1
|
Gould TW, Ko CP, Willison H, Robitaille R. Perisynaptic Schwann Cells: Guardians of Neuromuscular Junction Integrity and Function in Health and Disease. Cold Spring Harb Perspect Biol 2025; 17:a041362. [PMID: 38858074 PMCID: PMC11694759 DOI: 10.1101/cshperspect.a041362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The neuromuscular junction (NMJ) is a highly reliable synapse to carry the control of the motor commands of the nervous system over the muscles. Its development, organization, and synaptic properties are highly structured and regulated to support such reliability and efficacy. Yet, the NMJ is also highly plastic, able to react to injury, and able to adapt to changes. This balance between structural stability and synaptic efficacy on one hand and structural plasticity and repair on another hand is made possible by perisynaptic Schwann cells (PSCs), glial cells at this synapse. They regulate synaptic efficacy and structural plasticity of the NMJ in a dynamic, bidirectional manner owing to their ability to decode synaptic transmission and by their interactions with trophic-related factors. Alteration of these fundamental roles of PSCs is also important in the maladapted response of NMJs in various diseases and in aging.
Collapse
Affiliation(s)
- Thomas W Gould
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA
| | - Hugh Willison
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, Scotland
| | - Richard Robitaille
- Département de neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'apprentissage, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
2
|
Hastings RL, Valdez G. Origin, identity, and function of terminal Schwann cells. Trends Neurosci 2024; 47:432-446. [PMID: 38664109 PMCID: PMC11168889 DOI: 10.1016/j.tins.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 06/14/2024]
Abstract
The highly specialized nonmyelinating glial cells present at somatic peripheral nerve endings, known collectively as terminal Schwann cells (TSCs), play critical roles in the development, function and repair of their motor and sensory axon terminals and innervating tissue. Over the past decades, research efforts across various vertebrate species have revealed that while TSCs are a diverse group of cells, they share a number of features among them. In this review, we summarize the state-of-knowledge about each TSC type and explore the opportunities that TSCs provide to treat conditions that afflict peripheral axon terminals.
Collapse
Affiliation(s)
- Robert Louis Hastings
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA; Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science, and Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
3
|
Juros D, Avila MF, Hastings RL, Pendragon A, Wilson L, Kay J, Valdez G. Cellular and molecular alterations to muscles and neuromuscular synapses in a mouse model of MEGF10-related myopathy. Skelet Muscle 2024; 14:10. [PMID: 38760872 PMCID: PMC11100254 DOI: 10.1186/s13395-024-00342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024] Open
Abstract
Loss-of-function mutations in MEGF10 lead to a rare and understudied neuromuscular disorder known as MEGF10-related myopathy. There are no treatments for the progressive respiratory distress, motor impairment, and structural abnormalities in muscles caused by the loss of MEGF10 function. In this study, we deployed cellular and molecular assays to obtain additional insights about MEGF10-related myopathy in juvenile, young adult, and middle-aged Megf10 knockout (KO) mice. We found fewer muscle fibers in juvenile and adult Megf10 KO mice, supporting published studies that MEGF10 regulates myogenesis by affecting satellite cell differentiation. Interestingly, muscle fibers do not exhibit morphological hallmarks of atrophy in either young adult or middle-aged Megf10 KO mice. We next examined the neuromuscular junction (NMJ), in which MEGF10 has been shown to concentrate postnatally, using light and electron microscopy. We found early and progressive degenerative features at the NMJs of Megf10 KO mice that include increased postsynaptic fragmentation and presynaptic regions not apposed by postsynaptic nicotinic acetylcholine receptors. We also found perisynaptic Schwann cells intruding into the NMJ synaptic cleft. These findings strongly suggest that the NMJ is a site of postnatal pathology in MEGF10-related myopathy. In support of these cellular observations, RNA-seq analysis revealed genes and pathways associated with myogenesis, skeletal muscle health, and NMJ stability dysregulated in Megf10 KO mice compared to wild-type mice. Altogether, these data provide new and valuable cellular and molecular insights into MEGF10-related myopathy.
Collapse
Affiliation(s)
- Devin Juros
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | | | - Robert Louis Hastings
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Ariane Pendragon
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Liam Wilson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Jeremy Kay
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship St, Providence, RI, 02903, USA.
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science, Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
4
|
Rocha BGS, Picoli CC, Gonçalves BOP, Silva WN, Costa AC, Moraes MM, Costa PAC, Santos GSP, Almeida MR, Silva LM, Singh Y, Falchetti M, Guardia GDA, Guimarães PPG, Russo RC, Resende RR, Pinto MCX, Amorim JH, Azevedo VAC, Kanashiro A, Nakaya HI, Rocha EL, Galante PAF, Mintz A, Frenette PS, Birbrair A. Tissue-resident glial cells associate with tumoral vasculature and promote cancer progression. Angiogenesis 2023; 26:129-166. [PMID: 36183032 DOI: 10.1007/s10456-022-09858-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Understanding the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment. Using in vivo inducible Cre/loxP mediated systems, we demonstrated that these cells derive from tissue-resident Schwann cells. Genetic ablation of endogenous Schwann cells slowed down tumor growth and angiogenesis. Schwann cell-specific depletion also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of tumor biopsies revealed that increased expression of Schwann cell-related genes within melanoma was associated with improved survival. Collectively, our study suggests that Schwann cells regulate tumor progression, indicating that manipulation of Schwann cells may provide a valuable tool to improve cancer patients' outcomes.
Collapse
Affiliation(s)
- Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bryan O P Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michele M Moraes
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milla R Almeida
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana M Silva
- Department of Cell Biology, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Youvika Singh
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Marcelo Falchetti
- Department of Microbiology and Immunology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Pedro P G Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Remo C Russo
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Kanashiro
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA
| | | | - Edroaldo L Rocha
- Department of Microbiology and Immunology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Lipp SN, Jacobson KR, Colling HA, Tuttle TG, Miles DT, McCreery KP, Calve S. Mechanical loading is required for initiation of extracellular matrix deposition at the developing murine myotendinous junction. Matrix Biol 2023; 116:28-48. [PMID: 36709857 PMCID: PMC10218368 DOI: 10.1016/j.matbio.2023.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The myotendinous junction (MTJ) contributes to the generation of motion by connecting muscle to tendon. At the adult MTJ, a specialized extracellular matrix (ECM) is thought to contribute to the mechanical integrity of the muscle-tendon interface, but the factors that influence MTJ formation during mammalian development are unclear. Here, we combined 3D imaging and proteomics with murine models in which muscle contractility and patterning are disrupted to resolve morphological and compositional changes in the ECM during MTJ development. We found that MTJ-specific ECM deposition can be initiated via static loading due to growth; however, it required cyclic loading to develop a mature morphology. Furthermore, the MTJ can mature without the tendon terminating into cartilage. Based on these results, we describe a model wherein MTJ development depends on mechanical loading but not insertion into an enthesis.
Collapse
Affiliation(s)
- Sarah N Lipp
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; The Indiana University Medical Scientist/Engineer Training Program, Indianapolis, IN 46202, United States
| | - Kathryn R Jacobson
- Purdue University Interdisciplinary Life Science Program, 155 S. Grant Street, West Lafayette, IN 47907, United States
| | - Haley A Colling
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder CO, 80309, United States
| | - Tyler G Tuttle
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States
| | - Dalton T Miles
- Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, CO 80309, United States
| | - Kaitlin P McCreery
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; Purdue University Interdisciplinary Life Science Program, 155 S. Grant Street, West Lafayette, IN 47907, United States; Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States.
| |
Collapse
|
6
|
Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022; 241:1235-1258. [PMID: 34988978 PMCID: PMC9558160 DOI: 10.1111/joa.13606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| | - Marco Pirazzini
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| | - Michela Rigoni
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| |
Collapse
|
7
|
Tks5 Regulates Synaptic Podosome Formation and Stabilization of the Postsynaptic Machinery at the Neuromuscular Junction. Int J Mol Sci 2021; 22:ijms222112051. [PMID: 34769479 PMCID: PMC8585010 DOI: 10.3390/ijms222112051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, the etiology of many neuromuscular disorders remains unknown. Many of them are characterized by aberrations in the maturation of the neuromuscular junction (NMJ) postsynaptic machinery. Unfortunately, the molecular factors involved in this process are still largely unknown, which poses a great challenge for identifying potential therapeutic targets. Here, we identified Tks5 as a novel interactor of αdystrobrevin-1, which is a crucial component of the NMJ postsynaptic machinery. Tks5 has been previously shown in cancer cells to be an important regulator of actin-rich structures known as invadosomes. However, a role of this scaffold protein at a synapse has never been studied. We show that Tks5 is crucial for remodeling of the NMJ postsynaptic machinery by regulating the organization of structures similar to the invadosomes, known as synaptic podosomes. Additionally, it is involved in the maintenance of the integrity of acetylcholine receptor (AChR) clusters and regulation of their turnover. Lastly, our data indicate that these Tks5 functions may be mediated by its involvement in recruitment of actin filaments to the postsynaptic machinery. Collectively, we show for the first time that the Tks5 protein is involved in regulation of the postsynaptic machinery.
Collapse
|
8
|
Smith TA, Ghergherehchi CL, Mikesh M, Shores JT, Tucker HO, Bittner GD. Polyethylene glycol-fusion repair of sciatic allografts in female rats achieves immunotolerance via attenuated innate and adaptive responses. J Neurosci Res 2020; 98:2468-2495. [PMID: 32931034 DOI: 10.1002/jnr.24720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022]
Abstract
Ablation/segmental loss peripheral nerve injuries (PNIs) exhibit poor functional recovery due to slow and inaccurate outgrowth of regenerating axons. Viable peripheral nerve allografts (PNAs) as growth-guide conduits are immunologically rejected and all anucleated donor/host axonal segments undergo Wallerian degeneration. In contrast, we report that ablation-type sciatic PNIs repaired by neurorrhaphy of viable sciatic PNAs and a polyethylene glycol (PEG)-fusion protocol using PEG immediately restored axonal continuity for many axons, reinnervated/maintained their neuromuscular junctions, and prevented much Wallerian degeneration. PEG-fused PNAs permanently restored many sciatic-mediated behaviors within 2-6 weeks. PEG-fused PNAs were not rejected even though host/donors were neither immunosuppressed nor tissue-matched in outbred female Sprague Dawley rats. Innate and adaptive immune responses to PEG-fused sciatic PNAs were analyzed using electron microscopy, immunohistochemistry, and quantitative reverse transcription polymerase chain reaction for morphological features, T cell and macrophage infiltration, major histocompatibility complex (MHC) expression, apoptosis, expression of cytokines, chemokines, and cytotoxic effectors. PEG-fused PNAs exhibited attenuated innate and adaptive immune responses by 14-21 days postoperatively, as evidenced by (a) many axons and cells remaining viable, (b) significantly reduced infiltration of cytotoxic and total T cells and macrophages, (c) significantly reduced expression of inflammatory cytokines, chemokines, and MHC proteins, (d) consistently low apoptotic response. Morphologically and/or biochemically, PEG-fused sciatic PNAs often resembled sciatic autografts or intact sciatic nerves. In brief, PEG-fused PNAs are an unstudied, perhaps unique, example of immune tolerance of viable allograft tissue in a nonimmune-privileged environment and could greatly improve the clinical outcomes for PNIs relative to current protocols.
Collapse
Affiliation(s)
- Tyler A Smith
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Michelle Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Jaimie T Shores
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haley O Tucker
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
9
|
Lee YI, Rimer M. Wesley J. Thompson (1947-2019). Front Mol Neurosci 2020; 13:91. [PMID: 32595450 PMCID: PMC7303338 DOI: 10.3389/fnmol.2020.00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Young Il Lee
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Mendell Rimer
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
| |
Collapse
|
10
|
Castro R, Taetzsch T, Vaughan SK, Godbe K, Chappell J, Settlage RE, Valdez G. Specific labeling of synaptic schwann cells reveals unique cellular and molecular features. eLife 2020; 9:e56935. [PMID: 32584256 PMCID: PMC7316509 DOI: 10.7554/elife.56935] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Perisynaptic Schwann cells (PSCs) are specialized, non-myelinating, synaptic glia of the neuromuscular junction (NMJ), that participate in synapse development, function, maintenance, and repair. The study of PSCs has relied on an anatomy-based approach, as the identities of cell-specific PSC molecular markers have remained elusive. This limited approach has precluded our ability to isolate and genetically manipulate PSCs in a cell specific manner. We have identified neuron-glia antigen 2 (NG2) as a unique molecular marker of S100β+ PSCs in skeletal muscle. NG2 is expressed in Schwann cells already associated with the NMJ, indicating that it is a marker of differentiated PSCs. Using a newly generated transgenic mouse in which PSCs are specifically labeled, we show that PSCs have a unique molecular signature that includes genes known to play critical roles in PSCs and synapses. These findings will serve as a springboard for revealing drivers of PSC differentiation and function.
Collapse
Affiliation(s)
- Ryan Castro
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
- Neuroscience Graduate Program, Brown UniversityProvidenceUnited States
| | - Thomas Taetzsch
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Sydney K Vaughan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Kerilyn Godbe
- Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
| | - John Chappell
- Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
| | - Robert E Settlage
- Department of Advanced Research Computing, Virginia TechBlacksburgUnited States
| | - Gregorio Valdez
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
- Department of Neurology, Warren Alpert Medical School of Brown UniversityProvidenceUnited States
| |
Collapse
|
11
|
Ghergherehchi CL, Hibbard EA, Mikesh M, Bittner GD, Sengelaub DR. Behavioral recovery and spinal motoneuron remodeling after polyethylene glycol fusion repair of singly cut and ablated sciatic nerves. PLoS One 2019; 14:e0223443. [PMID: 31584985 PMCID: PMC6777790 DOI: 10.1371/journal.pone.0223443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/20/2019] [Indexed: 11/22/2022] Open
Abstract
Polyethylene glycol repair (PEG-fusion) of severed sciatic axons restores their axoplasmic and membrane continuity, prevents Wallerian degeneration, maintains muscle fiber innervation, and greatly improves recovery of voluntary behaviors. We examined alterations in spinal connectivity and motoneuron dendritic morphology as one potential mechanism for improved behavioral function after PEG-fusion. At 2–112 days after a single-cut or allograft PEG-fusion repair of transected or ablated sciatic nerves, the number, size, location, and morphology of motoneurons projecting to the tibialis anterior muscle were assessed by retrograde labeling. For both lesion types, labeled motoneurons were found in the appropriate original spinal segment, but also in inappropriate segments, indicating mis-pairings of proximal-distal segments of PEG-fused motor axons. Although the number and somal size of motoneurons was unaffected, dendritic distributions were altered, indicating that PEG-fusion preserves spinal motoneurons but reorganizes their connectivity. This spinal reorganization may contribute to the remarkable behavioral recovery seen after PEG-fusion repair.
Collapse
Affiliation(s)
- Cameron L. Ghergherehchi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Emily A. Hibbard
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Michelle Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - George D. Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Dale R. Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
12
|
Kang H, Tian L, Thompson WJ. Schwann cell guidance of nerve growth between synaptic sites explains changes in the pattern of muscle innervation and remodeling of synaptic sites following peripheral nerve injuries. J Comp Neurol 2019; 527:1388-1400. [PMID: 30620049 DOI: 10.1002/cne.24625] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 01/14/2023]
Abstract
Terminal Schwann cells (SCs) are nonmyelinating glia that are a prominent component of the neuromuscular junction (NMJ) where motor neurons form synapses onto muscle fibers. These cells play important roles not only in development and maintenance of the neuromuscular synapse but also restoring synaptic function after nerve damage. In response to muscle denervation, terminal SCs undergo dramatic changes in their gene expression patterns as well as in their morphology, such as extending elaborate processes into inter-junctional space. These SC processes serve as a path to guide axon terminal sprouts from nearby innervated junctions, promoting rapid reinnervation of denervated fibers. We studied the role of terminal SCs in synapse reformation by using two different fluorescent proteins to simultaneously label motor axons and SCs; we examined these junctions repeatedly in living animals using a fluorescence microscope. Here, we show that alterations in the patterns of muscle innervation following recovery from nerve injury can be explained by SC guidance of regenerating axons. In turn, this guidance leads to remodeling of the NMJ itself.
Collapse
Affiliation(s)
- Hyuno Kang
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, Texas.,Gwangju Center, Korea Basic Science Institute, Gwangju, South Korea
| | - Le Tian
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, Texas
| | | |
Collapse
|
13
|
Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019; 99:427-511. [PMID: 30427277 PMCID: PMC6442923 DOI: 10.1152/physrev.00061.2017] [Citation(s) in RCA: 859] [Impact Index Per Article: 143.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/14/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.
Collapse
Affiliation(s)
- Lars Larsson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Hans Degens
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Meishan Li
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Leonardo Salviati
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Young Il Lee
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Wesley Thompson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - James L Kirkland
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Sandri
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
14
|
Maxia C, Murtas D, Isola M, Tamma R, Zucca I, Piras F, Ribatti D, Diana A, Perra MT. Immunophenotypic characterization of telocyte-like cells in pterygium. Mol Vis 2018; 24:853-866. [PMID: 30713424 PMCID: PMC6334986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/29/2018] [Indexed: 11/16/2022] Open
Abstract
Purpose Telocytes (TCs) are peculiar interstitial cells, characterized by their typical elongated and interconnected processes called telopodes. TCs are supposed to contribute to maintain tissue homeostasis but also to be involved in the pathophysiology of many disorders. The aim of the study was to identify TCs in pterygium, a chronic condition of bulbar conjunctiva, and to examine possible differences in TCs in terms of immunophenotype and/or localization between pterygium and normal conjunctiva, to evaluate the possible involvement of TCs in pathogenesis of pterygium. Methods The analysis of the immunophenotype of TCs was performed on a group of 40 formalin-fixed and paraffin-embedded primary pterygium and ten bulbar conjunctiva samples. We examined with immunohistochemistry the expression of 11 commercially available antibodies (PDGFRα, CD34, c-kit, nestin, vimentin, α-SMA, laminin, S100, VEGF, CD133, and CD31) and with double immunofluorescence the concomitant expression of PDGFRα and CD34, and PDGFRα and nestin. In addition, we performed an ultrastructural study with transmission electron microscopy (TEM) on a group of five pterygium and three conjunctiva biopsy specimens. Results TCs, ultrastructurally identified according to their "moniliform" prolongations, were localized underneath the epithelium along the basement membrane, around the vessels, and near the nerves and scattered in the stroma. In contrast, TCs, as fibroblasts, were almost absent in the fibrotic areas. In pterygium and normal conjunctiva, the TCs shared the same distribution pattern, except a marked TC hyperplasia detected in pterygium. Moreover, in pterygium, the immunohistochemical analysis of TCs showed a strong immunoreactivity to PDGFRα, CD34, and nestin. This result was confirmed with double immunofluorescence labeling, revealing that in pterygium stromal TCs always showed a PDGFRα+/nestin+ and PDGFRα+/CD34+ immunophenotype. Furthermore, moderate staining to vimentin and VEGF was detected, but only a small number of cells were weakly immunoreactive to laminin and S100. Only adventitial TCs of the perivascular sheaths exhibited strong immunoreactivity to α-SMA. Conversely, despite showing mild immunoreactivity to PDGFRα and CD34, the TCs in normal conjunctiva did not show any immunoreactivity to nestin and VEGF. Moreover, in pterygium and conjunctiva, the TCs were always negative for c-kit. Conclusions Because of the distribution and immunophenotype, TCs in pterygium may represent a subpopulation of relatively immature cells with regenerative potential. In addition, the expression of nestin may suggest possible involvement of TCs as active players in the regeneration of ultraviolet-damaged stroma and vascular remodeling. The fibrotic transformation in the cicatricial area may stand for a breakdown of the regenerative process.
Collapse
Affiliation(s)
- Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Michela Isola
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Italy
| | - Ignazio Zucca
- Department of Surgical Science, Eye Clinic, University of Cagliari, Italy
| | - Franca Piras
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Italy
| | | |
Collapse
|
15
|
Ghergherehchi CL, Mikesh M, Sengelaub DR, Jackson DM, Smith T, Nguyen J, Shores JT, Bittner GD. Polyethylene glycol (PEG) and other bioactive solutions with neurorrhaphy for rapid and dramatic repair of peripheral nerve lesions by PEG-fusion. J Neurosci Methods 2018; 314:1-12. [PMID: 30586569 DOI: 10.1016/j.jneumeth.2018.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Nervous system injuries in mammals often involve transection or segmental loss of peripheral nerves. Such injuries result in functional (behavioral) deficits poorly restored by naturally occurring 1-2 mm/d axonal outgrowths aided by primary repair or reconstruction. "Neurorrhaphy" or nerve repair joins severed connective tissues, but not severed cytoplasmic/plasmalemmal extensions (axons) within the tissue. NEW METHOD PEG-fusion consists of neurorrhaphy combined with a well-defined sequence of four pharmaceutical agents in solution, one containing polyethylene glycol (PEG), applied directly to closely apposed viable ends of severed axons. RESULTS PEG-fusion of rat sciatic nerves: (1) restores axonal continuity across coaptation site(s) within minutes, (2) prevents Wallerian degeneration of many distal severed axons, (3) preserves neuromuscular junctions, (4) prevents target muscle atrophy, (5) produces rapid and improved recovery of voluntary behaviors compared with neurorrhaphy alone, and (6) PEG-fused allografts are not rejected, despite no tissue-matching nor immunosuppression. COMPARISON WITH EXISTING METHODS If PEG-fusion protocols are not correctly executed, the results are similar to that of neurorrhaphy alone: (1) axonal continuity across coaptation site(s) is not re-established, (2) Wallerian degeneration of all distal severed axons rapidly occurs, (3) neuromuscular junctions are non-functional, (4) target muscle atrophy begins within weeks, (5) recovery of voluntary behavior occurs, if ever, after months to levels well-below that observed in unoperated animals, and (6) allografts are either rejected or not well-accepted. CONCLUSION PEG-fusion produces rapid and dramatic recovery of function following rat peripheral nerve injuries.
Collapse
Affiliation(s)
| | - Michelle Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Dale R Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
| | | | - Tyler Smith
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Jacklyn Nguyen
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Jaimie T Shores
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Ross Research Building 749D, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
16
|
|
17
|
Abstract
The schwann cells of the peripheral nervous system are indispensable for the formation, maintenance, and modulation of synapses over the life cycle. They not only recognize neuron-glia signaling molecules, but also secrete gliotransmitters. Through these processes, they regulate neuronal excitability and thus the release of neurotransmitters from the nerve terminal at the neuromuscular junction. Gliotransmitters strongly affect nerve communication, and their secretion is mainly triggered by synchronized Ca2+ signaling, implicating Ca2+ waves in synapse function. Reciprocally, neurotransmitters released during synaptic activity can evoke increases in intracellular Ca2+ levels. A reconsideration of the interplay between the two main types of cells in the nervous system is due, as the concept of nervous system activity comprising only neuron-neuron and neuron-muscle action has become untenable. A more precise understanding of the roles of schwann cells in nerve-muscle signaling is required.
Collapse
Affiliation(s)
- Sujin Hyung
- Department of Mechanical and Aerospace Engineering, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul, 08826, Korea
- BK21 Plus Transformative Training Program for Creative Mechanical and Aerospace Engineers, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul, 08826, Korea
| | - Kyuhwan Jung
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, 50-1 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Sung-Rae Cho
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, 50-1 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Korea
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, 50-1 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
18
|
Mikesh M, Ghergherehchi CL, Hastings RL, Ali A, Rahesh S, Jagannath K, Sengelaub DR, Trevino RC, Jackson DM, Bittner GD. Polyethylene glycol solutions rapidly restore and maintain axonal continuity, neuromuscular structures, and behaviors lost after sciatic nerve transections in female rats. J Neurosci Res 2018; 96:1223-1242. [PMID: 29659058 DOI: 10.1002/jnr.24225] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/15/2022]
Abstract
Complete severance of major peripheral mixed sensory-motor nerve proximally in a mammalian limb produces immediate loss of action potential conduction and voluntary behaviors mediated by the severed distal axonal segments. These severed distal segments undergo Wallerian degeneration within days. Denervated muscles atrophy within weeks. Slowly regenerating (∼1 mm/day) outgrowths from surviving proximal stumps that often nonspecifically reinnervate denervated targets produce poor, if any, restoration of lost voluntary behaviors. In contrast, in this study using completely transected female rat sciatic axons as a model system, we provide extensive morphometric, immunohistochemical, electrophysiological, and behavioral data to show that these adverse outcomes are avoided by microsuturing closely apposed axonal cut ends (neurorrhaphy) and applying a sequence of well-specified solutions, one of which contains polyethylene glycol (PEG). This "PEG-fusion" procedure within minutes reestablishes axoplasmic and axolemmal continuity and signaling by nonspecifically fusing (connecting) closely apposed open ends of severed motor and/or sensory axons at the lesion site. These PEG-fused axons continue to conduct action potentials and generate muscle action potentials and muscle twitches for months and do not undergo Wallerian degeneration. Continuously innervated muscle fibers undergo much less atrophy compared with denervated muscle fibers. Dramatic behavioral recovery to near-unoperated levels occurs within days to weeks, almost certainly by activating many central nervous system and peripheral nervous system synaptic and other plasticities, some perhaps to a greater extent than most neuroscientists would expect. Negative control transections in which neurorrhaphy and all solutions except the PEG-containing solution are applied produce none of these remarkably fortuitous outcomes observed for PEG-fusion.
Collapse
Affiliation(s)
- Michelle Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | | | | | - Amir Ali
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Sina Rahesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Karthik Jagannath
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Dale R Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Richard C Trevino
- Department of Orthopedic Surgery, Wellspan Teaching Hospitals, York, Pennsylvania
| | | | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| |
Collapse
|
19
|
Mikesh M, Ghergherehchi CL, Rahesh S, Jagannath K, Ali A, Sengelaub DR, Trevino RC, Jackson DM, Tucker HO, Bittner GD. Polyethylene glycol treated allografts not tissue matched nor immunosuppressed rapidly repair sciatic nerve gaps, maintain neuromuscular functions, and restore voluntary behaviors in female rats. J Neurosci Res 2018; 96:1243-1264. [PMID: 29659046 DOI: 10.1002/jnr.24227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 02/05/2023]
Abstract
Many publications report that ablations of segments of peripheral nerves produce the following unfortunate results: (1) Immediate loss of sensory signaling and motor control; (2) rapid Wallerian degeneration of severed distal axons within days; (3) muscle atrophy within weeks; (4) poor behavioral (functional) recovery after many months, if ever, by slowly-regenerating (∼1mm/d) axon outgrowths from surviving proximal nerve stumps; and (5) Nerve allografts to repair gap injuries are rejected, often even if tissue matched and immunosuppressed. In contrast, using a female rat sciatic nerve model system, we report that neurorrhaphy of allografts plus a well-specified-sequence of solutions (one containing polyethylene glycol: PEG) successfully addresses each of these problems by: (a) Reestablishing axonal continuity/signaling within minutes by nonspecific ally PEG-fusing (connecting) severed motor and sensory axons across each anastomosis; (b) preventing Wallerian degeneration by maintaining many distal segments of inappropriately-reconnected, PEG-fused axons that continuously activate nerve-muscle junctions; (c) maintaining innervation of muscle fibers that undergo much less atrophy than otherwise-denervated muscle fibers; (d) inducing remarkable behavioral recovery to near-unoperated levels within days to weeks, almost certainly by CNS and PNS plasticities well-beyond what most neuroscientists currently imagine; and (e) preventing rejection of PEG-fused donor nerve allografts with no tissue matching or immunosuppression. Similar behavioral results are produced by PEG-fused autografts. All results for Negative Control allografts agree with current neuroscience data 1-5 given above. Hence, PEG-fusion of allografts for repair of ablated peripheral nerve segments expand on previous observations in single-cut injuries, provoke reconsideration of some current neuroscience dogma, and further extend the potential of PEG-fusion in clinical practice.
Collapse
Affiliation(s)
- Michelle Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Cameron L Ghergherehchi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Sina Rahesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Karthik Jagannath
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Amir Ali
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Dale R Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, 47405, USA
| | - Richard C Trevino
- Department of Orthopedic Surgery, Wellspan Teaching Hospitals, York, PA, USA
| | | | - Haley O Tucker
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
20
|
Lee YI, Thompson WJ, Harlow ML. Schwann cells participate in synapse elimination at the developing neuromuscular junction. Curr Opin Neurobiol 2017; 47:176-181. [PMID: 29121585 PMCID: PMC5732880 DOI: 10.1016/j.conb.2017.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
Abstract
During the initial stages of innervation of developing skeletal muscles, the terminal branches of axons from multiple motor neurons form neuromuscular junctions (NMJs) on a small region of each muscle fiber, the motor endplate. Subsequently, the number of axonal inputs at the endplate region is reduced so that, at maturity, each muscle fiber is innervated by the terminals of a single motor neuron. The Schwann cells associated with the axon terminals are involved in the removal of these synapses but do not select the axon that is ultimately retained on each fiber. Schwann cells perform this function by disconnecting terminal branches from the myofiber surface and by attacking them phagocytically. Here we discuss how this behavior is regulated and argue that such regulation is not unique to development of neuromuscular innervation but is also expressed in the response of the mature NMJ to various manipulations and pathologies.
Collapse
Affiliation(s)
- Young Il Lee
- Department of Biology and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States.
| | - Wesley J Thompson
- Department of Biology and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States; University of Texas (adjunct), Department of Neuroscience, Austin, TX 78712, United States
| | - Mark L Harlow
- Department of Biology and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
21
|
Postinjury Induction of Activated ErbB2 Selectively Hyperactivates Denervated Schwann Cells and Promotes Robust Dorsal Root Axon Regeneration. J Neurosci 2017; 37:10955-10970. [PMID: 28982707 DOI: 10.1523/jneurosci.0903-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 11/21/2022] Open
Abstract
Following nerve injury, denervated Schwann cells (SCs) convert to repair SCs, which enable regeneration of peripheral axons. However, the repair capacity of SCs and the regenerative capacity of peripheral axons are limited. In the present studies we examined a potential therapeutic strategy to enhance the repair capacity of SCs, and tested its efficacy in enhancing regeneration of dorsal root (DR) axons, whose regenerative capacity is particularly weak. We used male and female mice of a doxycycline-inducible transgenic line to induce expression of constitutively active ErbB2 (caErbB2) selectively in SCs after DR crush or transection. Two weeks after injury, injured DRs of induced animals contained far more SCs and SC processes. These SCs had not redifferentiated and continued to proliferate. Injured DRs of induced animals also contained far more axons that regrew along SC processes past the transection or crush site. Remarkably, SCs and axons in uninjured DRs remained quiescent, indicating that caErbB2 enhanced regeneration of injured DRs, without aberrantly activating SCs and axons in intact nerves. We also found that intraspinally expressed glial cell line-derived neurotrophic factor (GDNF), but not the removal of chondroitin sulfate proteoglycans, greatly enhanced the intraspinal migration of caErbB2-expressing SCs, enabling robust penetration of DR axons into the spinal cord. These findings indicate that SC-selective, post-injury activation of ErbB2 provides a novel strategy to powerfully enhance the repair capacity of SCs and axon regeneration, without substantial off-target damage. They also highlight that promoting directed migration of caErbB2-expressing SCs by GDNF might be useful to enable axon regrowth in a non-permissive environment.SIGNIFICANCE STATEMENT Repair of injured peripheral nerves remains a critical clinical problem. We currently lack a therapy that potently enhances axon regeneration in patients with traumatic nerve injury. It is extremely challenging to substantially increase the regenerative capacity of damaged nerves without deleterious off-target effects. It was therefore of great interest to discover that caErbB2 markedly enhances regeneration of damaged dorsal roots, while evoking little change in intact roots. To our knowledge, these findings are the first demonstration that repair capacity of denervated SCs can be efficaciously enhanced without altering innervated SCs. Our study also demonstrates that oncogenic ErbB2 signaling can be activated in SCs but not impede transdifferentiation of denervated SCs to regeneration-promoting repair SCs.
Collapse
|
22
|
Wu W, Wu XL, Ji YQ, Gao Z. Differentiation of nestin‑negative human hair follicle outer root sheath cells into neurons in vitro. Mol Med Rep 2017; 16:95-100. [PMID: 28534946 PMCID: PMC5482136 DOI: 10.3892/mmr.2017.6585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 02/21/2017] [Indexed: 01/18/2023] Open
Abstract
A specialized quiescent population of hair follicle stem cells, residing in the hair follicle outer root sheath cells (ORSCs), has previously demonstrated pluripotency for differentiation into neural stem cells (NSCs). A previous study indicated that nestin-positive hair follicle ORSCs are able to differentiate into neurons. However, little has been reported on the isolation of nestin-negative human ORSCs and whether they can successfully differentiate into neurons in vitro. In the present study, nestin-positive ORSCs were significantly reduced with a prolonged incubation time in vitro. Following 9 days of primary culture, nestin-expressing ORSCs disappeared entirely, and ORSCs remained nestin-negative following 5 days of subculture. Notably, nestin was identified in ORSCs following a three-step process of neuro-induction. In addition, neruodevelopmental markers were detected in the ORSC-derived nestin-positive spherical cell mass, including the induction of the neuronal specific markers growth associated protein-43, neurotensin receptor-3 and p75 neurotrophin receptor, and also the gliocyte markers, glial fibrillary acidic protein and S100. These sphere-forming cells did not express the mature neuron-associated markers neurofilament medium, neuronal nuclei and neuron-specific enolase, which suggested that sphere-forming cells may preferentially differentiate into neural stem cell-like cells as opposed to mature neurons or neurogliocyte. In conclusion, ORSC-driven neural differentiation may be a suitable treatment strategy for neurodegenerative diseases and may possess an important value in regenerative medicine.
Collapse
Affiliation(s)
- Wei Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiao-Li Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yu-Qing Ji
- Department of Plastic and Reconstructive Surgery, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
23
|
Axonal degeneration, distal collateral branching and neuromuscular junction architecture alterations occur prior to symptom onset in the SOD1G93A mouse model of amyotrophic lateral sclerosis. J Chem Neuroanat 2016; 76:35-47. [DOI: 10.1016/j.jchemneu.2016.03.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 01/29/2016] [Accepted: 03/19/2016] [Indexed: 12/11/2022]
|
24
|
Van Dyke JM, Smit-Oistad IM, Macrander C, Krakora D, Meyer MG, Suzuki M. Macrophage-mediated inflammation and glial response in the skeletal muscle of a rat model of familial amyotrophic lateral sclerosis (ALS). Exp Neurol 2016; 277:275-282. [PMID: 26775178 DOI: 10.1016/j.expneurol.2016.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/03/2016] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor dysfunction and loss of large motor neurons in the spinal cord and brain stem. While much research has focused on mechanisms of motor neuron cell death in the spinal cord, degenerative processes in skeletal muscle and neuromuscular junctions (NMJs) are also observed early in disease development. Although recent studies support the potential therapeutic benefits of targeting the skeletal muscle in ALS, relatively little is known about inflammation and glial responses in skeletal muscle and near NMJs, or how these responses contribute to motor neuron survival, neuromuscular innervation, or motor dysfunction in ALS. We recently showed that human mesenchymal stem cells modified to release glial cell line-derived neurotrophic factor (hMSC-GDNF) extend survival and protect NMJs and motor neurons in SOD1(G93A) rats when delivered to limb muscles. In this study, we evaluate inflammatory and glial responses near NMJs in the limb muscle collected from a rat model of familial ALS (SOD1(G93A) transgenic rats) during disease progression and following hMSC-GDNF transplantation. Muscle samples were collected from pre-symptomatic, symptomatic, and end-stage animals. A significant increase in the expression of microglial inflammatory markers (CD11b and CD68) occurred in the skeletal muscle of symptomatic and end-stage SOD1(G93A) rats. Inflammation was confirmed by ELISA for inflammatory cytokines interleukin-1 β (IL-1β) and tumor necrosis factor-α (TNF-α) in muscle homogenates of SOD1(G93A) rats. Next, we observed active glial responses in the muscle of SOD1(G93A) rats, specifically near intramuscular axons and NMJs. Interestingly, strong expression of activated glial markers, glial fibrillary acidic protein (GFAP) and nestin, was observed in the areas adjacent to NMJs. Finally, we determined whether ex vivo trophic factor delivery influences inflammation and terminal Schwann cell (TSC) response during ALS. We found that intramuscular transplantation of hMSC-GDNF tended to exhibit less inflammation and significantly maintained TSC association with NMJs. Understanding cellular responses near NMJs is important to identify suitable cellular and molecular targets for novel treatment of ALS and other neuromuscular diseases.
Collapse
Affiliation(s)
- Jonathan M Van Dyke
- Department of Comparative Biosciences and The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ivy M Smit-Oistad
- Department of Comparative Biosciences and The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Corey Macrander
- Department of Comparative Biosciences and The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Dan Krakora
- Department of Comparative Biosciences and The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael G Meyer
- Department of Comparative Biosciences and The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Masatoshi Suzuki
- Department of Comparative Biosciences and The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
25
|
Lindqvist J, Wistbacka N, Eriksson JE. Studying Nestin and its Interrelationship with Cdk5. Methods Enzymol 2015; 568:509-35. [PMID: 26795482 DOI: 10.1016/bs.mie.2015.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current research utilizes the specific expression pattern of intermediate filaments (IF) for identifying cellular state and origin, as well as for the purpose of disease diagnosis. Nestin is commonly utilized as a specific marker and driver for CNS progenitor cell types, but in addition, nestin can be found in several mesenchymal progenitor cells, and it is constitutively expressed in a few restricted locations, such as muscle neuromuscular junctions and kidney podocytes. Alike most other members of the IF protein family, nestin filaments are dynamic, constantly being remodeled through posttranslational modifications, which alter the solubility, protein levels, and signaling capacity of the nestin filaments. Through its interactions with kinases and other signaling executors, resulting in a complex and bidirectional regulation of cell signaling events, nestin has the potential to determine whether cells divide, differentiate, migrate, or stay in place. In this review, the broad and similar roles of IFs as dynamic signaling scaffolds, is exemplified by observations of nestin functions and its interaction with the cyclin- dependent kinase 5, the atypical kinase in the family of cyclin-dependent kinases.
Collapse
Affiliation(s)
- Julia Lindqvist
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Num Wistbacka
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
26
|
Ko CP, Robitaille R. Perisynaptic Schwann Cells at the Neuromuscular Synapse: Adaptable, Multitasking Glial Cells. Cold Spring Harb Perspect Biol 2015; 7:a020503. [PMID: 26430218 PMCID: PMC4588062 DOI: 10.1101/cshperspect.a020503] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The neuromuscular junction (NMJ) is engineered to be a highly reliable synapse to carry the control of the motor commands of the nervous system over the muscles. Its development, organization, and synaptic properties are highly structured and regulated to support such reliability and efficacy. Yet, the NMJ is also highly plastic, able to react to injury and adapt to changes. This balance between structural stability and synaptic efficacy on one hand and structural plasticity and repair on another hand is made possible by the intricate regulation of perisynaptic Schwann cells, glial cells at this synapse. They regulate both the efficacy and structural plasticity of the NMJ in a dynamic, bidirectional manner owing to their ability to decode synaptic transmission and by their interactions via trophic-related factors.
Collapse
Affiliation(s)
- Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520
| | - Richard Robitaille
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
27
|
Alibardi L. Ultrastructural immunolocalization of nestin in the regenerating tail of lizards shows its presence during cytoskeletal modifications in the epidermis, muscles and nerves. Tissue Cell 2015; 47:178-85. [DOI: 10.1016/j.tice.2015.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
|
28
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 2014; 6:245. [PMID: 25278877 PMCID: PMC4166895 DOI: 10.3389/fnagi.2014.00245] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Pericytes are perivascular cells that envelop and make intimate connections with adjacent capillary endothelial cells. Recent studies show that they may have a profound impact in skeletal muscle regeneration, innervation, vessel formation, fibrosis, fat accumulation, and ectopic bone formation throughout life. In this review, we summarize and evaluate recent advances in our understanding of pericytes' influence on adult skeletal muscle pathophysiology. We also discuss how further elucidating their biology may offer new approaches to the treatment of conditions characterized by muscle wasting.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Maria L Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
29
|
Terminal Schwann cells participate in neuromuscular synapse remodeling during reinnervation following nerve injury. J Neurosci 2014; 34:6323-33. [PMID: 24790203 DOI: 10.1523/jneurosci.4673-13.2014] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Schwann cells (SCs) at neuromuscular junctions (NMJs) play active roles in synaptic homeostasis and repair. We have studied how SCs contribute to reinnervation of NMJs using vital imaging of mice whose motor axons and SCs are transgenically labeled with different colors of fluorescent proteins. Motor axons most commonly regenerate to the original synaptic site by following SC-filled endoneurial tubes. During the period of denervation, SCs at the NMJ extend elaborate processes from the junction, as shown previously, but they also retract some processes from territory they previously occupied within the endplate. The degree of this retraction depends on the length of the period of denervation. We show that the topology of the remaining SC processes influences the branching pattern of regenerating axon terminals and the redistribution of acetylcholine receptors (AChRs). Upon arriving at the junction, regenerating axons follow existing SC processes within the old synaptic site. Some of the AChR loss that follows denervation is correlated with failure of portions of the old synaptic site that lack SC coverage to be reinnervated. New AChR clustering is also induced by axon terminals that follow SC processes extended during denervation. These observations show that SCs participate actively in the remodeling of neuromuscular synapses following nerve injury by their guidance of axonal reinnervation.
Collapse
|
30
|
Abstract
Injuries to peripheral nerves can cause paralysis and sensory disturbances, but such functional impairments are often short lived because of efficient regeneration of damaged axons. The time required for functional recovery, however, increases with advancing age (Verdú et al., 2000; Kawabuchi et al., 2011). Incomplete or delayed recovery after peripheral nerve damage is a major health concern in the aging population because it can severely restrict a person's mobility and independence. A variety of possible causes have been suggested to explain why nervous systems in aged individuals recover more slowly from nerve damage. Potential causes include age-related declines in the regenerative potential of peripheral axons and decreases in the supply or responsivity to trophic and/or tropic factors. However, there have been few direct analyses of age-related axon regeneration. Our aim here was to observe axons directly in young and old mice as they regenerate and ultimately reoccupy denervated neuromuscular synaptic sites to learn what changes in this process are age related. We find that damaged nerves in aged animals clear debris more slowly than nerves in young animals and that the greater number of obstructions regenerating axons encounter in the endoneurial tubes of old animals give rise to slower regeneration. Surprisingly, however, axons from aged animals regenerate quickly when not confronted by debris and reoccupy neuromuscular junction sites efficiently. These results imply that facilitating clearance of axon debris might be a good target for the treatment of nerve injury in the aged.
Collapse
|
31
|
Terminal Schwann cells participate in the competition underlying neuromuscular synapse elimination. J Neurosci 2013; 33:17724-36. [PMID: 24198364 DOI: 10.1523/jneurosci.3339-13.2013] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The competitive processes that result in elimination/pruning of developing synapses are incompletely understood. Serial electron microscopy was used to image postnatal mouse neuromuscular junctions where elimination is well studied and events at every synaptic contact can be examined. Glial or Schwann cells (SCs) are shown to have two activities during elimination: their processes separate nerve terminals from each other and from the muscle fiber; they contact the plaque of acetylcholine receptors, apposing this surface as closely as the nerve, limiting the area where synaptic transmission occurs. SCs phagocytose nerve terminals contacting the muscle fiber. This phagocytosis involves all axons; SCs are not selecting the winner but rather driving turnover. Previous modeling of stochastic turnover and reoccupation of nerve contacts shows that single innervation of synaptic sites can result. Thus, our study shows roles of SCs in neuromuscular development beyond the previous demonstration of consumption of synaptic inputs after their elimination.
Collapse
|
32
|
Chabot A, Meus MA, Hertig V, Duquette N, Calderone A. The neurogenic response of cardiac resident nestin(+) cells was associated with GAP43 upregulation and abrogated in a setting of type I diabetes. Cardiovasc Diabetol 2013; 12:114. [PMID: 23938193 PMCID: PMC3751664 DOI: 10.1186/1475-2840-12-114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 12/11/2022] Open
Abstract
Background Cardiac nestin(+) cells exhibit properties of a neural progenitor/stem cell population characterized by the de novo synthesis of neurofilament-M in response to ischemic injury and 6-hydroxydopamine administration. The induction of growth associated protein 43 (GAP43) was identified as an early event of neurogenesis. The present study tested the hypothesis that the de novo synthesis of neurofilament-M by nestin(+) cells was preceded by the transient upregulation of GAP43 during the acute phase of reparative fibrosis in the infarcted male rat heart. Secondly, a seminal feature of diabetes is impaired wound healing secondary to an inadequate neurogenic response. In this regard, an additional series of experiments tested the hypothesis that the neurogenic response of cardiac nestin(+) cells was attenuated in a setting of type I diabetes. Methods The neurogenic response of cardiac nestin(+) cells was examined during the early phase of reparative fibrosis following permanent ligation of the left anterior descending coronary artery in the adult male rat heart. The experimental model of type I diabetes was created following a single injection of streptozotocin in adult male rats. The impact of a type I diabetic environment on the neurogenic response of cardiac nestin(+) cells was examined during myocardial infarction and following the administration of 6-hydroxydopamine. Results During the early phase of scar formation/healing, the density of GAP43/nestin(+) fibres innervating the peri-infarct/infarct region was significantly increased, whereas neurofilament-M/nestin(+) fibres were absent. With ongoing scar formation/healing, a temporal decrease of GAP43/nestin(+) fibre density and a concomitant increase in the density of innervating neurofilament-M/nestin(+) fibres were observed. The neurogenic response of cardiac nestin(+) cells during scar formation/healing was inhibited following the superimposition of type I diabetes. The de novo synthesis of neurofilament-M by nestin(+) cells after 6-hydroxydopamine administration was likewise attenuated in the heart of type I diabetic rats whereas the density of GAP43/nestin(+) fibres remained elevated. Conclusion The transient upregulation of GAP43 apparently represents a transition event during the acquisition of a neuronal-like phenotype and a type I diabetic environment attenuated the neurogenic response of cardiac nestin(+) cells to ischemia and 6-hydroxydopamine.
Collapse
Affiliation(s)
- Andreanne Chabot
- Montreal Heart Institute, Research Center, 5000 Belanger Street East, Montreal, QC H1T 1C8, Canada.
| | | | | | | | | |
Collapse
|
33
|
Neuron-glia interactions: the roles of Schwann cells in neuromuscular synapse formation and function. Biosci Rep 2012; 31:295-302. [PMID: 21517783 DOI: 10.1042/bsr20100107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The NMJ (neuromuscular junction) serves as the ultimate output of the motor neurons. The NMJ is composed of a presynaptic nerve terminal, a postsynaptic muscle and perisynaptic glial cells. Emerging evidence has also demonstrated an existence of perisynaptic fibroblast-like cells at the NMJ. In this review, we discuss the importance of Schwann cells, the glial component of the NMJ, in the formation and function of the NMJ. During development, Schwann cells are closely associated with presynaptic nerve terminals and are required for the maintenance of the developing NMJ. After the establishment of the NMJ, Schwann cells actively modulate synaptic activity. Schwann cells also play critical roles in regeneration of the NMJ after nerve injury. Thus, Schwann cells are indispensable for formation and function of the NMJ. Further examination of the interplay among Schwann cells, the nerve and the muscle will provide insights into a better understanding of mechanisms underlying neuromuscular synapse formation and function.
Collapse
|
34
|
Abstract
Scar formation following an ischemic insult to the heart is referred to as reparative fibrosis and represents an essential physiological response to heal the damaged myocardium. The biological events of reparative fibrosis include inflammation, the deposition of collagen by myofibroblasts, sympathetic innervation, and angiogenesis. Several studies have further reported that scar formation was associated with the recruitment of neural crest-derived cardiac resident nestin(+) cells that display characteristics consistent with a neural progenitor/stem cell phenotype. During the reparative fibrotic response, these nestin(+) cells participate in neural remodeling and represent a novel cellular substrate of angiogenesis. In addition, a subpopulation of nestin(+) cells identified in the normal heart expressed cardiac progenitor transcriptional factors and may directly contribute to myocardial regeneration following ischemic damage. Nestin protein was also detected in endothelial cells of newly formed blood vessels in the scar and may represent a marker of revascularization. Lastly, nestin was induced in a subpopulation of smooth muscle α-actin(+) scar-derived myofibroblasts, and the expression of the intermediate filament protein may provide a proliferative advantage. Collectively, these data demonstrate that diverse populations of nestin(+) cells participate in cardiac wound healing.
Collapse
|
35
|
Nestin is not essential for development of the CNS but required for dispersion of acetylcholine receptor clusters at the area of neuromuscular junctions. J Neurosci 2011; 31:11547-52. [PMID: 21832185 DOI: 10.1523/jneurosci.4396-10.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nestin is expressed in many different progenitors during development including those of the CNS, heart, skeletal muscle, and kidney. The adult expression is mainly restricted to the subependymal zone and dentate gyrus of the brain, the neuromuscular junction, and renal podocytes. In addition, this intermediate filament protein has served as a marker of neural stem/progenitor cells for close to 20 years. Therefore it is surprising that its function in development and adult physiology is still poorly understood. Here we report that nestin deficiency is compatible with normal development of the CNS. The mutant mice, however, show impaired motor coordination. Furthermore, we found that the number of acetylcholine receptor clusters, the nerve length, and the endplate bandwidth are significantly increased in neuromuscular junction area of nestin-deficient mice. This is similar to the phenotype described for deficiency of cyclin-dependent kinase 5 (Cdk5), a candidate downstream affecter of nestin. Moreover, we demonstrate that nestin deficiency can rescue maintenance of acetylcholine receptor clusters in the absence of agrin, similar to Cdk5/agrin double knock-outs, suggesting that the observed nestin deficiency phenotype is the consequence of aberrant Cdk5 activity.
Collapse
|
36
|
Lee YI, Mikesh M, Smith I, Rimer M, Thompson W. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons. Dev Biol 2011; 356:432-44. [PMID: 21658376 DOI: 10.1016/j.ydbio.2011.05.667] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 11/16/2022]
Abstract
A mouse model of the devastating human disease "spinal muscular atrophy" (SMA) was used to investigate the severe muscle weakness and spasticity that precede the death of these animals near the end of the 2nd postnatal week. Counts of motor units to the soleus muscle as well as of axons in the soleus muscle nerve showed no loss of motor neurons. Similarly, neither immunostaining of neuromuscular junctions nor the measurement of the tension generated by nerve stimulation gave evidence of any significant impairment in neuromuscular transmission, even when animals were maintained up to 5days longer via a supplementary diet. However, the muscles were clearly weaker, generating less than half their normal tension. Weakness in 3 muscles examined in the study appears due to a severe but uniform reduction in muscle fiber size. The size reduction results from a failure of muscle fibers to grow during early postnatal development and, in soleus, to a reduction in number of fibers generated. Neuromuscular development is severely delayed in these mutant animals: expression of myosin heavy chain isoforms, the elimination of polyneuronal innervation, the maturation in the shape of the AChR plaque, the arrival of SCs at the junctions and their coverage of the nerve terminal, the development of junctional folds. Thus, if SMA in this particular mouse is a disease of motor neurons, it can act in a manner that does not result in their death or disconnection from their targets but nonetheless alters many aspects of neuromuscular development.
Collapse
Affiliation(s)
- Young Il Lee
- Section of Molecular Cell and Developmental Biology, The University of Texas, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
37
|
Nestin negatively regulates postsynaptic differentiation of the neuromuscular synapse. Nat Neurosci 2011; 14:324-30. [PMID: 21278733 PMCID: PMC3069133 DOI: 10.1038/nn.2747] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/22/2010] [Indexed: 01/14/2023]
Abstract
Positive and negative regulation of neurotransmitter receptor aggregation on the postsynaptic membrane is a critical event during synapse formation. Acetylcholine (ACh) and agrin are two opposing signals that regulate ACh receptor (AChR) clustering during neuromuscular junction (NMJ) development. ACh induces dispersion of AChR clusters that are not stabilized by agrin via a cyclin-dependent kinase 5 (Cdk5)-mediated mechanism, but regulation of Cdk5 activation is poorly understood. Here we show that the intermediate filament protein nestin physically interacts with Cdk5 and is required for ACh-induced association of p35, the co-activator of Cdk5, with the muscle membrane. Blockade of nestin-dependent signaling inhibits ACh-induced Cdk5 activation and the dispersion of AChR clusters in cultured myotubes. Similar to the effects of Cdk5 gene inactivation, knockdown of nestin in agrin-deficient embryos significantly restores AChR clusters. These results suggest that nestin is required for ACh-induced, Cdk5-dependent dispersion of AChR clusters during NMJ development.
Collapse
|
38
|
Béguin PC, El-Helou V, Gillis MA, Duquette N, Gosselin H, Brugada R, Villeneuve L, Lauzier D, Tanguay JF, Ribuot C, Calderone A. Nestin(+) stem cells independently contribute to neural remodelling of the ischemic heart. J Cell Physiol 2011; 226:1157-65. [DOI: 10.1002/jcp.22441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Pain mechanisms in chronic pancreatitis: of a master and his fire. Langenbecks Arch Surg 2010; 396:151-60. [PMID: 21153480 PMCID: PMC3026929 DOI: 10.1007/s00423-010-0731-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 11/24/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Unraveling the mechanisms of pain in chronic pancreatitis (CP) remains a true challenge. The rapid development of pancreatic surgery in the twentieth century, usage of advanced molecular biological techniques, and emergence of clinician-scientists have enabled the elucidation of several mechanisms that lead to the chronic, complicated neuropathic pain syndrome in CP. However, the proper analysis of pain in CP should include three main arms of mechanisms: "peripheral nociception," "peripheral/pancreatic neuropathy and neuroplasticity," and "central neuropathy and neuroplasticity." DISCUSSION According to our current knowledge, pain in CP involves sustained sensitization of pancreatic peripheral nociceptors by neurotransmitters and neurotrophic factors following neural damage. This peripheral pancreatic neuropathy leads to intrapancreatic neuroplastic alterations that involve a profound switch in the autonomic innervation of the human pancreas via "neural remodeling." Furthermore, this neuropathy entails a hyperexcitability of spinal sensory second-order neurons, which are subject to modulation from the brainstem via descending facilitation. Finally, viscerosensory cortical areas react to this central sensitization via spatial reorganization and thus a central neuroplasticity. The present review summarizes the current findings in these arms of mechanisms and introduces a novel concept to consistently describe pain in CP as a "predominantly neuropathic," "mixed-type" pain.
Collapse
|
40
|
Okazaki Y, Ohshima N, Yoshizawa I, Kamei Y, Mariggiò S, Okamoto K, Maeda M, Nogusa Y, Fujioka Y, Izumi T, Ogawa Y, Shiro Y, Wada M, Kato N, Corda D, Yanaka N. A novel glycerophosphodiester phosphodiesterase, GDE5, controls skeletal muscle development via a non-enzymatic mechanism. J Biol Chem 2010; 285:27652-63. [PMID: 20576599 PMCID: PMC2934633 DOI: 10.1074/jbc.m110.106708] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 06/08/2010] [Indexed: 11/06/2022] Open
Abstract
Mammalian glycerophosphodiester phosphodiesterases (GP-PDEs) have been identified recently and shown to be implicated in several physiological functions. This study isolated a novel GP-PDE, GDE5, and showed that GDE5 selectively hydrolyzes glycerophosphocholine (GroPCho) and controls skeletal muscle development. We show that GDE5 expression was reduced in atrophied skeletal muscles in mice and that decreasing GDE5 abundance promoted myoblastic differentiation, suggesting that decreased GDE5 expression has a counter-regulatory effect on the progression of skeletal muscle atrophy. Forced expression of full-length GDE5 in cultured myoblasts suppressed myogenic differentiation. Unexpectedly, a truncated GDE5 construct (GDE5DeltaC471), which contained a GP-PDE sequence identified in other GP-PDEs but lacked GroPCho phosphodiesterase activity, showed a similar inhibitory effect. Furthermore, transgenic mice specifically expressing GDE5DeltaC471 in skeletal muscle showed less skeletal muscle mass, especially type II fiber-rich muscle. These results indicate that GDE5 negatively regulates skeletal muscle development even without GroPCho phosphodiesterase activity, providing novel insight into the biological significance of mammalian GP-PDE function in a non-enzymatic mechanism.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Differentiation
- Cell Line
- Cloning, Molecular
- Computational Biology
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic
- Humans
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Muscle Development
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/growth & development
- Muscular Atrophy/enzymology
- Muscular Atrophy/genetics
- Phosphoric Diester Hydrolases/chemistry
- Phosphoric Diester Hydrolases/genetics
- Phosphoric Diester Hydrolases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
Collapse
Affiliation(s)
- Yuri Okazaki
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Noriyasu Ohshima
- the Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Ikumi Yoshizawa
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yasutomi Kamei
- the Department of Molecular Medicine and Metabolism, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Stefania Mariggiò
- the Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, 66030 Chieti, Italy
- the Institute of Protein Biochemistry, National Research Council, 80131 Naples, Italy
| | - Keiko Okamoto
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Masahiro Maeda
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yoshihito Nogusa
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yuichiro Fujioka
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Takashi Izumi
- the Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Yoshihiro Ogawa
- the Department of Molecular Medicine and Metabolism, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshitsugu Shiro
- the RIKEN SPring-8 Center, Harima Institute, Hongo 679-5148, Japan, and
| | - Masanobu Wada
- the Department of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Norihisa Kato
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Daniela Corda
- the Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, 66030 Chieti, Italy
- the Institute of Protein Biochemistry, National Research Council, 80131 Naples, Italy
| | - Noriyuki Yanaka
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
41
|
Whitlock EL, Myckatyn TM, Tong AY, Yee A, Yan Y, Magill CK, Johnson PJ, Mackinnon SE. Dynamic quantification of host Schwann cell migration into peripheral nerve allografts. Exp Neurol 2010; 225:310-9. [PMID: 20633557 DOI: 10.1016/j.expneurol.2010.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/24/2010] [Accepted: 07/07/2010] [Indexed: 12/21/2022]
Abstract
Host Schwann cell (SC) migration into nerve allografts is the limiting factor in the duration of immunosuppression following peripheral nerve allotransplantation, and may be affected by different immunosuppressive regimens. Our objective was to compare SC migration patterns between clinical and experimental immunosuppression regimens both over time and at the harvest endpoint. Eighty mice that express GFP under the control of the Schwann cell specific S100 promoter were engrafted with allogeneic, nonfluorescent sciatic nerve grafts. Mice received immunosuppression with either tacrolimus (FK506), or experimental T-cell triple costimulation blockade (CSB), consisting of CTLA4-immunoglobulin fusion protein, anti-CD40 monoclonal antibody, and anti-inducible costimulator monoclonal antibody. Migration of GFP-expressing host SCs into wild-type allografts was assessed in vivo every 3 weeks until 15 weeks postoperatively, and explanted allografts were evaluated for immunohistochemical staining patterns to differentiate graft from host SCs. Immunosuppression with tacrolimus exhibited a plateau of SC migration, characterized by significant early migration (< 3 weeks) followed by a constant level of host SCs in the graft (15 weeks). At the endpoint, graft fluorescence was decreased relative to surrounding host nerve, and donor SCs persisted within the graft. CSB-treated mice displayed gradually increasing migration of host SCs into the graft, without the plateau noted in tacrolimus-treated mice, and also maintained a population of donor SCs at the 15-week endpoint. SC migration patterns are affected by immunosuppressant choice, particularly in the immediate postoperative period, and the use of a single treatment of CSB may allow for gradual population of nerve allografts with host SCs.
Collapse
Affiliation(s)
- Elizabeth L Whitlock
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ceyhan GO, Demir IE, Maak M, Friess H. Fate of nerves in chronic pancreatitis: Neural remodeling and pancreatic neuropathy. Best Pract Res Clin Gastroenterol 2010; 24:311-22. [PMID: 20510831 DOI: 10.1016/j.bpg.2010.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/07/2010] [Indexed: 01/31/2023]
Abstract
There is probably no other gastrointestinal disorder which is as much characterized by concomitant local, intra-organ and central neuropathic and neuroplastic alterations as chronic pancreatitis (CP). While some key features of this neuropathy have recently been elucidated, there is still no satisfying pathophysiological explanation for the generation of neuropathic pain in CP. It is becoming increasingly clear that an effective pain treatment in CP can probably not be achieved without consideration of the exact fate of intrapancreatic nerves and central neuroplastic alterations. This review is intended to illustrate the temporal and spatial alterations of intrapancreatic nerves in the course of CP. At the same time, it depicts the reciprocal relationship between these plastic changes and thus underlines the notion of a 'common fate' for all these alterations. Moreover, it points out numerous aspects of this fate that are yet to be unveiled and should therefore be subject to future investigation.
Collapse
Affiliation(s)
- Güralp O Ceyhan
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| | | | | | | |
Collapse
|
43
|
Ceyhan GO, Demir IE, Rauch U, Bergmann F, Müller MW, Büchler MW, Friess H, Schäfer KH. Pancreatic neuropathy results in "neural remodeling" and altered pancreatic innervation in chronic pancreatitis and pancreatic cancer. Am J Gastroenterol 2009; 104:2555-65. [PMID: 19568227 DOI: 10.1038/ajg.2009.380] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Chronic pancreatitis (CP) and pancreatic cancer (PCa) are characterized by intrapancreatic neuropathic alterations, including increased neural density and hypertrophy, pancreatic neuritis and neural invasion (NI) by cancer cells in PCa. The aim of this study was to identify the influence of these neuropathic changes on the quality of pancreatic innervation, intrapancreatic glia, and visceral pain. METHODS Pancreatic nerve fiber qualities were characterized by immunohistochemical visualization of various markers, including those for sympathetic (tyrosine hydroxylase, TH) and cholinergic innervation (choline acetyltransferase, ChAT), as well as the glial transcription factor, Sox10, and the neuroepithelial progenitor cell marker, Nestin, in normal pancreas (NP, n=16), CP (n=20), and PCa (n=20) patients. The neural immunoreactivity scores of these markers were correlated with the severity of intrapancreatic neuropathic changes and with abdominal pain sensation of patients. RESULTS Pancreatic sympathetic innervation was significantly reduced in CP and PCa, whereas parasympathetic innervation did not show major changes. Nestin neuro-immunoreactivity was stronger, and Sox10-immunoreactivity was weaker in CP and PCa than in NP. Pancreatic sympathetic and cholinergic innervation was noticeably decreased in patients with severe pancreatic neuritis, NI by cancer cells, or abdominal pain. Moreover, the neural immunoreactivity for Sox10 and Nestin also varied with intrapancreatic neuropathic alterations and abdominal pain. CONCLUSIONS The quality of intrapancreatic nerve fibers and the activation state of intrapancreatic glia in CP and PCa are strikingly different from those in normal pancreas. This novel phenomenon of "neural remodeling" shows how pancreatic neuropathic pain and "visceral neuropathy" are associated with altered pancreatic innervation in CP and PCa.
Collapse
Affiliation(s)
- Güralp Onur Ceyhan
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich D-81675, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
El-Helou V, Proulx C, Béguin P, Assimakopoulos J, Gosselin H, Clement R, Villeneuve L, Huot-Marchand JÉ, DeBlois D, Lajoie C, Calderone A. The cardiac neural stem cell phenotype is compromised in streptozotocin-induced diabetic cardiomyopathy. J Cell Physiol 2009; 220:440-9. [DOI: 10.1002/jcp.21785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Abstract
The CNS contains relatively few unmyelinated nerve fibers, and thus benefits from the advantages that are conferred by myelination, including faster conduction velocities, lower energy consumption for impulse transmission, and greater stability of point-to-point connectivity. In the PNS many fibers or regions of fibers the Schwann do not form myelin. Examples include C fibers nociceptors, postganglionic sympathetic fibers, and the Schwann cells associated with motor nerve terminals at neuromuscular junctions. These examples retain a degree of plasticity and a capacity to sprout collaterally that is unusual in myelinated fibers. Nonmyelin-forming Schwann cells, including those associated with uninjured fibers, have the capacity to act as the "first responders" to injury or disease in their neighborhoods.
Collapse
Affiliation(s)
- John W Griffin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
46
|
Immunohistochemical detection of nestin in the periodontal Ruffini endings of the rat incisor. Neurosci Lett 2009; 449:195-200. [DOI: 10.1016/j.neulet.2008.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 10/29/2008] [Accepted: 11/03/2008] [Indexed: 11/21/2022]
|
47
|
Court FA, Gillingwater TH, Melrose S, Sherman DL, Greenshields KN, Morton AJ, Harris JB, Willison HJ, Ribchester RR. Identity, developmental restriction and reactivity of extralaminar cells capping mammalian neuromuscular junctions. J Cell Sci 2008; 121:3901-11. [DOI: 10.1242/jcs.031047] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Neuromuscular junctions (NMJs) are normally thought to comprise three major cell types: skeletal muscle fibres, motor neuron terminals and perisynaptic terminal Schwann cells. Here we studied a fourth population of junctional cells in mice and rats, revealed using a novel cytoskeletal antibody (2166). These cells lie outside the synaptic basal lamina but form caps over NMJs during postnatal development. NMJ-capping cells also bound rPH, HM-24, CD34 antibodies and cholera toxin B subunit. Bromodeoxyuridine incorporation indicated activation, proliferation and spread of NMJ-capping cells following denervation in adults, in advance of terminal Schwann cell sprouting. The NMJ-capping cell reaction coincided with expression of tenascin-C but was independent of this molecule because capping cells also dispersed after denervation in tenascin-C-null mutant mice. NMJ-capping cells also dispersed after local paralysis with botulinum toxin and in atrophic muscles of transgenic R6/2 mice. We conclude that NMJ-capping cells (proposed name `kranocytes') represent a neglected, canonical cellular constituent of neuromuscular junctions where they could play a permissive role in synaptic regeneration.
Collapse
Affiliation(s)
- Felipe A. Court
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Neuroscience Research, The University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Thomas H. Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Neuroscience Research, The University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Shona Melrose
- Centre for Neuroscience Research, The University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Diane L. Sherman
- Centre for Neuroscience Research, The University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Kay N. Greenshields
- Division of Clinical Neuroscience, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - A. Jennifer Morton
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - John B. Harris
- Institute of Neuroscience Faculty of Medical Sciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Hugh J. Willison
- Division of Clinical Neuroscience, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Richard R. Ribchester
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
- Centre for Neuroscience Research, The University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| |
Collapse
|
48
|
Hayashi A, Moradzadeh A, Tong A, Wei C, Tuffaha SH, Hunter DA, Tung TH, Parsadanian A, Mackinnon SE, Myckatyn TM. Treatment modality affects allograft-derived Schwann cell phenotype and myelinating capacity. Exp Neurol 2008; 212:324-36. [PMID: 18514192 PMCID: PMC2806227 DOI: 10.1016/j.expneurol.2008.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/28/2008] [Accepted: 04/04/2008] [Indexed: 01/23/2023]
Abstract
We used peripheral nerve allografts, already employed clinically to reconstruct devastating peripheral nerve injuries, to study Schwann cell (SC) plasticity in adult mice. By modulating the allograft treatment modality we were able to study migratory, denervated, rejecting, and reinnervated phenotypes in transgenic mice whose SCs expressed GFP under regulatory elements of either the S100b (S100-GFP) or nestin (Nestin-GFP) promoters. Well-differentiated SCs strongly expressed S100-GFP, while Nestin-GFP expression was stimulated by denervation, and in some cases, axons were constitutively labeled with CFP to enable in vivo imaging. Serial imaging of these mice demonstrated that untreated allografts were rejected within 20 days. Cold preserved (CP) allografts required an initial phase of SC migration that preceded axonal regeneration thus delaying myelination and maturation of the SC phenotype. Mice immunosuppressed with FK506 demonstrated mild subacute rejection, but the most robust regeneration of myelinated and unmyelinated axons and motor endplate reinnervation. While characterized by fewer regenerating axons, mice treated with the co-stimulatory blockade (CSB) agents anti-CD40L mAb and CTLAIg-4 demonstrated virtually no graft rejection during the 28 day experiment, and had significant increases in myelination, connexin-32 expression, and Akt phosphorylation compared with any other group. These results indicate that even with SC rejection, nerve regeneration can occur to some degree, particularly with FK506 treatment. However, we found that co-stimulatory blockade facilitate optimal myelin formation and maturation of SCs as indicated by protein expression of myelin basic protein (MBP), connexin-32 and phospho-Akt.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexander Parsadanian
- Department of Neurology and Hope Center for Neurological Disorders, Box 8518, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
49
|
The rat heart contains a neural stem cell population; role in sympathetic sprouting and angiogenesis. J Mol Cell Cardiol 2008; 45:694-702. [PMID: 18718475 DOI: 10.1016/j.yjmcc.2008.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 12/26/2022]
Abstract
Nestin-expressing cells were identified in the normal rat heart characterized by a small cell body and numerous processes and following an ischemic insult migrated to the infarct region. The present study was undertaken to identify the phenotype, origin and biological role of nestin-expressing cells during reparative fibrosis. A neural stem cell phenotype was identified based on musashi-1 expression, growth as a neurosphere, and differentiation to a neuronal cell. Using the Wnt1-cre; Z/EG transgenic mouse model, which expresses EGFP in embryologically-derived neural crest cells, the reporter signal was detected in nestin-expressing cells residing in the heart. In infarcted human hearts, nestin-expressing cells were detected in the viable myocardium and the scar and morphologically analogous to the population identified in the rat heart. Following either an ischemic insult or the acute administration of 6-hydroxydopamine, sympathetic sprouting was dependent on the physical association of neurofilament-M immunoreactive fibres with nestin-positive processes emanating from neural stem cells. To specifically study the biological role of the subpopulation in the infarct region, neural stem cells were isolated from the scar, fluorescently labelled and transplanted in the heart of 3-day post-MI rats. Injected scar-derived neural stem cells migrated to the infarct region and were used as a substrate for de novo blood vessel formation. These data have demonstrated that the heart contains a resident population of neural stem cells derived from the neural crest and participate in reparative fibrosis. Their manipulation could provide an alternative approach to ameliorate the healing process following ischemic injury.
Collapse
|
50
|
Feng Z, Ko CP. The Role of Glial Cells in the Formation and Maintenance of the Neuromuscular Junction. Ann N Y Acad Sci 2008; 1132:19-28. [DOI: 10.1196/annals.1405.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|