quite similar spatial distributions of different pools as those obtained using P51e at each resonance shift. Across 10 subjects, both data acquisition schemes detected significant decreases in NOE(-3.5) and NOE(-1.6) and increases in DS(0.0) and CEST(3.5) at the lesion site relative to measures of the normal tissues before injury. AREXmfit of cysts and other abnormal tissues at and around the lesion site also exhibited significant changes, especially at 3.5, −1.6 and −3.5 ppm RF offsets. Conclusion These results confirm that a reduced set of RF offsets and down sampling are adequate for CEST imaging of injured spinal cord and allow shorter imaging times and/or permit additional signal averaging. AREXmfit correction improved the accuracy of CEST and NOE measures. The results provide a rapid (~13 mins), sensitive, and accurate protocol for deriving multiple NOE and CEST effects simultaneously in spinal cord imaging at high field.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA
| | - Tung-Lin Wu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Biomedical Engineering, Vanderbilt University, TN, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA
| | - Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA
| | - Nellie E Byun
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA; Department of Biomedical Engineering, Vanderbilt University, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, TN, USA.
| |
Collapse
|
11
|
Tinnermann A, Büchel C, Cohen-Adad J. Cortico-spinal imaging to study pain. Neuroimage 2020; 224:117439. [PMID: 33039624 DOI: 10.1016/j.neuroimage.2020.117439] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Functional magnetic resonance imaging of the brain has helped to reveal mechanisms of pain perception in health and disease. Recently, imaging approaches have been developed that allow recording neural activity simultaneously in the brain and in the spinal cord. These approaches offer the possibility to examine pain perception in the entire central pain system and in addition, to investigate cortico-spinal interactions during pain processing. Although cortico-spinal imaging is a promising technique, it bears challenges concerning data acquisition and data analysis strategies. In this review, we discuss studies that applied simultaneous imaging of the brain and spinal cord to explore central pain processing. Furthermore, we describe different MR-related acquisition techniques, summarize advantages and disadvantages of approaches that have been implemented so far and present software that has been specifically developed for the analysis of spinal fMRI data to address challenges of spinal data analysis.
Collapse
Affiliation(s)
- Alexandra Tinnermann
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck School of Cognition, Leipzig, Germany.
| | - Christian Büchel
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck School of Cognition, Leipzig, Germany
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Wu TL, Byun NE, Wang F, Mishra A, Janve VA, Chen LM, Gore JC. Longitudinal assessment of recovery after spinal cord injury with behavioral measures and diffusion, quantitative magnetization transfer and functional magnetic resonance imaging. NMR IN BIOMEDICINE 2020; 33:e4216. [PMID: 31943383 PMCID: PMC7155919 DOI: 10.1002/nbm.4216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 05/09/2023]
Abstract
Spinal cord injuries (SCIs) are a leading cause of disability and can severely impact the quality of life. However, to date, the processes of spontaneous repair of damaged spinal cord remain incompletely understood, partly due to a lack of appropriate longitudinal tracking methods. Noninvasive, multiparametric magnetic resonance imaging (MRI) provides potential biomarkers for the comprehensive evaluation of spontaneous repair after SCI. In this study in rats, a clinically relevant contusion injury was introduced at the lumbar level that impairs both hindlimb motor and sensory functions. Quantitative MRI measurements were acquired at baseline and serially post-SCI for up to 2 wk. The progressions of injury and spontaneous recovery in both white and gray matter were tracked longitudinally using pool-size ratio (PSR) measurements derived from quantitative magnetization transfer (qMT) methods, measurements of water diffusion parameters using diffusion tensor imaging (DTI) and intrasegment functional connectivity derived from resting state functional MRI. Changes in these quantitative imaging measurements were correlated with behavioral readouts. We found (a) a progressive decrease in PSR values within 2 wk post-SCI, indicating a progressive demyelination at the center of the injury that was validated with histological staining, (b) PSR correlated closely with fractional anisotropy and transverse relaxation of free water, but did not show significant correlations with behavioral recovery, and (c) preliminary evidence that SCI induced a decrease in functional connectivity between dorsal horns below the injury site at 24 h. Findings from this study not only confirm the value of qMT and DTI methods for assessing the myelination state of injured spinal cord but indicate that they may also have further implications on whether therapies targeted towards remyelination may be appropriate. Additionally, a better understanding of changes after SCI provides valuable information to guide and assess interventions.
Collapse
Affiliation(s)
- Tung-Lin Wu
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, United States
| | - Nellie E. Byun
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
| | - Vaibhav A. Janve
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
- Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, United States
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, United States
| |
Collapse
|
13
|
Optimization of a transmit/receive surface coil for squirrel monkey spinal cord imaging. Magn Reson Imaging 2020; 68:197-202. [PMID: 32087231 DOI: 10.1016/j.mri.2020.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
MR Imaging the spinal cord of non-human primates (NHP), such as squirrel monkey, is important since the injuries in NHP resemble those that afflict human spinal cords. Our previous studies have reported a multi-parametric MRI protocol, including functional MRI, diffusion tensor imaging, quantitative magnetization transfer and chemical exchange saturation transfer, which allows non-invasive detection and monitoring of injury-associated structural, functional and molecular changes over time. High signal-to-noise ratio (SNR) is critical for obtaining high-resolution images and robust estimates of MRI parameters. In this work, we describe our construction and use of a single channel coil designed to maximize the SNR for imaging the squirrel monkey cervical spinal cord in a 21 cm bore magnet at 9.4 T. We first numerically optimized the coil dimension of a single loop coil and then evaluated the benefits of a quadrature design. We then built an optimized coil based on the simulation results and compared its SNR performance with a non-optimized single coil in both phantoms and in vivo.
Collapse
|
14
|
Spatiotemporal trajectories of quantitative magnetization transfer measurements in injured spinal cord using simplified acquisitions. NEUROIMAGE-CLINICAL 2019; 23:101921. [PMID: 31491830 PMCID: PMC6639592 DOI: 10.1016/j.nicl.2019.101921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/04/2019] [Accepted: 06/30/2019] [Indexed: 12/19/2022]
Abstract
Purpose This study aims to systematically evaluate the accuracy and precision of pool size ratio (PSR) measurements from quantitative magnetization transfer (qMT) acquisitions using simplified models in the context of assessing injury-associated spatiotemporal changes in spinal cords of non-human primates. This study also aims to characterize changes in the spinal tissue pathology in individual subjects, both regionally and longitudinally, in order to demonstrate the relationship between regional tissue compositional changes and sensorimotor behavioral recovery after cervical spinal cord injury (SCI). Methods MRI scans were recorded on anesthetized monkeys at 9.4 T, before and serially after a unilateral section of the dorsal column tract. Images were acquired following saturating RF pulses at different offset frequencies. Models incorporating two pools of protons but with differing numbers of variable parameters were used to fit the data to derive qMT parameters. The results using different amounts of measured data and assuming different numbers of variable model parameters were compared. Behavioral impairments and recovery were assessed by a food grasping-retrieving task. Histological sections were obtained post mortem for validation of the injury. Results QMT fitting provided maps of pool size ratio (PSR), the relative amounts of immobilized protons exchanging magnetization compared to the “free” water. All the selected modeling approaches detected a lesion/cyst at the site of injury as significant reductions in PSR values. The regional contrasts in the PSR maps obtained using the different fittings varied, but the 2-parameter fitting results showed strong positive correlations with results from 5-parameter modeling. 2-parameter fitting results with modest (>3) RF offsets showed comparable sensitivity for detecting demyelination in white matter and loss of macromolecules in gray matter around lesion sites compared to 5-parameter fitting with fully-sampled data acquisitions. Histology confirmed that decreases of PSR corresponded to regional demyelination around lesion sites, especially when demyelination occurred along the dorsal column on the injury side. Longitudinally, PSR values of injured dorsal column tract and gray matter horns exhibited remarkable recovery that associated with behavioral improvement. Conclusion Simplified qMT modeling approaches provide efficient and sensitive means to detect and characterize injury-associated demyelination in white matter tracts and loss of macromolecules in gray matter and to monitor its recovery over time. Simplified 2-parameter and fully sampled 5-parameter qMT modeling achieved comparable accuracy and precision of PSR values. Successfully tracked and differentiated myelination states of specific WM tracts and macromolecular changes in GM horns. Recovery of WM and GM pathology assessed by qMT correlated with improvements in hand uses after injury. High translational potential for clinical studies of human patients with spinal cord injury.
Collapse
|
15
|
Wu TL, Yang PF, Wang F, Shi Z, Mishra A, Wu R, Chen LM, Gore JC. Intrinsic functional architecture of the non-human primate spinal cord derived from fMRI and electrophysiology. Nat Commun 2019; 10:1416. [PMID: 30926817 PMCID: PMC6440970 DOI: 10.1038/s41467-019-09485-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Resting-state functional MRI (rsfMRI) has recently revealed correlated signals in the spinal cord horns of monkeys and humans. However, the interpretation of these rsfMRI correlations as indicators of functional connectivity in the spinal cord remains unclear. Here, we recorded stimulus-evoked and spontaneous spiking activity and local field potentials (LFPs) from monkey spinal cord in order to validate fMRI measures. We found that both BOLD and electrophysiological signals elicited by tactile stimulation co-localized to the ipsilateral dorsal horn. Temporal profiles of stimulus-evoked BOLD signals covaried with LFP and multiunit spiking in a similar way to those observed in the brain. Functional connectivity of dorsal horns exhibited a U-shaped profile along the dorsal-intermediate-ventral axis. Overall, these results suggest that there is an intrinsic functional architecture within the gray matter of a single spinal segment, and that rsfMRI signals at high field directly reflect this underlying spontaneous neuronal activity.
Collapse
Affiliation(s)
- Tung-Lin Wu
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA.
- Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Zhaoyue Shi
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ruiqi Wu
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
16
|
Paquette T, Leblond H, Piché M. Isoflurane anesthesia does not affect spinal cord neurovascular coupling: evidence from decerebrated rats. J Physiol Sci 2019; 69:13-21. [PMID: 29600499 PMCID: PMC10717246 DOI: 10.1007/s12576-018-0607-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/22/2018] [Indexed: 01/22/2023]
Abstract
Neurological examination remains the primary clinical investigation in patients with spinal cord injury. However, neuroimaging methods such as functional magnetic resonance imaging (fMRI) are promising tools for following functional changes in the course of injury, disease and rehabilitation. However, the relationship between neuronal activity and blood flow in the spinal cord on which fMRI relies has been largely overlooked. The objective of this study was to examine neurovascular coupling in the spinal cord of decerebrated rats during electrical stimulation of the sciatic nerve with and without isoflurane anesthesia (1.2%). Local field potentials (LFP) and spinal cord blood flow (SCBF) were recorded simultaneously in the lumbosacral enlargement. Isoflurane did not significantly alter LFP (p = 0.53) and SCBF (p = 0.57) amplitude. Accordingly, neurovascular coupling remained comparable with or without isoflurane anesthesia (p = 0.39). These results support the use of isoflurane in rodents to investigate nociceptive functions of the spinal cord using fMRI.
Collapse
Affiliation(s)
- Thierry Paquette
- Department of Chiropractic, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
- CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Hugues Leblond
- CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Mathieu Piché
- Department of Chiropractic, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7.
- CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7.
| |
Collapse
|
17
|
Powers JM, Ioachim G, Stroman PW. Ten Key Insights into the Use of Spinal Cord fMRI. Brain Sci 2018; 8:E173. [PMID: 30201938 PMCID: PMC6162663 DOI: 10.3390/brainsci8090173] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 01/27/2023] Open
Abstract
A comprehensive review of the literature-to-date on functional magnetic resonance imaging (fMRI) of the spinal cord is presented. Spinal fMRI has been shown, over more than two decades of work, to be a reliable tool for detecting neural activity. We discuss 10 key points regarding the history, development, methods, and applications of spinal fMRI. Animal models have served a key purpose for the development of spinal fMRI protocols and for experimental spinal cord injury studies. Applications of spinal fMRI span from animal models across healthy and patient populations in humans using both task-based and resting-state paradigms. The literature also demonstrates clear trends in study design and acquisition methods, as the majority of studies follow a task-based, block design paradigm, and utilize variations of single-shot fast spin-echo imaging methods. We, therefore, discuss the similarities and differences of these to resting-state fMRI and gradient-echo EPI protocols. Although it is newly emerging, complex connectivity and network analysis is not only possible, but has also been shown to be reliable and reproducible in the spinal cord for both task-based and resting-state studies. Despite the technical challenges associated with spinal fMRI, this review identifies reliable solutions that have been developed to overcome these challenges.
Collapse
Affiliation(s)
- Jocelyn M Powers
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Patrick W Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada.
- Department of Biomedical Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
- Department of Physics, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
18
|
Sprenger C, Stenmans P, Tinnermann A, Büchel C. Evidence for a spinal involvement in temporal pain contrast enhancement. Neuroimage 2018; 183:788-799. [PMID: 30189340 DOI: 10.1016/j.neuroimage.2018.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/19/2018] [Accepted: 09/02/2018] [Indexed: 12/25/2022] Open
Abstract
Spatiotemporal filtering and amplification of sensory information at multiple levels during the generation of perceptual representations is a fundamental processing principle of the nervous system. While for the visual and auditory system temporal filtering of sensory signals has been noticed for a long time, respective contrast mechanisms within the nociceptive system became only recently subject of investigations, mainly in the context of offset analgesia (OA) subsequent to noxious stimulus decreases. In the present study we corroborate in a first experiment the assumption that offset analgesia involves a central component by showing that an OA-like effect accounting for 74% of a corresponding OA reference can be evoked by decomposing the stimulus offset into two separate box-car stimuli applied within the same dermatome but to separate populations of primary afferent neurons. In order to draw conclusions about the levels of the CNS at which temporal filtering of nociceptive information takes place during OA we investigate in a second experiment neuronal activity in the spinal cord during a painful thermal stimulus offset employing high-resolution fMRI in healthy volunteers. Pain-related BOLD responses in the spinal cord were significantly reduced during OA and their time course followed widely behavioral hypoalgesia, but not the thermal stimulation profile. In summary, the results suggest that temporal pain contrast enhancement during OA comprises a central mechanism and this mechanism becomes already effective at the level of the spinal cord.
Collapse
Affiliation(s)
- Christian Sprenger
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Philip Stenmans
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Alexandra Tinnermann
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
19
|
Paquette T, Jeffrey-Gauthier R, Leblond H, PichÉ M. Functional Neuroimaging of Nociceptive and Pain-Related Activity in the Spinal Cord and Brain: Insights From Neurovascular Coupling Studies. Anat Rec (Hoboken) 2018; 301:1585-1595. [PMID: 29752872 DOI: 10.1002/ar.23854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/22/2018] [Accepted: 03/31/2018] [Indexed: 12/12/2022]
Abstract
Spinal cord and brain processes underlie pain perception, which produces systemic cardiovascular changes. In turn, the autonomic nervous system regulates vascular function in the spinal cord and brain in order to adapt to these systemic changes, while neuronal activity induces local vascular changes. Thus, autonomic regulation and pain processes in the brain and spinal cord are tightly linked and interrelated. The objective of this topical review is to discuss work on neurovascular coupling during nociceptive processing in order to highlight supporting evidence and limitations for the use of cerebral and spinal fMRI to investigate pain mechanisms and spinal nociceptive processes. Work on functional neuroimaging of pain is presented and discussed in relation to available neurovascular coupling studies and related issues. Perspectives on future work are also discussed with an emphasis on differences between the brain and the spinal cord and on different approaches that may be useful to improve current methods, data analyses and interpretation. In summary, this review highlights the lack of data on neurovascular coupling during nociceptive stimulation and indicates that hemodynamic and BOLD responses measured with fMRI may be biased by nonspecific vascular changes. Future neuroimaging studies on nociceptive and pain-related processes would gain further understanding of neurovascular coupling in the brain and spinal cord and should take into account the effects of systemic vascular changes that may affect hemodynamic responses. Anat Rec, 301:1585-1595, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thierry Paquette
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Renaud Jeffrey-Gauthier
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Hugues Leblond
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Mathieu PichÉ
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| |
Collapse
|
20
|
Wu TL, Wang F, Mishra A, Wilson GH, Byun N, Chen LM, Gore JC. Resting-state functional connectivity in the rat cervical spinal cord at 9.4 T. Magn Reson Med 2018; 79:2773-2783. [PMID: 28905408 PMCID: PMC5821555 DOI: 10.1002/mrm.26905] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/25/2017] [Accepted: 08/16/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Numerous studies have adopted resting-state functional MRI methods to infer functional connectivity between cortical regions, but very few have translated them to the spinal cord, despite its critical role in the central nervous system. Resting-state functional connectivity between gray matter horns of the spinal cord has previously been shown to be detectable in humans and nonhuman primates, but it has not been reported previously in rodents. METHODS Resting-state functional MRI of the cervical spinal cord of live anesthetized rats was performed at 9.4 T. The quality of the functional images acquired was assessed, and quantitative analyses of functional connectivity in C4-C7 of the spinal cord were derived. RESULTS Robust gray matter horn-to-horn connectivity patterns were found that were statistically significant when compared with adjacent control regions. Specifically, dorsal-dorsal and ventral-ventral connectivity measurements were most prominent, while ipsilateral dorsal-ventral connectivity was also observed but to a lesser extent. Quantitative evaluation of reproducibility also revealed moderate robustness in the bilateral sensory and motor networks that was weaker in the dorsal-ventral connections. CONCLUSIONS This study reports the first evidence of resting-state functional circuits within gray matter in the rat spinal cord, and verifies their detectability using resting-state functional MRI at 9.4 T. Magn Reson Med 79:2773-2783, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Tung-Lin Wu
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States
| | - George H. Wilson
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
| | - Nellie Byun
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
21
|
Correlated Disruption of Resting-State fMRI, LFP, and Spike Connectivity between Area 3b and S2 following Spinal Cord Injury in Monkeys. J Neurosci 2017; 37:11192-11203. [PMID: 29038239 DOI: 10.1523/jneurosci.2318-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/04/2023] Open
Abstract
This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans.SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened resting-state fMRI functional connectivity (FC) in input-deprived and reorganized digit regions in area 3b of the S1 and S2. Concurrent reductions in local field potential and spike FC validated the use of resting-state fMRI signals for probing neural intrinsic FC alterations in pathological deafferented cortex, and indicated that disrupted FC between mesoscale functionally highly related regions may contribute to the behavioral impairments.
Collapse
|
22
|
Wang F, Zu Z, Wu R, Wu TL, Gore JC, Chen LM. MRI evaluation of regional and longitudinal changes in Z-spectra of injured spinal cord of monkeys. Magn Reson Med 2017; 79:1070-1082. [PMID: 28547862 DOI: 10.1002/mrm.26756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 01/21/2023]
Abstract
PURPOSE In principle, MR methods that exploit magnetization transfer (MT) may be used to quantify changes in the molecular composition of tissues after injury. The ability to track such changes in injured spinal cord may allow more precise assessment of the state of neural tissues. METHODS Z-Spectra were obtained from the cervical spinal cord before and after a unilateral dorsal column lesion in monkeys at 9.4T. The amplitudes of chemical exchange saturation transfer (CEST) and nuclear Overhauser enhancement (NOE) effects from multiple proton pools, along with nonspecific semisolid MT effects from immobile macromolecules, were quantified using a five-peak Lorenzian fitting of each Z-spectrum. RESULTS Abnormal tissues/cysts that formed around lesion sites exhibited relatively low correlations between their Z-spectra and that of normal gray matter (GM). Compared with normal GM, cysts showed strong CEST but weak semisolid MT and NOE effects after injury. The abnormal tissues around lesion sites were heterogeneous and showed different regional Z-spectra. Different regional correlations between proton pools were observed. Longitudinally, injured spinal cord tissue exhibited remarkable recovery in all subjects. CONCLUSION Characterization of multiple proton pools from Z-spectra permitted noninvasive, regional, quantitative assessments of changes in tissue composition of injured spinal cord over time. Magn Reson Med 79:1070-1082, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Feng Wang
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Zhongliang Zu
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Ruiqi Wu
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Tung-Lin Wu
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Li Min Chen
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Development of a puff- and suction-type pressure stimulator for human tactile studies. Behav Res Methods 2017; 50:703-710. [PMID: 28411335 DOI: 10.3758/s13428-017-0895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we developed a tactile stimulator capable of administering either puff- or suction-type stimuli. The system is composed of three parts: a control unit, an air-handling unit, and a stimulation unit. The control unit controls the type, intensity, and time of stimulation. The air-handling unit delivers the stimulation power quantitatively to the stimulation unit, as commanded by the control unit. The stimulation unit stably administers either type of pressure to the skin, without any change of the tactor. Although the design of the stimulator is simple, it allows for five levels of control of the stimulation intensity (2-6 psi) and 0.1-s steps of control of the stimulation time, as we confirmed by tests. Preliminary electroencephalographic and event-related potential (ERP) studies of our system in humans confirmed the presence of N100 and P300 waves at standard electrode position C3, which are related to perception and cognition, respectively, in the somatosensory area of the brain. In addition, different stimulation types (puff and suction) and intensities (2 and 6 psi) were reflected in different peak-to-peak amplitudes and slopes of the mean ERP signal. The system developed in this study is expected to contribute to human tactile studies by providing the ability to administer puff- or suction-type stimuli interchangeably.
Collapse
|
24
|
Chen LM, Yang PF, Wang F, Mishra A, Shi Z, Wu R, Wu TL, Wilson GH, Ding Z, Gore JC. Biophysical and neural basis of resting state functional connectivity: Evidence from non-human primates. Magn Reson Imaging 2017; 39:71-81. [PMID: 28161319 DOI: 10.1016/j.mri.2017.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
Functional MRI (fMRI) has evolved from simple observations of regional changes in MRI signals caused by cortical activity induced by a task or stimulus, to task-free acquisitions of images in a resting state. Such resting state signals contain low frequency fluctuations which may be correlated between voxels, and strongly correlated regions are deemed to reflect functional connectivity within synchronized circuits. Resting state functional connectivity (rsFC) measures have been widely adopted by the neuroscience community, and are being used and interpreted as indicators of intrinsic neural circuits and their functional states in a broad range of applications, both basic and clinical. However, there has been relatively little work reported that validates whether inter-regional correlations in resting state fluctuations of fMRI (rsfMRI) signals actually measure functional connectivity between brain regions, or to establish how MRI data correlate with other metrics of functional connectivity. In this mini-review, we summarize recent studies of rsFC within mesoscopic scale cortical networks (100μm-10mm) within a well defined functional region of primary somatosensory cortex (S1), as well as spinal cord and brain white matter in non-human primates, in which we have measured spatial patterns of resting state correlations and validated their interpretation with electrophysiological signals and anatomic connections. Moreover, we emphasize that low frequency correlations are a general feature of neural systems, as evidenced by their presence in the spinal cord as well as white matter. These studies demonstrate the valuable role of high field MRI and invasive measurements in an animal model to inform the interpretation of human imaging studies.
Collapse
Affiliation(s)
- Li Min Chen
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zhaoyue Shi
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Ruiqi Wu
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tung-Lin Wu
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - George H Wilson
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
25
|
Eippert F, Kong Y, Jenkinson M, Tracey I, Brooks JCW. Denoising spinal cord fMRI data: Approaches to acquisition and analysis. Neuroimage 2016; 154:255-266. [PMID: 27693613 DOI: 10.1016/j.neuroimage.2016.09.065] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 01/11/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) of the human spinal cord is a difficult endeavour due to the cord's small cross-sectional diameter, signal drop-out as well as image distortion due to magnetic field inhomogeneity, and the confounding influence of physiological noise from cardiac and respiratory sources. Nevertheless, there is great interest in spinal fMRI due to the spinal cord's role as the principal sensorimotor interface between the brain and the body and its involvement in a variety of sensory and motor pathologies. In this review, we give an overview of the various methods that have been used to address the technical challenges in spinal fMRI, with a focus on reducing the impact of physiological noise. We start out by describing acquisition methods that have been tailored to the special needs of spinal fMRI and aim to increase the signal-to-noise ratio and reduce distortion in obtained images. Following this, we concentrate on image processing and analysis approaches that address the detrimental effects of noise. While these include variations of standard pre-processing methods such as motion correction and spatial filtering, the main focus lies on denoising techniques that can be applied to task-based as well as resting-state data sets. We review both model-based approaches that rely on externally acquired respiratory and cardiac signals as well as data-driven approaches that estimate and correct for noise using the data themselves. We conclude with an outlook on techniques that have been successfully applied for noise reduction in brain imaging and whose use might be beneficial for fMRI of the human spinal cord.
Collapse
Affiliation(s)
- Falk Eippert
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yazhuo Kong
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mark Jenkinson
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Irene Tracey
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
26
|
Weber KA, Chen Y, Wang X, Kahnt T, Parrish TB. Functional magnetic resonance imaging of the cervical spinal cord during thermal stimulation across consecutive runs. Neuroimage 2016; 143:267-279. [PMID: 27616641 DOI: 10.1016/j.neuroimage.2016.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/19/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
The spinal cord is the first site of nociceptive processing in the central nervous system and has a role in the development and perpetuation of clinical pain states. Advancements in functional magnetic resonance imaging are providing a means to non-invasively measure spinal cord function, and functional magnetic resonance imaging may provide an objective method to study spinal cord nociceptive processing in humans. In this study, we tested the validity and reliability of functional magnetic resonance imaging using a selective field-of-view gradient-echo echo-planar-imaging sequence to detect activity induced blood oxygenation level-dependent signal changes in the cervical spinal cord of healthy volunteers during warm and painful thermal stimulation across consecutive runs. At the group and subject level, the activity was localized more to the dorsal hemicord, the spatial extent and magnitude of the activity was greater for the painful stimulus than the warm stimulus, and the spatial extent and magnitude of the activity exceeded that of a control analysis. Furthermore, the spatial extent of the activity for the painful stimuli increased across the runs likely reflecting sensitization. Overall, the spatial localization of the activity varied considerably across the runs, but despite this variability, a machine-learning algorithm was able to successfully decode the stimuli in the spinal cord based on the distributed pattern of the activity. In conclusion, we were able to successfully detect and characterize cervical spinal cord activity during thermal stimulation at the group and subject level.
Collapse
Affiliation(s)
- Kenneth A Weber
- Department of Radiology, Northwestern University, 737 North Michigan Avenue, Suite 1600, Chicago, IL 60611, USA.
| | - Yufen Chen
- Department of Radiology, Northwestern University, 737 North Michigan Avenue, Suite 1600, Chicago, IL 60611, USA
| | - Xue Wang
- Department of Radiology, Northwestern University, 737 North Michigan Avenue, Suite 1600, Chicago, IL 60611, USA
| | - Thorsten Kahnt
- Department of Neurology, Northwestern University, 303 East Chicago Avenue, Ward 13-006, Chicago, IL 60611, USA
| | - Todd B Parrish
- Department of Radiology, Northwestern University, 737 North Michigan Avenue, Suite 1600, Chicago, IL 60611, USA
| |
Collapse
|
27
|
Reed JL, Liao CC, Qi HX, Kaas JH. Plasticity and Recovery After Dorsal Column Spinal Cord Injury in Nonhuman Primates. J Exp Neurosci 2016; 10:11-21. [PMID: 27578996 PMCID: PMC4991577 DOI: 10.4137/jen.s40197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 12/15/2022] Open
Abstract
Here, we review recent work on plasticity and recovery after dorsal column spinal cord injury in nonhuman primates. Plasticity in the adult central nervous system has been established and studied for the past several decades; however, capacities and limits of plasticity are still under investigation. Studies of plasticity include assessing multiple measures before and after injury in animal models. Such studies are particularly important for improving recovery after injury in patients. In summarizing work by our research team and others, we suggest how the findings from plasticity studies in nonhuman primate models may affect therapeutic interventions for conditions involving sensory loss due to spinal cord injury.
Collapse
Affiliation(s)
- Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|