1
|
Rosso M, Gener CN, Moens B, Maes PJ, Leman M. Perceptual coupling in human dyads: Kinematics does not affect interpersonal synchronization. Heliyon 2024; 10:e33831. [PMID: 39027589 PMCID: PMC11255578 DOI: 10.1016/j.heliyon.2024.e33831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
The minimal, essential condition for individuals to interact is that they exchange information via at least one sensory channel. Once informational coupling is established, it enables basic forms of coordinated behavior to spontaneously emerge from the interaction. Our previous study revealed different coordination dynamics in dyads engaged in a joint finger-tapping task based on visual versus auditory coupling. This observation led us to propose the 'modality-dependent hypothesis', which posits that coordination dynamics are influenced by the sensory modality mediating informational coupling. However, recognizing that different modalities have inherent differences in accessing spatiotemporal features of perceived movement, we formulated the alternative 'kinematic hypothesis'. This hypothesis posits that differences in dynamics would vanish given equivalent kinematic information across modalities. The study involved forty (N = 40) participants, grouped into twenty (N = 20) dyads, who engaged in a joint finger-tapping task. This task was conducted under varying conditions of visual and auditory coupling, with manipulations in the access to kinematic information, categorized as discrete and continuous. Contrary to our initial predictions, the results strongly supported the 'modality-dependent hypothesis'. We observed that visual and auditory coupling consistently yielded distinct attractor dynamics, regardless of the access to kinematic information. Furthermore, all conditions of auditory coupling resulted in higher levels of synchronization than their visual counterparts. These findings suggest that the differences in interpersonal synchronization are predominantly influenced by the sensory modality, rather than the continuity of kinematic information. Our study highlights the significance of sensorimotor interactions in interpersonal synchronization and addresses the potential of sonification strategies in supporting motor training and rehabilitation.
Collapse
Affiliation(s)
- Mattia Rosso
- IPEM - Institute for Systematic Musicology, Ghent University, Ghent, Flanders, 9000, Belgium
| | - Canan Nuran Gener
- IPEM - Institute for Systematic Musicology, Ghent University, Ghent, Flanders, 9000, Belgium
| | - Bart Moens
- IPEM - Institute for Systematic Musicology, Ghent University, Ghent, Flanders, 9000, Belgium
| | - Pieter-Jan Maes
- IPEM - Institute for Systematic Musicology, Ghent University, Ghent, Flanders, 9000, Belgium
| | - Marc Leman
- IPEM - Institute for Systematic Musicology, Ghent University, Ghent, Flanders, 9000, Belgium
| |
Collapse
|
2
|
Shashidhara S, Assem M, Glasser MF, Duncan J. Task and stimulus coding in the multiple-demand network. Cereb Cortex 2024; 34:bhae278. [PMID: 39004756 PMCID: PMC11246790 DOI: 10.1093/cercor/bhae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
In the human brain, a multiple-demand (MD) network plays a key role in cognitive control, with core components in lateral frontal, dorsomedial frontal and lateral parietal cortex, and multivariate activity patterns that discriminate the contents of many cognitive activities. In prefrontal cortex of the behaving monkey, different cognitive operations are associated with very different patterns of neural activity, while details of a particular stimulus are encoded as small variations on these basic patterns (Sigala et al, 2008). Here, using the advanced fMRI methods of the Human Connectome Project and their 360-region cortical parcellation, we searched for a similar result in MD activation patterns. In each parcel, we compared multivertex patterns for every combination of three tasks (working memory, task-switching, and stop-signal) and two stimulus classes (faces and buildings). Though both task and stimulus category were discriminated in every cortical parcel, the strength of discrimination varied strongly across parcels. The different cognitive operations of the three tasks were strongly discriminated in MD regions. Stimulus categories, in contrast, were most strongly discriminated in a large region of primary and higher visual cortex, and intriguingly, in both parietal and frontal lobe regions adjacent to core MD regions. In the monkey, frontal neurons show a strong pattern of nonlinear mixed selectivity, with activity reflecting specific conjunctions of task events. In our data, however, there was limited evidence for mixed selectivity; throughout the brain, discriminations of task and stimulus combined largely linearly, with a small nonlinear component. In MD regions, human fMRI data recapitulate some but not all aspects of electrophysiological data from nonhuman primates.
Collapse
Affiliation(s)
- Sneha Shashidhara
- Center for Social and Behaviour Change, Ashoka University, Sonipat, 131029, India
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB27EF, United Kingdom
| | - Moataz Assem
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB27EF, United Kingdom
| | - Matthew F Glasser
- Departments of Radiology and Neuroscience, Washington University in St. Louis, Saint Louis, MO 63110, United States
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB27EF, United Kingdom
| |
Collapse
|
3
|
Dworetsky A, Seitzman BA, Adeyemo B, Nielsen AN, Hatoum AS, Smith DM, Nichols TE, Neta M, Petersen SE, Gratton C. Two common and distinct forms of variation in human functional brain networks. Nat Neurosci 2024; 27:1187-1198. [PMID: 38689142 PMCID: PMC11248096 DOI: 10.1038/s41593-024-01618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/07/2024] [Indexed: 05/02/2024]
Abstract
The cortex has a characteristic layout with specialized functional areas forming distributed large-scale networks. However, substantial work shows striking variation in this organization across people, which relates to differences in behavior. While most previous work treats individual differences as linked to boundary shifts between the borders of regions, here we show that cortical 'variants' also occur at a distance from their typical position, forming ectopic intrusions. Both 'border' and 'ectopic' variants are common across individuals, but differ in their location, network associations, properties of subgroups of individuals, activations during tasks, and prediction of behavioral phenotypes. Border variants also track significantly more with shared genetics than ectopic variants, suggesting a closer link between ectopic variants and environmental influences. This work argues that these two dissociable forms of variation-border shifts and ectopic intrusions-must be separately accounted for in the analysis of individual differences in cortical systems across people.
Collapse
Affiliation(s)
- Ally Dworetsky
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Benjamin A Seitzman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander S Hatoum
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek M Smith
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas E Nichols
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Maital Neta
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Steven E Petersen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA.
- Department of Psychology, Northwestern University, Evanston, IL, USA.
- Neuroscience Program, Florida State University, Tallahassee, FL, USA.
- Department of Neurology, Northwestern University, Evanston, IL, USA.
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
4
|
Jackson JB, Rich AN, Moerel D, Teichmann L, Duncan J, Woolgar A. Domain general frontoparietal regions show modality-dependent coding of auditory and visual rules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583318. [PMID: 38903119 PMCID: PMC11188079 DOI: 10.1101/2024.03.04.583318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A defining feature of human cognition is our ability to respond flexibly to what we see and hear, changing how we respond depending on our current goals. In fact, we can rapidly associate almost any input stimulus with any arbitrary behavioural response. This remarkable ability is thought to depend on a frontoparietal "multiple demand" circuit which is engaged by many types of cognitive demand and widely referred to as domain general. However, it is not clear how responses to multiple input modalities are structured within this system. Domain generality could be achieved by holding information in an abstract form that generalises over input modality, or in a modality-tagged form, which uses similar resources but produces unique codes to represent the information in each modality. We used a stimulus-response task, with conceptually identical rules in two sensory modalities (visual and auditory), to distinguish between these possibilities. Multivariate decoding of functional magnetic resonance imaging data showed that representations of visual and auditory rules recruited overlapping neural resources but were expressed in modality-tagged non-generalisable neural codes. Our data suggest that this frontoparietal system may draw on the same or similar resources to solve multiple tasks, but does not create modality-general representations of task rules, even when those rules are conceptually identical between domains.
Collapse
Affiliation(s)
- J. B. Jackson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - A. N. Rich
- Perception in Action Research Centre & School of Psychological Sciences, Macquarie University, Australia
| | - D. Moerel
- School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - L. Teichmann
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - J. Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - A. Woolgar
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Wang K, Fang Y, Guo Q, Shen L, Chen Q. Superior Attentional Efficiency of Auditory Cue via the Ventral Auditory-thalamic Pathway. J Cogn Neurosci 2024; 36:303-326. [PMID: 38010315 DOI: 10.1162/jocn_a_02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Auditory commands are often executed more efficiently than visual commands. However, empirical evidence on the underlying behavioral and neural mechanisms remains scarce. In two experiments, we manipulated the delivery modality of informative cues and the prediction violation effect and found consistently enhanced RT benefits for the matched auditory cues compared with the matched visual cues. At the neural level, when the bottom-up perceptual input matched the prior prediction induced by the auditory cue, the auditory-thalamic pathway was significantly activated. Moreover, the stronger the auditory-thalamic connectivity, the higher the behavioral benefits of the matched auditory cue. When the bottom-up input violated the prior prediction induced by the auditory cue, the ventral auditory pathway was specifically involved. Moreover, the stronger the ventral auditory-prefrontal connectivity, the larger the behavioral costs caused by the violation of the auditory cue. In addition, the dorsal frontoparietal network showed a supramodal function in reacting to the violation of informative cues irrespective of the delivery modality of the cue. Taken together, the results reveal novel behavioral and neural evidence that the superior efficiency of the auditory cue is twofold: The auditory-thalamic pathway is associated with improvements in task performance when the bottom-up input matches the auditory cue, whereas the ventral auditory-prefrontal pathway is involved when the auditory cue is violated.
Collapse
Affiliation(s)
- Ke Wang
- South China Normal University, Guangzhou, China
| | - Ying Fang
- South China Normal University, Guangzhou, China
| | - Qiang Guo
- Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Lu Shen
- South China Normal University, Guangzhou, China
| | - Qi Chen
- South China Normal University, Guangzhou, China
| |
Collapse
|
6
|
Lee J, Park S. Multi-modal Representation of the Size of Space in the Human Brain. J Cogn Neurosci 2024; 36:340-361. [PMID: 38010320 DOI: 10.1162/jocn_a_02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
To estimate the size of an indoor space, we must analyze the visual boundaries that limit the spatial extent and acoustic cues from reflected interior surfaces. We used fMRI to examine how the brain processes the geometric size of indoor scenes when various types of sensory cues are presented individually or together. Specifically, we asked whether the size of space is represented in a modality-specific way or in an integrative way that combines multimodal cues. In a block-design study, images or sounds that depict small- and large-sized indoor spaces were presented. Visual stimuli were real-world pictures of empty spaces that were small or large. Auditory stimuli were sounds convolved with different reverberations. By using a multivoxel pattern classifier, we asked whether the two sizes of space can be classified in visual, auditory, and visual-auditory combined conditions. We identified both sensory-specific and multimodal representations of the size of space. To further investigate the nature of the multimodal region, we specifically examined whether it contained multimodal information in a coexistent or integrated form. We found that angular gyrus and the right medial frontal gyrus had modality-integrated representation, displaying sensitivity to the match in the spatial size information conveyed through image and sound. Background functional connectivity analysis further demonstrated that the connection between sensory-specific regions and modality-integrated regions increases in the multimodal condition compared with single modality conditions. Our results suggest that spatial size perception relies on both sensory-specific and multimodal representations, as well as their interplay during multimodal perception.
Collapse
|
7
|
Ryskin R, Nieuwland MS. Prediction during language comprehension: what is next? Trends Cogn Sci 2023; 27:1032-1052. [PMID: 37704456 DOI: 10.1016/j.tics.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023]
Abstract
Prediction is often regarded as an integral aspect of incremental language comprehension, but little is known about the cognitive architectures and mechanisms that support it. We review studies showing that listeners and readers use all manner of contextual information to generate multifaceted predictions about upcoming input. The nature of these predictions may vary between individuals owing to differences in language experience, among other factors. We then turn to unresolved questions which may guide the search for the underlying mechanisms. (i) Is prediction essential to language processing or an optional strategy? (ii) Are predictions generated from within the language system or by domain-general processes? (iii) What is the relationship between prediction and memory? (iv) Does prediction in comprehension require simulation via the production system? We discuss promising directions for making progress in answering these questions and for developing a mechanistic understanding of prediction in language.
Collapse
Affiliation(s)
- Rachel Ryskin
- Department of Cognitive and Information Sciences, University of California Merced, 5200 Lake Road, Merced, CA 95343, USA.
| | - Mante S Nieuwland
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Li Y, Li C, Jiang L. Well-being is associated with cortical thickness network topology of human brain. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:16. [PMID: 37749598 PMCID: PMC10521404 DOI: 10.1186/s12993-023-00219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Living a happy and meaningful life is an eternal topic in positive psychology, which is crucial for individuals' physical and mental health as well as social functioning. Well-being can be subdivided into pleasure attainment related hedonic well-being or emotional well-being, and self-actualization related eudaimonic well-being or psychological well-being plus social well-being. Previous studies have mostly focused on human brain morphological and functional mechanisms underlying different dimensions of well-being, but no study explored brain network mechanisms of well-being, especially in terms of topological properties of human brain morphological similarity network. METHODS Therefore, in the study, we collected 65 datasets including magnetic resonance imaging (MRI) and well-being data, and constructed human brain morphological network based on morphological distribution similarity of cortical thickness to explore the correlations between topological properties including network efficiency and centrality and different dimensions of well-being. RESULTS We found emotional well-being was negatively correlated with betweenness centrality in the visual network but positively correlated with eigenvector centrality in the precentral sulcus, while the total score of well-being was positively correlated with local efficiency in the posterior cingulate cortex of cortical thickness network. CONCLUSIONS Our findings demonstrated that different dimensions of well-being corresponded to different cortical hierarchies: hedonic well-being was involved in more preliminary cognitive processing stages including perceptual and attentional information processing, while hedonic and eudaimonic well-being might share common morphological similarity network mechanisms in the subsequent advanced cognitive processing stages.
Collapse
Affiliation(s)
- Yubin Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Shijingshan, Beijing, China
| | - Chunlin Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Shijingshan, Beijing, China
| | - Lili Jiang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Shijingshan, Beijing, China.
| |
Collapse
|
9
|
Shim H, Gibbs L, Rush K, Ham J, Kim S, Kim S, Choi I. Neural Mechanisms Related to the Enhanced Auditory Selective Attention Following Neurofeedback Training: Focusing on Cortical Oscillations. APPLIED SCIENCES (BASEL, SWITZERLAND) 2023; 13:8499. [PMID: 39449731 PMCID: PMC11500732 DOI: 10.3390/app13148499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Selective attention can be a useful tactic for speech-in-noise (SiN) interpretation as it strengthens cortical responses to attended sensory inputs while suppressing others. This cortical process is referred to as attentional modulation. Our earlier study showed that a neurofeedback training paradigm was effective for improving the attentional modulation of cortical auditory evoked responses. However, it was unclear how such neurofeedback training improved attentional modulation. This paper attempts to unveil what neural mechanisms underlie strengthened auditory selective attention during the neurofeedback training paradigm. Our EEG time-frequency analysis found that, when spatial auditory attention was focused, a fronto-parietal brain network was activated. Additionally, the neurofeedback training increased beta oscillation, which may imply top-down processing was used to anticipate the sound to be attended selectively with prior information. When the subjects were attending to the sound from the right, they exhibited more alpha oscillation in the right parietal cortex during the final session compared to the first, indicating improved spatial inhibitory processing to suppress sounds from the left. After the four-week training period, the temporal cortex exhibited improved attentional modulation of beta oscillation. This suggests strengthened neural activity to predict the target. Moreover, there was an improvement in the strength of attentional modulation on cortical evoked responses to sounds. The Placebo Group, who experienced similar attention training with the exception that feedback was based simply on behavioral accuracy, did not experience these training effects. These findings demonstrate how neurofeedback training effectively improves the neural mechanisms underlying auditory selective attention.
Collapse
Affiliation(s)
- Hwan Shim
- Department of Electrical and Computer Engineering Technology, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Leah Gibbs
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Karsyn Rush
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Jusung Ham
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Subong Kim
- Department of Communication Sciences and Disorders, Montclair State University, Montclair, NJ 07043, USA
| | - Sungyoung Kim
- Department of Electrical and Computer Engineering Technology, Rochester Institute of Technology, Rochester, NY 14623, USA
- Graduate School of Culture Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Viswanathan V, Bharadwaj HM, Heinz MG, Shinn-Cunningham BG. Induced alpha and beta electroencephalographic rhythms covary with single-trial speech intelligibility in competition. Sci Rep 2023; 13:10216. [PMID: 37353552 PMCID: PMC10290148 DOI: 10.1038/s41598-023-37173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023] Open
Abstract
Neurophysiological studies suggest that intrinsic brain oscillations influence sensory processing, especially of rhythmic stimuli like speech. Prior work suggests that brain rhythms may mediate perceptual grouping and selective attention to speech amidst competing sound, as well as more linguistic aspects of speech processing like predictive coding. However, we know of no prior studies that have directly tested, at the single-trial level, whether brain oscillations relate to speech-in-noise outcomes. Here, we combined electroencephalography while simultaneously measuring intelligibility of spoken sentences amidst two different interfering sounds: multi-talker babble or speech-shaped noise. We find that induced parieto-occipital alpha (7-15 Hz; thought to modulate attentional focus) and frontal beta (13-30 Hz; associated with maintenance of the current sensorimotor state and predictive coding) oscillations covary with trial-wise percent-correct scores; importantly, alpha and beta power provide significant independent contributions to predicting single-trial behavioral outcomes. These results can inform models of speech processing and guide noninvasive measures to index different neural processes that together support complex listening.
Collapse
Affiliation(s)
- Vibha Viswanathan
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Hari M Bharadwaj
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Michael G Heinz
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | | |
Collapse
|
11
|
Viswanathan V, Bharadwaj HM, Heinz MG, Shinn-Cunningham BG. Induced Alpha And Beta Electroencephalographic Rhythms Covary With Single-Trial Speech Intelligibility In Competition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522365. [PMID: 36712081 PMCID: PMC9884507 DOI: 10.1101/2022.12.31.522365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neurophysiological studies suggest that intrinsic brain oscillations influence sensory processing, especially of rhythmic stimuli like speech. Prior work suggests that brain rhythms may mediate perceptual grouping and selective attention to speech amidst competing sound, as well as more linguistic aspects of speech processing like predictive coding. However, we know of no prior studies that have directly tested, at the single-trial level, whether brain oscillations relate to speech-in-noise outcomes. Here, we combined electroencephalography while simultaneously measuring intelligibility of spoken sentences amidst two different interfering sounds: multi-talker babble or speech-shaped noise. We find that induced parieto-occipital alpha (7-15 Hz; thought to modulate attentional focus) and frontal beta (13-30 Hz; associated with maintenance of the current sensorimotor state and predictive coding) oscillations covary with trial-wise percent-correct scores; importantly, alpha and beta power provide significant independent contributions to predicting single-trial behavioral outcomes. These results can inform models of speech processing and guide noninvasive measures to index different neural processes that together support complex listening.
Collapse
Affiliation(s)
- Vibha Viswanathan
- Neuroscience Institute, Carnegie Mellon University, Pitttsburgh, PA 15213
| | - Hari M. Bharadwaj
- Department of Communication Science and Disorders, University of Pittsburgh, Pitttsburgh, PA 15260
| | - Michael G. Heinz
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN 47907
| | | |
Collapse
|
12
|
Noyce AL, Kwasa JAC, Shinn-Cunningham BG. Defining attention from an auditory perspective. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1610. [PMID: 35642475 PMCID: PMC9712589 DOI: 10.1002/wcs.1610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 01/17/2023]
Abstract
Attention prioritizes certain information at the expense of other information in ways that are similar across vision, audition, and other sensory modalities. It influences how-and even what-information is represented and processed, affecting brain activity at every level. Much of the core research into cognitive and neural mechanisms of attention has used visual tasks. However, the same top-down, object-based, and bottom-up attentional processes shape auditory perception, largely through the same underlying, cognitive networks. This article is categorized under: Psychology > Attention.
Collapse
|
13
|
Abstract
The frontal lobe is crucial and contributes to controlling truncal motion, postural responses, and maintaining equilibrium and locomotion. The rich repertoire of frontal gait disorders gives some indication of this complexity. For human walking, it is necessary to simultaneously achieve at least two tasks, such as maintaining a bipedal upright posture and locomotion. Particularly, postural control plays an extremely significant role in enabling the subject to maintain stable gait behaviors to adapt to the environment. To achieve these requirements, the frontal cortex (1) uses cognitive information from the parietal, temporal, and occipital cortices, (2) creates plans and programs of gait behaviors, and (3) acts on the brainstem and spinal cord, where the core posture-gait mechanisms exist. Moreover, the frontal cortex enables one to achieve a variety of gait patterns in response to environmental changes by switching gait patterns from automatic routine to intentionally controlled and learning the new paradigms of gait strategy via networks with the basal ganglia, cerebellum, and limbic structures. This chapter discusses the role of each area of the frontal cortex in behavioral control and attempts to explain how frontal lobe controls walking with special reference to postural control.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Department of Physiology, Division of Neuroscience, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
14
|
Schumacher R, Halai AD, Lambon Ralph MA. Attention to attention in aphasia - elucidating impairment patterns, modality differences and neural correlates. Neuropsychologia 2022; 177:108413. [PMID: 36336090 PMCID: PMC7614452 DOI: 10.1016/j.neuropsychologia.2022.108413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
It is increasingly acknowledged that patients with aphasia following a left-hemisphere stroke often have difficulties in other cognitive domains. One of these domains is attention, the very fundamental ability to detect, select, and react to the abundance of stimuli present in the environment. Basic and more complex attentional functions are usually distinguished, and a variety of tests has been developed to assess attentional performance at a behavioural level. Attentional performance in aphasia has been investigated previously, but often only one specific task, stimulus modality, or type of measure was considered and usually only group-level analyses or data based on experimental tasks were presented. Also, information on brain-behaviour relationships for this cognitive domain and patient group is scarce. We report detailed analyses on a comprehensive dataset including patients' performance on various subtests of two well-known, standardised neuropsychological test batteries assessing attention. These tasks allowed us to explore: 1) how many patients show impaired performance in comparison to normative data, in which tasks and on what measure; 2) how the different tasks and measures relate to each other and to patients' language abilities; 3) the neural correlates associated with attentional performance. Up to 32 patients with varying aphasia severity were assessed with subtests from the Test of Attentional Performance (TAP) as well as the Test of Everyday Attention (TEA). Performance was compared to normative data, relationships between attention measures and other background data were explored with principal component analyses and correlations, and brain-behaviour relationships were assessed by means of voxel-based correlational methodology. Depending on the task and measure, between 3 and 53 percent of the patients showed impaired performance compared to normative data. The highest proportion of impaired performance was noted for complex attention tasks involving auditory stimuli. Patients differed in their patterns of performance and only the performance in the divided attention tests was (weakly) associated with their overall language impairment. Principal components analyses yielded four underlying factors, each being associated with distinct neural correlates. We thus extend previous research in characterizing different aspects of attentional performance within one sample of patients with chronic post stroke aphasia. Performance on a broad range of attention tasks and measures was variable and largely independent of patients' language abilities, which underlines the importance of assessing this cognitive domain in aphasic patients. Notably, a considerable proportion of patients showed difficulties with attention allocation to auditory stimuli. The reasons for these potentially modality-specific difficulties are currently not well understood and warrant additional investigations.
Collapse
Affiliation(s)
- Rahel Schumacher
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Freiburgstrasse, 3010, Bern, Switzerland.
| | - Ajay D Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
15
|
Sherafati A, Dwyer N, Bajracharya A, Hassanpour MS, Eggebrecht AT, Firszt JB, Culver JP, Peelle JE. Prefrontal cortex supports speech perception in listeners with cochlear implants. eLife 2022; 11:e75323. [PMID: 35666138 PMCID: PMC9225001 DOI: 10.7554/elife.75323] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cochlear implants are neuroprosthetic devices that can restore hearing in people with severe to profound hearing loss by electrically stimulating the auditory nerve. Because of physical limitations on the precision of this stimulation, the acoustic information delivered by a cochlear implant does not convey the same level of acoustic detail as that conveyed by normal hearing. As a result, speech understanding in listeners with cochlear implants is typically poorer and more effortful than in listeners with normal hearing. The brain networks supporting speech understanding in listeners with cochlear implants are not well understood, partly due to difficulties obtaining functional neuroimaging data in this population. In the current study, we assessed the brain regions supporting spoken word understanding in adult listeners with right unilateral cochlear implants (n=20) and matched controls (n=18) using high-density diffuse optical tomography (HD-DOT), a quiet and non-invasive imaging modality with spatial resolution comparable to that of functional MRI. We found that while listening to spoken words in quiet, listeners with cochlear implants showed greater activity in the left prefrontal cortex than listeners with normal hearing, specifically in a region engaged in a separate spatial working memory task. These results suggest that listeners with cochlear implants require greater cognitive processing during speech understanding than listeners with normal hearing, supported by compensatory recruitment of the left prefrontal cortex.
Collapse
Affiliation(s)
- Arefeh Sherafati
- Department of Radiology, Washington University in St. LouisSt. LouisUnited States
| | - Noel Dwyer
- Department of Otolaryngology, Washington University in St. LouisSt. LouisUnited States
| | - Aahana Bajracharya
- Department of Otolaryngology, Washington University in St. LouisSt. LouisUnited States
| | | | - Adam T Eggebrecht
- Department of Radiology, Washington University in St. LouisSt. LouisUnited States
- Department of Electrical & Systems Engineering, Washington University in St. LouisSt. LouisUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt. LouisUnited States
- Division of Biology and Biomedical Sciences, Washington University in St. LouisSt. LouisUnited States
| | - Jill B Firszt
- Department of Otolaryngology, Washington University in St. LouisSt. LouisUnited States
| | - Joseph P Culver
- Department of Radiology, Washington University in St. LouisSt. LouisUnited States
- Department of Biomedical Engineering, Washington University in St. LouisSt. LouisUnited States
- Division of Biology and Biomedical Sciences, Washington University in St. LouisSt. LouisUnited States
- Department of Physics, Washington University in St. LouisSt. LouisUnited States
| | - Jonathan E Peelle
- Department of Otolaryngology, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|
16
|
Lim SJ, Thiel C, Sehm B, Deserno L, Lepsien J, Obleser J. Distributed networks for auditory memory differentially contribute to recall precision. Neuroimage 2022; 256:119227. [PMID: 35452804 DOI: 10.1016/j.neuroimage.2022.119227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/13/2022] [Accepted: 04/17/2022] [Indexed: 11/25/2022] Open
Abstract
Re-directing attention to objects in working memory can enhance their representational fidelity. However, how this attentional enhancement of memory representations is implemented across distinct, sensory and cognitive-control brain network is unspecified. The present fMRI experiment leverages psychophysical modelling and multivariate auditory-pattern decoding as behavioral and neural proxies of mnemonic fidelity. Listeners performed an auditory syllable pitch-discrimination task and received retro-active cues to selectively attend to a to-be-probed syllable in memory. Accompanied by increased neural activation in fronto-parietal and cingulo-opercular networks, valid retro-cues yielded faster and more perceptually sensitive responses in recalling acoustic detail of memorized syllables. Information about the cued auditory object was decodable from hemodynamic response patterns in superior temporal sulcus (STS), fronto-parietal, and sensorimotor regions. However, among these regions retaining auditory memory objects, neural fidelity in the left STS and its enhancement through attention-to-memory best predicted individuals' gain in auditory memory recall precision. Our results demonstrate how functionally discrete brain regions differentially contribute to the attentional enhancement of memory representations.
Collapse
Affiliation(s)
- Sung-Joo Lim
- Department of Psychology, University of Lübeck, Maria-Goeppert-Str. 9a, Lübeck 23562, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Department of Psychology, Binghamton University, State University of New York, 4400 Vestal Parkway E, Vestal, Binghamton, NY 13902, USA; Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, USA.
| | - Christiane Thiel
- Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Bernhard Sehm
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Lorenz Deserno
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Jöran Lepsien
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Maria-Goeppert-Str. 9a, Lübeck 23562, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck 23562, Germany.
| |
Collapse
|
17
|
Valzolgher C, Todeschini M, Verdelet G, Gatel J, Salemme R, Gaveau V, Truy E, Farnè A, Pavani F. Adapting to altered auditory cues: Generalization from manual reaching to head pointing. PLoS One 2022; 17:e0263509. [PMID: 35421095 PMCID: PMC9009652 DOI: 10.1371/journal.pone.0263509] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/21/2022] [Indexed: 12/02/2022] Open
Abstract
Localising sounds means having the ability to process auditory cues deriving from the interplay among sound waves, the head and the ears. When auditory cues change because of temporary or permanent hearing loss, sound localization becomes difficult and uncertain. The brain can adapt to altered auditory cues throughout life and multisensory training can promote the relearning of spatial hearing skills. Here, we study the training potentials of sound-oriented motor behaviour to test if a training based on manual actions toward sounds can learning effects that generalize to different auditory spatial tasks. We assessed spatial hearing relearning in normal hearing adults with a plugged ear by using visual virtual reality and body motion tracking. Participants performed two auditory tasks that entail explicit and implicit processing of sound position (head-pointing sound localization and audio-visual attention cueing, respectively), before and after having received a spatial training session in which they identified sound position by reaching to auditory sources nearby. Using a crossover design, the effects of the above-mentioned spatial training were compared to a control condition involving the same physical stimuli, but different task demands (i.e., a non-spatial discrimination of amplitude modulations in the sound). According to our findings, spatial hearing in one-ear plugged participants improved more after reaching to sound trainings rather than in the control condition. Training by reaching also modified head-movement behaviour during listening. Crucially, the improvements observed during training generalize also to a different sound localization task, possibly as a consequence of acquired and novel head-movement strategies.
Collapse
Affiliation(s)
- Chiara Valzolgher
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, Lyon, France
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Trento, Italy
| | - Michela Todeschini
- Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Trento, Italy
| | - Gregoire Verdelet
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, Lyon, France
- Neuroimmersion, Lyon Neuroscience Research Center, Lyon, France
| | | | - Romeo Salemme
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, Lyon, France
- Neuroimmersion, Lyon Neuroscience Research Center, Lyon, France
| | - Valerie Gaveau
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, Lyon, France
- University of Lyon 1, Villeurbanne, France
| | - Eric Truy
- Hospices Civils de Lyon, Lyon, France
| | - Alessandro Farnè
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, Lyon, France
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Trento, Italy
- Neuroimmersion, Lyon Neuroscience Research Center, Lyon, France
| | - Francesco Pavani
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, Lyon, France
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Trento, Italy
| |
Collapse
|
18
|
Peelle JE, Spehar B, Jones MS, McConkey S, Myerson J, Hale S, Sommers MS, Tye-Murray N. Increased Connectivity among Sensory and Motor Regions during Visual and Audiovisual Speech Perception. J Neurosci 2022; 42:435-442. [PMID: 34815317 PMCID: PMC8802926 DOI: 10.1523/jneurosci.0114-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
In everyday conversation, we usually process the talker's face as well as the sound of the talker's voice. Access to visual speech information is particularly useful when the auditory signal is degraded. Here, we used fMRI to monitor brain activity while adult humans (n = 60) were presented with visual-only, auditory-only, and audiovisual words. The audiovisual words were presented in quiet and in several signal-to-noise ratios. As expected, audiovisual speech perception recruited both auditory and visual cortex, with some evidence for increased recruitment of premotor cortex in some conditions (including in substantial background noise). We then investigated neural connectivity using psychophysiological interaction analysis with seed regions in both primary auditory cortex and primary visual cortex. Connectivity between auditory and visual cortices was stronger in audiovisual conditions than in unimodal conditions, including a wide network of regions in posterior temporal cortex and prefrontal cortex. In addition to whole-brain analyses, we also conducted a region-of-interest analysis on the left posterior superior temporal sulcus (pSTS), implicated in many previous studies of audiovisual speech perception. We found evidence for both activity and effective connectivity in pSTS for visual-only and audiovisual speech, although these were not significant in whole-brain analyses. Together, our results suggest a prominent role for cross-region synchronization in understanding both visual-only and audiovisual speech that complements activity in integrative brain regions like pSTS.SIGNIFICANCE STATEMENT In everyday conversation, we usually process the talker's face as well as the sound of the talker's voice. Access to visual speech information is particularly useful when the auditory signal is hard to understand (e.g., background noise). Prior work has suggested that specialized regions of the brain may play a critical role in integrating information from visual and auditory speech. Here, we show a complementary mechanism relying on synchronized brain activity among sensory and motor regions may also play a critical role. These findings encourage reconceptualizing audiovisual integration in the context of coordinated network activity.
Collapse
Affiliation(s)
- Jonathan E Peelle
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Brent Spehar
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Michael S Jones
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Sarah McConkey
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Joel Myerson
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Sandra Hale
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Mitchell S Sommers
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Nancy Tye-Murray
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, Missouri 63110
| |
Collapse
|
19
|
Assem M, Shashidhara S, Glasser MF, Duncan J. Precise Topology of Adjacent Domain-General and Sensory-Biased Regions in the Human Brain. Cereb Cortex 2021; 32:2521-2537. [PMID: 34628494 PMCID: PMC9201597 DOI: 10.1093/cercor/bhab362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/11/2023] Open
Abstract
Recent functional MRI studies identified sensory-biased regions across much of the association cortices and cerebellum. However, their anatomical relationship to multiple-demand (MD) regions, characterized as domain-general due to their coactivation during multiple cognitive demands, remains unclear. For a better anatomical delineation, we used multimodal MRI techniques of the Human Connectome Project to scan subjects performing visual and auditory versions of a working memory (WM) task. The contrast between hard and easy WM showed strong domain generality, with essentially identical patterns of cortical, subcortical, and cerebellar MD activity for visual and auditory materials. In contrast, modality preferences were shown by contrasting easy WM with baseline; most MD regions showed visual preference while immediately adjacent to cortical MD regions, there were interleaved regions of both visual and auditory preference. The results may exemplify a general motif whereby domain-specific regions feed information into and out of an adjacent, integrative MD core.
Collapse
Affiliation(s)
- Moataz Assem
- Address correspondence to Moataz Assem, 15 Chaucer Road, Cambridge, CB2 7EF UK.
| | - Sneha Shashidhara
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB2 7EF, UK,Psychology Department, Ashoka University 131029, India
| | - Matthew F Glasser
- Department of Neuroscience, Washington University in St. Louis, Saint Louis, MO 63110, USA,Department of Radiology, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB2 7EF, UK,Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| |
Collapse
|
20
|
Sicard V, Stephenson DD, Dodd AB, Pabbathi Reddy S, Robertson-Benta CR, Ryman SG, Hanlon FM, Shaff NA, Ling JM, Hergert DC, Vakamudi K, Hogeveen J, Mayer AR. Is the prefrontal cortex organized by supramodal or modality-specific sensory demands during adolescence? Dev Cogn Neurosci 2021; 51:101006. [PMID: 34419765 PMCID: PMC8379626 DOI: 10.1016/j.dcn.2021.101006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/19/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022] Open
Abstract
Attention is inherently biased towards the visual modality during most multisensory scenarios in adults, but the developmental trajectory towards visual dominance has not been fully elucidated. More recent evidence in primates and adult humans suggests a modality-specific stratification of the prefrontal cortex. The current study therefore used functional magnetic resonance imaging (fMRI) to investigate the neuronal correlates of proactive (following cues) and reactive (following probes) cognitive control for simultaneous audio-visual stimulation in 67 healthy adolescents (13-18 years old). Behavioral results were only partially supportive of visual dominance in adolescents, with both reduced response times and accuracy during attend-visual relative to attend-auditory trials. Differential activation of medial and lateral prefrontal cortex for processing incongruent relative to congruent stimuli (reactive control) was also only observed during attend-visual trials. There was no evidence of modality-specific prefrontal cortex stratification during the active processing of multisensory stimuli or during separate functional connectivity analyses. Attention-related modulations were also greater within visual relative to auditory cortex, but were less robust than observed in previous adult studies. Collectively, current results suggest a continued transition towards visual dominance in adolescence, as well as limited modality-specific specialization of prefrontal cortex and attentional modulations of unisensory cortex.
Collapse
Affiliation(s)
- V Sicard
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - D D Stephenson
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - A B Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - S Pabbathi Reddy
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - C R Robertson-Benta
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - S G Ryman
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - F M Hanlon
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - N A Shaff
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - J M Ling
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - D C Hergert
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - K Vakamudi
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - J Hogeveen
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - A R Mayer
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, USA; Department of Neurology, University of New Mexico, Albuquerque, NM, USA; Department of Emergency Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
21
|
Noyce AL, Lefco RW, Brissenden JA, Tobyne SM, Shinn-Cunningham BG, Somers DC. Extended Frontal Networks for Visual and Auditory Working Memory. Cereb Cortex 2021; 32:855-869. [PMID: 34467399 PMCID: PMC8841551 DOI: 10.1093/cercor/bhab249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Working memory (WM) supports the persistent representation of transient sensory information. Visual and auditory stimuli place different demands on WM and recruit different brain networks. Separate auditory- and visual-biased WM networks extend into the frontal lobes, but several challenges confront attempts to parcellate human frontal cortex, including fine-grained organization and between-subject variability. Here, we use differential intrinsic functional connectivity from 2 visual-biased and 2 auditory-biased frontal structures to identify additional candidate sensory-biased regions in frontal cortex. We then examine direct contrasts of task functional magnetic resonance imaging during visual versus auditory 2-back WM to validate those candidate regions. Three visual-biased and 5 auditory-biased regions are robustly activated bilaterally in the frontal lobes of individual subjects (N = 14, 7 women). These regions exhibit a sensory preference during passive exposure to task stimuli, and that preference is stronger during WM. Hierarchical clustering analysis of intrinsic connectivity among novel and previously identified bilateral sensory-biased regions confirms that they functionally segregate into visual and auditory networks, even though the networks are anatomically interdigitated. We also observe that the frontotemporal auditory WM network is highly selective and exhibits strong functional connectivity to structures serving non-WM functions, while the frontoparietal visual WM network hierarchically merges into the multiple-demand cognitive system.
Collapse
Affiliation(s)
- Abigail L Noyce
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Ray W Lefco
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215, USA
| | - James A Brissenden
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA.,Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean M Tobyne
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215, USA
| | | | - David C Somers
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| |
Collapse
|
22
|
Somers DC, Michalka SW, Tobyne SM, Noyce AL. Individual Subject Approaches to Mapping Sensory-Biased and Multiple-Demand Regions in Human Frontal Cortex. Curr Opin Behav Sci 2021; 40:169-177. [PMID: 34307791 PMCID: PMC8294130 DOI: 10.1016/j.cobeha.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sensory modality, widely accepted as a key factor in the functional organization of posterior cortical areas, also shapes the organization of human frontal lobes. 'Deep imaging,' or the practice of collecting a sizable amount of data on individual subjects, offers significant advantages in revealing fine-scale aspects of functional organization of the human brain. Here, we review deep imaging approaches to mapping multiple sensory-biased and multiple-demand regions within human lateral frontal cortex. In addition, we discuss how deep imaging methods can be transferred to large public data sets to further extend functional mapping at the group level. We also review how 'connectome fingerprinting' approaches, combined with deep imaging, can be used to localize fine-grained functional organization in individual subjects using resting-state data. Finally, we summarize current 'best practices' for deep imaging.
Collapse
Affiliation(s)
- David C. Somers
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Samantha W. Michalka
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Olin College of Engineering, Needham, MA, US
| | - Sean M. Tobyne
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Physiological Systems – Sensing, Perception and Applied Robotics Division, Charles River Analytics, Inc., Cambridge, MA, USA
| | - Abigail L. Noyce
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Smith DM, Perez DC, Porter A, Dworetsky A, Gratton C. Light Through the Fog: Using Precision fMRI Data to Disentangle the Neural Substrates of Cognitive Control. Curr Opin Behav Sci 2021; 40:19-26. [PMID: 33553511 PMCID: PMC7861476 DOI: 10.1016/j.cobeha.2020.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cognitive control, the ability to engage in goal-related behavior, is linked to frontal, parietal, and cingulate brain regions. However, the underlying function(s) of these regions is still in question, with ongoing discussions about their specificity and/or multifunctionality. These brain regions are also among the most variable across individuals, which may confound multi-functionality with inter-individual heterogeneity. Precision fMRI-extended data acquisition from single individuals-allows for reliable individualized mapping of brain organization. We review examples of recent studies that use precision fMRI to surmount inter-individual variability in functional neuroanatomy. These studies provide evidence of interleaved specialized and multifunctional regions in the frontal cortex. We discuss the potential for these techniques to address outstanding controversies on the neural underpinnings of cognitive control.
Collapse
Affiliation(s)
- Derek M. Smith
- Department of Psychology, Northwestern University, Evanston; Illinois
| | - Diana C. Perez
- Department of Psychology, Northwestern University, Evanston; Illinois
| | - Alexis Porter
- Department of Psychology, Northwestern University, Evanston; Illinois
| | - Ally Dworetsky
- Department of Psychology, Northwestern University, Evanston; Illinois
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston; Illinois
- Department of Neurology, Northwestern University, Evanston, Illinois
| |
Collapse
|
24
|
Bonacci LM, Bressler S, Shinn-Cunningham BG. Nonspatial Features Reduce the Reliance on Sustained Spatial Auditory Attention. Ear Hear 2021; 41:1635-1647. [PMID: 33136638 PMCID: PMC9831360 DOI: 10.1097/aud.0000000000000879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Top-down spatial attention is effective at selecting a target sound from a mixture. However, nonspatial features often distinguish sources in addition to location. This study explores whether redundant nonspatial features are used to maintain selective auditory attention for a spatially defined target. DESIGN We recorded electroencephalography while subjects focused attention on one of three simultaneous melodies. In one experiment, subjects (n = 17) were given an auditory cue indicating both the location and pitch of the target melody. In a second experiment (n = 17 subjects), the cue only indicated target location, and we compared two conditions: one in which the pitch separation of competing melodies was large, and one in which this separation was small. RESULTS In both experiments, responses evoked by onsets of events in sound streams were modulated by attention, and we found no significant difference in this modulation between small and large pitch separation conditions. Therefore, the evoked response reflected that target stimuli were the focus of attention, and distractors were suppressed successfully for all experimental conditions. In all cases, parietal alpha was lateralized following the cue, but before melody onset, indicating that subjects initially focused attention in space. During the stimulus presentation, this lateralization disappeared when pitch cues were strong but remained significant when pitch cues were weak, suggesting that strong pitch cues reduced reliance on sustained spatial attention. CONCLUSIONS These results demonstrate that once a well-defined target stream at a known location is selected, top-down spatial attention plays a weak role in filtering out a segregated competing stream.
Collapse
Affiliation(s)
- Lia M. Bonacci
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Scott Bressler
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Barbara G. Shinn-Cunningham
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Zhang M, Alamatsaz N, Ihlefeld A. Hemodynamic Responses Link Individual Differences in Informational Masking to the Vicinity of Superior Temporal Gyrus. Front Neurosci 2021; 15:675326. [PMID: 34366772 PMCID: PMC8339305 DOI: 10.3389/fnins.2021.675326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/13/2021] [Indexed: 01/20/2023] Open
Abstract
Suppressing unwanted background sound is crucial for aural communication. A particularly disruptive type of background sound, informational masking (IM), often interferes in social settings. However, IM mechanisms are incompletely understood. At present, IM is identified operationally: when a target should be audible, based on suprathreshold target/masker energy ratios, yet cannot be heard because target-like background sound interferes. We here confirm that speech identification thresholds differ dramatically between low- vs. high-IM background sound. However, speech detection thresholds are comparable across the two conditions. Moreover, functional near infrared spectroscopy recordings show that task-evoked blood oxygenation changes near the superior temporal gyrus (STG) covary with behavioral speech detection performance for high-IM but not low-IM background sound, suggesting that the STG is part of an IM-dependent network. Moreover, listeners who are more vulnerable to IM show increased hemodynamic recruitment near STG, an effect that cannot be explained based on differences in task difficulty across low- vs. high-IM. In contrast, task-evoked responses near another auditory region of cortex, the caudal inferior frontal sulcus (cIFS), do not predict behavioral sensitivity, suggesting that the cIFS belongs to an IM-independent network. Results are consistent with the idea that cortical gating shapes individual vulnerability to IM.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ, United States
| | - Nima Alamatsaz
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ, United States
| | - Antje Ihlefeld
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
26
|
Bedini M, Baldauf D. Structure, function and connectivity fingerprints of the frontal eye field versus the inferior frontal junction: A comprehensive comparison. Eur J Neurosci 2021; 54:5462-5506. [PMID: 34273134 PMCID: PMC9291791 DOI: 10.1111/ejn.15393] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/16/2021] [Accepted: 07/02/2021] [Indexed: 02/01/2023]
Abstract
The human prefrontal cortex contains two prominent areas, the frontal eye field and the inferior frontal junction, that are crucially involved in the orchestrating functions of attention, working memory and cognitive control. Motivated by comparative evidence in non-human primates, we review the human neuroimaging literature, suggesting that the functions of these regions can be clearly dissociated. We found remarkable differences in how these regions relate to sensory domains and visual topography, top-down and bottom-up spatial attention, spatial versus non-spatial (i.e., feature- and object-based) attention and working memory and, finally, the multiple-demand system. Functional magnetic resonance imaging (fMRI) studies using multivariate pattern analysis reveal the selectivity of the frontal eye field and inferior frontal junction to spatial and non-spatial information, respectively. The analysis of functional and effective connectivity provides evidence of the modulation of the activity in downstream visual areas from the frontal eye field and inferior frontal junction and sheds light on their reciprocal influences. We therefore suggest that future studies should aim at disentangling more explicitly the role of these regions in the control of spatial and non-spatial selection. We propose that the analysis of the structural and functional connectivity (i.e., the connectivity fingerprints) of the frontal eye field and inferior frontal junction may be used to further characterize their involvement in a spatial ('where') and a non-spatial ('what') network, respectively, highlighting segregated brain networks that allow biasing visual selection and working memory performance to support goal-driven behaviour.
Collapse
Affiliation(s)
- Marco Bedini
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Daniel Baldauf
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| |
Collapse
|
27
|
Yin F, Ni D, Xu C, Yan X, Ma K, Zhang X, Gao R, Zhang G. Auras in intractable frontal lobe epilepsy: Clinical characteristics, values, and limitations. Epilepsy Behav 2021; 115:107724. [PMID: 33423014 DOI: 10.1016/j.yebeh.2020.107724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Auras are essential in preoperative evaluation and can provide valuable information for delineating seizure onset zones. Frontal lobe epilepsy (FLE) is the second most common focal epilepsy, while a few studies have focused on auras in FLE. To better understand FLE, we analyzed the clinical characteristics, values, and limitations of auras in FLE. The incidence rate of aura in FLE was 37.9% in our study. We included 54 patients and 76 auras in 11 categories were reported. The rate of auras in the decreasing order are as follows: autonomic aura; emotional aura; somatosensory aura; psychic aura; cephalic aura; abdominal aura; whole-body sensory aura, visual aura; auditory aura; and vestibular and unclassified aura. A significant number of aura types can be reported by FLE patients; autonomic aura was the most frequent category and somatosensory auras are most likely associated with the contralateral motor areas.
Collapse
Affiliation(s)
- Fangzhao Yin
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Duanyu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Cuiping Xu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaoming Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Kai Ma
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xi Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China; Department of Functional Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
28
|
Lefco RW, Brissenden JA, Noyce AL, Tobyne SM, Somers DC. Gradients of functional organization in posterior parietal cortex revealed by visual attention, visual short-term memory, and intrinsic functional connectivity. Neuroimage 2020; 219:117029. [PMID: 32526387 PMCID: PMC7542540 DOI: 10.1016/j.neuroimage.2020.117029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/27/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Visual attention and visual working memory tasks recruit a common network of lateral frontal cortical (LFC) and posterior parietal cortical (PPC) regions. Here, we examine finer-scale organization of this frontoparietal network. Three LFC regions recruited by visual cognition tasks, superior precentral sulcus (sPCS), inferior precentral sulcus (iPCS), and mid inferior frontal sulcus (midIFS) exhibit differential patterns of resting-state functional connectivity to PPC. A broad dorsomedial to ventrolateral gradient is observed, with sPCS connectivity dominating in the dorsomedial PPC band, iPCS dominating in the middle band, and midIFS dominating in the ventrolateral band. These connectivity-defined subregions of PPC capture differential task activation between a pair of visual attention and working memory tasks. The relative functional connectivity of sPCS and iPCS also varies along the rostral-caudal axis of the retinotopic regions of PPC. iPCS connectivity is relatively stronger near the IPS0/IPS1 and IPS2/IPS3 borders, especially on the lateral portions of these borders, which each preferentially encode central visual field representations. In contrast, sPCS connectivity is relatively stronger elsewhere in retinotopic IPS regions which preferentially encode peripheral visual field representations. These findings reveal fine-scale gradients in functional connectivity within the frontoparietal visual network that capture a high-degree of specificity in PPC functional organization.
Collapse
Affiliation(s)
- Ray W Lefco
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - James A Brissenden
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Abigail L Noyce
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Sean M Tobyne
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - David C Somers
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
29
|
Iandolo R, Bommarito G, Falcitano L, Schiavi S, Piaggio N, Mancardi GL, Casadio M, Inglese M. Position Sense Deficits at the Lower Limbs in Early Multiple Sclerosis: Clinical and Neural Correlates. Neurorehabil Neural Repair 2020; 34:260-270. [PMID: 32028846 DOI: 10.1177/1545968320902126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background/Objective. Position sense, defined as the ability to identify joint and limb position in space, is crucial for balance and gait but has received limited attention in patients with multiple sclerosis (MS). We investigated lower limb position sense deficits, their neural correlates, and their effects on standing balance in patients with early MS. Methods. A total of 24 patients with early relapsing-remitting MS and 24 healthy controls performed ipsilateral and contralateral matching tasks with the right foot during functional magnetic resonance imaging. Corpus callosum (CC) integrity was estimated with diffusion tensor imaging. Patients also underwent an assessment of balance during quiet standing. We investigated differences between the 2 groups and the relations among proprioceptive errors, balance performance, and functional/structural correlates. Results. During the contralateral matching task, patients demonstrated a higher matching error than controls, which correlated with the microstructural damage of the CC and with balance ability. In contrast, during the ipsilateral task, the 2 groups showed a similar matching performance, but patients displayed a functional reorganization involving the parietal areas. Neural activity in the frontoparietal regions correlated with the performance during both proprioceptive matching tasks and quiet standing. Conclusion. Patients with early MS had subtle, clinically undetectable, position sense deficits at the lower limbs that, nevertheless, affected standing balance. Functional changes allowed correct proprioception processing during the ipsilateral matching task but not during the more demanding bilateral task, possibly because of damage to the CC. These findings provide new insights into the mechanisms underlying disability in MS and could influence the design of neurorehabilitation protocols.
Collapse
Affiliation(s)
- Riccardo Iandolo
- RBCS Department , Istituto Italiano di Tecnologia, Genova, Italy
- Department of Informatics, Bioengeneering, Robotics and System Engineering (DIBRIS), University of Genoa, Italy
| | - Giulia Bommarito
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
| | - Laura Falcitano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
| | - Simona Schiavi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
| | - Niccolò Piaggio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
| | - Giovanni Luigi Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
| | - Maura Casadio
- RBCS Department , Istituto Italiano di Tecnologia, Genova, Italy
- Department of Informatics, Bioengeneering, Robotics and System Engineering (DIBRIS), University of Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI) University of Genova, Italy
- Ospedale Policlinico San Martino-IRCCS, Genova, Italy
| |
Collapse
|
30
|
Deng Y, Reinhart RMG, Choi I, Shinn-Cunningham BG. Causal links between parietal alpha activity and spatial auditory attention. eLife 2019; 8:e51184. [PMID: 31782732 PMCID: PMC6904218 DOI: 10.7554/elife.51184] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/28/2019] [Indexed: 11/13/2022] Open
Abstract
Both visual and auditory spatial selective attention result in lateralized alpha (8-14 Hz) oscillatory power in parietal cortex: alpha increases in the hemisphere ipsilateral to attentional focus. Brain stimulation studies suggest a causal relationship between parietal alpha and suppression of the representation of contralateral visual space. However, there is no evidence that parietal alpha controls auditory spatial attention. Here, we performed high definition transcranial alternating current stimulation (HD-tACS) on human subjects performing an auditory task in which they directed attention based on either spatial or nonspatial features. Alpha (10 Hz) but not theta (6 Hz) HD-tACS of right parietal cortex interfered with attending left but not right auditory space. Parietal stimulation had no effect for nonspatial auditory attention. Moreover, performance in post-stimulation trials returned rapidly to baseline. These results demonstrate a causal, frequency-, hemispheric-, and task-specific effect of parietal alpha brain stimulation on top-down control of auditory spatial attention.
Collapse
Affiliation(s)
- Yuqi Deng
- Biomedical EngineeringBoston UniversityBostonUnited States
| | | | - Inyong Choi
- Communication Sciences and DisordersUniversity of IowaIowa CityUnited States
| | - Barbara G Shinn-Cunningham
- Biomedical EngineeringBoston UniversityBostonUnited States
- Neuroscience InstituteCarnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
31
|
Keller AS, Leikauf JE, Holt-Gosselin B, Staveland BR, Williams LM. Paying attention to attention in depression. Transl Psychiatry 2019; 9:279. [PMID: 31699968 PMCID: PMC6838308 DOI: 10.1038/s41398-019-0616-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 01/05/2023] Open
Abstract
Attention is the gate through which sensory information enters our conscious experiences. Oftentimes, patients with major depressive disorder (MDD) complain of concentration difficulties that negatively impact their day-to-day function, and these attention problems are not alleviated by current first-line treatments. In spite of attention's influence on many aspects of cognitive and emotional functioning, and the inclusion of concentration difficulties in the diagnostic criteria for MDD, the focus of depression as a disease is typically on mood features, with attentional features considered less of an imperative for investigation. Here, we summarize the breadth and depth of findings from the cognitive neurosciences regarding the neural mechanisms supporting goal-directed attention in order to better understand how these might go awry in depression. First, we characterize behavioral impairments in selective, sustained, and divided attention in depressed individuals. We then discuss interactions between goal-directed attention and other aspects of cognition (cognitive control, perception, and decision-making) and emotional functioning (negative biases, internally-focused attention, and interactions of mood and attention). We then review evidence for neurobiological mechanisms supporting attention, including the organization of large-scale neural networks and electrophysiological synchrony. Finally, we discuss the failure of current first-line treatments to alleviate attention impairments in MDD and review evidence for more targeted pharmacological, brain stimulation, and behavioral interventions. By synthesizing findings across disciplines and delineating avenues for future research, we aim to provide a clearer outline of how attention impairments may arise in the context of MDD and how, mechanistically, they may negatively impact daily functioning across various domains.
Collapse
Affiliation(s)
- Arielle S Keller
- Graduate Program in Neurosciences, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - John E Leikauf
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Bailey Holt-Gosselin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Brooke R Staveland
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
32
|
Klimovich-Gray A, Bozic M. Domain-general and domain-specific computations in single word processing. Neuroimage 2019; 202:116112. [PMID: 31437552 DOI: 10.1016/j.neuroimage.2019.116112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Language comprehension relies on a multitude of domain-general and domain-specific cognitive operations. This study asks whether the domain-specific grammatical computations are obligatorily invoked whenever we process linguistic inputs. Using fMRI and three complementary measures of neural activity, we tested how domain-general and domain-specific demands of single word comprehension engage cortical language networks, and whether the left frontotemporal network (commonly taken to support domain-specific grammatical computations) automatically processes grammatical information present in inflectionally complex words. In a natural listening task, participants were presented with words that manipulated domain-general and domain-specific processing demands in a 2 × 2 manner. The results showed that only domain-general demands of mapping words onto their representations consistently engaged the language processing system during single word comprehension, triggering increased activity and connectivity in bilateral frontotemporal regions, as well as bilateral encoding across multivoxel activity patterns. In contrast, inflectional complexity failed to activate left frontotemporal regions in this task, implying that domain-specific grammatical processing in the left hemisphere is not automatically triggered when the processing context does not specifically require such analysis. This suggests that cortical computations invoked by language processing critically depend on the current communicative goals and demands, underlining the importance of domain-general processes in language comprehension, and arguing against the strong domain-specific view of the LH network function.
Collapse
Affiliation(s)
- Anastasia Klimovich-Gray
- Basque Center on Cognition, Brain and Language, Mikeletegi Pasealekua, 69, 20009, Donostia, Gipuzkoa, Spain.
| | - Mirjana Bozic
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| |
Collapse
|
33
|
Scott TL, Perrachione TK. Common cortical architectures for phonological working memory identified in individual brains. Neuroimage 2019; 202:116096. [PMID: 31415882 DOI: 10.1016/j.neuroimage.2019.116096] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/10/2019] [Accepted: 08/11/2019] [Indexed: 02/01/2023] Open
Abstract
Phonological working memory is the capacity to briefly maintain and recall representations of sounds important for speech and language and is believed to be critical for language and reading acquisition. Whether phonological working memory is supported by fronto-parietal brain regions associated with short-term memory storage or perisylvian brain structures implicated in speech perception and production is unclear, perhaps due to variability in stimuli, task demands, and individuals. We used fMRI to assess neurophysiological responses while individuals performed two tasks with closely matched stimuli but divergent task demands-nonword repetition and nonword discrimination-at two levels of phonological working memory load. Using analyses designed to address intersubject variability, we found significant neural responses to the critical contrast of high vs. low phonological working memory load in both tasks in a set of regions closely resembling those involved in speech perception and production. Moreover, within those regions, the voxel-wise patterns of load-related activation were highly correlated between the two tasks. These results suggest that brain regions in the temporal and frontal lobes encapsulate the core neurocomputational components of phonological working memory; an architecture that becomes increasingly evident as neural responses are examined in successively finer-grained detail in individual participants.
Collapse
Affiliation(s)
- Terri L Scott
- Graduate Program for Neuroscience, Boston University, USA
| | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, USA.
| |
Collapse
|
34
|
Qiao Y, Li X, Shen H, Zhang X, Sun Y, Hao W, Guo B, Ni D, Gao Z, Guo H, Shang Y. Downward cross-modal plasticity in single-sided deafness. Neuroimage 2019; 197:608-617. [DOI: 10.1016/j.neuroimage.2019.05.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022] Open
|
35
|
Tobyne SM, Somers DC, Brissenden JA, Michalka SW, Noyce AL, Osher DE. Prediction of individualized task activation in sensory modality-selective frontal cortex with 'connectome fingerprinting'. Neuroimage 2018; 183:173-185. [PMID: 30092348 PMCID: PMC6292512 DOI: 10.1016/j.neuroimage.2018.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 11/25/2022] Open
Abstract
The human cerebral cortex is estimated to comprise 200-300 distinct functional regions per hemisphere. Identification of the precise anatomical location of an individual's unique set of functional regions is a challenge for neuroscience that has broad scientific and clinical utility. Recent studies have demonstrated the existence of four interleaved regions in lateral frontal cortex (LFC) that are part of broader visual attention and auditory attention networks (Michalka et al., 2015; Noyce et al., 2017; Tobyne et al., 2017). Due to a large degree of inter-subject anatomical variability, identification of these regions depends critically on within-subject analyses. Here, we demonstrate that, for both sexes, an individual's unique pattern of resting-state functional connectivity can accurately identify their specific pattern of visual- and auditory-selective working memory and attention task activation in lateral frontal cortex (LFC) using "connectome fingerprinting." Building on prior techniques (Saygin et al., 2011; Osher et al., 2016; Tavor et al., 2016; Smittenaar et al., 2017; Wang et al., 2017; Parker Jones et al., 2017), we demonstrate here that connectome fingerprint predictions are far more accurate than group-average predictions and match the accuracy of within-subject task-based functional localization, while requiring less data. These findings are robust across brain parcellations and are improved with penalized regression methods. Because resting-state data can be easily and rapidly collected, these results have broad implications for both clinical and research investigations of frontal lobe function. Our findings also provide a set of recommendations for future research.
Collapse
Affiliation(s)
- Sean M Tobyne
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
| | - David C Somers
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA.
| | - James A Brissenden
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | | | - Abigail L Noyce
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - David E Osher
- Department of Psychology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
36
|
Zhang M, Mary Ying YL, Ihlefeld A. Spatial Release From Informational Masking: Evidence From Functional Near Infrared Spectroscopy. Trends Hear 2018; 22:2331216518817464. [PMID: 30558491 PMCID: PMC6299332 DOI: 10.1177/2331216518817464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 11/30/2022] Open
Abstract
Informational masking (IM) can greatly reduce speech intelligibility, but the neural mechanisms underlying IM are not understood. Binaural differences between target and masker can improve speech perception. In general, improvement in masked speech intelligibility due to provision of spatial cues is called spatial release from masking. Here, we focused on an aspect of spatial release from masking, specifically, the role of spatial attention. We hypothesized that in a situation with IM background sound (a) attention to speech recruits lateral frontal cortex (LFCx) and (b) LFCx activity varies with direction of spatial attention. Using functional near infrared spectroscopy, we assessed LFCx activity bilaterally in normal-hearing listeners. In Experiment 1, two talkers were simultaneously presented. Listeners either attended to the target talker (speech task) or they listened passively to an unintelligible, scrambled version of the acoustic mixture (control task). Target and masker differed in pitch and interaural time difference (ITD). Relative to the passive control, LFCx activity increased during attentive listening. Experiment 2 measured how LFCx activity varied with ITD, by testing listeners on the speech task in Experiment 1, except that talkers either were spatially separated by ITD or colocated. Results show that directing of auditory attention activates LFCx bilaterally. Moreover, right LFCx is recruited more strongly in the spatially separated as compared with colocated configurations. Findings hint that LFCx function contributes to spatial release from masking in situations with IM.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ, USA
| | - Yu-Lan Mary Ying
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Antje Ihlefeld
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
37
|
Domain-General Brain Regions Do Not Track Linguistic Input as Closely as Language-Selective Regions. J Neurosci 2017; 37:9999-10011. [PMID: 28871034 DOI: 10.1523/jneurosci.3642-16.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/05/2023] Open
Abstract
Language comprehension engages a cortical network of left frontal and temporal regions. Activity in this network is language-selective, showing virtually no modulation by nonlinguistic tasks. In addition, language comprehension engages a second network consisting of bilateral frontal, parietal, cingulate, and insular regions. Activity in this "multiple demand" (MD) network scales with comprehension difficulty, but also with cognitive effort across a wide range of nonlinguistic tasks in a domain-general fashion. Given the functional dissociation between the language and MD networks, their respective contributions to comprehension are likely distinct, yet such differences remain elusive. Prior neuroimaging studies have suggested that activity in each network covaries with some linguistic features that, behaviorally, influence on-line processing and comprehension. This sensitivity of the language and MD networks to local input characteristics has often been interpreted, implicitly or explicitly, as evidence that both networks track linguistic input closely, and in a manner consistent across individuals. Here, we used fMRI to directly test this assumption by comparing the BOLD signal time courses in each network across different people (n = 45, men and women) listening to the same story. Language network activity showed fewer individual differences, indicative of closer input tracking, whereas MD network activity was more idiosyncratic and, moreover, showed lower reliability within an individual across repetitions of a story. These findings constrain cognitive models of language comprehension by suggesting a novel distinction between the processes implemented in the language and MD networks.SIGNIFICANCE STATEMENT Language comprehension recruits both language-specific mechanisms and domain-general mechanisms that are engaged in many cognitive processes. In the human cortex, language-selective mechanisms are implemented in the left-lateralized "core language network", whereas domain-general mechanisms are implemented in the bilateral "multiple demand" (MD) network. Here, we report the first direct comparison of the respective contributions of these networks to naturalistic story comprehension. Using a novel combination of neuroimaging approaches we find that MD regions track stories less closely than language regions. This finding constrains the possible contributions of the MD network to comprehension, contrasts with accounts positing that this network has continuous access to linguistic input, and suggests a new typology of comprehension processes based on their extent of input tracking.
Collapse
|