1
|
Wang S, Shao Y, Tian L, Li L, Wang S, Wang X, Shen T, Ren D. Two rearranged acylphloroglucinols with moderate neuroprotective effects from Hypericum ascyron Linn. Fitoterapia 2024; 174:105852. [PMID: 38325587 DOI: 10.1016/j.fitote.2024.105852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Phytochemical studies on the leaves and twigs of Hypericum ascyron Linn. led to the isolation of two previously undescribed rearranged polycyclic polyprenylated acylphloroglucinols (PPAP) with a 4,5-seco-3(2H)-furanone skeleton, named hyperascone A and B (1-2). Additionally, a known PPAP tomoeone A (3) and two known xanthones 1,3,5 -trihydroxy-6-O-prenylxanthone (4) and 3,7-dihydroxy-1,6-dimethoxyxanthone (5) were also isolated. The structures of the compounds were determined by the analysis of their spectroscopic data including HRMS, NMR and ECD. All of the five isolated compounds exhibited neuroprotective effects against MPP+ and microglia activation induced damage of SH-SY5Y cells.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Yuyu Shao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Lingran Tian
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Lingyu Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Shuqi Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Xiaoning Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Tao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, PR China.
| |
Collapse
|
2
|
Kolacheva A, Pavlova E, Bannikova A, Bogdanov V, Ugrumov M. Initial Molecular Mechanisms of the Pathogenesis of Parkinson's Disease in a Mouse Neurotoxic Model of the Earliest Preclinical Stage of This Disease. Int J Mol Sci 2024; 25:1354. [PMID: 38279354 PMCID: PMC10816442 DOI: 10.3390/ijms25021354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Studying the initial molecular mechanisms of the pathogenesis of Parkinson's disease (PD), primarily in the nigrostriatal dopaminergic system, is one of the priorities in neurology. Of particular interest is elucidating these mechanisms in the preclinical stage of PD, which lasts decades before diagnosis and is therefore not available for study in patients. Therefore, our main goal was to study the initial molecular mechanisms of the pathogenesis of PD in the striatum, the key center for dopamine regulation in motor function, in a mouse model of the earliest preclinical stage of PD, from 1 to 24 h after the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). It was shown that the content of tyrosine hydroxylase (TH), the first enzyme in dopamine synthesis, does not change within 6 h after the administration of MPTP, but decreases after 24 h. In turn, TH activity increases after 1 h, decreases after 3 h, remains at the control level after 6 h, and decreases 24 h after the administration of MPTP. The concentration of dopamine in the striatum gradually decreases after MPTP administration, despite a decrease in its degradation. The identified initial molecular mechanisms of PD pathogenesis are considered as potential targets for the development of preventive neuroprotective treatment.
Collapse
Affiliation(s)
| | | | | | | | - Michael Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; (A.K.); (E.P.); (A.B.); (V.B.)
| |
Collapse
|
3
|
Mazzetti S, Giampietro F, Calogero AM, Isilgan HB, Gagliardi G, Rolando C, Cantele F, Ascagni M, Bramerio M, Giaccone G, Isaias IU, Pezzoli G, Cappelletti G. Linking acetylated α-Tubulin redistribution to α-Synuclein pathology in brain of Parkinson's disease patients. NPJ Parkinsons Dis 2024; 10:2. [PMID: 38167511 PMCID: PMC10761989 DOI: 10.1038/s41531-023-00607-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Highly specialized microtubules in neurons are crucial to both health and disease of the nervous system, and their properties are strictly regulated by different post-translational modifications, including α-Tubulin acetylation. An imbalance in the levels of acetylated α-Tubulin has been reported in experimental models of Parkinson's disease (PD) whereas pharmacological or genetic modulation that leads to increased acetylated α-Tubulin successfully rescues axonal transport defects and inhibits α-Synuclein aggregation. However, the role of acetylation of α-Tubulin in the human nervous system is largely unknown as most studies are based on in vitro evidence. To capture the complexity of the pathological processes in vivo, we analysed post-mortem human brain of PD patients and control subjects. In the brain of PD patients at Braak stage 6, we found a redistribution of acetylated α-Tubulin, which accumulates in the neuronal cell bodies in subcortical structures but not in the cerebral cortex, and decreases in the axonal compartment, both in putamen bundles of fibres and in sudomotor fibres. High-resolution and 3D reconstruction analysis linked acetylated α-Tubulin redistribution to α-Synuclein oligomerization and to phosphorylated Ser 129 α-Synuclein, leading us to propose a model for Lewy body (LB) formation. Finally, in post-mortem human brain, we observed threadlike structures, resembling tunnelling nanotubes that contain α-Synuclein oligomers and are associated with acetylated α-Tubulin enriched neurons. In conclusion, we support the role of acetylated α-Tubulin in PD pathogenesis and LB formation.
Collapse
Affiliation(s)
- Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy.
| | | | - Alessandra Maria Calogero
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | | | - Gloria Gagliardi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Rolando
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Cantele
- Department of Chemistry, Università degli Studi di Milano, Milan, Italy
| | - Miriam Ascagni
- Unitech NOLIMITS, Università degli Studi di Milano, Milan, Italy
| | - Manuela Bramerio
- S. C. Divisione Oncologia Falck and S. C. Divisione Anatomia Patologica, Ospedale Niguarda Ca' Granda, Milan, Italy
| | - Giorgio Giaccone
- Unit of Neuropathology and Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ioannis Ugo Isaias
- Parkinson Institute, ASST G. Pini-CTO, Milan, Milan, Italy
- Department of Neurology, University Hospital of Würzburg and the Julius Maximilian University of Würzburg, 97080, Würzburg, Germany
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
4
|
Calogero AM, Basellini MJ, Isilgan HB, Longhena F, Bellucci A, Mazzetti S, Rolando C, Pezzoli G, Cappelletti G. Acetylated α-Tubulin and α-Synuclein: Physiological Interplay and Contribution to α-Synuclein Oligomerization. Int J Mol Sci 2023; 24:12287. [PMID: 37569662 PMCID: PMC10418364 DOI: 10.3390/ijms241512287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Emerging evidence supports that altered α-tubulin acetylation occurs in Parkinson's disease (PD), a neurodegenerative disorder characterized by the deposition of α-synuclein fibrillary aggregates within Lewy bodies and nigrostriatal neuron degeneration. Nevertheless, studies addressing the interplay between α-tubulin acetylation and α-synuclein are lacking. Here, we investigated the relationship between α-synuclein and microtubules in primary midbrain murine neurons and the substantia nigra of post-mortem human brains. Taking advantage of immunofluorescence and Proximity Ligation Assay (PLA), a method allowing us to visualize protein-protein interactions in situ, combined with confocal and super-resolution microscopy, we found that α-synuclein and acetylated α-tubulin colocalized and were in close proximity. Next, we employed an α-synuclein overexpressing cellular model and tested the role of α-tubulin acetylation in α-synuclein oligomer formation. We used the α-tubulin deacetylase HDAC6 inhibitor Tubacin to modulate α-tubulin acetylation, and we evaluated the presence of α-synuclein oligomers by PLA. We found that the increase in acetylated α-tubulin significantly induced α-synuclein oligomerization. In conclusion, we unraveled the link between acetylated α-tubulin and α-synuclein and demonstrated that α-tubulin acetylation could trigger the early step of α-synuclein aggregation. These data suggest that the proper regulation of α-tubulin acetylation might be considered a therapeutic strategy to take on PD.
Collapse
Affiliation(s)
- Alessandra Maria Calogero
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy;
| | - Milo Jarno Basellini
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
| | - Huseyin Berkcan Isilgan
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (F.L.); (A.B.)
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (F.L.); (A.B.)
| | - Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy;
| | - Chiara Rolando
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy;
- Parkinson Institute, ASST-Pini-CTO, 20126 Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
5
|
Fouché B, Turner S, Gorham R, Stephenson EJ, Gutbier S, Elson JL, García-Beltrán O, Van Der Westhuizen FH, Pienaar IS. A Novel Mitochondria-Targeting Iron Chelator Neuroprotects Multimodally via HIF-1 Modulation Against a Mitochondrial Toxin in a Dopaminergic Cell Model of Parkinson's Disease. Mol Neurobiol 2023; 60:749-767. [PMID: 36357615 DOI: 10.1007/s12035-022-03107-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022]
Abstract
Coumarins are plant-derived polyphenolic compounds belonging to the benzopyrones family, possessing wide-ranging pharmaceutical applications including cytoprotection, which may translate into therapeutic potential for multiple diseases, including Parkinson's disease (PD). Here we demonstrate the neuroprotective potential of a new polyhydroxyl coumarin, N-(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide (CT51), against the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+). MPP+'s mechanism of toxicity relates to its ability to inhibit complex I of the mitochondrial electron transport chain (METC), leading to adenosine triphosphate (ATP) depletion, increased reactive oxygen species (ROS) production, and apoptotic cell death, hence mimicking PD-related neuropathology. Dopaminergic differentiated human neuroblastoma cells were briefly pretreated with CT51, followed by toxin exposure. CT51 significantly restored somatic cell viability and neurite processes; hence, the drug targets cell bodies and axons thereby preserving neural function and circuitry against PD-related damage. Moreover, MPP+ emulates the iron dyshomeostasis affecting dopaminergic neurons in PD-affected brains, whilst CT51 was previously revealed as an effective iron chelator that preferentially partitions to mitochondria. We extend these findings by characterising the drug's interactive effects at the METC level. CT51 did not improve mitochondrial coupling efficiency. However, voltammetric measurements and high-resolution respirometry analysis revealed that CT51 acts as an antioxidant agent. Also, the neuronal protection afforded by CT51 associated with downregulating MPP+-induced upregulated expression of hypoxia-inducible factor 1 alpha (HIF-1α), a protein which regulates iron homeostasis and protects against certain forms of oxidative stress after translocating to mitochondria. Our findings support the further development of CT51 as a dual functioning iron chelator and antioxidant antiparkinsonian agent.
Collapse
Affiliation(s)
- Belinda Fouché
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Stephanie Turner
- School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Rebecca Gorham
- School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | | | - Simon Gutbier
- Unit for In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doeren Kamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Joanna L Elson
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.,The Welcome Trust Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Olimpo García-Beltrán
- Centro Integrativo de Biología Y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile.,Facultad de Ciencias Naturales Y Matemáticas, Universidad de Ibagué, Ibagué, Colombia
| | | | - Ilse S Pienaar
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa. .,Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B12 2TT, UK.
| |
Collapse
|
6
|
Brahadeeswaran S, Lateef M, Calivarathan L. An Insight into the Molecular Mechanism of Mitochondrial Toxicant-induced Neuronal Apoptosis in Parkinson's Disease. Curr Mol Med 2023; 23:63-75. [PMID: 35125081 DOI: 10.2174/1566524022666220203163631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is one of the most common progressive neurodegenerative disorders affecting approximately 1% of the world's population at the age of 50 and above. Majority of PD cases are sporadic and show symptoms after the age of 60 and above. At that time, most of the dopaminergic neurons in the region of substantia nigra pars compacta have been degenerated. Although in past decades, discoveries of genetic mutations linked to PD have significantly impacted our current understanding of the pathogenesis of this devastating disorder, it is likely that the environment also plays a critical role in the etiology of sporadic PD. Recent epidemiological and experimental studies indicate that exposure to environmental agents, including a number of agricultural and industrial chemicals, may contribute to the pathogenesis of several neurodegenerative disorders, including PD. Furthermore, there is a strong correlation between mitochondrial dysfunction and several forms of neurodegenerative disorders, including Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and PD. Interestingly, substantia nigra of patients with PD has been shown to have a mild deficiency in mitochondrial respiratory electron transport chain NADH dehydrogenase (Complex I) activity. This review discusses the role of mitochondrial toxicants in the selective degeneration of dopaminergic neurons targeting the electron transport system that leads to Parkinsonism.
Collapse
Affiliation(s)
- Subhashini Brahadeeswaran
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| | - Mohammad Lateef
- Department of Animal Sciences, School of Life Sciences, Central University of Kashmir, Nunar Campus, Ganderbal - 191201, Jammu & Kashmir, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| |
Collapse
|
7
|
Carecho R, Figueira I, Terrasso AP, Godinho‐Pereira J, de Oliveira Sequeira C, Pereira SA, Milenkovic D, Leist M, Brito C, Nunes dos Santos C. Circulating (Poly)phenol Metabolites: Neuroprotection in a 3D Cell Model of Parkinson's Disease. Mol Nutr Food Res 2022; 66:e2100959. [PMID: 34964254 PMCID: PMC9788306 DOI: 10.1002/mnfr.202100959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/10/2021] [Indexed: 12/30/2022]
Abstract
SCOPE Diets rich in (poly)phenols have been associated with positive effects on neurodegenerative disorders, such as Parkinson's disease (PD). Several low-molecular weight (poly)phenol metabolites (LMWPM) are found in the plasma after consumption of (poly)phenol-rich food. It is expected that LMWPM, upon reaching the brain, may have beneficial effects against both oxidative stress and neuroinflammation, and possibly attenuate cell death mechanisms relate to the loss of dopaminergic neurons in PD. METHODS AND RESULTS This study investigates the neuroprotective potential of two blood-brain barrier permeant LMWPM, catechol-O-sulfate (cat-sulf), and pyrogallol-O-sulfate (pyr-sulf), in a human 3D cell model of PD. Neurospheroids were generated from LUHMES neuronal precursor cells and challenged by 1-methyl-4-phenylpyridinium (MPP+ ) to induce neuronal stress. LMWPM pretreatments were differently neuroprotective towards MPP+ insult, presenting distinct effects on the neuronal transcriptome. Particularly, cat-sulf pretreatment appeared to boost counter-regulatory defense mechanisms (preconditioning). When MPP+ is applied, both LMWPM positively modulated glutathione metabolism and heat-shock response, as also favorably shifting the balance of pro/anti-apoptotic proteins. CONCLUSIONS Our findings point to the potential of LMWPM to trigger molecular mechanisms that help dopaminergic neurons to cope with a subsequent toxic insult. They are promising molecules to be further explored in the context of preventing and attenuating parkinsonian neurodegeneration.
Collapse
Affiliation(s)
- Rafael Carecho
- CEDOCNOVA Medical SchoolFaculdade de Ciências MédicasUniversidade NOVA de Lisboa1150‐082LisboaPortugal
- ITQBInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa2780‐157OeirasPortugal
| | - Inês Figueira
- CEDOCNOVA Medical SchoolFaculdade de Ciências MédicasUniversidade NOVA de Lisboa1150‐082LisboaPortugal
| | - Ana Paula Terrasso
- ITQBInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa2780‐157OeirasPortugal
- iBETInstituto de Biologia Experimental e Tecnológica2781–901OeirasPortugal
| | - Joana Godinho‐Pereira
- ITQBInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa2780‐157OeirasPortugal
- iBETInstituto de Biologia Experimental e Tecnológica2781–901OeirasPortugal
| | | | - Sofia Azeredo Pereira
- CEDOCNOVA Medical SchoolFaculdade de Ciências MédicasUniversidade NOVA de Lisboa1150‐082LisboaPortugal
| | - Dragan Milenkovic
- INRAEUNHUniversité Clermont Auvergne63122St Genes ChampanelleFrance
- Department of NutritionUniversity of California Davis95616DavisCAUSA
| | - Marcel Leist
- In‐vitro Toxicology and BiomedicineUniversity of Konstanz78457ConstanceGermany
| | - Catarina Brito
- ITQBInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa2780‐157OeirasPortugal
- iBETInstituto de Biologia Experimental e Tecnológica2781–901OeirasPortugal
| | - Cláudia Nunes dos Santos
- CEDOCNOVA Medical SchoolFaculdade de Ciências MédicasUniversidade NOVA de Lisboa1150‐082LisboaPortugal
- ITQBInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa2780‐157OeirasPortugal
- iBETInstituto de Biologia Experimental e Tecnológica2781–901OeirasPortugal
| |
Collapse
|
8
|
Imbriani P, Martella G, Bonsi P, Pisani A. Oxidative stress and synaptic dysfunction in rodent models of Parkinson's disease. Neurobiol Dis 2022; 173:105851. [PMID: 36007757 DOI: 10.1016/j.nbd.2022.105851] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial disorder involving a complex interplay between a variety of genetic and environmental factors. In this scenario, mitochondrial impairment and oxidative stress are widely accepted as crucial neuropathogenic mechanisms, as also evidenced by the identification of PD-associated genes that are directly involved in mitochondrial function. The concept of mitochondrial dysfunction is closely linked to that of synaptic dysfunction. Indeed, compelling evidence supports the role of mitochondria in synaptic transmission and plasticity, although many aspects have not yet been fully elucidated. Here, we will provide a brief overview of the most relevant evidence obtained in different neurotoxin-based and genetic rodent models of PD, focusing on mitochondrial impairment and synaptopathy, an early central event preceding overt nigrostriatal neurodegeneration. The identification of early deficits occurring in PD pathogenesis is crucial in view of the development of potential disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
9
|
Ferrucci M, Busceti CL, Lazzeri G, Biagioni F, Puglisi-Allegra S, Frati A, Lenzi P, Fornai F. Bacopa Protects against Neurotoxicity Induced by MPP+ and Methamphetamine. Molecules 2022; 27:molecules27165204. [PMID: 36014442 PMCID: PMC9414486 DOI: 10.3390/molecules27165204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The neurotoxins methamphetamine (METH) and 1-methyl-4-phenylpyridinium (MPP+) damage catecholamine neurons. Although sharing the same mechanism to enter within these neurons, METH neurotoxicity mostly depends on oxidative species, while MPP+ toxicity depends on the inhibition of mitochondrial activity. This explains why only a few compounds protect against both neurotoxins. Identifying a final common pathway that is shared by these neurotoxins is key to prompting novel remedies for spontaneous neurodegeneration. In the present study we assessed whether natural extracts from Bacopa monnieri (BM) may provide a dual protection against METH- and MPP+-induced cell damage as measured by light and electron microscopy. The protection induced by BM against catecholamine cell death and degeneration was dose-dependently related to the suppression of reactive oxygen species (ROS) formation and mitochondrial alterations. These were measured by light and electron microscopy with MitoTracker Red and Green as well as by the ultrastructural morphometry of specific mitochondrial structures. In fact, BM suppresses the damage of mitochondrial crests and matrix dilution and increases the amount of healthy and total mitochondria. The present data provide evidence for a natural compound, which protects catecholamine cells independently by the type of experimental toxicity. This may be useful to counteract spontaneous degenerations of catecholamine cells.
Collapse
Affiliation(s)
- Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | | | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | | | | | - Alessandro Frati
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
- Neurosurgery Division, Department of Human Neurosciences, Sapienza University, 00135 Rome, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
- Correspondence: or ; Tel.: +39-050-221-8667
| |
Collapse
|
10
|
Faria-Pereira A, Morais VA. Synapses: The Brain's Energy-Demanding Sites. Int J Mol Sci 2022; 23:3627. [PMID: 35408993 PMCID: PMC8998888 DOI: 10.3390/ijms23073627] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
The brain is one of the most energy-consuming organs in the mammalian body, and synaptic transmission is one of the major contributors. To meet these energetic requirements, the brain primarily uses glucose, which can be metabolized through glycolysis and/or mitochondrial oxidative phosphorylation. The relevance of these two energy production pathways in fulfilling energy at presynaptic terminals has been the subject of recent studies. In this review, we dissect the balance of glycolysis and oxidative phosphorylation to meet synaptic energy demands in both resting and stimulation conditions. Besides ATP output needs, mitochondria at synapse are also important for calcium buffering and regulation of reactive oxygen species. These two mitochondrial-associated pathways, once hampered, impact negatively on neuronal homeostasis and synaptic activity. Therefore, as mitochondria assume a critical role in synaptic homeostasis, it is becoming evident that the synaptic mitochondria population possesses a distinct functional fingerprint compared to other brain mitochondria. Ultimately, dysregulation of synaptic bioenergetics through glycolytic and mitochondrial dysfunctions is increasingly implicated in neurodegenerative disorders, as one of the first hallmarks in several of these diseases are synaptic energy deficits, followed by synapse degeneration.
Collapse
Affiliation(s)
| | - Vanessa A. Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| |
Collapse
|
11
|
Hu D, Liu Z, Qi X. Mitochondrial Quality Control Strategies: Potential Therapeutic Targets for Neurodegenerative Diseases? Front Neurosci 2021; 15:746873. [PMID: 34867159 PMCID: PMC8633545 DOI: 10.3389/fnins.2021.746873] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Many lines of evidence have indicated the therapeutic potential of rescuing mitochondrial integrity by targeting specific mitochondrial quality control pathways in neurodegenerative diseases, such as Parkinson's disease, Huntington's disease, and Alzheimer's disease. In addition to ATP synthesis, mitochondria are critical regulators of ROS production, lipid metabolism, calcium buffering, and cell death. The mitochondrial unfolded protein response, mitochondrial dynamics, and mitophagy are the three main quality control mechanisms responsible for maintaining mitochondrial proteostasis and bioenergetics. The proper functioning of these complex processes is necessary to surveil and restore mitochondrial homeostasis and the healthy pool of mitochondria in cells. Mitochondrial dysfunction occurs early and causally in disease pathogenesis. A significant accumulation of mitochondrial damage resulting from compromised quality control pathways leads to the development of neuropathology. Moreover, genetic or pharmaceutical manipulation targeting the mitochondrial quality control mechanisms can sufficiently rescue mitochondrial integrity and ameliorate disease progression. Thus, therapies that can improve mitochondrial quality control have great promise for the treatment of neurodegenerative diseases. In this review, we summarize recent progress in the field that underscores the essential role of impaired mitochondrial quality control pathways in the pathogenesis of neurodegenerative diseases. We also discuss the translational approaches targeting mitochondrial function, with a focus on the restoration of mitochondrial integrity, including mitochondrial dynamics, mitophagy, and mitochondrial proteostasis.
Collapse
Affiliation(s)
- Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Zunren Liu
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
12
|
Wang X, Guo G, Zhang J, Aebez N, Liu Z, Liu CF, Ross CA, Smith WW. Mutant-TMEM230-induced neurodegeneration and impaired axonal mitochondrial transport. Hum Mol Genet 2021; 30:1535-1542. [PMID: 34002226 DOI: 10.1093/hmg/ddab128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with movement disorders including resting tremor, rigidity, bradykinesia and postural instability. Recent studies have identified a new PD associated gene, TMEM230 (transmembrane protein 230). However, the pathological roles of TMEM230 and its variants are not fully understood. TMEM230 gene encodes two protein isoforms. Isoform2 is the major protein form (~95%) in human. In this study, we overexpress isoform2 TMEM230 variants (WT or PD-linked *184Wext*5 mutant) or knockdown endogenous protein in cultured SH-5Y5Y cells and mouse primary hippocampus neurons to study their pathological roles. We found that overexpression of WT and mutant TMEM230 or knockdown of endogenous TMEM230-induced neurodegeneration and impaired mitochondria transport at the retrograde direction in axons. Mutant TMEM230 caused more severe neurotoxicity and mitochondrial transport impairment than WT-TMEM230 did. Our results demonstrate that maintaining TMEM230 protein levels is critical for neuron survival and axon transport. These findings suggest that mutant-TMEM230-induced mitochondrial transport impairment could be the early event leading to neurite injury and neurodegeneration in PD development.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Institute of Neuroscience, Soochow University School of Medicine, Suzhou, Jiangsu 215123, China
| | - Gongbo Guo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jinru Zhang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Nicolas Aebez
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhaohui Liu
- Department of Human Anatomy and Cytoneurobiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chun-Feng Liu
- Institute of Neuroscience, Soochow University School of Medicine, Suzhou, Jiangsu 215123, China.,Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Christopher A Ross
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wanli W Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
13
|
Cappelletti G, Calogero AM, Rolando C. Microtubule acetylation: A reading key to neural physiology and degeneration. Neurosci Lett 2021; 755:135900. [PMID: 33878428 DOI: 10.1016/j.neulet.2021.135900] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/02/2023]
Abstract
Neurons are the perfect example of cells where microtubules are essential to achieve an extraordinary degree of morphological and functional complexity. Different tubulin isoforms and associated post-translational modifications are the basis to establish the diversity in biochemical and biophysical properties of microtubules including their stability and the control of intracellular transport. Acetylation is one of the key tubulin modifications and it can influence important structural, mechanical and biological traits of the microtubule network. Here, we present the emerging evidence for the essential role of microtubule acetylation in the control of neuronal and glial function in healthy and degenerative conditions. In particular, we discuss the pathogenic role of tubulin acetylation in neurodegenerative disorders and focus on Parkinson's disease. We also provide a critical analysis about the possibility to target tubulin acetylation as a novel therapeutic intervention for neuroprotective strategies.
Collapse
Affiliation(s)
- Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy; Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy.
| | | | - Chiara Rolando
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
14
|
Guo YL, Duan WJ, Lu DH, Ma XH, Li XX, Li Z, Bi W, Kurihara H, Liu HZ, Li YF, He RR. Autophagy-dependent removal of α-synuclein: a novel mechanism of GM1 ganglioside neuroprotection against Parkinson's disease. Acta Pharmacol Sin 2021; 42:518-528. [PMID: 32724177 PMCID: PMC8115090 DOI: 10.1038/s41401-020-0454-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/01/2020] [Indexed: 12/29/2022] Open
Abstract
GM1 ganglioside is particularly abundant in the mammalian central nervous system and has shown beneficial effects on neurodegenerative diseases. In this study, we investigated the therapeutic effect of GM1 ganglioside in experimental models of Parkinson's disease (PD) in vivo and in vitro. Mice were injected with MPTP (30 mg·kg-1·d-1, i.p.) for 5 days, resulting in a subacute model of PD. PD mice were treated with GM1 ganglioside (25, 50 mg·kg-1·d-1, i.p.) for 2 weeks. We showed that GM1 ganglioside administration substantially improved the MPTP-induced behavioral disturbance and increased the levels of dopamine and its metabolites in the striatal tissues. In the MPP+-treated SH-SY5Y cells and α-synuclein (α-Syn) A53T-overexpressing PC12 (PC12α-Syn A53T) cells, treatment with GM1 ganglioside (40 μM) significantly decreased α-Syn accumulation and alleviated mitochondrial dysfunction and oxidative stress. We further revealed that treatment with GM1 ganglioside promoted autophagy, evidenced by the autophagosomes that appeared in the substantia nigra of PD mice as well as the changes of autophagy-related proteins (LC3-II and p62) in the MPP+-treated SH-SY5Y cells. Cotreatment with the autophagy inhibitor 3-MA or bafilomycin A1 abrogated the in vivo and in vitro neuroprotective effects of GM1 ganglioside. Using GM1 ganglioside labeled with FITC fluorescent, we observed apparent colocalization of GM1-FITC and α-Syn as well as GM1-FITC and LC3 in PC12α-Syn A53T cells. GM1 ganglioside significantly increased the phosphorylation of autophagy regulatory proteins ATG13 and ULK1 in doxycycline-treated PC12α-Syn A53T cells and the MPP+-treated SH-SY5Y cells, which was inhibited by 3-MA. Taken together, this study demonstrates that the anti-PD role of GM1 ganglioside resulted from activation of autophagy-dependent α-Syn clearance.
Collapse
Affiliation(s)
- Yu-Lin Guo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Dan-Hua Lu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Hui Ma
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Xiao Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhao Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wei Bi
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Hai-Zhi Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
- Integrated Chinese and Western Medicine Department, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
15
|
Zampese E, Surmeier DJ. Calcium, Bioenergetics, and Parkinson's Disease. Cells 2020; 9:cells9092045. [PMID: 32911641 PMCID: PMC7564460 DOI: 10.3390/cells9092045] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Degeneration of substantia nigra (SN) dopaminergic (DAergic) neurons is responsible for the core motor deficits of Parkinson’s disease (PD). These neurons are autonomous pacemakers that have large cytosolic Ca2+ oscillations that have been linked to basal mitochondrial oxidant stress and turnover. This review explores the origin of Ca2+ oscillations and their role in the control of mitochondrial respiration, bioenergetics, and mitochondrial oxidant stress.
Collapse
|
16
|
Park HS, Song YS, Moon BS, Yoo SE, Lee JM, Chung YT, Kim E, Lee BC, Kim SE. Neurorestorative Effects of a Novel Fas-Associated Factor 1 Inhibitor in the MPTP Model: An [ 18F]FE-PE2I Positron Emission Tomography Analysis Study. Front Pharmacol 2020; 11:953. [PMID: 32676027 PMCID: PMC7333457 DOI: 10.3389/fphar.2020.00953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
Fas-associated factor 1 (FAF1), a Fas-binding protein, is implicated in neuronal cell death in Parkinson’s disease (PD). We examined the effects of a novel FAF1 inhibitor, KM-819, in dopaminergic neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model using [18F]FE-PE2I positron emission tomography (PET). The MPTP model was generated with subacute MPTP treatment (20 mg/kg/day, i.p.) for 5 consecutive days in C57bl/6J mice. This study included three groups: the control group (treatment with saline only), the MPTP model group with KM-819 treatment (20 mg/kg/day p.o.) for 6 days, and the MPTP model group without KM-819 treatment. [18F]FE-PE2I PET studies were conducted in the same animals before and after MPTP with or without KM-819 treatment to monitor changes in striatal dopamine transporter activity indicated by non-displaceable binding potential (BPND) of [18F]FE-PE2I, and the expression levels of tyrosine hydroxylase were assessed using immunohistochemistry before and after KM-819 treatment. After MPTP injection, decreased striatal BPND was observed in the MPTP model group compared with the control group. Striatal BPND increased in the MPTP model group with KM-819 treatment, but not in the MPTP model group without KM-819 treatment. The tyrosine hydroxylase expression levels also significantly increased in the MPTP model group with KM-819 treatment compared with the control group. This study indicates that inhibition of the Fas-mediated cell death pathway by KM-819 has neurorestorative effects in striatal dopamine neurons in the MPTP model. Further studies would be needed to investigate the potential of KM-819 as a therapeutic drug for PD treatment.
Collapse
Affiliation(s)
- Hyun Soo Park
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea.,Department of Transdisciplinary Studies Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, South Korea
| | | | | | | | - Eunhee Kim
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea.,Department of Transdisciplinary Studies Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea.,Department of Transdisciplinary Studies Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Advanced Institutes of Convergence Technology, Suwon, South Korea
| |
Collapse
|
17
|
Mou Y, Mukte S, Chai E, Dein J, Li XJ. Analyzing Mitochondrial Transport and Morphology in Human Induced Pluripotent Stem Cell-Derived Neurons in Hereditary Spastic Paraplegia. J Vis Exp 2020. [PMID: 32090993 DOI: 10.3791/60548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neurons have intense demands for high energy in order to support their functions. Impaired mitochondrial transport along axons has been observed in human neurons, which may contribute to neurodegeneration in various disease states. Although it is challenging to examine mitochondrial dynamics in live human nerves, such paradigms are critical for studying the role of mitochondria in neurodegeneration. Described here is a protocol for analyzing mitochondrial transport and mitochondrial morphology in forebrain neuron axons derived from human induced pluripotent stem cells (iPSCs). The iPSCs are differentiated into telencephalic glutamatergic neurons using well-established methods. Mitochondria of the neurons are stained with MitoTracker CMXRos, and mitochondrial movement within the axons are captured using a live-cell imaging microscope equipped with an incubator for cell culture. Time-lapse images are analyzed using software with "MultiKymograph", "Bioformat importer", and "Macros" plugins. Kymographs of mitochondrial transport are generated, and average mitochondrial velocity in the anterograde and retrograde directions is read from the kymograph. Regarding mitochondrial morphology analysis, mitochondrial length, area, and aspect ratio are obtained using the ImageJ. In summary, this protocol allows characterization of mitochondrial trafficking along axons and analysis of their morphology to facilitate studies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford; Department of Bioengineering, University of Illinois at Chicago
| | - Sukhada Mukte
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford
| | - Eric Chai
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford
| | - Joshua Dein
- MD Program, University of Illinois College of Medicine Rockford
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford; Department of Bioengineering, University of Illinois at Chicago;
| |
Collapse
|
18
|
Liao PC, Higuchi-Sanabria R, Swayne TC, Sing CN, Pon LA. Live-cell imaging of mitochondrial motility and interactions in Drosophila neurons and yeast. Methods Cell Biol 2019; 155:519-544. [PMID: 32183975 DOI: 10.1016/bs.mcb.2019.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are highly dynamic organelles that undergo directed movement and anchorage, which in turn are critical for calcium buffering and energy mobilization at specific regions within cells or at sites of contact with other organelles. Physical and functional interactions between mitochondria and other organelles also impact processes, including phospholipid biogenesis and calcium homeostasis. Indeed, mitochondrial motility, localization, and interaction with other organelles are compromised in many neurodegenerative diseases. Here, we describe methods to visualize and carry out quantitative analysis of mitochondrial movement in two genetically-manipulatable, widely-used model systems: Drosophila neurons and the budding yeast, Saccharomyces cerevisiae. We also describe approaches for multi-color imaging in living yeast cells that may be used to visualize colocalization of proteins within mitochondria, as well as interactions of mitochondria with other organelles.
Collapse
Affiliation(s)
- Pin-Chao Liao
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Ryo Higuchi-Sanabria
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States; Institute of Human Nutrition, Columbia University, New York, NY, United States
| | - Theresa C Swayne
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Cierra N Sing
- Institute of Human Nutrition, Columbia University, New York, NY, United States
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States; Institute of Human Nutrition, Columbia University, New York, NY, United States.
| |
Collapse
|
19
|
Chanthammachat P, Dharmasaroja P. Metformin restores the mitochondrial membrane potentials in association with a reduction in TIMM23 and NDUFS3 in MPP+-induced neurotoxicity in SH-SY5Y cells. EXCLI JOURNAL 2019; 18:812-823. [PMID: 31645842 PMCID: PMC6806136 DOI: 10.17179/excli2019-1703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022]
Abstract
SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+) develop mitochondrial dysfunction and other cellular responses similar to those that occur in the dopaminergic neurons of patients with Parkinson's disease (PD). It has been shown in animal models of PD that neuronal death can be prevented by metformin, an anti-diabetic drug. Both MPP+ and metformin inhibit complex I of the mitochondrial respiratory chain. It has been reported that decreased levels of the mitochondrial inner membrane proteins TIMM23 and NDUFS3 are associated with the increased generation of reactive oxygen species and mitochondrial depolarization. In the present study, we investigated the effects of metformin on MPP+-induced neurotoxicity using differentiated human SH-SY5Y neuroblastoma cells. The results showed that pretreatment with metformin increased the viability of MPP+-treated SH-SY5Y cells. Pretreatment with metformin decreased the expression of TIMM23 and NDUFS3 in MPP+-treated SH-SY5Y cells. This was correlated with reduced mitochondrial fragmentation and an improvement in the mitochondrial membrane potential. These results suggest that metformin pretreatment protects against MPP+-induced neurotoxicity, and offer insights into the potential role of metformin in protecting against toxin-induced parkinsonism.
Collapse
Affiliation(s)
- Pitak Chanthammachat
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Permphan Dharmasaroja
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
20
|
Zhang RJ, Li Y, Liu Q, Gao YJ, Du J, Ma J, Sun SG, Wang L. Differential Expression Profiles and Functional Prediction of Circular RNAs and Long Non-coding RNAs in the Hippocampus of Nrf2-Knockout Mice. Front Mol Neurosci 2019; 12:196. [PMID: 31447646 PMCID: PMC6697070 DOI: 10.3389/fnmol.2019.00196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Nrf2 (nuclear factor, erythroid 2 like 2) is believed to play a major role in neurodegenerative diseases. The present study attempts to investigate the hippocampal circRNA and lncRNA expression profiles associated with Nrf2-mediated neuroprotection. METHODS The hippocampal mRNA, circRNA and lncRNA expression profiles of Nrf2 (-/-) mice were determined by a microarray analysis. Bioinformatics analyses, including identification of differentially expressed mRNAs (DEmRNAs), circRNAs (DEcircRNAs) and lncRNAs (DElncRNAs), DEcircRNA-miRNA-DEmRNA interaction network construction, DElncRNA-DEmRNA co-expression network construction, and biological function annotation, were conducted. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the dysregulated expression of circRNAs and lncRNAs derived from the microarray data of the hippocampus of Nrf2 (-/-) mice. RESULTS Compared to wild-type Nrf2 (+/+) mice, 412 DEmRNAs (109 up- and 303 down-regulated mRNAs), 1279 DEcircRNAs (632 up- and 647 down-regulated circRNAs), and 303 DElncRNAs (50 up- and 253 down-regulated lncRNAs) were identified in the hippocampus of Nrf2 (-/-) mice. Additionally, in the qRT-PCR validation results, the expression patterns of selected DEcircRNAs and DElncRNAs were generally consistent with results in the microarray data. The DEcircRNA-miRNA-DEmRNA interaction networks revealed that mmu_circRNA_44531, mmu_circRNA_34132, mmu_circRNA_000903, mmu_circRNA_018676, mmu_circRNA_45901, mmu_circRNA_33836, mmu_circRNA_ 34137, mmu_circRNA_34106, mmu_circRNA_008691, and mmu_circRNA_003237 were predicted to compete with 47, 54, 45, 57, 63, 81, 121, 85, 181, and 43 DEmRNAs, respectively. ENSMUST00000125413, NR_028123, uc008nfy.1, AK076764, AK142725, AK080547, and AK035903 were co-expressed with 178, 89, 149, 179, 142, 55, and 112 DEmRNAs in the Nrf2 (-/-) hippocampus, respectively. CONCLUSION Our study might contribute to exploring the key circRNAs and lncRNAs associated with Nrf2-mediated neuroprotection.
Collapse
Affiliation(s)
- Run-Jiao Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Yan Li
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Qing Liu
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Yan-Jing Gao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Juan Du
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Jun Ma
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Lei Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
21
|
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 2019; 19:63-80. [PMID: 29348666 DOI: 10.1038/nrn.2017.170] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synapses enable neurons to communicate with each other and are therefore a prerequisite for normal brain function. Presynaptically, this communication requires energy and generates large fluctuations in calcium concentrations. Mitochondria are optimized for supplying energy and buffering calcium, and they are actively recruited to presynapses. However, not all presynapses contain mitochondria; thus, how might synapses with and without mitochondria differ? Mitochondria are also increasingly recognized to serve additional functions at the presynapse. Here, we discuss the importance of presynaptic mitochondria in maintaining neuronal homeostasis and how dysfunctional presynaptic mitochondria might contribute to the development of disease.
Collapse
Affiliation(s)
- Michael J Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
22
|
Mitochondrial Dysfunction in Parkinson's Disease-Cause or Consequence? BIOLOGY 2019; 8:biology8020038. [PMID: 31083583 PMCID: PMC6627981 DOI: 10.3390/biology8020038] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 12/18/2022]
Abstract
James Parkinson first described the motor symptoms of the disease that took his name over 200 years ago. While our knowledge of many of the changes that occur in this condition has increased, it is still unknown what causes this neurodegeneration and why it only affects some individuals with advancing age. Here we review current literature to discuss whether the mitochondrial dysfunction we have detected in Parkinson’s disease is a pathogenic cause of neuronal loss or whether it is itself a consequence of dysfunction in other pathways. We examine research data from cases of idiopathic Parkinson’s with that from model systems and individuals with familial forms of the disease. Furthermore, we include data from healthy aged individuals to highlight that many of the changes described are also present with advancing age, though not normally in the presence of severe neurodegeneration. While a definitive answer to this question may still be just out of reach, it is clear that mitochondrial dysfunction sits prominently at the centre of the disease pathway that leads to catastrophic neuronal loss in those affected by this disease.
Collapse
|
23
|
Ganoderma lucidum extract ameliorates MPTP-induced parkinsonism and protects dopaminergic neurons from oxidative stress via regulating mitochondrial function, autophagy, and apoptosis. Acta Pharmacol Sin 2019; 40:441-450. [PMID: 29991712 DOI: 10.1038/s41401-018-0077-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/14/2018] [Indexed: 12/25/2022] Open
Abstract
Neuroprotection targeting mitochondrial dysfunction has been proposed as an important therapeutic strategy for Parkinson's disease. Ganoderma lucidum (GL) has emerged as a novel agent that protects neurons from oxidative stress. However, the detailed mechanisms underlying GL-induced neuroprotection have not been documented. In this study, we investigated the neuroprotective effects of GL extract (GLE) and the underlying mechanisms in the classic MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced mouse model of PD. Mice were injected with MPTP to induce parkinsonism. Then the mice were administered GLE (400 mg kg-1 d-1, ig) for 4 weeks. We observed that GLE administration significantly improved locomotor performance and increased tyrosine hydroxylase expression in the substantia nigra pars compact (SNpc) of MPTP-treated mice. In in vitro study, treatment of neuroblastoma neuro-2a cells with 1-methyl-4-phenylpyridinium (MPP+, 1 mmol/L) caused mitochondrial membrane potential collapse, radical oxygen species accumulation, and ATP depletion. Application of GLE (800 μg/mL) protected neuroblastoma neuro-2a cells against MPP+ insult. Application of GLE also improved mitochondrial movement dysfunction in cultured primary mesencephalic neurons. In addition, GLE counteracted the decline in NIX (also called BNIP3L) expression and increase in the LC3-II/LC3-I ratio evoked by MPP+. Moreover, GLE reactivated MPP+-inhibited AMPK, mTOR, and ULK1. Similarly, GLE was sufficient to counteract MPP+-induced inhibition of PINK1 and Parkin expression. GLE suppressed MPP+-induced cytochrome C release and activation of caspase-3 and caspase-9. In summary, our results provide evidence that GLE ameliorates parkinsonism pathology via regulating mitochondrial function, autophagy, and apoptosis, which may involve the activation of both the AMPK/mTOR and PINK1/Parkin signaling pathway.
Collapse
|
24
|
Zheng YR, Zhang XN, Chen Z. Mitochondrial transport serves as a mitochondrial quality control strategy in axons: Implications for central nervous system disorders. CNS Neurosci Ther 2019; 25:876-886. [PMID: 30900394 PMCID: PMC6566064 DOI: 10.1111/cns.13122] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Axonal mitochondrial quality is essential for neuronal health and functions. Compromised mitochondrial quality, reflected by loss of membrane potential, collapse of ATP production, abnormal morphology, burst of reactive oxygen species generation, and impaired Ca2+ buffering capacity, can alter mitochondrial transport. Mitochondrial transport in turn maintains axonal mitochondrial homeostasis in several ways. Newly generated mitochondria are anterogradely transported along with axon from soma to replenish axonal mitochondrial pool, while damaged mitochondria undergo retrograde transport for repair or degradation. Besides, mitochondria are also arrested in axon to quarantine damages locally. Accumulating evidence suggests abnormal mitochondrial transport leads to mitochondrial dysfunction and axon degeneration in a variety of neurological and psychiatric disorders. Further investigations into the details of this process would help to extend our understanding of various neurological diseases and shed light on the corresponding therapies.
Collapse
Affiliation(s)
- Yan-Rong Zheng
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Cromberg LE, Saez TMM, Otero MG, Tomasella E, Alloatti M, Damianich A, Pozo Devoto V, Ferrario J, Gelman D, Rubinstein M, Falzone TL. Neuronal
KIF
5b
deletion induces
striatum
‐dependent locomotor impairments and defects in membrane presentation of dopamine D2 receptors. J Neurochem 2019; 149:362-380. [DOI: 10.1111/jnc.14665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/27/2018] [Accepted: 01/11/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Lucas E. Cromberg
- Instituto de Biología Celular y Neurociencias IBCN (CONICET‐UBA) Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Trinidad M. M. Saez
- Instituto de Biología Celular y Neurociencias IBCN (CONICET‐UBA) Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
- Instituto de Biología y Medicina Experimental IBYME (CONICET) Buenos Aires Argentina
| | - María G. Otero
- Instituto de Biología Celular y Neurociencias IBCN (CONICET‐UBA) Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Eugenia Tomasella
- Instituto de Biología y Medicina Experimental IBYME (CONICET) Buenos Aires Argentina
| | - Matías Alloatti
- Instituto de Biología Celular y Neurociencias IBCN (CONICET‐UBA) Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Ana Damianich
- Instituto de Investigaciones Farmacológicas ININFA, (CONICET‐UBA) Buenos Aires Argentina
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular INGEBI (CONICET) Buenos Aires Argentina
| | - Victorio Pozo Devoto
- Center for Translational Medicine (CTM) International Clinical Research Center St. Anne's University Hospital (ICRC‐FNUSA) Brno Czech Republic
| | - Juan Ferrario
- Instituto de Investigaciones Farmacológicas ININFA, (CONICET‐UBA) Buenos Aires Argentina
| | - Diego Gelman
- Instituto de Biología y Medicina Experimental IBYME (CONICET) Buenos Aires Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular INGEBI (CONICET) Buenos Aires Argentina
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Buenos Aires Argentina
| | - Tomás L. Falzone
- Instituto de Biología Celular y Neurociencias IBCN (CONICET‐UBA) Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
- Instituto de Biología y Medicina Experimental IBYME (CONICET) Buenos Aires Argentina
| |
Collapse
|
26
|
Kuter KZ, Olech Ł, Dencher NA. Increased energetic demand supported by mitochondrial electron transfer chain and astrocyte assistance is essential to maintain the compensatory ability of the dopaminergic neurons in an animal model of early Parkinson's disease. Mitochondrion 2018; 47:227-237. [PMID: 30578987 DOI: 10.1016/j.mito.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/03/2018] [Accepted: 12/11/2018] [Indexed: 01/03/2023]
Abstract
Partial degeneration of dopaminergic neurons in the substantia nigra (SN), induces locomotor disability in animals but with time it is spontaneously compensated for by neurons surviving in the tissue by increasing their functional efficiency. Such compensation probably increases energy requirements and astrocyte support could be essential for this ability. We studied the effect of degeneration of dopaminergic neurons induced by the selective toxin 6-hydroxydopamine and/or death of 30% of astrocytes induced by chronic infusion of the glial toxin fluorocitrate on functioning of the mitochondrial electron transfer chain (ETC) complexes (Cxs) I, II, IV and their higher assembled forms, supercomplexes in the rat SN. Astrocyte death decreased Cx I and IV performance, while significantly increased the amount of Cx II protein SDHA, indicating system adaptation. After death of 50% of dopaminergic neurons in the SN, we observed increased mitochondrial Cxs performing, especially Cx I and IV in the remaining cells. It corresponded with reduction of behavioural deficits. Those results support the hypothesis that the compensatory ability of surviving neurons requires meeting their higher energetic demand by ETC. When astrocytes were defective, the neurons remaining after partial lesion were not able to enhance their functioning anymore and compensate for deficits. It proves in vivo that astrocytic support is important for compensatory potential of neurons in the SN. Neuro-glia cooperation is fundamental for compensation for early deficits in the nigrostriatal system.
Collapse
Affiliation(s)
- Katarzyna Z Kuter
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland; Department of Chemistry, Physical Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| | - Łukasz Olech
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Norbert A Dencher
- Department of Chemistry, Physical Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany; Research Center for Molecular Mechanisms of Ageing and Age-related Neurodegenerative Diseases, Moscow Institute of Physics and Technology MIPT, Dolgoprudny/Moscow, Russia
| |
Collapse
|
27
|
Chidambaram SB, Bhat A, Ray B, Sugumar M, Muthukumar SP, Manivasagam T, Justin Thenmozhi A, Essa MM, Guillemin GJ, Sakharkar MK. Cocoa beans improve mitochondrial biogenesis via PPARγ/PGC1α dependent signalling pathway in MPP + intoxicated human neuroblastoma cells (SH-SY5Y). Nutr Neurosci 2018; 23:471-480. [PMID: 30207204 DOI: 10.1080/1028415x.2018.1521088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polyphenols are shown to protect from or delay the progression of chronic neurodegenerative diseases. Mitochondrial dysfunction plays a key role in the pathogenesis of Parkinson's disease (PD). This study was aims to gain insight into the role of ahydroalcoholic extract of cocoa (standardised for epicatechin content) on mitochondrial biogenesis in MPP+ intoxicated human neuroblastoma cells (SHSY5Y). The effects of cocoa on PPARγ, PGC1α, Nrf2 and TFAM protein expression and mitochondrial membrane potential were evaluated. A pre-exposure to cocoa extract decreased reactive oxygen species formation and restored mitochondrial membrane potential. The cocoa extract was found to up-regulate the expression of PPARγ and the downstream signalling proteins PGC1α, Nrf2 and TFAM. It increased the expression of the anti-apoptotic protein BCl2 and increased superoxide dismutase activity. Further, the cocoa extract down-regulated the expression of mitochondria fission 1 (Fis1) and up-regulated the expression of mitochondria fusion 2 (Mfn2) proteins, suggesting an improvement in mitochondrial functions in MPP+ intoxicated cells upon treatment with cocoa. Interestingly, cocoa up-regulates the expression of tyrosine hydroxylase, the rate limiting enzyme in dopamine synthesis. No change in the expression of PPARγ on treatment with cocoa extract was observed when the cells were pre-treated with PPARγ antagonist GW9662. This data suggests that cocoa mediates mitochondrial biogenesis via a PPARγ/PGC1α dependent signalling pathway and also has the ability to improve dopaminergic functions by increasing tyrosine hydroxylase expression. Based on our data, we propose that a cocoa bean extract and products thereof could be used as potential nutritional supplements for neuroprotection in PD.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Dept of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 57 00 15, KA, India
| | - Abid Bhat
- Dept of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 57 00 15, KA, India
| | - Bipul Ray
- Dept of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 57 00 15, KA, India
| | - Mani Sugumar
- Research and Development Centre, Bharathiar University, Coimbatore 641046, TN, India
| | - Serva Peddha Muthukumar
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysore 570020, KA, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai nagar, Tamilnadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai nagar, Tamilnadu, India
| | | | - Gilles J Guillemin
- Neuropharmacology group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, NSW 2109, Australia
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK, Canada S7N 5C9
| |
Collapse
|
28
|
α-Synuclein oligomers induce early axonal dysfunction in human iPSC-based models of synucleinopathies. Proc Natl Acad Sci U S A 2018; 115:7813-7818. [PMID: 29991596 PMCID: PMC6065020 DOI: 10.1073/pnas.1713129115] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
α-Synuclein (α-Syn) aggregation underlies neurodegeneration in synucleinopathies. However, the nature of α-Syn aggregates and their toxic mechanisms in human pathology remains elusive. Here, we delineate a role of α-Syn oligomeric aggregates for axonal integrity in human neuronal models of synucleinopathies. α-Syn oligomers disrupt anterograde axonal transport of mitochondria by causing subcellular changes in transport-regulating proteins and energy deficits. An increase of α-Syn oligomers in human neurons finally results in synaptic degeneration. Together, our data provide mechanistic insights of α-Syn oligomeric toxicity in human neurons. Taking into account that α-Syn oligomers and axonal dysfunction are characteristic for early neurodegeneration in synucleinopathies, our data might deliver targets for therapeutic interference with early disease pathology. α-Synuclein (α-Syn) aggregation, proceeding from oligomers to fibrils, is one central hallmark of neurodegeneration in synucleinopathies. α-Syn oligomers are toxic by triggering neurodegenerative processes in in vitro and in vivo models. However, the precise contribution of α-Syn oligomers to neurite pathology in human neurons and the underlying mechanisms remain unclear. Here, we demonstrate the formation of oligomeric α-Syn intermediates and reduced axonal mitochondrial transport in human neurons derived from induced pluripotent stem cells (iPSC) from a Parkinson’s disease patient carrying an α-Syn gene duplication. We further show that increased levels of α-Syn oligomers disrupt axonal integrity in human neurons. We apply an α-Syn oligomerization model by expressing α-Syn oligomer-forming mutants (E46K and E57K) and wild-type α-Syn in human iPSC-derived neurons. Pronounced α-Syn oligomerization led to impaired anterograde axonal transport of mitochondria, which can be restored by the inhibition of α-Syn oligomer formation. Furthermore, α-Syn oligomers were associated with a subcellular relocation of transport-regulating proteins Miro1, KLC1, and Tau as well as reduced ATP levels, underlying axonal transport deficits. Consequently, reduced axonal density and structural synaptic degeneration were observed in human neurons in the presence of high levels of α-Syn oligomers. Together, increased dosage of α-Syn resulting in α-Syn oligomerization causes axonal transport disruption and energy deficits, leading to synapse loss in human neurons. This study identifies α-Syn oligomers as the critical species triggering early axonal dysfunction in synucleinopathies.
Collapse
|
29
|
Wang Y, Song M, Song F. Neuronal autophagy and axon degeneration. Cell Mol Life Sci 2018; 75:2389-2406. [PMID: 29675785 PMCID: PMC11105516 DOI: 10.1007/s00018-018-2812-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023]
Abstract
Axon degeneration is a pathophysiological process of axonal dying and breakdown, which is characterized by several morphological features including the accumulation of axoplasmic organelles, disassembly of microtubules, and fragmentation of the axonal cytoskeleton. Autophagy, a highly conserved lysosomal-degradation machinery responsible for the control of cellular protein quality, is widely believed to be essential for the maintenance of axonal homeostasis in neurons. In recent years, more and more evidence suggests that dysfunctional autophagy is associated with axonal degeneration in many neurodegenerative diseases. Here, we review the core machinery of autophagy in neuronal cells, and provide several major steps that interfere with autophagy flux in neurodegenerative conditions. Furthermore, this review highlights the potential role of neuronal autophagy in axon degeneration, and presents some possible molecular mechanisms by which dysfunctional autophagy leads to axon degeneration in pathological conditions.
Collapse
Affiliation(s)
- Yu Wang
- Department of Toxicology, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Mingxue Song
- School of Public Health, Fujian Medical University, 1 Xueyuan Road, Fuzhou, 350108, Fujian, People's Republic of China
| | - Fuyong Song
- Department of Toxicology, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
30
|
Bernardes CP, Santos NAG, Sisti FM, Ferreira RS, Santos-Filho NA, Cintra ACO, Cilli EM, Sampaio SV, Santos AC. A synthetic snake-venom-based tripeptide (Glu-Val-Trp) protects PC12 cells from MPP + toxicity by activating the NGF-signaling pathway. Peptides 2018; 104:24-34. [PMID: 29684590 DOI: 10.1016/j.peptides.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 01/05/2023]
Abstract
Venom small peptides that target neurotrophin receptors might be beneficial in neurodegeneration, including Parkinsońs disease (PD). Their small size, ease of synthesis, structural stability and target selectivity make them important tools to overcome the limitations of endogenous neurotrophins as therapeutic agents. Additionally, they might be optimized to improve resistance to enzymatic degradation, bioavailability, potency and, mainly, lipophilicity, important to cross the blood brain barrier (BBB). Here, we evaluated the neuroprotective effects and mechanisms of the synthetic snake-venom-based peptide p-BTX-I (Glu-Val-Trp) in PC12 cells treated with MPP+ (1-methyl-4-phenylpyridinium), a dopaminergic neurotoxin that induces Parkinsonism in vivo. The peptide p-BTX-I induced neuritogenesis, which was reduced by (i) k252a, antagonist of the NGF-selective receptor, trkA (tropomyosin receptor kinase A); (ii) LY294002, inhibitor of the PI3 K/AKT pathway and (iii) U0126, inhibitor of the MAPK-ERK pathway. Besides that, p-BTX-I also increased the expression of GAP-43 and synapsin, which are molecular markers of axonal growth and synaptic communication. In addition, the peptide increased the viability and differentiation of cells exposed to MPP+, known to inhibit neuritogenesis. Altogether, our findings suggest that the synthetic peptide p-BTX-I protects PC12 cells from MPP+ toxicity by a mechanism that mimics the neurotrophic action of NGF. Therefore, the molecular structure of p-BTX-I might be relevant in the development of drugs aimed at restoring the axonal connectivity in neurodegenerative processes.
Collapse
Affiliation(s)
- Carolina P Bernardes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil.
| | - Neife A G Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Flavia M Sisti
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Rafaela Scalco Ferreira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Norival A Santos-Filho
- Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Química de Araraquara-UNESP, Araraquara, SP, Brazil
| | - Adélia C O Cintra
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Eduardo M Cilli
- Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Química de Araraquara-UNESP, Araraquara, SP, Brazil
| | - Suely V Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | - Antonio C Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
31
|
Reeve AK, Grady JP, Cosgrave EM, Bennison E, Chen C, Hepplewhite PD, Morris CM. Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson's disease. NPJ Parkinsons Dis 2018; 4:9. [PMID: 29872690 PMCID: PMC5979968 DOI: 10.1038/s41531-018-0044-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial dysfunction within the cell bodies of substantia nigra neurons is prominent in both ageing and Parkinson's disease. The loss of dopaminergic substantia nigra neurons in Parkinson's disease is associated with loss of synapses within the striatum, and this may precede neuronal loss. We investigated whether mitochondrial changes previously reported within substantia nigra neurons were also seen within the synapses and axons of these neurons. Using high resolution quantitative fluorescence immunohistochemistry we determined mitochondrial density within remaining dopaminergic axons and synapses, and quantified deficiencies of mitochondrial Complex I and Complex IV in these compartments. In Parkinson's disease mitochondrial populations were increased within axons and the mitochondria expressed higher levels of key electron transport chain proteins compared to controls. Furthermore we observed synapses which were devoid of mitochondrial proteins in all groups, with a significant reduction in the number of these 'empty' synapses in Parkinson's disease. This suggests that neurons may attempt to maintain mitochondrial populations within remaining axons and synapses in Parkinson's disease to facilitate continued neural transmission in the presence of neurodegeneration, potentially increasing oxidative damage. This compensatory event may represent a novel target for future restorative therapies in Parkinson's disease.
Collapse
Affiliation(s)
- Amy K. Reeve
- MRC/BBSRC Centre for Ageing and Vitality and Wellcome Centre for Mitochondrial Research, Institute for Neuroscience, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - John P. Grady
- MRC/BBSRC Centre for Ageing and Vitality and Wellcome Centre for Mitochondrial Research, Institute for Neuroscience, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- Kinghorn Centre for Clinical Genomics, Garvan Institute, 384 Victoria Street, Darlinghurst, Sydney NSW 2010 Australia
| | - Eve M. Cosgrave
- MRC/BBSRC Centre for Ageing and Vitality and Wellcome Centre for Mitochondrial Research, Institute for Neuroscience, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Emma Bennison
- MRC/BBSRC Centre for Ageing and Vitality and Wellcome Centre for Mitochondrial Research, Institute for Neuroscience, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Chun Chen
- MRC/BBSRC Centre for Ageing and Vitality and Wellcome Centre for Mitochondrial Research, Institute for Neuroscience, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Philippa D. Hepplewhite
- MRC/BBSRC Centre for Ageing and Vitality and Wellcome Centre for Mitochondrial Research, Institute for Neuroscience, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- Newcastle Brain Tissue Resource, Newcastle University, Edwardson Building, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PJ UK
- Department of Cellular Pathology, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK
| | - Christopher M. Morris
- Newcastle Brain Tissue Resource, Newcastle University, Edwardson Building, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PJ UK
- Medical Toxicology Centre, Wolfson Building, Claremont Place, Newcastle upon Tyne, NE2 4AA UK
| |
Collapse
|
32
|
Integrated microarray analysis provided a new insight of the pathogenesis of Parkinson’s disease. Neurosci Lett 2018; 662:51-58. [DOI: 10.1016/j.neulet.2017.09.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/25/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022]
|
33
|
Rocha S, Freitas A, Guimaraes SC, Vitorino R, Aroso M, Gomez-Lazaro M. Biological Implications of Differential Expression of Mitochondrial-Shaping Proteins in Parkinson's Disease. Antioxidants (Basel) 2017; 7:E1. [PMID: 29267236 PMCID: PMC5789311 DOI: 10.3390/antiox7010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
It has long been accepted that mitochondrial function and morphology is affected in Parkinson's disease, and that mitochondrial function can be directly related to its morphology. So far, mitochondrial morphological alterations studies, in the context of this neurodegenerative disease, have been performed through microscopic methodologies. The goal of the present work is to address if the modifications in the mitochondrial-shaping proteins occurring in this disorder have implications in other cellular pathways, which might constitute important pathways for the disease progression. To do so, we conducted a novel approach through a thorough exploration of the available proteomics-based studies in the context of Parkinson's disease. The analysis provided insight into the altered biological pathways affected by changes in the expression of mitochondrial-shaping proteins via different bioinformatic tools. Unexpectedly, we observed that the mitochondrial-shaping proteins altered in the context of Parkinson's disease are, in the vast majority, related to the organization of the mitochondrial cristae. Conversely, in the studies that have resorted to microscopy-based techniques, the most widely reported alteration in the context of this disorder is mitochondria fragmentation. Cristae membrane organization is pivotal for mitochondrial ATP production, and changes in their morphology have a direct impact on the organization and function of the oxidative phosphorylation (OXPHOS) complexes. To understand which biological processes are affected by the alteration of these proteins we analyzed the binding partners of the mitochondrial-shaping proteins that were found altered in Parkinson's disease. We showed that the binding partners fall into seven different cellular components, which include mitochondria, proteasome, and endoplasmic reticulum (ER), amongst others. It is noteworthy that, by evaluating the biological process in which these modified proteins are involved, we showed that they are related to the production and metabolism of ATP, immune response, cytoskeleton alteration, and oxidative stress, amongst others. In summary, with our bioinformatics approach using the data on the modified proteins in Parkinson's disease patients, we were able to relate the alteration of mitochondrial-shaping proteins to modifications of crucial cellular pathways affected in this disease.
Collapse
Affiliation(s)
- Sara Rocha
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana Freitas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- FMUP-Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal.
| | - Sofia C Guimaraes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Universidade do Porto, 4200-319 Porto, Portugal.
| | - Miguel Aroso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Maria Gomez-Lazaro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
34
|
Prion protein inhibits fast axonal transport through a mechanism involving casein kinase 2. PLoS One 2017; 12:e0188340. [PMID: 29261664 PMCID: PMC5737884 DOI: 10.1371/journal.pone.0188340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Prion diseases include a number of progressive neuropathies involving conformational changes in cellular prion protein (PrPc) that may be fatal sporadic, familial or infectious. Pathological evidence indicated that neurons affected in prion diseases follow a dying-back pattern of degeneration. However, specific cellular processes affected by PrPc that explain such a pattern have not yet been identified. Results from cell biological and pharmacological experiments in isolated squid axoplasm and primary cultured neurons reveal inhibition of fast axonal transport (FAT) as a novel toxic effect elicited by PrPc. Pharmacological, biochemical and cell biological experiments further indicate this toxic effect involves casein kinase 2 (CK2) activation, providing a molecular basis for the toxic effect of PrPc on FAT. CK2 was found to phosphorylate and inhibit light chain subunits of the major motor protein conventional kinesin. Collectively, these findings suggest CK2 as a novel therapeutic target to prevent the gradual loss of neuronal connectivity that characterizes prion diseases.
Collapse
|
35
|
Mythri RB, Raghunath NR, Narwade SC, Pandareesh MDR, Sabitha KR, Aiyaz M, Chand B, Sule M, Ghosh K, Kumar S, Shankarappa B, Soundararajan S, Alladi PA, Purushottam M, Gayathri N, Deobagkar DD, Laxmi TR, Srinivas Bharath MM. Manganese- and 1-methyl-4-phenylpyridinium-induced neurotoxicity display differences in morphological, electrophysiological and genome-wide alterations: implications for idiopathic Parkinson's disease. J Neurochem 2017; 143:334-358. [DOI: 10.1111/jnc.14147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Rajeswara Babu Mythri
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Narayana Reddy Raghunath
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | | | - Mirazkar Dasharatha Rao Pandareesh
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Kollarkandi Rajesh Sabitha
- Department of Neurophysiology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Mohamad Aiyaz
- Genotypic Technology Pvt. Ltd; Bangalore Karnataka India
| | - Bipin Chand
- Genotypic Technology Pvt. Ltd; Bangalore Karnataka India
| | - Manas Sule
- InterpretOmics; Shezan Lavelle; Bangalore Karnataka India
| | - Krittika Ghosh
- InterpretOmics; Shezan Lavelle; Bangalore Karnataka India
| | - Senthil Kumar
- InterpretOmics; Shezan Lavelle; Bangalore Karnataka India
| | - Bhagyalakshmi Shankarappa
- Molecular Genetics Laboratory - Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Soundarya Soundararajan
- Molecular Genetics Laboratory - Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Phalguni Anand Alladi
- Department of Neurophysiology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Meera Purushottam
- Molecular Genetics Laboratory - Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Narayanappa Gayathri
- Department of Neuropathology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | | | - Thenkanidiyoor Rao Laxmi
- Department of Neurophysiology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Muchukunte Mukunda Srinivas Bharath
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| |
Collapse
|
36
|
Cartelli D, Amadeo A, Calogero AM, Casagrande FVM, De Gregorio C, Gioria M, Kuzumaki N, Costa I, Sassone J, Ciammola A, Hattori N, Okano H, Goldwurm S, Roybon L, Pezzoli G, Cappelletti G. Parkin absence accelerates microtubule aging in dopaminergic neurons. Neurobiol Aging 2017; 61:66-74. [PMID: 29040870 DOI: 10.1016/j.neurobiolaging.2017.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/24/2017] [Accepted: 09/08/2017] [Indexed: 02/01/2023]
Abstract
Loss-of-function caused by mutations in the parkin gene (PARK2) lead to early-onset familial Parkinson's disease. Recently, mechanistic studies proved the ability of parkin in regulating mitochondria homeostasis and microtubule (MT) stability. Looking at these systems during aging of PARK2 knockout mice, we found that loss of parkin induced an accelerated (over)acetylation of MT system both in dopaminergic neuron cell bodies and fibers, localized in the substantia nigra and corpus striatum, respectively. Interestingly, in PARK2 knockout mice, changes of MT stability preceded the alteration of mitochondria transport. Moreover, in-cell experiments confirmed that loss of parkin affects mitochondria mobility and showed that this defect depends on MT system as it is rescued by paclitaxel, a well-known MT-targeted agent. Furthermore, both in PC12 neuronal cells and in patients' induced pluripotent stem cell-derived midbrain neurons, we observed that parkin deficiencies cause the fragmentation of stable MTs. Therefore, we suggest that parkin acts as a regulator of MT system during neuronal aging, and we endorse the hypothesis that MT dysfunction may be crucial in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Daniele Cartelli
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy.
| | - Alida Amadeo
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| | | | | | | | - Mariarosa Gioria
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Naoko Kuzumaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Ilaria Costa
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Jenny Sassone
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milano, Italy
| | - Andrea Ciammola
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Cusano Milanino, MI, Italy
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | | | - Laurent Roybon
- Stem Cell laboratory for CNS Disease Modeling, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, Lund, Sweden; Strategic Research Area MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gianni Pezzoli
- Parkinson Institute, ASST G.Pini-CTO, ex ICP, Milano, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy; Center of Excellence of Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
37
|
Mitochondrial health maintenance in axons. Biochem Soc Trans 2017; 45:1045-1052. [DOI: 10.1042/bst20170023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023]
Abstract
Neurons are post-mitotic cells that must function throughout the life of an organism. The high energetic requirements and Ca2+ spikes of synaptic transmission place a burden on neuronal mitochondria. The removal of older mitochondria and the replenishment of the functional mitochondrial pool in axons with freshly synthesized components are therefore important parts of neuronal maintenance. Although the mechanism of mitochondrial protein import and dynamics is studied in great detail, the length of neurons poses additional challenges to those processes. In this mini-review, I briefly cover the basics of mitochondrial biogenesis and proceed to explain the interdependence of mitochondrial transport and mitochondrial health. I then extrapolate recent findings in yeast and mammalian cultured cells to neurons, making a case for axonal translation as a contributor to mitochondrial biogenesis in neurons.
Collapse
|
38
|
Anandhan A, Jacome MS, Lei S, Hernandez-Franco P, Pappa A, Panayiotidis MI, Powers R, Franco R. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism. Brain Res Bull 2017; 133:12-30. [PMID: 28341600 PMCID: PMC5555796 DOI: 10.1016/j.brainresbull.2017.03.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022]
Abstract
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism.
Collapse
Affiliation(s)
- Annadurai Anandhan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Maria S Jacome
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States
| | - Shulei Lei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Pablo Hernandez-Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | | | - Robert Powers
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States.
| |
Collapse
|
39
|
Improvement of mitochondrial function mediated the neuroprotective effect of 5-(4-hydroxy-3-dimethoxybenzylidene)-2-thioxo-4-thiazolidinone in rats with cerebral ischemia-reperfusion injuries. Oncotarget 2017; 8:61193-61202. [PMID: 28977856 PMCID: PMC5617416 DOI: 10.18632/oncotarget.18048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/25/2017] [Indexed: 11/25/2022] Open
Abstract
Deficits in mitochondrial function is a critical inducement in the major pathways that drive neuronal cell death in ischemic process particularly. Drugs target to improve the mitochondrial function may be a feasible therapeutic choice in treatment with ischemic diseases. In the present study, we investigated whether 5-(4-hydroxy-3-dimethoxybenzylidene)-2-thioxo-4-thiazolidinone (RD-1), a compound derived from rhodanine, could protect against ischemic neuronal damage via improving mitochondrial function. We tested the neuroprotective effect of RD-1 both in rats modeled by middle cerebral artery occlusion reperfusion in vivo and in primary cortical neurons subjected to hypoxia/reperfusion injury in vitro. Results showed that treatment with RD-1 for 14 days remarkably reduced infarct size, decreased neurological deficit score and accelerated the recovery of somatosensory function in vivo. Meanwhile, RD-1 also increased the cellular viability after 48 h treatment in vitro. In addition, RD-1 protected the primary cortical neurons against mitochondrial damage as evidenced by stabilizing the mitochondrial membrane potential and reducing the overproduction of reactive oxygen species. Furthermore, hypoxia/reperfusion injury induced damaged mitochondrial axonal transport and consequently neurotransmitter release disorder, which were ameliorated by RD-1 treatment. Besides, RD-1 inhibited the downregulation of proteins related with mitochondrial transport and neurotransmitter release induced by ischemic injury both in vivo and in vitro. The obtained data demonstrated the neuroprotective effect of RD-1 and the involved mechanisms were partially attributed to the improvement in mitochondrial function and the synaptic activity. Our study indicated that RD-1 may be a potential therapeutic drug for the ischemic stroke therapy.
Collapse
|
40
|
Liao PC, Tandarich LC, Hollenbeck PJ. ROS regulation of axonal mitochondrial transport is mediated by Ca2+ and JNK in Drosophila. PLoS One 2017; 12:e0178105. [PMID: 28542430 PMCID: PMC5436889 DOI: 10.1371/journal.pone.0178105] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/06/2017] [Indexed: 12/31/2022] Open
Abstract
Mitochondria perform critical functions including aerobic ATP production and calcium (Ca2+) homeostasis, but are also a major source of reactive oxygen species (ROS) production. To maintain cellular function and survival in neurons, mitochondria are transported along axons, and accumulate in regions with high demand for their functions. Oxidative stress and abnormal mitochondrial axonal transport are associated with neurodegenerative disorders. However, we know little about the connection between these two. Using the Drosophila third instar larval nervous system as the in vivo model, we found that ROS inhibited mitochondrial axonal transport more specifically, primarily due to reduced flux and velocity, but did not affect transport of other organelles. To understand the mechanisms underlying these effects, we examined Ca2+ levels and the JNK (c-Jun N-terminal Kinase) pathway, which have been shown to regulate mitochondrial transport and general fast axonal transport, respectively. We found that elevated ROS increased Ca2+ levels, and that experimental reduction of Ca2+ to physiological levels rescued ROS-induced defects in mitochondrial transport in primary neuron cell cultures. In addition, in vivo activation of the JNK pathway reduced mitochondrial flux and velocities, while JNK knockdown partially rescued ROS-induced defects in the anterograde direction. We conclude that ROS have the capacity to regulate mitochondrial traffic, and that Ca2+ and JNK signaling play roles in mediating these effects. In addition to transport defects, ROS produces imbalances in mitochondrial fission-fusion and metabolic state, indicating that mitochondrial transport, fission-fusion steady state, and metabolic state are closely interrelated in the response to ROS.
Collapse
Affiliation(s)
- Pin-Chao Liao
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Lauren C. Tandarich
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Peter J. Hollenbeck
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
41
|
Kuter K, Olech Ł, Głowacka U. Prolonged Dysfunction of Astrocytes and Activation of Microglia Accelerate Degeneration of Dopaminergic Neurons in the Rat Substantia Nigra and Block Compensation of Early Motor Dysfunction Induced by 6-OHDA. Mol Neurobiol 2017; 55:3049-3066. [PMID: 28466266 PMCID: PMC5842510 DOI: 10.1007/s12035-017-0529-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/06/2017] [Indexed: 01/01/2023]
Abstract
Progressive degeneration of dopaminergic neurons in the substantia nigra (SN) is the underlying cause of Parkinson’s disease (PD). The disease in early stages is difficult to diagnose, because behavioral deficits are masked by compensatory processes. Astrocytic and microglial pathology precedes motor symptoms. Besides supportive functions of astrocytes in the brain, their role in PD is unrecognized. Prolonged dysfunction of astrocytes could increase the vulnerability of dopaminergic neurons and advance their degeneration during aging. The aim of our studies was to find out whether prolonged dysfunction of astrocytes in the SN is deleterious for neuronal functioning and if it influences their survival after toxic insult or changes the compensatory potential of the remaining neurons. In Wistar rat model, we induced activation, prolonged dysfunction, and death of astrocytes by chronic infusion of fluorocitrate (FC) into the SN, without causing dopaminergic neuron degeneration. Strongly enhanced dopamine turnover in the SN after 7 days of FC infusion was induced probably by microglia activated in response to astrocyte stress. The FC effect was reversible, and astrocyte pool was replenished 3 weeks after the end of infusion. Importantly, the prolonged astrocyte dysfunction and microglia activation accelerated degeneration of dopaminergic neurons induced by 6-hydroxydopamine and blocked the behavioral compensation normally observed after moderate neurodegeneration. Impaired astrocyte functioning, activation of microglia, diminishing compensatory capability of the dopaminergic system, and increasing neuronal vulnerability to external insults could be the underlying causes of PD. This animal model of prolonged astrocyte dysfunction can be useful for in vivo studies of glia–microglia–neuron interaction.
Collapse
Affiliation(s)
- Katarzyna Kuter
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Krakow, Poland.
| | - Łukasz Olech
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Krakow, Poland
| | - Urszula Głowacka
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Krakow, Poland
| |
Collapse
|
42
|
Yang SA, Yoon J, Kim K, Park Y. Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease. Cytometry A 2017. [PMID: 28426150 DOI: 10.1101/080937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. However, therapeutic methods of PD are still limited due to complex pathophysiology in PD. Here, optical measurements of individual neurons from in vitro PD model using optical diffraction tomography (ODT) are presented. By measuring 3D refractive index distribution of neurons, morphological and biophysical alterations in in-vitro PD model are quantitatively investigated. It was found that neurons show apoptotic features in early PD progression. The present approach will open up new opportunities for quantitative investigation of the pathophysiology of various neurodegenerative diseases. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Su-A Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
| | - Jonghee Yoon
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
- Department of Physics, KAIST, Daejeon, 34141, South Korea
| | - Kyoohyun Kim
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
- Department of Physics, KAIST, Daejeon, 34141, South Korea
| | - YongKeun Park
- KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
- Department of Physics, KAIST, Daejeon, 34141, South Korea
- Tomocube, Inc, Daejeon, 34051, South Korea
| |
Collapse
|
43
|
Yang SA, Yoon J, Kim K, Park Y. Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease. Cytometry A 2017; 91:510-518. [DOI: 10.1002/cyto.a.23110] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Su-A Yang
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 South Korea
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
| | - Jonghee Yoon
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
- Department of Physics; KAIST; Daejeon 34141 South Korea
| | - Kyoohyun Kim
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
- Department of Physics; KAIST; Daejeon 34141 South Korea
| | - YongKeun Park
- KAIST Institute Health Science and Technology; Daejeon 34141 South Korea
- Department of Physics; KAIST; Daejeon 34141 South Korea
- Tomocube, Inc; Daejeon 34051 South Korea
| |
Collapse
|
44
|
Neuroprotection by Paeoniflorin in the MPTP mouse model of Parkinson's disease. Neuropharmacology 2017; 116:412-420. [DOI: 10.1016/j.neuropharm.2017.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/21/2022]
|
45
|
Thomas JM, Li T, Yang W, Xue F, Fishman PS, Smith WW. 68 and FX2149 Attenuate Mutant LRRK2-R1441C-Induced Neural Transport Impairment. Front Aging Neurosci 2017; 8:337. [PMID: 28119604 PMCID: PMC5222795 DOI: 10.3389/fnagi.2016.00337] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/26/2016] [Indexed: 11/27/2022] Open
Abstract
Leucine-rich repeat kinase 2 is a large protein with implications in genetic and sporadic causes of Parkinson's disease. The physiological functions of LRRK2 are largely unknown. In this report, we investigated whether LRRK2 alters neural transport using live-cell imaging techniques and human neuroblastoma SH-SY5Y cells. Our results demonstrated that expression of the PD-linked mutant, LRRK2-R1441C, induced mitochondrial, and lysosomal transport defects in neurites of SH-SY5Y cells. Most importantly, recently identified GTP-binding inhibitors, 68 and FX2149, can reduce LRRK2 GTP-binding activity and attenuates R1441C-induced mitochondrial and lysosomal transport impairments. These results provide direct evidence and an early mechanism for neurite injury underlying LRRK2-induced neurodegeneration. This is the first report to show that LRRK2 GTP-binding activity plays a critical role during neurite transport, suggesting inhibition of LRRK2 GTP-binding could be a potential novel strategy for PD intervention.
Collapse
Affiliation(s)
- Joseph M Thomas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore, MD, USA
| | - Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore, MD, USA
| | - Wei Yang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore, MD, USA
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore, MD, USA
| | - Paul S Fishman
- Department of Neurology, University of Maryland School of MedicineBaltimore, MD, USA; Neurology Service, VA Maryland Healthcare SystemBaltimore, MD, USA
| | - Wanli W Smith
- Department of Psychiatry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
46
|
Kuter K, Kratochwil M, Marx SH, Hartwig S, Lehr S, Sugawa MD, Dencher NA. Native DIGE proteomic analysis of mitochondria from substantia nigra and striatum during neuronal degeneration and its compensation in an animal model of early Parkinson's disease. Arch Physiol Biochem 2016; 122:238-256. [PMID: 27467289 DOI: 10.1080/13813455.2016.1197948] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cause of Parkinson's disease (PD) is still not understood. Motor symptoms are not observed at early stages of disease due to compensatory processes. Dysfunction of mitochondria was indicated already at preclinical PD. Selective toxin 6-OHDA was applied to kill dopaminergic neurons in substantia nigra and disturb neuronal transmission in striatum. Early phase of active degeneration and later stage, when surviving cells adapted to function normally, were analysed. 2D BN/SDS difference gel electrophoresis (DIGE) of mitochondrial proteome enabled to point out crucial processes involved at both time-points in dopaminergic structures. Marker proteins such as DPYSL2, HSP60, ATP1A3, EAAT2 indicated structural remodelling, cytoskeleton rearrangement, organelle trafficking, axon outgrowth and regeneration. Adaptations in dopaminergic and glutamatergic neurotransmission, recycling of synaptic vesicles, along with enlargement of mitochondria mass were proposed as causative for compensation. Changed expression of carbohydrates metabolism and oxidative phosphorylation proteins were described, including their protein-protein interactions and supercomplex assembly.
Collapse
Affiliation(s)
- Katarzyna Kuter
- a Department of Neuropsychopharmacology , Polish Academy of Sciences , Kraków , Poland
- b Physical Biochemistry, Department of Chemistry, Technische Universität Darmstadt , Darmstadt , Germany
| | - Manuela Kratochwil
- b Physical Biochemistry, Department of Chemistry, Technische Universität Darmstadt , Darmstadt , Germany
| | - Sven-Hendric Marx
- b Physical Biochemistry, Department of Chemistry, Technische Universität Darmstadt , Darmstadt , Germany
| | - Sonja Hartwig
- c Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research , Düsseldorf , Germany
- d German Center for Diabetes Research (DZD) , München, Neuherberg , Germany , and
| | - Stephan Lehr
- c Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research , Düsseldorf , Germany
- d German Center for Diabetes Research (DZD) , München, Neuherberg , Germany , and
| | - Michiru D Sugawa
- b Physical Biochemistry, Department of Chemistry, Technische Universität Darmstadt , Darmstadt , Germany
- e Clinical Neurobiology, Charité-Universitätsmedizin , Berlin , Germany
| | - Norbert A Dencher
- b Physical Biochemistry, Department of Chemistry, Technische Universität Darmstadt , Darmstadt , Germany
| |
Collapse
|
47
|
Microtubule Destabilization Paves the Way to Parkinson's Disease. Mol Neurobiol 2016; 54:6762-6774. [PMID: 27757833 DOI: 10.1007/s12035-016-0188-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/30/2016] [Indexed: 01/20/2023]
Abstract
Microtubules are dynamic structures normally associated to the cell division, during which they form the mitotic spindle, as well as to the initial phases of specification and polarization of various cell types, including neurons. Although microtubules could have a role in the death of many cells and tissues, the microtubule-based degenerative mechanisms have been poorly investigated; nevertheless, during the last two decades, many clues have been accumulated suggesting the importance of the microtubule system during neurodegeneration. Thus, the aim of this review is to analyse how the changes of the microtubule cytoskeleton, in terms of organization and dynamics, as well as the failure of the microtubule-dependent neuronal processes, as axonal transport, may play a pivotal role in the chain of events leading to Parkinson's disease. Last but not least, since disease-modifying or neuroprotective strategies are a clinical priority in Parkinson's disease, we will also present the hints about the concrete possibility of a microtubule-targeted therapy, which would have the potentiality to block the running degenerative events and to prompt the regeneration of the lost tissues.
Collapse
|
48
|
Kinin Peptides Enhance Inflammatory and Oxidative Responses Promoting Apoptosis in a Parkinson's Disease Cellular Model. Mediators Inflamm 2016; 2016:4567343. [PMID: 27721576 PMCID: PMC5046043 DOI: 10.1155/2016/4567343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 01/06/2023] Open
Abstract
Kinin peptides ubiquitously occur in nervous tissue and participate in inflammatory processes associated with distinct neurological disorders. These substances have also been demonstrated to promote the oxidative stress. On the other hand, the importance of oxidative stress and inflammation has been emphasized in disorders that involve the neurodegenerative processes such as Parkinson's disease (PD). A growing number of reports have demonstrated the increased expression of kinin receptors in neurodegenerative diseases. In this study, the effect of bradykinin and des-Arg10-kallidin, two representative kinin peptides, was analyzed with respect to inflammatory response and induction of oxidative stress in a PD cellular model, obtained after stimulation of differentiated SK-N-SH cells with a neurotoxin, 1-methyl-4-phenylpyridinium. Kinin peptides caused an increased cytokine release and enhanced production of reactive oxygen species and NO by cells. These changes were accompanied by a loss of cell viability and a greater activation of caspases involved in apoptosis progression. Moreover, the neurotoxin and kinin peptides altered the dopamine receptor 2 expression. Kinin receptor expression was also changed by the neurotoxin. These results suggest a mediatory role of kinin peptides in the development of neurodegeneration and may offer new possibilities for its regulation by using specific antagonists of kinin receptors.
Collapse
|
49
|
Dukes AA, Bai Q, Van Laar VS, Zhou Y, Ilin V, David CN, Agim ZS, Bonkowsky JL, Cannon JR, Watkins SC, Croix CMS, Burton EA, Berman SB. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP(+) exposure. Neurobiol Dis 2016; 95:238-49. [PMID: 27452482 DOI: 10.1016/j.nbd.2016.07.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 01/09/2023] Open
Abstract
Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and methods we developed will be useful for future studies on mitochondrial dynamics in health and disease.
Collapse
Affiliation(s)
- April A Dukes
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Bai
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor S Van Laar
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yangzhong Zhou
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Tsinghua University Medical School, Beijing, China
| | - Vladimir Ilin
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher N David
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; MSTP program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zeynep S Agim
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudette M St Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research, Education and Clinical Center, Pittsburgh Veterans' Affairs Healthcare System, Pittsburgh, PA, USA.
| | - Sarah B Berman
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
50
|
Wimalasena NK, Le VQ, Wimalasena K, Schreiber SL, Karmacharya R. Gene Expression-Based Screen for Parkinson's Disease Identifies GW8510 as a Neuroprotective Agent. ACS Chem Neurosci 2016; 7:857-63. [PMID: 27270122 DOI: 10.1021/acschemneuro.6b00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We carried out a gene expression-based in silico screen in order to identify small molecules with gene-expression profiles that are anticorrelated with a gene-expression profile for Parkinson's disease (PD). We identified the cyclin-dependent kinase 2/5 (CDK2/5) inhibitor GW8510 as our most significant hit and characterized its effects in rodent MN9D cells and in human neuronal cells derived from induced pluripotent stem cells. GW8510 demonstrated neuroprotective ability in MN9D cells in the presence of 1-methyl-4-phenylpyridium (MPP(+)), a widely used neurotoxin model for Parkinson's disease. In order to delineate the nature and extent of GW8510's neuroprotective properties, we studied GW8510 in human neuronal cells in the context of various mechanisms of cellular stress. We found that GW8510 was protective against small-molecule mitochondrial and endoplasmic reticulum stressors. Our findings illustrate an approach to using small-molecule gene expression libraries to identify compounds with therapeutic potential in human diseases.
Collapse
Affiliation(s)
- Nivanthika K. Wimalasena
- Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Viet Q. Le
- Department of Science and Mathematics,
National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Kandatege Wimalasena
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Stuart L. Schreiber
- Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Howard Hughes Medical Institute, Department of Chemistry and Chemical
Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Rakesh Karmacharya
- Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Center
for Experimental Drugs and Diagnostics, Psychiatric and Neurodevelopmental
Genetics Unit, Center for Human Genetic Research, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Schizophrenia and Bipolar Disorder Program, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, United States
| |
Collapse
|