1
|
Markovic T, Higginbotham J, Ruyle B, Massaly N, Yoon HJ, Kuo CC, Kim JR, Yi J, Garcia JJ, Sze E, Abt J, Teich RH, Dearman JJ, McCall JG, Morón JA. A locus coeruleus to dorsal hippocampus pathway mediates cue-induced reinstatement of opioid self-administration in male and female rats. Neuropsychopharmacology 2024; 49:915-923. [PMID: 38374364 PMCID: PMC11039689 DOI: 10.1038/s41386-024-01828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Opioid use disorder is a chronic relapsing disorder encompassing misuse, dependence, and addiction to opioid drugs. Long term maintenance of associations between the reinforcing effects of the drug and the cues associated with its intake are a leading cause of relapse. Indeed, exposure to the salient drug-associated cues can lead to drug cravings and drug seeking behavior. The dorsal hippocampus (dHPC) and locus coeruleus (LC) have emerged as important structures for linking the subjective rewarding effects of opioids with environmental cues. However, their role in cue-induced reinstatement of opioid use remains to be further elucidated. In this study, we showed that chemogenetic inhibition of excitatory dHPC neurons during re-exposure to drug-associated cues significantly attenuates cue-induced reinstatement of morphine-seeking behavior. In addition, the same manipulation reduced reinstatement of sucrose-seeking behavior but failed to alter memory recall in the object location task. Finally, intact activity of tyrosine hydroxylase (TH) LC-dHPCTh afferents is necessary to drive cue induced reinstatement of morphine-seeking as inhibition of this pathway blunts cue-induced drug-seeking behavior. Altogether, these studies show an important role of the dHPC and LC-dHPCTh pathway in mediating cue-induced reinstatement of opioid seeking.
Collapse
Affiliation(s)
- Tamara Markovic
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Jessica Higginbotham
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian Ruyle
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Hye Jean Yoon
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, MO, USA
| | - Jenny R Kim
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, MO, USA
| | - Jiwon Yi
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeniffer J Garcia
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric Sze
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Julian Abt
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Rachel H Teich
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Joanna J Dearman
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, MO, USA
| | - Jose A Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA.
- Pain Center, Washington University in St Louis, St. Louis, MO, USA.
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA.
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Fiorilli J, Marchesi P, Ruikes T, Huis in ‘t Veld G, Buckton R, Quintero MD, Reiten I, Bjaalie JG, Pennartz CMA. Neural correlates of object identity and reward outcome in the sensory cortical-hippocampal hierarchy: coding of motivational information in perirhinal cortex. Cereb Cortex 2024; 34:bhae002. [PMID: 38314581 PMCID: PMC10847907 DOI: 10.1093/cercor/bhae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Neural circuits support behavioral adaptations by integrating sensory and motor information with reward and error-driven learning signals, but it remains poorly understood how these signals are distributed across different levels of the corticohippocampal hierarchy. We trained rats on a multisensory object-recognition task and compared visual and tactile responses of simultaneously recorded neuronal ensembles in somatosensory cortex, secondary visual cortex, perirhinal cortex, and hippocampus. The sensory regions primarily represented unisensory information, whereas hippocampus was modulated by both vision and touch. Surprisingly, the sensory cortices and the hippocampus coded object-specific information, whereas the perirhinal cortex did not. Instead, perirhinal cortical neurons signaled trial outcome upon reward-based feedback. A majority of outcome-related perirhinal cells responded to a negative outcome (reward omission), whereas a minority of other cells coded positive outcome (reward delivery). Our results highlight a distributed neural coding of multisensory variables in the cortico-hippocampal hierarchy. Notably, the perirhinal cortex emerges as a crucial region for conveying motivational outcomes, whereas distinct functions related to object identity are observed in the sensory cortices and hippocampus.
Collapse
Affiliation(s)
- Julien Fiorilli
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Pietro Marchesi
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Thijs Ruikes
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Gerjan Huis in ‘t Veld
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Rhys Buckton
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Mariana D Quintero
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Ingrid Reiten
- Institute of Basic Medical Sciences, University of Oslo, NO-0316 Oslo, Norway
| | - Jan G Bjaalie
- Institute of Basic Medical Sciences, University of Oslo, NO-0316 Oslo, Norway
| | - Cyriel M A Pennartz
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
3
|
Levcik D, Sugi AH, Aguilar-Rivera M, Pochapski JA, Baltazar G, Pulido LN, Villas-Boas CA, Fuentes-Flores R, Nicola SM, Da Cunha C. Nucleus Accumbens Shell Neurons Encode the Kinematics of Reward Approach Locomotion. Neuroscience 2023; 524:181-196. [PMID: 37330195 PMCID: PMC10527230 DOI: 10.1016/j.neuroscience.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
The nucleus accumbens (NAc) is considered an interface between motivation and action, with NAc neurons playing an important role in promoting reward approach. However, the encoding by NAc neurons that contributes to this role remains unknown. We recorded 62 NAc neurons in male Wistar rats (n = 5) running towards rewarded locations in an 8-arm radial maze. Variables related to locomotor approach kinematics were the best predictors of the firing rate for most NAc neurons. Nearly 18% of the recorded neurons were inhibited during the entire approach run (locomotion-off cells), suggesting that reduction in firing of these neurons promotes initiation of locomotor approach. 27% of the neurons presented a peak of activity during acceleration followed by a valley during deceleration (acceleration-on cells). Together, these neurons accounted for most of the speed and acceleration encoding identified in our analysis. In contrast, a further 16% of neurons presented a valley during acceleration followed by a peak just prior to or after reaching reward (deceleration-on cells). These findings suggest that these three classes of NAc neurons influence the time course of speed changes during locomotor approach to reward.
Collapse
Affiliation(s)
- David Levcik
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil; Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Adam H Sugi
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil; Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil
| | - Marcelo Aguilar-Rivera
- Department of Bioengineering, University of California, 9500 Gilman Drive MC 0412, La Jolla, San Diego 92093, USA
| | - José A Pochapski
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil; Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Gabriel Baltazar
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil; Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil
| | - Laura N Pulido
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil; Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Cyrus A Villas-Boas
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil
| | - Romulo Fuentes-Flores
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Independencia 8380453, Santiago, Chile
| | - Saleem M Nicola
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; Department of Psychiatry, Albert Einstein College of Medicine, New York, USA
| | - Claudio Da Cunha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, 81531-980 Curitiba, Brazil; Department of Pharmacology, Universidade Federal do Paraná, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil.
| |
Collapse
|
4
|
Mertens PEC, Marchesi P, Ruikes TR, Oude Lohuis M, Krijger Q, Pennartz CMA, Lansink CS. Coherent mapping of position and head direction across auditory and visual cortex. Cereb Cortex 2023; 33:7369-7385. [PMID: 36967108 PMCID: PMC10267650 DOI: 10.1093/cercor/bhad045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 09/21/2024] Open
Abstract
Neurons in primary visual cortex (V1) may not only signal current visual input but also relevant contextual information such as reward expectancy and the subject's spatial position. Such contextual representations need not be restricted to V1 but could participate in a coherent mapping throughout sensory cortices. Here, we show that spiking activity coherently represents a location-specific mapping across auditory cortex (AC) and lateral, secondary visual cortex (V2L) of freely moving rats engaged in a sensory detection task on a figure-8 maze. Single-unit activity of both areas showed extensive similarities in terms of spatial distribution, reliability, and position coding. Importantly, reconstructions of subject position based on spiking activity displayed decoding errors that were correlated between areas. Additionally, we found that head direction, but not locomotor speed or head angular velocity, was an important determinant of activity in AC and V2L. By contrast, variables related to the sensory task cues or to trial correctness and reward were not markedly encoded in AC and V2L. We conclude that sensory cortices participate in coherent, multimodal representations of the subject's sensory-specific location. These may provide a common reference frame for distributed cortical sensory and motor processes and may support crossmodal predictive processing.
Collapse
Affiliation(s)
- Paul E C Mertens
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Pietro Marchesi
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Thijs R Ruikes
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Matthijs Oude Lohuis
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Quincy Krijger
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Cyriel M A Pennartz
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Carien S Lansink
- Center for Neuroscience, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
5
|
Yu J, Sesack SR, Huang Y, Schlüter OM, Grace AA, Dong Y. Contingent Amygdala Inputs Trigger Heterosynaptic LTP at Hippocampus-To-Accumbens Synapses. J Neurosci 2022; 42:6581-6592. [PMID: 35840324 PMCID: PMC9410749 DOI: 10.1523/jneurosci.0838-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
The nucleus accumbens shell (NAcSh) is a key brain region where environmental cues acquire incentive salience to reinforce motivated behaviors. Principal medium spiny neurons (MSNs) in the NAcSh receive extensive glutamatergic projections from limbic regions, among which, the ventral hippocampus (vH) transmits information enriched in contextual cues, and the basolateral amygdala (BLA) encodes real-time arousing states. The vH and BLA project convergently to NAcSh MSNs, both activated in a time-locked manner on a cue-conditioned motivational action. In brain slices prepared from male and female mice, we show that co-activation of the two projections induces long-term potentiation (LTP) at vH-to-NAcSh synapses without affecting BLA-to-NAcSh synapses, revealing a heterosynaptic mechanism through which BLA signals persistently increase the temporally contingent vH-to-NAcSh transmission. Furthermore, this LTP is more prominent in dopamine D1 receptor-expressing (D1) MSNs than D2 MSNs and can be prevented by inhibition of either D1 receptors or dopaminergic terminals in NAcSh. This heterosynaptic LTP may provide a dopamine-guided mechanism through which vH-encoded cue inputs that are contingent to BLA activation acquire increased circuit representation to reinforce behavior.SIGNIFICANCE STATEMENT In motivated behaviors, environmental cues associated with arousing stimuli acquire increased incentive salience, processes mediated in part by the nucleus accumbens (NAc). NAc principal neurons receive glutamatergic projections from the ventral hippocampus (vH) and basolateral amygdala (BLA), which transmit information encoding contextual cues and affective states, respectively. Our results show that co-activation of the two projections induces long-term potentiation (LTP) at vH-to-NAc synapses without affecting BLA-to-NAc synapses, revealing a heterosynaptic mechanism through which BLA signals potentiate the temporally contingent vH-to-NAc transmission. Furthermore, this LTP is prevented by inhibition of either D1 receptors or dopaminergic axons. This heterosynaptic LTP may provide a dopamine-guided mechanism through which vH-encoded cue inputs that are contingent to BLA activation acquire increased circuit representation to reinforce behavior.
Collapse
Affiliation(s)
- Jun Yu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Susan R Sesack
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Yanhua Huang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Oliver M Schlüter
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
6
|
Ledergerber D, Battistin C, Blackstad JS, Gardner RJ, Witter MP, Moser MB, Roudi Y, Moser EI. Task-dependent mixed selectivity in the subiculum. Cell Rep 2021; 35:109175. [PMID: 34038726 PMCID: PMC8170370 DOI: 10.1016/j.celrep.2021.109175] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
CA1 and subiculum (SUB) connect the hippocampus to numerous output regions. Cells in both areas have place-specific firing fields, although they are more dispersed in SUB. Weak responses to head direction and running speed have been reported in both regions. However, how such information is encoded in CA1 and SUB and the resulting impact on downstream targets are poorly understood. Here, we estimate the tuning of simultaneously recorded CA1 and SUB cells to position, head direction, and speed. Individual neurons respond conjunctively to these covariates in both regions, but the degree of mixed representation is stronger in SUB, and more so during goal-directed spatial navigation than free foraging. Each navigational variable could be decoded with higher precision, from a similar number of neurons, in SUB than CA1. The findings point to a possible contribution of mixed-selective coding in SUB to efficient transmission of hippocampal representations to widespread brain regions. CA1 and subiculum neurons respond conjunctively to position, head direction, and speed The degree of conjunctive coding (“mixed selectivity”) is stronger in the subiculum Mixed selectivity is stronger during goal-directed navigation than in free foraging Decoding of each navigational covariate is more accurate with mixed selectivity
Collapse
Affiliation(s)
- Debora Ledergerber
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway.
| | - Claudia Battistin
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway
| | - Jan Sigurd Blackstad
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway
| | - Richard J Gardner
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway
| | - Yasser Roudi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway.
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrre s gate 9, MTFS, 7489 Trondheim, Norway.
| |
Collapse
|
7
|
Sosa M, Joo HR, Frank LM. Dorsal and Ventral Hippocampal Sharp-Wave Ripples Activate Distinct Nucleus Accumbens Networks. Neuron 2019; 105:725-741.e8. [PMID: 31864947 DOI: 10.1016/j.neuron.2019.11.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/08/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022]
Abstract
Memories of positive experiences link places, events, and reward outcomes. These memories recruit interactions between the hippocampus and nucleus accumbens (NAc). Both dorsal and ventral hippocampus (dH and vH) project to the NAc, but it remains unknown whether dH and vH act in concert or separately to engage NAc representations related to space and reward. We recorded simultaneously from the dH, vH, and NAc of rats during an appetitive spatial task and focused on hippocampal sharp-wave ripples (SWRs) to identify times of memory reactivation across brain regions. Here, we show that dH and vH awake SWRs occur asynchronously and activate distinct and opposing patterns of NAc spiking. Only NAc neurons activated during dH SWRs were tuned to task- and reward-related information. These temporally and anatomically separable hippocampal-NAc interactions point to distinct channels of mnemonic processing in the NAc, with the dH-NAc channel specialized for spatial task and reward information. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Marielena Sosa
- Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hannah R Joo
- Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Loren M Frank
- Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA 94158, USA.
| |
Collapse
|
8
|
Bos JJ, Vinck M, Marchesi P, Keestra A, van Mourik-Donga LA, Jackson JC, Verschure PFMJ, Pennartz CMA. Multiplexing of Information about Self and Others in Hippocampal Ensembles. Cell Rep 2019; 29:3859-3871.e6. [PMID: 31851919 DOI: 10.1016/j.celrep.2019.11.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022] Open
Abstract
In addition to coding a subject's location in space, the hippocampus has been suggested to code social information, including the spatial position of conspecifics. "Social place cells" have been reported for tasks in which an observer mimics the behavior of a demonstrator. We examine whether rat hippocampal neurons may encode the behavior of a minirobot, but without requiring the animal to mimic it. Rather than finding social place cells, we observe that robot behavioral patterns modulate place fields coding animal position. This modulation may be confounded by correlations between robot movement and changes in the animal's position. Although rat position indeed significantly predicts robot behavior, we find that hippocampal ensembles code additional information about robot movement patterns. Fast-spiking interneurons are particularly informative about robot position and global behavior. In conclusion, when the animal's own behavior is conditional on external agents, the hippocampus multiplexes information about self and others.
Collapse
Affiliation(s)
- Jeroen J Bos
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin Vinck
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands; Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
| | - Pietro Marchesi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Amos Keestra
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Laura A van Mourik-Donga
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Jadin C Jackson
- Medtronic, 7000 Central Avenue NE, Minneapolis, MN 55432, USA
| | - Paul F M J Verschure
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Ahrens AM, Ahmed OJ. Neural circuits linking sleep and addiction: Animal models to understand why select individuals are more vulnerable to substance use disorders after sleep deprivation. Neurosci Biobehav Rev 2019; 108:435-444. [PMID: 31756346 DOI: 10.1016/j.neubiorev.2019.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/26/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
Individuals differ widely in their drug-craving behaviors. One reason for these differences involves sleep. Sleep disturbances lead to an increased risk of substance use disorders and relapse in only some individuals. While animal studies have examined the impact of sleep on reward circuitry, few have addressed the role of individual differences in the effects of altered sleep. There does, however, exist a rodent model of individual differences in reward-seeking behavior: the sign/goal-tracker model of Pavlovian conditioned approach. In this model, only some rats show the key behavioral traits associated with addiction, including impulsivity and poor attentional control, making this an ideal model system to examine individually distinct sleep-reward interactions. Here, we describe how the limbic neural circuits responsible for individual differences in incentive motivation overlap with those involved in sleep-wake regulation, and how this model can elucidate the common underlying mechanisms. Consideration of individual differences in preclinical models would improve our understanding of how sleep interacts with motivational systems, and why sleep deprivation contributes to addiction in only select individuals.
Collapse
Affiliation(s)
| | - Omar J Ahmed
- Dept. of Psychology, United States; Neuroscience Graduate Program, United States; Michigan Center for Integrative Research in Critical Care, United States; Kresge Hearing Research Institute, United States; Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
10
|
Rusu SI, Pennartz CMA. Learning, memory and consolidation mechanisms for behavioral control in hierarchically organized cortico-basal ganglia systems. Hippocampus 2019; 30:73-98. [PMID: 31617622 PMCID: PMC6972576 DOI: 10.1002/hipo.23167] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/05/2023]
Abstract
This article aims to provide a synthesis on the question how brain structures cooperate to accomplish hierarchically organized behaviors, characterized by low‐level, habitual routines nested in larger sequences of planned, goal‐directed behavior. The functioning of a connected set of brain structures—prefrontal cortex, hippocampus, striatum, and dopaminergic mesencephalon—is reviewed in relation to two important distinctions: (a) goal‐directed as opposed to habitual behavior and (b) model‐based and model‐free learning. Recent evidence indicates that the orbitomedial prefrontal cortices not only subserve goal‐directed behavior and model‐based learning, but also code the “landscape” (task space) of behaviorally relevant variables. While the hippocampus stands out for its role in coding and memorizing world state representations, it is argued to function in model‐based learning but is not required for coding of action–outcome contingencies, illustrating that goal‐directed behavior is not congruent with model‐based learning. While the dorsolateral and dorsomedial striatum largely conform to the dichotomy between habitual versus goal‐directed behavior, ventral striatal functions go beyond this distinction. Next, we contextualize findings on coding of reward‐prediction errors by ventral tegmental dopamine neurons to suggest a broader role of mesencephalic dopamine cells, viz. in behavioral reactivity and signaling unexpected sensory changes. We hypothesize that goal‐directed behavior is hierarchically organized in interconnected cortico‐basal ganglia loops, where a limbic‐affective prefrontal‐ventral striatal loop controls action selection in a dorsomedial prefrontal–striatal loop, which in turn regulates activity in sensorimotor‐dorsolateral striatal circuits. This structure for behavioral organization requires alignment with mechanisms for memory formation and consolidation. We propose that frontal corticothalamic circuits form a high‐level loop for memory processing that initiates and temporally organizes nested activities in lower‐level loops, including the hippocampus and the ripple‐associated replay it generates. The evidence on hierarchically organized behavior converges with that on consolidation mechanisms in suggesting a frontal‐to‐caudal directionality in processing control.
Collapse
Affiliation(s)
- Silviu I Rusu
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Pennartz CMA, Farisco M, Evers K. Indicators and Criteria of Consciousness in Animals and Intelligent Machines: An Inside-Out Approach. Front Syst Neurosci 2019; 13:25. [PMID: 31379521 PMCID: PMC6660257 DOI: 10.3389/fnsys.2019.00025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/24/2019] [Indexed: 01/02/2023] Open
Abstract
In today's society, it becomes increasingly important to assess which non-human and non-verbal beings possess consciousness. This review article aims to delineate criteria for consciousness especially in animals, while also taking into account intelligent artifacts. First, we circumscribe what we mean with "consciousness" and describe key features of subjective experience: qualitative richness, situatedness, intentionality and interpretation, integration and the combination of dynamic and stabilizing properties. We argue that consciousness has a biological function, which is to present the subject with a multimodal, situational survey of the surrounding world and body, subserving complex decision-making and goal-directed behavior. This survey reflects the brain's capacity for internal modeling of external events underlying changes in sensory state. Next, we follow an inside-out approach: how can the features of conscious experience, correlating to mechanisms inside the brain, be logically coupled to externally observable ("outside") properties? Instead of proposing criteria that would each define a "hard" threshold for consciousness, we outline six indicators: (i) goal-directed behavior and model-based learning; (ii) anatomic and physiological substrates for generating integrative multimodal representations; (iii) psychometrics and meta-cognition; (iv) episodic memory; (v) susceptibility to illusions and multistable perception; and (vi) specific visuospatial behaviors. Rather than emphasizing a particular indicator as being decisive, we propose that the consistency amongst these indicators can serve to assess consciousness in particular species. The integration of scores on the various indicators yields an overall, graded criterion for consciousness, somewhat comparable to the Glasgow Coma Scale for unresponsive patients. When considering theoretically derived measures of consciousness, it is argued that their validity should not be assessed on the basis of a single quantifiable measure, but requires cross-examination across multiple pieces of evidence, including the indicators proposed here. Current intelligent machines, including deep learning neural networks (DLNNs) and agile robots, are not indicated to be conscious yet. Instead of assessing machine consciousness by a brief Turing-type of test, evidence for it may gradually accumulate when we study machines ethologically and across time, considering multiple behaviors that require flexibility, improvisation, spontaneous problem-solving and the situational conspectus typically associated with conscious experience.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Research Priority Area, Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Michele Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| | - Kathinka Evers
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Trouche S, Koren V, Doig NM, Ellender TJ, El-Gaby M, Lopes-Dos-Santos V, Reeve HM, Perestenko PV, Garas FN, Magill PJ, Sharott A, Dupret D. A Hippocampus-Accumbens Tripartite Neuronal Motif Guides Appetitive Memory in Space. Cell 2019; 176:1393-1406.e16. [PMID: 30773318 PMCID: PMC6424821 DOI: 10.1016/j.cell.2018.12.037] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/17/2018] [Accepted: 12/20/2018] [Indexed: 01/17/2023]
Abstract
Retrieving and acting on memories of food-predicting environments are fundamental processes for animal survival. Hippocampal pyramidal cells (PYRs) of the mammalian brain provide mnemonic representations of space. Yet the substrates by which these hippocampal representations support memory-guided behavior remain unknown. Here, we uncover a direct connection from dorsal CA1 (dCA1) hippocampus to nucleus accumbens (NAc) that enables the behavioral manifestation of place-reward memories. By monitoring neuronal ensembles in mouse dCA1→NAc pathway, combined with cell-type selective optogenetic manipulations of input-defined postsynaptic neurons, we show that dCA1 PYRs drive NAc medium spiny neurons and orchestrate their spiking activity using feedforward inhibition mediated by dCA1-connected parvalbumin-expressing fast-spiking interneurons. This tripartite cross-circuit motif supports spatial appetitive memory and associated NAc assemblies, being independent of dorsal subiculum and dispensable for both spatial novelty detection and reward seeking. Our findings demonstrate that the dCA1→NAc pathway instantiates a limbic-motor interface for neuronal representations of space to promote effective appetitive behavior.
Collapse
Affiliation(s)
- Stéphanie Trouche
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, OX1 3TH Oxford, UK.
| | - Vadim Koren
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, OX1 3TH Oxford, UK
| | - Natalie M Doig
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, OX1 3TH Oxford, UK
| | - Tommas J Ellender
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, OX1 3TH Oxford, UK
| | - Mohamady El-Gaby
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, OX1 3TH Oxford, UK
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, OX1 3TH Oxford, UK
| | - Hayley M Reeve
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, OX1 3TH Oxford, UK
| | - Pavel V Perestenko
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, OX1 3TH Oxford, UK
| | - Farid N Garas
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, OX1 3TH Oxford, UK
| | - Peter J Magill
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, OX1 3TH Oxford, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, OX1 3TH Oxford, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, OX1 3TH Oxford, UK.
| |
Collapse
|
13
|
Gmaz JM, Carmichael JE, van der Meer MA. Persistent coding of outcome-predictive cue features in the rat nucleus accumbens. eLife 2018; 7:37275. [PMID: 30234485 PMCID: PMC6195350 DOI: 10.7554/elife.37275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/15/2018] [Indexed: 01/09/2023] Open
Abstract
The nucleus accumbens (NAc) is important for learning from feedback, and for biasing and invigorating behaviour in response to cues that predict motivationally relevant outcomes. NAc encodes outcome-related cue features such as the magnitude and identity of reward. However, little is known about how features of cues themselves are encoded. We designed a decision making task where rats learned multiple sets of outcome-predictive cues, and recorded single-unit activity in the NAc during performance. We found that coding of cue identity and location occurred alongside coding of expected outcome. Furthermore, this coding persisted both during a delay period, after the rat made a decision and was waiting for an outcome, and after the outcome was revealed. Encoding of cue features in the NAc may enable contextual modulation of on-going behaviour, and provide an eligibility trace of outcome-predictive stimuli for updating stimulus-outcome associations to inform future behaviour.
Collapse
Affiliation(s)
- Jimmie M Gmaz
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, United States
| | - James E Carmichael
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, United States
| | | |
Collapse
|
14
|
Stoianov IP, Pennartz CMA, Lansink CS, Pezzulo G. Model-based spatial navigation in the hippocampus-ventral striatum circuit: A computational analysis. PLoS Comput Biol 2018; 14:e1006316. [PMID: 30222746 PMCID: PMC6160242 DOI: 10.1371/journal.pcbi.1006316] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 09/27/2018] [Accepted: 06/20/2018] [Indexed: 12/26/2022] Open
Abstract
While the neurobiology of simple and habitual choices is relatively well known, our current understanding of goal-directed choices and planning in the brain is still limited. Theoretical work suggests that goal-directed computations can be productively associated to model-based (reinforcement learning) computations, yet a detailed mapping between computational processes and neuronal circuits remains to be fully established. Here we report a computational analysis that aligns Bayesian nonparametrics and model-based reinforcement learning (MB-RL) to the functioning of the hippocampus (HC) and the ventral striatum (vStr)-a neuronal circuit that increasingly recognized to be an appropriate model system to understand goal-directed (spatial) decisions and planning mechanisms in the brain. We test the MB-RL agent in a contextual conditioning task that depends on intact hippocampus and ventral striatal (shell) function and show that it solves the task while showing key behavioral and neuronal signatures of the HC-vStr circuit. Our simulations also explore the benefits of biological forms of look-ahead prediction (forward sweeps) during both learning and control. This article thus contributes to fill the gap between our current understanding of computational algorithms and biological realizations of (model-based) reinforcement learning.
Collapse
Affiliation(s)
- Ivilin Peev Stoianov
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Cyriel M. A. Pennartz
- University of Amsterdam, Swammerdam Institute for Life Sciences–Center for Neuroscience Amsterdam, The Netherlands
| | - Carien S. Lansink
- University of Amsterdam, Swammerdam Institute for Life Sciences–Center for Neuroscience Amsterdam, The Netherlands
| | - Giovani Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| |
Collapse
|
15
|
Whitaker LR, Hope BT. Chasing the addicted engram: identifying functional alterations in Fos-expressing neuronal ensembles that mediate drug-related learned behavior. ACTA ACUST UNITED AC 2018; 25:455-460. [PMID: 30115767 PMCID: PMC6097770 DOI: 10.1101/lm.046698.117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023]
Abstract
Given that addiction has been characterized as a disorder of maladaptive learning and memory, one critical question is whether there are unique physical adaptations within neuronal ensembles that support addiction-related learned behavior. The search for the physical mechanisms of encoding these and other memories in the brain, often called the engram as a whole, continues despite decades of research. As we develop new technologies and tools that allow us to study cue- and behavior-activated Fos-expressing neuronal ensembles, the possibility of identifying the engrams of learning and memory is moving into the realm of reality rather than speculation. It has become clear from recent studies that there are specific functional, electrophysiological alterations unique to Fos-expressing ensemble neurons that may participate in encoding memories. The ultimate goal is to identify the addicted engram and reverse the physical changes that support this maladaptive form of learning.
Collapse
Affiliation(s)
- Leslie R Whitaker
- Office of the Scientific Director; Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Bruce T Hope
- Neuronal Ensembles in Addiction Section; Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
16
|
Corticosterone impairs flexible adjustment of spatial navigation in an associative place–reward learning task. Behav Pharmacol 2018; 29:351-364. [DOI: 10.1097/fbp.0000000000000370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Yoo SBM, Sleezer BJ, Hayden BY. Robust Encoding of Spatial Information in Orbitofrontal Cortex and Striatum. J Cogn Neurosci 2018; 30:898-913. [PMID: 29561237 DOI: 10.1162/jocn_a_01259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Knowing whether core reward regions carry information about the positions of relevant objects is crucial for adjudicating between choice models. One limitation of previous studies, including our own, is that spatial positions can be consistently differentially associated with rewards, and thus position can be confounded with attention, motor plans, or target identity. We circumvented these problems by using a task in which value-and thus choices-was determined solely by a frequently changing rule, which was randomized relative to spatial position on each trial. We presented offers asynchronously, which allowed us to control for reward expectation, spatial attention, and motor plans in our analyses. We find robust encoding of the spatial position of both offers and choices in two core reward regions, orbitofrontal Area 13 and ventral striatum, as well as in dorsal striatum of macaques. The trial-by-trial correlation in noise in encoding of position was associated with variation in choice, an effect known as choice probability correlation, suggesting that the spatial encoding is associated with choice and is not incidental to it. Spatial information and reward information are not carried by separate sets of neurons, although the two forms of information are temporally dissociable. These results highlight the ubiquity of multiplexed information in association cortex and argue against the idea that these ostensible reward regions serve as part of a pure value domain.
Collapse
|
18
|
Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling. J Neurosci 2017; 36:10598-10610. [PMID: 27733611 DOI: 10.1523/jneurosci.0682-16.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/24/2016] [Indexed: 12/30/2022] Open
Abstract
The use of information from the hippocampal memory system in motivated behavior depends on its communication with the ventral striatum. When an animal encounters cues that signal subsequent reward, its reward expectancy is raised. It is unknown, however, how this process affects hippocampal dynamics and their influence on target structures, such as ventral striatum. We show that, in rats, reward-predictive cues result in enhanced hippocampal theta and beta band rhythmic activity during subsequent action, compared with uncued goal-directed navigation. The beta band component, also labeled theta's harmonic, involves selective hippocampal CA1 cell groups showing frequency doubling of firing periodicity relative to theta rhythmicity and it partitions the theta cycle into segments showing clear versus poor spike timing organization. We found that theta phase precession occurred over a wider range than previously reported. This was apparent from spikes emitted near the peak of the theta cycle exhibiting large "phase precessing jumps" relative to spikes in foregoing cycles. Neither this phenomenon nor the regular manifestation of theta phase precession was affected by reward expectancy. Ventral striatal neuronal firing phase-locked not only to hippocampal theta, but also to beta band activity. Both hippocampus and ventral striatum showed increased synchronization between neuronal firing and local field potential activity during cued compared with uncued goal approaches. These results suggest that cue-triggered reward expectancy intensifies hippocampal output to target structures, such as the ventral striatum, by which the hippocampus may gain prioritized access to systems modulating motivated behaviors. SIGNIFICANCE STATEMENT Here we show that temporally discrete cues raising reward expectancy enhance both theta and beta band activity in the hippocampus once goal-directed navigation has been initiated. These rhythmic activities are associated with increased synchronization of neuronal firing patterns in the hippocampus and the connected ventral striatum. When transmitted to downstream target structures, this expectancy-related state of intensified processing in the hippocampus may modulate goal-directed action.
Collapse
|
19
|
Bos JJ, Vinck M, van Mourik-Donga LA, Jackson JC, Witter MP, Pennartz CMA. Perirhinal firing patterns are sustained across large spatial segments of the task environment. Nat Commun 2017; 8:15602. [PMID: 28548084 PMCID: PMC5458559 DOI: 10.1038/ncomms15602] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/27/2017] [Indexed: 11/16/2022] Open
Abstract
Spatial navigation and memory depend on the neural coding of an organism's location. Fine-grained coding of location is thought to depend on the hippocampus. Likewise, animals benefit from knowledge parsing their environment into larger spatial segments, which are relevant for task performance. Here we investigate how such knowledge may be coded, and whether this occurs in structures in the temporal lobe, supplying cortical inputs to the hippocampus. We found that neurons in the perirhinal cortex of rats generate sustained firing patterns that discriminate large segments of the task environment. This contrasted to transient firing in hippocampus and sensory neocortex. These spatially extended patterns were not explained by task variables or temporally discrete sensory stimuli. Previously it has been suggested that the perirhinal cortex is part of a pathway processing object, but not spatial information. Our results indicate a greater complexity of neural coding than captured by this dichotomy.
Collapse
Affiliation(s)
- Jeroen J. Bos
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Martin Vinck
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
| | - Laura A. van Mourik-Donga
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Jadin C. Jackson
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Medtronic, 7000 Central Avenue NE, Minneapolis, Minnesota 55432, USA
| | - Menno P. Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Norwegian University of Science and Technology, DMF, NTNU PO Box 8905, NO-7491 Trondheim, Norway
| | - Cyriel M. A. Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
20
|
Dejean C, Sitko M, Girardeau P, Bennabi A, Caillé S, Cador M, Boraud T, Le Moine C. Memories of Opiate Withdrawal Emotional States Correlate with Specific Gamma Oscillations in the Nucleus Accumbens. Neuropsychopharmacology 2017; 42:1157-1168. [PMID: 27922595 PMCID: PMC5506790 DOI: 10.1038/npp.2016.272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 01/14/2023]
Abstract
Affective memories associated with the negative emotional state experienced during opiate withdrawal are central in maintaining drug taking, seeking, and relapse. Nucleus accumbens (NAC) is a key structure for both acute withdrawal and withdrawal memories reactivation, but the NAC neuron coding properties underpinning the expression of these memories remain largely unknown. Here we aimed at deciphering the role of NAC neurons in the encoding and retrieval of opiate withdrawal memory. Chronic single neuron and local field potentials recordings were performed in morphine-dependent rats and placebo controls. Animals were subjected to an unbiased conditioned placed aversion protocol with one compartment (CS+) paired with naloxone-precipitated withdrawal, a second compartment with saline injection (CS-), and a third being neutral (no pairing). After conditioning, animals displayed a typical place aversion for CS+ and developed a preference for CS- characteristic of safety learning. We found that distinct NAC neurons code for CS+ or CS-. Both populations also displayed highly specific oscillatory dynamics, CS+ and CS- neurons, respectively, following 80 Hz (G80) and 60 Hz (G60) local field potential gamma rhythms. Finally, we found that the balance between G60 and G80 rhythms strongly correlated both with the ongoing behavior of the animal and the strength of the conditioning. We demonstrate here that the aversive and preferred environments are underpinned by distinct groups of NAC neurons as well as specific oscillatory dynamics. This suggest that G60/G80 interplay-established through the conditioning process-serves as a robust and versatile mechanism for a fine coding of the environment emotional weight.
Collapse
Affiliation(s)
- Cyril Dejean
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Mathieu Sitko
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Paul Girardeau
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Amine Bennabi
- Université de Bordeaux, I2M, UMR 5295, Bordeaux, France,CNRS, I2M, UMR 5295, Bordeaux, France
| | - Stéphanie Caillé
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Martine Cador
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Thomas Boraud
- Université de Bordeaux, IMN, UMR 5293, Bordeaux, France,CNRS, IMN, UMR 5293, Bordeaux, France
| | - Catherine Le Moine
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France,CNRS, INCIA, UMR 5287, Bordeaux, France,Université de Bordeaux, INCIA ‘Institut de Neurosciences Cognitives et Intégratives d'Aquitaine’, CNRS UMR 5287, Equipe ‘Neuropsychopharmacologie de l'Addiction’, BP31, 146 rue Léo Saignat, Bordeaux, Cedex 33076, France, Tel: +33 5 57 57 15 44, Fax: +33 5 56 90 02 78, E-mail:
| |
Collapse
|
21
|
Nicola SM. Reassessing wanting and liking in the study of mesolimbic influence on food intake. Am J Physiol Regul Integr Comp Physiol 2016; 311:R811-R840. [PMID: 27534877 PMCID: PMC5130579 DOI: 10.1152/ajpregu.00234.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/09/2016] [Indexed: 01/12/2023]
Abstract
Humans and animals such as rats and mice tend to overconsume calorie-dense foods, a phenomenon that likely contributes to obesity. One often-advanced explanation for why we preferentially consume sweet and fatty foods is that they are more "rewarding" than low-calorie foods. "Reward" has been subdivided into three interdependent psychological processes: hedonia (liking a food), reinforcement (formation of associations among stimuli, actions, and/or the food), and motivation (wanting the food). Research into these processes has focused on the mesolimbic system, which comprises both dopamine neurons in the ventral tegmental area and neurons in their major projection target, the nucleus accumbens. The mesolimbic system and closely connected structures are commonly referred to as the brain's "reward circuit." Implicit in this title is the assumption that "rewarding" experiences are generally the result of activity in this circuit. In this review, I argue that food intake and the preference for calorie-dense foods can be explained without reference to subjective emotions. Furthermore, the contribution of mesolimbic dopamine to food intake and preference may not be a general one of promoting or coordinating behaviors that result in the most reward or caloric intake but may instead be limited to the facilitation of a specific form of neural computation that results in conditioned approach behavior. Studies on the neural mechanisms of caloric intake regulation must address how sensory information about calorie intake affects not just the mesolimbic system but also many other forms of computation that govern other types of food-seeking and food-oriented behaviors.
Collapse
Affiliation(s)
- Saleem M Nicola
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
22
|
Abstract
Many findings have demonstrated that memories of past events are temporally organized. It is well known that the hippocampus is critical for such episodic memories, but, until recently, little was known about the temporal organization of mnemonic representations in the hippocampus. Recent developments in human and animal research have revealed important insights into the role of the hippocampus in learning and retrieving sequences of events. Here, we review these findings, including lesion and single-unit recording studies in rodents, functional magnetic resonance imaging studies in humans, and computational models that link findings from these studies to the anatomy of the hippocampal circuit. The findings converge toward the idea that the hippocampus is essential for learning sequences of events, allowing the brain to distinguish between memories for conceptually similar but temporally distinct episodes, and to associate representations of temporally contiguous, but otherwise unrelated experiences.
Collapse
Affiliation(s)
- Charan Ranganath
- Department of Psychology and Center for Neuroscience, University of California, Davis, California
| | - Liang-Tien Hsieh
- Department of Psychology and Center for Neuroscience, University of California, Davis, California
| |
Collapse
|
23
|
Millan EZ, Reese RM, Grossman CD, Chaudhri N, Janak PH. Nucleus Accumbens and Posterior Amygdala Mediate Cue-Triggered Alcohol Seeking and Suppress Behavior During the Omission of Alcohol-Predictive Cues. Neuropsychopharmacology 2015; 40:2555-65. [PMID: 25872917 PMCID: PMC4569945 DOI: 10.1038/npp.2015.102] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 11/09/2022]
Abstract
Neurobiological mechanisms that influence behavior in the presence of alcohol-associated stimuli involve processes that organize behavior during the presence of these cues, and separately, regulation of behavior in their absence. However, little is known about anatomical structures that might mediate this regulation. Here we examined nucleus accumbens shell (AcbSh) as a possible neural substrate mediating behavior modulation triggered by the presence and absence of alcohol-associated environmental cues and contexts. We also examined subregions of basal amygdala nuclei- rostral basolateral (BLA) and basal posterior (BAP)- as they provide a major source of glutamatergic input to the AcbSh. Animals were trained to associate an auditory conditioning stimulus with alcohol in a discriminative context and then subsequently tested for conditioned port-entries across contexts either previously associated or not associated with alcohol. We found that, on test to the alcohol cue alone, AcbSh inactivation prevented conditioned port-entries in contexts that either were associated with alcohol or were novel, while also increasing unconditioned port-entries during the intertrial intervals. When tested to alcohol-reinforced cues, AcbSh inactivation produced more cue-trial omissions and elevated unconditioned port-entries. Interestingly, BLA and BAP inactivation produced dissociable effects. BAP but not BLA increased unconditioned port-entries, while both manipulations prevented conditioned port-entries during the alcohol-cue. We conclude that AcbSh is necessary for modulating control over behavior otherwise guided by the presence of alcohol-predictive environmental stimuli and contexts. Moreover, this role may involve integration of functionally segregated inputs from rostral and posterior portions of basal amygdala nuclei.
Collapse
Affiliation(s)
- E Zayra Millan
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA,Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N. Charles Street, Dunning Hall, room 224, Baltimore, MD 21218, USA, Tel: +1 707 400 3135, Fax: +1 410 516 0494, E-mail:
| | - Rebecca M Reese
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Cooper D Grossman
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Nadia Chaudhri
- Center for Studies in Behavioural Neurobiology/Groupe de recherche en neurobiologie comportementale, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
24
|
Donnelly NA, Paulsen O, Robbins TW, Dalley JW. Ramping single unit activity in the medial prefrontal cortex and ventral striatum reflects the onset of waiting but not imminent impulsive actions. Eur J Neurosci 2015; 41:1524-37. [PMID: 25892211 PMCID: PMC4529742 DOI: 10.1111/ejn.12895] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/17/2015] [Accepted: 03/16/2015] [Indexed: 02/02/2023]
Abstract
The medial prefrontal cortex (mPFC) and ventral striatum (VS), including the nucleus accumbens, are key forebrain regions involved in regulating behaviour for future rewards. Dysfunction of these regions can result in impulsivity, characterized by actions that are mistimed and executed without due consideration of their consequences. Here we recorded the activity of single neurons in the mPFC and VS of 16 rats during performance on a five-choice serial reaction time task of sustained visual attention and impulsivity. Impulsive responses were assessed by the number of premature responses made before target stimuli were presented. We found that the majority of cells signalled trial outcome after an action was made (both rewarded and unrewarded). Positive and negative ramping activity was a feature of population activity in the mPFC and VS (49.5 and 50.4% of cells, respectively). This delay-related activity increased at the same rate and reached the same maximum (or minimum) for trials terminated by either correct or premature responses. However, on premature trials, the ramping activity started earlier and coincided with shorter latencies to begin waiting. For all trial types the pattern of ramping activity was unchanged when the pre-stimulus delay period was made variable. Thus, premature responses may result from a failure in the timing of the initiation of a waiting process, combined with a reduced reliance on external sensory cues, rather than a primary failure in delay activity. Our findings further show that the neural locus of this aberrant timing signal may emanate from structures outside the mPFC and VS.
Collapse
Affiliation(s)
- Nicholas A Donnelly
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Ole Paulsen
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Department of PDN, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Jeffrey W Dalley
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Abstract
Both animals and humans often prefer rewarding options that are nearby over those that are distant, but the neural mechanisms underlying this bias are unclear. Here we present evidence that a proximity signal encoded by neurons in the nucleus accumbens drives proximate reward bias by promoting impulsive approach to nearby reward-associated objects. On a novel decision-making task, rats chose the nearer option even when it resulted in greater effort expenditure and delay to reward; therefore, proximate reward bias was unlikely to be caused by effort or delay discounting. The activity of individual neurons in the nucleus accumbens did not consistently encode the reward or effort associated with specific alternatives, suggesting that it does not participate in weighing the values of options. In contrast, proximity encoding was consistent and did not depend on the subsequent choice, implying that accumbens activity drives approach to the nearest rewarding option regardless of its specific associated reward size or effort level.
Collapse
|
26
|
Verschure PFMJ, Pennartz CMA, Pezzulo G. The why, what, where, when and how of goal-directed choice: neuronal and computational principles. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130483. [PMID: 25267825 PMCID: PMC4186236 DOI: 10.1098/rstb.2013.0483] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The central problems that goal-directed animals must solve are: 'What do I need and Why, Where and When can this be obtained, and How do I get it?' or the H4W problem. Here, we elucidate the principles underlying the neuronal solutions to H4W using a combination of neurobiological and neurorobotic approaches. First, we analyse H4W from a system-level perspective by mapping its objectives onto the Distributed Adaptive Control embodied cognitive architecture which sees the generation of adaptive action in the real world as the primary task of the brain rather than optimally solving abstract problems. We next map this functional decomposition to the architecture of the rodent brain to test its consistency. Following this approach, we propose that the mammalian brain solves the H4W problem on the basis of multiple kinds of outcome predictions, integrating central representations of needs and drives (e.g. hypothalamus), valence (e.g. amygdala), world, self and task state spaces (e.g. neocortex, hippocampus and prefrontal cortex, respectively) combined with multi-modal selection (e.g. basal ganglia). In our analysis, goal-directed behaviour results from a well-structured architecture in which goals are bootstrapped on the basis of predefined needs, valence and multiple learning, memory and planning mechanisms rather than being generated by a singular computation.
Collapse
Affiliation(s)
- Paul F M J Verschure
- Laboratory of Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), Center of Autonomous Systems and Neurorobotics, Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| |
Collapse
|
27
|
Xie J, Bai W, Liu T, Tian X. Functional connectivity among spike trains in neural assemblies during rat working memory task. Behav Brain Res 2014; 274:248-57. [DOI: 10.1016/j.bbr.2014.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/27/2014] [Accepted: 08/11/2014] [Indexed: 11/25/2022]
|
28
|
Pezzulo G, van der Meer MAA, Lansink CS, Pennartz CMA. Internally generated sequences in learning and executing goal-directed behavior. Trends Cogn Sci 2014; 18:647-57. [PMID: 25156191 DOI: 10.1016/j.tics.2014.06.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 12/29/2022]
Abstract
A network of brain structures including hippocampus (HC), prefrontal cortex, and striatum controls goal-directed behavior and decision making. However, the neural mechanisms underlying these functions are unknown. Here, we review the role of 'internally generated sequences': structured, multi-neuron firing patterns in the network that are not confined to signaling the current state or location of an agent, but are generated on the basis of internal brain dynamics. Neurophysiological studies suggest that such sequences fulfill functions in memory consolidation, augmentation of representations, internal simulation, and recombination of acquired information. Using computational modeling, we propose that internally generated sequences may be productively considered a component of goal-directed decision systems, implementing a sampling-based inference engine that optimizes goal acquisition at multiple timescales of on-line choice, action control, and learning.
Collapse
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Via San Martino della Battaglia 44, 00185 Roma, Italy
| | - Matthijs A A van der Meer
- Department of Biology and Centre for Theoretical Neuroscience, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Carien S Lansink
- Swammerdam Institute for Life Sciences - Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Amsterdam Brain and Cognition, Research Priority Program Brain and Cognition, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences - Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Amsterdam Brain and Cognition, Research Priority Program Brain and Cognition, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Abstract
Spatial priority maps are real-time representations of the behavioral salience of locations in the visual field, resulting from the combined influence of stimulus driven activity and top-down signals related to the current goals of the individual. They arbitrate which of a number of (potential) targets in the visual scene will win the competition for attentional resources. As a result, deployment of visual attention to a specific spatial location is determined by the current peak of activation (corresponding to the highest behavioral salience) across the map. Here we report a behavioral study performed on healthy human volunteers, where we demonstrate that spatial priority maps can be shaped via reward-based learning, reflecting long-lasting alterations (biases) in the behavioral salience of specific spatial locations. These biases exert an especially strong influence on performance under conditions where multiple potential targets compete for selection, conferring competitive advantage to targets presented in spatial locations associated with greater reward during learning relative to targets presented in locations associated with lesser reward. Such acquired biases of spatial attention are persistent, are nonstrategic in nature, and generalize across stimuli and task contexts. These results suggest that reward-based attentional learning can induce plastic changes in spatial priority maps, endowing these representations with the "intelligent" capacity to learn from experience.
Collapse
|
30
|
Ousdal OT, Specht K, Server A, Andreassen OA, Dolan RJ, Jensen J. The human amygdala encodes value and space during decision making. Neuroimage 2014; 101:712-9. [PMID: 25094017 PMCID: PMC4176653 DOI: 10.1016/j.neuroimage.2014.07.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/15/2014] [Accepted: 07/25/2014] [Indexed: 11/19/2022] Open
Abstract
Valuable stimuli are invariably localized in space. While our knowledge regarding the neural networks supporting value assignment and comparisons is considerable, we lack a basic understanding of how the human brain integrates motivational and spatial information. The amygdala is a key structure for learning and maintaining the value of sensory stimuli and a recent non-human primate study provided initial evidence that it also acts to integrate value with spatial location, a question we address here in a human setting. We measured haemodynamic responses (fMRI) in amygdala while manipulating the value and spatial configuration of stimuli in a simple stimulus–reward task. Subjects responded significantly faster and showed greater amygdala activation when a reward was dependent on a spatial specific response, compared to when a reward required less spatial specificity. Supplemental analysis supported this spatial specificity by demonstrating that the pattern of amygdala activity varied based on whether subjects responded to a motivational target presented in the ipsilateral or contralateral visual space. Our data show that the human amygdala integrates information about space and value, an integration of likely importance for assigning cognitive resources towards highly valuable stimuli in our environment. Amygdala responds to valuable stimuli in a spatial specific manner. Amygdala–dACC connectivity varies according to the spatial location of value cues. Amygdala integrates information about stimulus value and its spatial representation. Dorsal ACC may supply information about spatial location to the amygdala.
Collapse
Affiliation(s)
- Olga Therese Ousdal
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway; Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK.
| | - Karsten Specht
- Department of Biological and Medial Psychology, University of Bergen, Bergen, Norway; Department of Medical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Andres Server
- Department of Neuroradiology, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ray J Dolan
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Jimmy Jensen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Psychology, Kristianstad University, Kristianstad, Sweden
| |
Collapse
|
31
|
Mulder CK, Papantoniou C, Gerkema MP, Van Der Zee EA. Neither the SCN nor the adrenals are required for circadian time-place learning in mice. Chronobiol Int 2014; 31:1075-92. [PMID: 25083974 PMCID: PMC4219850 DOI: 10.3109/07420528.2014.944975] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During Time-Place Learning (TPL), animals link biological significant events (e.g. encountering predators, food, mates) with the location and time of occurrence in the environment. This allows animals to anticipate which locations to visit or avoid based on previous experience and knowledge of the current time of day. The TPL task applied in this study consists of three daily sessions in a three-arm maze, with a food reward at the end of each arm. During each session, mice should avoid one specific arm to avoid a foot-shock. We previously demonstrated that, rather than using external cue-based strategies, mice use an internal clock (circadian strategy) for TPL, referred to as circadian TPL (cTPL). It is unknown in which brain region(s) or peripheral organ(s) the consulted clock underlying cTPL resides. Three candidates were examined in this study: (a) the suprachiasmatic nucleus (SCN), a light entrainable oscillator (LEO) and considered the master circadian clock in the brain, (b) the food entrainable oscillator (FEO), entrained by restricted food availability, and (c) the adrenal glands, harboring an important peripheral oscillator. cTPL performance should be affected if the underlying oscillator system is abruptly phase-shifted. Therefore, we first investigated cTPL sensitivity to abrupt light and food shifts. Next we investigated cTPL in SCN-lesioned- and adrenalectomized mice. Abrupt FEO phase-shifts (induced by advancing and delaying feeding time) affected TPL performance in specific test sessions while a LEO phase-shift (induced by a light pulse) more severely affected TPL performance in all three daily test sessions. SCN-lesioned mice showed no TPL deficiencies compared to SHAM-lesioned mice. Moreover, both SHAM- and SCN-lesioned mice showed unaffected cTPL performance when re-tested after bilateral adrenalectomy. We conclude that, although cTPL is sensitive to timing manipulations with light as well as food, neither the SCN nor the adrenals are required for cTPL in mice.
Collapse
|
32
|
McGinty VB, Lardeux S, Taha SA, Kim JJ, Nicola SM. Invigoration of reward seeking by cue and proximity encoding in the nucleus accumbens. Neuron 2013; 78:910-22. [PMID: 23764290 DOI: 10.1016/j.neuron.2013.04.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
A key function of the nucleus accumbens is to promote vigorous reward seeking, but the corresponding neural mechanism has not been identified despite many years of research. Here, we study cued flexible approach behavior, a form of reward seeking that strongly depends on the accumbens, and we describe a robust, single-cell neural correlate of behavioral vigor in the excitatory response of accumbens neurons to reward-predictive cues. Well before locomotion begins, this cue-evoked excitation predicts both the movement initiation latency and the speed of subsequent flexible approach responses, but not those of stereotyped, inflexible responses. Moreover, the excitation simultaneously signals the subject's proximity to the approach target, a signal that appears to mediate greater response vigor on trials that begin with the subject closer to the target. These results demonstrate a neural mechanism for response invigoration whereby accumbens neuronal encoding of reward availability and target proximity together drive the onset and speed of reward-seeking locomotion.
Collapse
Affiliation(s)
- Vincent B McGinty
- Department of Psychiatry, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|