1
|
Xu Y, Wang Y, Mei S, Hu J, Wu L, Xu L, Bao L, Fang X. The mechanism and potential therapeutic target of piezo channels in pain. FRONTIERS IN PAIN RESEARCH 2024; 5:1452389. [PMID: 39398533 PMCID: PMC11466900 DOI: 10.3389/fpain.2024.1452389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Pain is a common symptom of many clinical diseases; it adversely affects patients' physical and mental health, reduces their quality of life, and heavily burdens patients and society. Pain treatment is one of the most difficult problems today. There is an urgent need to explore the potential factors involved in the pathogenesis of pain to improve its diagnosis and treatment rate. Piezo1/2, a newly identified mechanosensitive ion channel opens in response to mechanical stimuli and plays a critical role in regulating pain-related diseases. Inhibition or downregulation of Piezo1/2 alleviates disease-induced pain. Therefore, in this study, we comprehensively discussed the biology of this gene, focusing on its potential relevance in pain-related diseases, and explored the pharmacological effects of drugs using this gene for the treatment of pain.
Collapse
Affiliation(s)
- Yi Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yuheng Wang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Shuchong Mei
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Luyang Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lijie Bao
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaowei Fang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Ruby HA, Sayed RH, Khattab MA, Sallam NA, Kenway SA. Fenofibrate ameliorates nitroglycerin-induced migraine in rats: Role of CGRP/p-CREB/P2X3 and NGF/PKC/ASIC3 signaling pathways. Eur J Pharmacol 2024; 976:176667. [PMID: 38795754 DOI: 10.1016/j.ejphar.2024.176667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Migraine, a debilitating neurological condition, significantly affects patients' quality of life. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPAR-α) agonist approved for managing dyslipidemia, has shown promise in treating neurological disorders. Therefore, this study aims to investigate the protective effects of fenofibrate against nitroglycerin (NTG)-induced chronic migraine in rats. Migraine was induced in rats by administering five intermittent doses of NTG (10 mg/kg, i. p.) on days 1, 3, 5, 7, and 9. Rats were treated with either topiramate (80 mg/kg/day, p. o.), a standard drug, or fenofibrate (100 mg/kg/day, p. o.) from day 1-10. Fenofibrate significantly improved mechanical and thermal hypersensitivity, photophobia, and head grooming compared to topiramate. These effects were associated with reduced serum levels of nitric oxide (NO), calcitonin gene-related peptide (CGRP), and pituitary adenylate cyclase-activating polypeptide (PACAP). Furthermore, fenofibrate down-regulated c-Fos expression in the medulla and medullary pro-inflammatory cytokine contents. Additionally, fenofibrate attenuated NTG-induced histopathological changes in the trigeminal ganglia and trigeminal nucleus caudalis. These effects were associated with the inhibition of CGRP/p-CREB/purinergic 2X receptor 3 (P2X3) and nerve growth factor (NGF)/protein kinase C (PKC)/acid-sensing ion channel 3 (ASIC3) signaling pathways. This study demonstrates that fenofibrate attenuated NTG-induced migraine-like signs in rats. These effects were partially mediated through the inhibition of CGRP/p-CREB/P2X3 and NGF/PKC/ASIC3 signaling pathways. The present study supports the idea that fenofibrate could be an effective candidate for treating migraine headache without significant adverse effects. Future studies should explore its clinical applicability.
Collapse
Affiliation(s)
- Hassan A Ruby
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., 11562, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., 11562, Cairo, Egypt; School of Pharmacy, Newgiza University, Giza, Egypt.
| | - Mohamed A Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., 11562, Cairo, Egypt
| | - Sanaa A Kenway
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., 11562, Cairo, Egypt
| |
Collapse
|
3
|
Alsaadi H, Peller J, Ghasemlou N, Kawaja MD. Immunohistochemical phenotype of sensory neurons associated with sympathetic plexuses in the trigeminal ganglia of adult nerve growth factor transgenic mice. J Comp Neurol 2024; 532:e25563. [PMID: 37986234 DOI: 10.1002/cne.25563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Following peripheral nerve injury, postganglionic sympathetic axons sprout into the affected sensory ganglia and form perineuronal sympathetic plexuses with somata of sensory neurons. This sympathosensory coupling contributes to the onset and persistence of injury-induced chronic pain. We have documented the presence of similar sympathetic plexuses in the trigeminal ganglia of adult mice that ectopically overexpress nerve growth factor (NGF), in the absence of nerve injury. In this study, we sought to further define the phenotype(s) of these trigeminal sensory neurons having sympathetic plexuses in our transgenic mice. Using quantitative immunofluorescence staining analyses, we show that the invading sympathetic axons specifically target sensory somata immunopositive for several biomarkers: NGF high-affinity receptor tyrosine kinase A (trkA), calcitonin gene-related peptide (CGRP), neurofilament heavy chain (NFH), and P2X purinoceptor 3 (P2X3). Based on these phenotypic characteristics, the majority of the sensory somata surrounded by sympathetic plexuses are likely to be NGF-responsive nociceptors (i.e., trkA expressing) that are peptidergic (i.e., CGRP expressing), myelinated (i.e., NFH expressing), and ATP sensitive (i.e., P2X3 expressing). Our data also show that very few sympathetic plexuses surround sensory somata expressing other nociceptive (pain) biomarkers, including substance P and acid-sensing ion channel 3. No sympathetic plexuses are associated with sensory somata that display isolectin B4 binding. Though the cellular mechanisms that trigger the formation of sympathetic plexus (with and without nerve injury) remain unknown, our new observations yield an unexpected specificity with which invading sympathetic axons appear to target a precise subtype of nociceptors. This selectivity likely contributes to pain development and maintenance associated with sympathosensory coupling.
Collapse
Affiliation(s)
- Hanin Alsaadi
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Jacob Peller
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Michael D Kawaja
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Giniatullin R, Nistri A. Role of ATP in migraine mechanisms: focus on P2X3 receptors. J Headache Pain 2023; 24:1. [PMID: 36597043 PMCID: PMC9809127 DOI: 10.1186/s10194-022-01535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
Migraine is a major health burden worldwide with complex pathophysiology and multifarious underlying mechanisms. One poorly understood issue concerns the early steps in the generation of migraine pain. To elucidate the basic process of migraine pain further, it seems useful to consider key molecular players that may operate synergistically to evoke headache. While the neuropeptide CGRP is an important contributor, we propose that extracellular ATP (that generally plays a powerful nociceptive role) is also a major component of migraine headache, acting in concert with CGRP to stimulate trigeminal nociceptive neurons. The aim of the present focused review is to highlight the role of ATP activating its P2X3 membrane receptors selectively expressed by sensory neurons including their nerve fiber terminals in the meninges. Specifically, we present data on the homeostasis of ATP and related purines in the trigeminovascular system and in the CNS; the basic properties of ATP signalling at peripheral and central nerve terminals; the characteristics of P2X3 and related receptors in trigeminal neurons; the critical speed and persistence of P2X3 receptor activity; their cohabitation at the so-called meningeal neuro-immune synapse; the identity of certain endogenous agents cooperating with ATP to induce neuronal sensitization in the trigeminal sensory system; the role of P2X3 receptors in familial type migraine; the current state of P2X3 receptor antagonists and their pharmacological perspectives in migraine. It is proposed that the unique kinetic properties of P2X3 receptors activated by ATP offer an interesting translational value to stimulate future studies for innovative treatments of migraine pain.
Collapse
Affiliation(s)
- R. Giniatullin
- grid.9668.10000 0001 0726 2490A.I Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland
| | - A. Nistri
- grid.5970.b0000 0004 1762 9868Department of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| |
Collapse
|
5
|
Bortolin A, Neto E, Lamghari M. Calcium Signalling in Breast Cancer Associated Bone Pain. Int J Mol Sci 2022; 23:ijms23031902. [PMID: 35163823 PMCID: PMC8836937 DOI: 10.3390/ijms23031902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
Calcium (Ca2+) is involved as a signalling mediator in a broad variety of physiological processes. Some of the fastest responses in human body like neuronal action potential firing, to the slowest gene transcriptional regulation processes are controlled by pathways involving calcium signalling. Under pathological conditions these mechanisms are also involved in tumoral cells reprogramming, resulting in the altered expression of genes associated with cell proliferation, metastatisation and homing to the secondary metastatic site. On the other hand, calcium exerts a central function in nociception, from cues sensing in distal neurons, to signal modulation and interpretation in the central nervous system leading, in pathological conditions, to hyperalgesia, allodynia and pain chronicization. It is well known the relationship between cancer and pain when tumoral metastatic cells settle in the bones, especially in late breast cancer stage, where they alter the bone micro-environment leading to bone lesions and resulting in pain refractory to the conventional analgesic therapies. The purpose of this review is to address the Ca2+ signalling mechanisms involved in cancer cell metastatisation as well as the function of the same signalling tools in pain regulation and transmission. Finally, the possible interactions between these two cells types cohabiting the same Ca2+ rich environment will be further explored attempting to highlight new possible therapeutical targets.
Collapse
Affiliation(s)
- Andrea Bortolin
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Estrela Neto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
| | - Meriem Lamghari
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal; (A.B.); (E.N.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
6
|
Holzer AK, Karreman C, Suciu I, Furmanowsky LS, Wohlfarth H, Loser D, Dirks WG, Pardo González E, Leist M. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:727-741. [PMID: 35689659 PMCID: PMC9299516 DOI: 10.1093/stcltm/szac031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/09/2022] [Indexed: 11/12/2022] Open
Abstract
In vitro models of the peripheral nervous system would benefit from further refinements to better support studies on neuropathies. In particular, the assessment of pain-related signals is still difficult in human cell cultures. Here, we harnessed induced pluripotent stem cells (iPSCs) to generate peripheral sensory neurons enriched in nociceptors. The objective was to generate a culture system with signaling endpoints suitable for pharmacological and toxicological studies. Neurons generated by conventional differentiation protocols expressed moderate levels of P2X3 purinergic receptors and only low levels of TRPV1 capsaicin receptors, when maturation time was kept to the upper practically useful limit of 6 weeks. As alternative approach, we generated cells with an inducible NGN1 transgene. Ectopic expression of this transcription factor during a defined time window of differentiation resulted in highly enriched nociceptor cultures, as determined by functional (P2X3 and TRPV1 receptors) and immunocytochemical phenotyping, complemented by extensive transcriptome profiling. Single cell recordings of Ca2+-indicator fluorescence from >9000 cells were used to establish the “fraction of reactive cells” in a stimulated population as experimental endpoint, that appeared robust, transparent and quantifiable. To provide an example of application to biomedical studies, functional consequences of prolonged exposure to the chemotherapeutic drug oxaliplatin were examined at non-cytotoxic concentrations. We found (i) neuronal (allodynia-like) hypersensitivity to otherwise non-activating mechanical stimulation that could be blocked by modulators of voltage-gated sodium channels; (ii) hyper-responsiveness to TRPV1 receptor stimulation. These findings and several other measured functional alterations indicate that the model is suitable for pharmacological and toxicological studies related to peripheral neuropathies.
Collapse
Affiliation(s)
- Anna-Katharina Holzer
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
- Graduate School Biological Sciences (GBS), University of Konstanz, Konstanz, Germany
| | - Christiaan Karreman
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Ilinca Suciu
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Lara-Seline Furmanowsky
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Harald Wohlfarth
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Dominik Loser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Wilhelm G Dirks
- Department of Human and Animal Cell Lines, DSMZ, German Collection of Microorganisms and Cell Cultures and German Biological Resource Center, Braunschweig, Germany
| | - Emilio Pardo González
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Marcel Leist
- Corresponding author: Marcel Leist, PhD, In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation at the University of Konstanz, Universitaetsstr. 10, Konstanz 78457, Germany.
| |
Collapse
|
7
|
Neurotrophic effects of dental pulp stem cells on trigeminal neuronal cells. Sci Rep 2020; 10:19694. [PMID: 33184395 PMCID: PMC7665001 DOI: 10.1038/s41598-020-76684-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023] Open
Abstract
Evidence indicates that dental pulp stem cells (DPSC) secrete neurotrophic factors which play an important role in neurogenesis, neural maintenance and repair. In this study we investigated the trophic potential of DPSC-derived conditioned medium (CM) to protect and regenerate isolated primary trigeminal ganglion neuronal cells (TGNC). DPSC and TGNC were harvested by enzymatic digestion from Wister-Hann rats. CM was collected from 72 h serum-free DPSC cultures and neurotrophic factors; nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and glial cell line-derived neurotrophic factor (GDNF) were analysed by specific enzyme-linked immunosorbent assays (ELISAs). Primary co-cultures of DPSC and TGNC were established to evaluate the paracrine effects of DPSC. In comparison, NGF was used to evaluate its neurotrophic and neuritogenic effect on TGNC. Immunocytochemistry was performed to detect the neuronal-markers; neuronal nuclei (NeuN), microtubule-associated protein-2 (MAP-2) and βIII-tubulin. Quantitative real time polymerase chain reaction (qRT-PCR) was used to analyse neuronal-associated gene expression of NeuN, MAP-2, βIII-tubulin in addition to growth-associated protein-43 (GAP-43), Synapsin-I and thermo-sensitive transient receptor potential vanilloid channel-1 (TRPV1). DPSC-CM contained significant levels of NGF, BDNF, NT-3 and GDNF. DPSC and DPSC-CM significantly enhanced TGNC survival with extensive neurite outgrowth and branching as evaluated by immunocytochemistry of neuronal markers. DPSC-CM was more effective in stimulating TGNC survival than co-cultures or NGF treated culture. In comparison to controls, DPSC-CM significantly upregulated gene expression of several neuronal markers as well as TRPV1. This study demonstrated that DPSC-derived factors promoted survival and regeneration of isolated TGNC and may be considered as cell-free therapy for TG nerve repair.
Collapse
|
8
|
The Purinergic Receptor P2rx3 is Required for Spiral Ganglion Neuron Branch Refinement during Development. eNeuro 2020; 7:ENEURO.0179-20.2020. [PMID: 32675174 PMCID: PMC7418533 DOI: 10.1523/eneuro.0179-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
The mammalian cochlea undergoes a highly dynamic process of growth and innervation during development. This process includes spiral ganglion neuron (SGN) branch refinement, a process whereby Type I SGNs undergo a phase of “debranching” before forming unramified synaptic contacts with inner hair cells. Using Sox2CreERT2 and R26RtdTomato as a strategy to genetically label individual SGNs in mice of both sexes, we report on both a time course of SGN branch refinement and a role for P2rx3 in this process. P2rx3 is an ionotropic ATP receptor that was recently implicated in outer hair cell spontaneous activity and Type II SGN synapse development (Ceriani et al., 2019), but its function in Type I SGN development is unknown. Here, we demonstrate that P2rx3 is expressed by Type I SGNs and hair cells during developmental periods that coincide with SGN branching refinement. P2rx3 null mice show SGNs with more complex branching patterns on their peripheral synaptic terminals and near their cell bodies around the time of birth. Loss of P2rx3 does not appear to confer general changes in axon outgrowth or hair cell formation, and alterations in branching complexity appear to mostly recover by postnatal day (P)6. However, when we examined the distribution of Type I SGN subtypes using antibodies that bind Calb2, Calb1, and Pou4f1, we found that P2rx3 null mice showed an increased proportion of SGNs that express Calb2. These data suggest P2rx3 may be necessary for normal Type I SGN differentiation in addition to serving a role in branch refinement.
Collapse
|
9
|
Liu Z, Murphy SF, Huang J, Zhao L, Hall CC, Schaeffer AJ, Schaeffer EM, Thumbikat P. A novel immunocompetent model of metastatic prostate cancer-induced bone pain. Prostate 2020; 80:782-794. [PMID: 32407603 PMCID: PMC7375026 DOI: 10.1002/pros.23993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Over 70% to 85% of men with advanced prostate cancer (PCa) develop bone metastases characterized by severe bone pain and increased likelihood of bone fracture. These clinical features result in decreased quality of life and act as a predictor of higher mortality. Mechanistically, the skeletal pathologies such as osteolytic lesions and abnormal osteoblastic activity drive these symptoms. The role of immune cells in bone cancer pain remains understudied, here we sought to recapitulate this symptomology in a murine model. METHODS The prostate cancer bone metastasis-induced pain model (CIBP) was established by transplanting a mouse prostate cancer cell line into the femur of immunocompetent mice. Pain development, gait dynamics, and the changes in emotional activities like depression and anxiety were evaluated. Animal tissues including femurs, dorsal root ganglion (DRG), and spinal cord were collected at killing and microcomputed tomography (μCT), histology/immunohistochemistry, and quantitative immunofluorescent analysis were performed. RESULTS Mice receiving prostate cancer cells showed a significantly lower threshold for paw withdrawal responses induced by mechanical stimulation compared with their control counterparts. Zero maze and DigiGait analyses indicated reduced and aberrant movement associated emotional activity compared with sham control at 8-weeks postinjection. The μCT analysis showed osteolytic and osteoblastic changes and a 50% reduction of the trabecular volumes within the prostate cancer group. Neurologically we demonstrated, increased calcitonin gene-related peptide (CGRP) and neuronal p75NTR immune-reactivities in both the projected terminals of the superficial dorsal horn and partial afferent neurons in DRG at L2 to L4 level in tumor-bearing mice. Furthermore, our data show elevated nerve growth factor (NGF) and TrkA immunoreactivities in the same segment of the superficial dorsal horn that were, however, not colocalized with CGRP and p75NTR . CONCLUSIONS This study describes a novel immunocompetent model of CIBP and demonstrates the contribution of NGF and p75NTR to chronic pain in bone metastasis.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Stephen F. Murphy
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, USA
| | - Christel C. Hall
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Anthony J. Schaeffer
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Edward M. Schaeffer
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Praveen Thumbikat
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
10
|
Barker PA, Mantyh P, Arendt-Nielsen L, Viktrup L, Tive L. Nerve Growth Factor Signaling and Its Contribution to Pain. J Pain Res 2020; 13:1223-1241. [PMID: 32547184 PMCID: PMC7266393 DOI: 10.2147/jpr.s247472] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nerve growth factor (NGF) is a neurotrophic protein essential for the growth, differentiation, and survival of sympathetic and sensory afferent neurons during development. A substantial body of evidence, based on both animal and human studies, demonstrates that NGF plays a pivotal role in modulation of nociception in adulthood. This has spurred development of a variety of novel analgesics that target the NGF signaling pathway. Here, we present a narrative review designed to summarize how NGF receptor activation and downstream signaling alters nociception through direct sensitization of nociceptors at the site of injury and changes in gene expression in the dorsal root ganglion that collectively increase nociceptive signaling from the periphery to the central nervous system. This review illustrates that NGF has a well-known and multifunctional role in nociceptive processing, although the precise signaling pathways downstream of NGF receptor activation that mediate nociception are complex and not completely understood. Additionally, much of the existing knowledge derives from studies performed in animal models and may not accurately represent the human condition. However, available data establish a role for NGF in the modulation of nociception through effects on the release of inflammatory mediators, nociceptive ion channel/receptor activity, nociceptive gene expression, and local neuronal sprouting. The role of NGF in nociception and the generation and/or maintenance of chronic pain has led to it becoming a novel and attractive target of pain therapeutics for the treatment of chronic pain conditions.
Collapse
Affiliation(s)
- Philip A Barker
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Patrick Mantyh
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology and the Center for Sensory-Motor Interaction/Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
11
|
Suleimanova A, Talanov M, Gafurov O, Gafarov F, Koroleva K, Virenque A, Noe FM, Mikhailov N, Nistri A, Giniatullin R. Modeling a Nociceptive Neuro-Immune Synapse Activated by ATP and 5-HT in Meninges: Novel Clues on Transduction of Chemical Signals Into Persistent or Rhythmic Neuronal Firing. Front Cell Neurosci 2020; 14:135. [PMID: 32508598 PMCID: PMC7248338 DOI: 10.3389/fncel.2020.00135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/22/2020] [Indexed: 01/26/2023] Open
Abstract
Extracellular ATP and serotonin (5-HT) are powerful triggers of nociceptive firing in the meninges, a process supporting headache and whose cellular mechanisms are incompletely understood. The current study aimed to develop, with the neurosimulator NEURON, a novel approach to explore in silico the molecular determinants of the long-lasting, pulsatile nature of migraine attacks. The present model included ATP and 5-HT release, ATP diffusion and hydrolysis, 5-HT uptake, differential activation of ATP P2X or 5-HT3 receptors, and receptor subtype-specific desensitization. The model also tested the role of branched meningeal fibers with multiple release sites. Spike generation and propagation were simulated using variable contribution by potassium and sodium channels in a multi-compartment fiber environment. Multiple factors appeared important to ensure prolonged nociceptive firing potentially relevant to long-lasting pain. Crucial roles were observed in: (i) co-expression of ATP P2X2 and P2X3 receptor subunits; (ii) intrinsic activation/inactivation properties of sodium Nav1.8 channels; and (iii) temporal and spatial distribution of ATP/5-HT release sites along the branches of trigeminal nerve fibers. Based on these factors we could obtain either persistent activation of nociceptive firing or its periodic bursting mimicking the pulsating nature of pain. In summary, our model proposes a novel tool for the exploration of peripheral nociception to test the contribution of clinically relevant factors to headache including migraine pain.
Collapse
Affiliation(s)
| | - Max Talanov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Oleg Gafurov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Fail' Gafarov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Ksenia Koroleva
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Anaïs Virenque
- Neuroscience Center, Helsinki University, Helsinki, Finland
| | | | - Nikita Mikhailov
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Andrea Nistri
- Department of Neuroscience, International School for Advanced Studies, Trieste, Italy
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
12
|
Della Pietra A, Mikhailov N, Giniatullin R. The Emerging Role of Mechanosensitive Piezo Channels in Migraine Pain. Int J Mol Sci 2020; 21:ijms21030696. [PMID: 31973098 PMCID: PMC7037473 DOI: 10.3390/ijms21030696] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/11/2020] [Accepted: 01/19/2020] [Indexed: 12/18/2022] Open
Abstract
Recently discovered mechanosensitive Piezo channels emerged as the main molecular detectors of mechanical forces. The functions of Piezo channels range from detection of touch and pain, to control of the plastic changes in different organs. Recent studies suggested the role of Piezo channels in migraine pain, which is supposed to originate from the trigeminovascular nociceptive system in meninges. Interestingly, migraine pain is associated with such phenomenon as mechanical hypersensitivity, suggesting enhanced mechanotransduction. In the current review, we present the data that propose the implication of Piezo channels in migraine pain, which has a distinctive pulsatile character. These data include: (i) distribution of Piezo channels in the key elements of the trigeminovascular nociceptive system; (ii) the prolonged functional activity of Piezo channels in meningeal afferents providing a mechanistical basis for mechanotransduction in nociceptive nerve terminals; (iii) potential activation of Piezo channels by shear stress and pulsating blood flow; and (iv) modulation of these channels by emerging chemical agonists and modulators, including pro-nociceptive compounds. Achievements in this quickly expanding field should open a new road for efficient control of Piezo-related diseases including migraine and chronic pain.
Collapse
Affiliation(s)
- Adriana Della Pietra
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.D.P.); (N.M.)
| | - Nikita Mikhailov
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.D.P.); (N.M.)
| | - Rashid Giniatullin
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.D.P.); (N.M.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence:
| |
Collapse
|
13
|
Zhou H, Wang X, Wang S, Liu C, Fu Q, Qin G, Zhou J, Chen L. Inhibition of Nerve Growth Factor Signaling Alleviates Repeated Dural Stimulation-induced Hyperalgesia in Rats. Neuroscience 2019; 398:252-262. [DOI: 10.1016/j.neuroscience.2018.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
|
14
|
Fabbretti E. P2X3 receptors are transducers of sensory signals. Brain Res Bull 2019; 151:119-124. [PMID: 30660716 DOI: 10.1016/j.brainresbull.2018.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/27/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022]
Abstract
Peripheral stimuli are transduced by specific receptors expressed by sensory neurons and are further processed in the dorsal horn of spinal cord before to be transmitted to the brain. While relative few receptor subtypes mediate the initial depolarisation of sensory neurons, an impressive number of molecules and ion channels integrate these inputs into coded signals. Soluble mediators and ambient conditions further shape these processes, potentially triggering peripheral and central sensitisation, or sensory downregulation. Extracellular ATP is a major signaling molecule that acts via purinergic receptors and is a powerful modulator of cell communication as well as a neurotransmitter at peripheral/central synapses. In particular, ATP-mediated signals are transduced by P2X3 receptors expressed mainly by peripheral sensory neurons. Recent evidence suggests that P2X3 receptor function not only induces neuron depolarisation and firing with consequent neurotransmitter release, but it also triggers intracellular molecular changes that amplify purinergic signaling with important consequences.
Collapse
Affiliation(s)
- Elsa Fabbretti
- Department of Life Science, University of Trieste, via Giorgieri 5, 34127, Trieste, Italy.
| |
Collapse
|
15
|
ATP-Gated P2X3 Receptors Are Specialised Sensors of the Extracellular Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 28639246 DOI: 10.1007/5584_2017_56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
P2X3 receptors are ion channels expressed by autonomic and sensory nerves and specialised in transducing extracellular ATP signals. Structural data, together with functional and biochemical studies, suggest that conformational changes of P2X3 receptors upon agonist binding influence downstream intracellular molecular mechanisms relevant for neuronal responses. Activity of P2X3 receptors is implicated in pain, itch, asthma, cardiovascular dysfunction and other pathologies. The study of these receptors has therefore a large potential in the field of drug development and interdisciplinary efforts could clarify molecular mechanisms controlling P2X3 receptor function in different physiological or pathological contexts.
Collapse
|
16
|
Stephan G, Huang L, Tang Y, Vilotti S, Fabbretti E, Yu Y, Nörenberg W, Franke H, Gölöncsér F, Sperlágh B, Dopychai A, Hausmann R, Schmalzing G, Rubini P, Illes P. The ASIC3/P2X3 cognate receptor is a pain-relevant and ligand-gated cationic channel. Nat Commun 2018; 9:1354. [PMID: 29636447 PMCID: PMC5893604 DOI: 10.1038/s41467-018-03728-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 03/09/2018] [Indexed: 12/21/2022] Open
Abstract
Two subclasses of acid-sensing ion channels (ASIC3) and of ATP-sensitive P2X receptors (P2X3Rs) show a partially overlapping expression in sensory neurons. Here we report that both recombinant and native receptors interact with each other in multiple ways. Current measurements with the patch-clamp technique prove that ASIC3 stimulation strongly inhibits the P2X3R current partly by a Ca2+-dependent mechanism. The proton-binding site is critical for this effect and the two receptor channels appear to switch their ionic permeabilities during activation. Co-immunoprecipation proves the close association of the two protein structures. BN-PAGE and SDS-PAGE analysis is also best reconciled with the view that ASIC3 and P2X3Rs form a multiprotein structure. Finally, in vivo measurements in rats reveal the summation of pH and purinergically induced pain. In conclusion, the receptor subunits do not appear to form a heteromeric channel, but tightly associate with each other to form a protein complex, mediating unidirectional inhibition. Two subclasses of ligand-gated ion channels (ASIC3 and P2X3) are both present at sensory neurons and might be therefore subject to receptor crosstalk. Here authors use electrophysiology, biochemistry and co-immunoprecipitation to show that the two ion channels interact and affect P2X3 currents.
Collapse
Affiliation(s)
- Gabriele Stephan
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Lumei Huang
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany.,Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Sandra Vilotti
- Neurobiology Sector, International School for Advanced Studies, Trieste, 34136, Italy
| | - Elsa Fabbretti
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Ye Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai, 100025, China
| | - Wolfgang Nörenberg
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Heike Franke
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1043, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, 1043, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1043, Hungary
| | - Anke Dopychai
- Molecular Pharmacology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52072, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52072, Germany
| | - Günther Schmalzing
- Molecular Pharmacology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52072, Germany
| | - Patrizia Rubini
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, University of Leipzig, Leipzig, 04107, Germany.
| |
Collapse
|
17
|
Expression of BDNF in dorsal root ganglion of rats with bone cancer pain and its effect on pain behavior. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2018; 18:42-46. [PMID: 29504577 PMCID: PMC5881127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
OBJECTIVE To detect the expression of brain-derived neurotrophic factor (BDNF) in dorsal root ganglion (DRG) of rats with bone cancer pain, and to explore the effects of BDNF and anti-BDNF on pain behavior. METHODS 40 SD rats were randomly divided into Sham group and Cancer group (n=20). Rats in Sham were injected with PBS into the tibia, while rats in Cancer group were injected with Walker 256 cells to construct rat tibial bone cancer pain model. Rats in Cancer group were further divided into physiological saline (NS) group and anti-BDNF group (n=10) to observe the effects of anti-BDNF on pain behavior in rats with bone cancer pain. RESULTS Expression level of BDNF and its receptor in DRG of Cancer group was significantly higher than that of Sham group at 3 weeks after inoculation (p⟨0.05). The expression level of BDNF mRNA in the Cancer group was significantly higher than that in the Sham group at 5d, 10d and 20d (p⟨0.05). Hindpaw withdrawal latency was significantly shorter in Cancer group than in Sham group (p⟨0.05). Hindpaw withdrawal mechanical threshold was significantly lower in Cancer group than in Sham group (p⟨0.05). Hindpaw withdrawal latency was significantly longer and hindpaw withdrawal mechanical threshold was significantly higher in anti-BDNF group than in NS group after the use of anti-BDNF (p⟨0.05). CONCLUSION BDNF can aggravate bone pain in rats, and anti-BDNF has obvious antinociceptive function in bone cancer pain.
Collapse
|
18
|
Xiong W, Wu RP, Tan MX, Tong ZJ, He LK, Guan S, Liu LJ, Yin CC, Shen YL, Ge HX, Gao Y. Emodin inhibits the expression of receptor and calcitonin-gene-related peptide release in trigeminal ganglia of trigeminal neuralgia rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11317-11325. [PMID: 31966486 PMCID: PMC6965831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/21/2017] [Indexed: 06/10/2023]
Abstract
Trigeminal neuralgia (TN) is one of the most intense forms of facial pain. It has been reported that the P2X3 receptor plays a crucial role in facilitating pain transmission, and the calcitonin-gene-related peptide (CGRP) from trigeminal ganglia (TGs) might perform differing function in nociceptive afferent input transmission. The present study investigated whether emodin can affect TN pain transmission by suppressing the expression of P2X3 receptors and CGRP in TGs. Chronic constriction injury of the infraorbital branch of the trigeminal nerve (CCI-ION) was used as TN model. The TN rats were randomly divided into the following 4 groups: (1) a sham group (Sham), (2) a sham rats treated with emodin group (TN + E), (3) a TN rats treated with 0.5% sodium carboxymethyl cellulose (CMC) as vehicle group (TN) and (4) a TN rats treated with emodin group (TN + E). The mechanical hyperalgesia threshold of TN rats was tested by Electric Von Frey filaments. The change of the expression of P2X3 receptors and CGRP in rat's TG was detected with RT-PCR, immunohistochemical staining, and Western blotting. The phosphorylation of p38 and ERK1/2 pathway of TG was detected by Western blotting. After CCI-ION injury, the threshold of mechanical hyperalgesia for the territory of ligated infraorbital nerve in TN group decreased significantly compared with that in sham group. On day 14 after operation of CCI-ION, there was also an evident increase in the expression of P2X3 receptors and CGRP in the TG of TN group. However after treatment with emodin, the response of mechanical hyperalgesia of TN rats was clearly increased while the enhanced expression of P2X3 receptor and CGRP in TN rats was significantly decreased. The phosphorylation of p38 and ERK1/2 in TN group was stronger than that in Sham group. But these phosphorylation changes in the TN rats were much weaker after treatment with emodin. In conclusion, P2X3 receptor may cooperate with CGRP in the pain transmission of TN, and emodin can inhibit the expression and activation of P2X3 receptor and CGRP in TG to relieve TN.
Collapse
Affiliation(s)
- Wei Xiong
- Affiliated Stomatological Hospital of Nanchang UniversityNanchang, Jiangxi, P. R. China
- Jiangxi Provincial Key Laboratory of Oral BiomedicineNanchang, Jiangxi, P. R. China
| | - Rao-Ping Wu
- Department of Physiology, Medical College of Nanchang UniversityNanchang, Jiangxi, P. R. China
- Department of Basic Medicine, Jiangxi Health Vocational CollegeNanchang, Jiangxi, P. R. China
| | - Meng-Xia Tan
- Department of Physiology, Medical College of Nanchang UniversityNanchang, Jiangxi, P. R. China
- Department of Basic Medicine, Jiangxi Health Vocational CollegeNanchang, Jiangxi, P. R. China
| | - Zhou-Jie Tong
- Queen Mary College of Grade 2014, Nanchang UniversityNanchang, Jiangxi, P. R. China
| | - Ling-Kun He
- Affiliated Stomatological Hospital of Nanchang UniversityNanchang, Jiangxi, P. R. China
| | - Shu Guan
- Department of Physiology, Medical College of Nanchang UniversityNanchang, Jiangxi, P. R. China
| | - Li-Juan Liu
- Affiliated Stomatological Hospital of Nanchang UniversityNanchang, Jiangxi, P. R. China
| | - Can-Can Yin
- Affiliated Stomatological Hospital of Nanchang UniversityNanchang, Jiangxi, P. R. China
| | - Yu-Lin Shen
- Department of Physiology, Medical College of Nanchang UniversityNanchang, Jiangxi, P. R. China
| | - Hui-Xiang Ge
- Department of Physiology, Medical College of Nanchang UniversityNanchang, Jiangxi, P. R. China
| | - Yun Gao
- Department of Physiology, Medical College of Nanchang UniversityNanchang, Jiangxi, P. R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and DiseaseNanchang, Jiangxi, P. R. China
| |
Collapse
|
19
|
Bele T, Fabbretti E. The scaffold protein calcium/calmodulin-dependent serine protein kinase controls ATP release in sensory ganglia upon P2X3 receptor activation and is part of an ATP keeper complex. J Neurochem 2016; 138:587-97. [PMID: 27217099 DOI: 10.1111/jnc.13680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 12/27/2022]
Abstract
P2X3 receptors, gated by extracellular ATP, are expressed by sensory neurons and are involved in peripheral nociception and pain sensitization. The ability of P2X3 receptors to transduce extracellular stimuli into neuronal signals critically depends on the dynamic molecular partnership with the calcium/calmodulin-dependent serine protein kinase (CASK). The present work used trigeminal sensory neurons to study the impact that activation of P2X3 receptors (evoked by the agonist α,β-meATP) has on the release of endogenous ATP and how CASK modulates this phenomenon. P2X3 receptor function was followed by ATP efflux via Pannexin1 (Panx1) hemichannels, a mechanism that was blocked by the P2X3 receptor antagonist A-317491, and by P2X3 silencing. ATP efflux was enhanced by nerve growth factor, a treatment known to potentiate P2X3 receptor function. Basal ATP efflux was not controlled by CASK, and carbenoxolone or Pannexin silencing reduced ATP release upon P2X3 receptor function. CASK-controlled ATP efflux followed P2X3 receptor activity, but not depolarization-evoked ATP release. Molecular biology experiments showed that CASK was essential for the transactivation of Panx1 upon P2X3 receptor activation. These data suggest that P2X3 receptor function controls a new type of feed-forward purinergic signaling on surrounding cells, with consequences at peripheral and spinal cord level. Thus, P2X3 receptor-mediated ATP efflux may be considered for the future development of pharmacological strategies aimed at containing neuronal sensitization. P2X3 receptors are involved in sensory transduction and associate to CASK. We have studied in primary sensory neurons the molecular mechanisms downstream P2X3 receptor activation, namely ATP release and partnership with CASK or Panx1. Our data suggest that CASK and P2X3 receptors are part of an ATP keeper complex, with important feed-forward consequences at peripheral and central level.
Collapse
Affiliation(s)
- Tanja Bele
- Center for Biomedical Sciences and Engineering, University of Nova Gorica, Nova Gorica, Slovenia
| | - Elsa Fabbretti
- Center for Biomedical Sciences and Engineering, University of Nova Gorica, Nova Gorica, Slovenia
| |
Collapse
|
20
|
Viatchenko-Karpinski V, Novosolova N, Ishchenko Y, Azhar MA, Wright M, Tsintsadze V, Kamal A, Burnashev N, Miller AD, Voitenko N, Giniatullin R, Lozovaya N. Stable, synthetic analogs of diadenosine tetraphosphate inhibit rat and human P2X3 receptors and inflammatory pain. Mol Pain 2016; 12:1744806916637704. [PMID: 27030723 PMCID: PMC4955970 DOI: 10.1177/1744806916637704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/08/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A growing body of evidence suggests that ATP-gated P2X3 receptors (P2X3Rs) are implicated in chronic pain. We address the possibility that stable, synthetic analogs of diadenosine tetraphosphate (Ap4A) might induce antinociceptive effects by inhibiting P2X3Rs in peripheral sensory neurons. RESULTS The effects of two stable, synthetic Ap4A analogs (AppNHppA and AppCH2ppA) are studied firstly in vitro on HEK293 cells expressing recombinant rat P2XRs (P2X2Rs, P2X3Rs, P2X4Rs, and P2X7Rs) and then using native rat brain cells (cultured trigeminal, nodose, or dorsal root ganglion neurons). Thereafter, the action of these stable, synthetic Ap4A analogs on inflammatory pain and thermal hyperalgesia is studied through the measurement of antinociceptive effects in formalin and Hargreaves plantar tests in rats in vivo. In vitro inhibition of rat P2X3Rs (not P2X2Rs, P2X4Rs nor P2X7Rs) is shown to take place mediated by high-affinity desensitization (at low concentrations; IC50 values 100-250 nM) giving way to only weak partial agonism at much higher concentrations (EC50 values ≥ 10 µM). Similar inhibitory activity is observed with human recombinant P2X3Rs. The inhibitory effects of AppNHppA on nodose, dorsal root, and trigeminal neuron whole cell currents suggest that stable, synthetic Ap4A analogs inhibit homomeric P2X3Rs in preference to heteromeric P2X2/3Rs. Both Ap4A analogs mediate clear inhibition of pain responses in both in vivo inflammation models. CONCLUSIONS Stable, synthetic Ap4A analogs (AppNHppA and AppCH2ppA) being weak partial agonist provoke potent high-affinity desensitization-mediated inhibition of homomeric P2X3Rs at low concentrations. Therefore, both analogs demonstrate clear potential as potent analgesic agents for use in the management of chronic pain associated with heightened P2X3R activation.
Collapse
Affiliation(s)
- Viacheslav Viatchenko-Karpinski
- Laboratory of Sensory Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine International Center for Molecular Physiology, Kiev, Ukraine
| | | | | | - M Ameruddin Azhar
- Indian Institute of Chemical Technology, Hyderabad, India Imperial College Genetic Therapies Centre, Department of Chemistry, Imperial College London, London, UK
| | - Michael Wright
- Imperial College Genetic Therapies Centre, Department of Chemistry, Imperial College London, London, UK Institute of Pharmaceutical Science, King's College London, London, UK
| | - Vera Tsintsadze
- INSERM UMR901 Aix-Marseille Université, Marseille, France INMED, Institut de Neurobiologie de la Méditerranée, Marseille, France
| | - Ahmed Kamal
- Indian Institute of Chemical Technology, Hyderabad, India
| | - Nail Burnashev
- INSERM UMR901 Aix-Marseille Université, Marseille, France INMED, Institut de Neurobiologie de la Méditerranée, Marseille, France
| | - Andrew D Miller
- Institute of Pharmaceutical Science, King's College London, London, UK GlobalAcorn Ltd, London, UK
| | - Nana Voitenko
- Laboratory of Sensory Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine International Center for Molecular Physiology, Kiev, Ukraine
| | - Rashid Giniatullin
- Department of Neurobiology, A. I. Virtanen Institute, Kuopio, Finland Kazan Federal University, Kazan, Russia
| | - Natalia Lozovaya
- INSERM UMR901 Aix-Marseille Université, Marseille, France INMED, Institut de Neurobiologie de la Méditerranée, Marseille, France Neurochlore, Marseille, France
| |
Collapse
|
21
|
Marchenkova A, Vilotti S, Fabbretti E, Nistri A. Brain natriuretic peptide constitutively downregulates P2X3 receptors by controlling their phosphorylation state and membrane localization. Mol Pain 2015; 11:71. [PMID: 26576636 PMCID: PMC4650943 DOI: 10.1186/s12990-015-0074-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND ATP-gated P2X3 receptors are important transducers of nociceptive stimuli and are almost exclusively expressed by sensory ganglion neurons. In mouse trigeminal ganglion (TG), P2X3 receptor function is unexpectedly enhanced by pharmacological block of natriuretic peptide receptor-A (NPR-A), outlining a potential inhibitory role of endogenous natriuretic peptides in nociception mediated by P2X3 receptors. Lack of change in P2X3 protein expression indicates a complex modulation whose mechanisms for downregulating P2X3 receptor function remain unclear. RESULTS To clarify this process in mouse TG cultures, we suppressed NPR-A signaling with either siRNA of the endogenous agonist BNP, or the NPR-A blocker anantin. Thus, we investigated changes in P2X3 receptor distribution in the lipid raft membrane compartment, their phosphorylation state, as well as their function with patch clamping. Delayed onset of P2X3 desensitization was one mechanism for the anantin-induced enhancement of P2X3 activity. Anantin application caused preferential P2X3 receptor redistribution to the lipid raft compartment and decreased P2X3 serine phosphorylation, two phenomena that were not interdependent. An inhibitor of cGMP-dependent protein kinase and siRNA-mediated knockdown of BNP mimicked the effect of anantin. CONCLUSIONS We demonstrated that in mouse trigeminal neurons endogenous BNP acts on NPR-A receptors to determine constitutive depression of P2X3 receptor function. Tonic inhibition of P2X3 receptor activity by BNP/NPR-A/PKG pathways occurs via two distinct mechanisms: P2X3 serine phosphorylation and receptor redistribution to non-raft membrane compartments. This novel mechanism of receptor control might be a target for future studies aiming at decreasing dysregulated P2X3 receptor activity in chronic pain.
Collapse
Affiliation(s)
- Anna Marchenkova
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| | - Sandra Vilotti
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| | - Elsa Fabbretti
- Center for Biomedical Sciences and Engineering, University of Nova Gorica, 5000, Nova Gorica, Slovenia.
| | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
22
|
Abstract
There is a brief introductory summary of purinergic signaling involving ATP storage, release, and ectoenzymatic breakdown, and the current classification of receptor subtypes for purines and pyrimidines. The review then describes purinergic mechanosensory transduction involved in visceral, cutaneous, and musculoskeletal nociception and on the roles played by receptor subtypes in neuropathic and inflammatory pain. Multiple purinoceptor subtypes are involved in pain pathways both as an initiator and modulator. Activation of homomeric P2X3 receptors contributes to acute nociception and activation of heteromeric P2X2/3 receptors appears to modulate longer-lasting nociceptive sensitivity associated with nerve injury or chronic inflammation. In neuropathic pain activation of P2X4, P2X7, and P2Y12 receptors on microglia may serve to maintain nociceptive sensitivity through complex neural-glial cell interactions and antagonists to these receptors reduce neuropathic pain. Potential therapeutic approaches involving purinergic mechanisms will be discussed.
Collapse
|
23
|
The role of purinergic signaling in the etiology of migraine and novel antimigraine treatment. Purinergic Signal 2015; 11:307-16. [PMID: 25957584 PMCID: PMC4529850 DOI: 10.1007/s11302-015-9453-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/28/2015] [Indexed: 12/23/2022] Open
Abstract
Etiopathogenesis of migraine involves different structures of the central nervous system: the trigeminal nerve with nuclei located in the brain stem, vascular system, and the cerebral cortex as well as diverse mechanisms and pathological processes. The multidirectional action of purines in different cell types (blood vessels, neurons, and satellite glial cells) and through different types of purinergic receptors contributes to the etiopathogenesis of migraine pain. Adenosine triphosphate (ATP) and its derivatives are involved in initiation and propagation of migrenogenic signals in several ways: they participate in vasomotor mechanism, cortical spreading depression, and in fast transmission or cross-excitation based on the satellite glial cells in trigeminal ganglion. Contribution of purinergic signaling in the conduction of pain is realized through the activation of P1 and P2 receptors expressed widely in the central nervous system: on the neurons and glial cells as well as on the smooth muscles and endothelium in the vascular system. Therefore, the purinergic receptors can be an excellent target for pharmacologists constructing new antimigraine therapeutics. Moreover, the mechanisms facilitating ATP and adenosine degradation may prevent vasodilatation and thus avoid a secondary central sensitization during a migraine attack. Thus, agonists and antagonists of P receptors as well as ecto-enzymes metabolizing nucleotides/nucleosides could gain the growing attention as therapeutic agents.
Collapse
|
24
|
Herrity AN, Petruska JC, Stirling DP, Rau KK, Hubscher CH. The effect of spinal cord injury on the neurochemical properties of vagal sensory neurons. Am J Physiol Regul Integr Comp Physiol 2015; 308:R1021-33. [PMID: 25855310 DOI: 10.1152/ajpregu.00445.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/01/2015] [Indexed: 12/29/2022]
Abstract
The vagus nerve is composed primarily of nonmyelinated sensory neurons whose cell bodies are located in the nodose ganglion (NG). The vagus has widespread projections that supply most visceral organs, including the bladder. Because of its nonspinal route, the vagus nerve itself is not directly damaged from spinal cord injury (SCI). Because most viscera, including bladder, are dually innervated by spinal and vagal sensory neurons, an impact of SCI on the sensory component of vagal circuitry may contribute to post-SCI visceral pathologies. To determine whether SCI, in male Wistar rats, might impact neurochemical characteristics of NG neurons, immunohistochemical assessments were performed for P2X3 receptor expression, isolectin B4 (IB4) binding, and substance P expression, three known injury-responsive markers in sensory neuronal subpopulations. In addition to examining the overall population of NG neurons, those innervating the urinary bladder also were assessed separately. All three of the molecular markers were represented in the NG from noninjured animals, with the majority of the neurons binding IB4. In the chronically injured rats, there was a significant increase in the number of NG neurons expressing P2X3 and a significant decrease in the number binding IB4 compared with noninjured animals, a finding that held true also for the bladder-innervating population. Overall, these results indicate that vagal afferents, including those innervating the bladder, display neurochemical plasticity post-SCI that may have implications for visceral homeostatic mechanisms and nociceptive signaling.
Collapse
Affiliation(s)
- April N Herrity
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Jeffrey C Petruska
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky; Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky; Department of Neurological Surgery, University of Louisville, Louisville, Kentucky; Department of Microbiology & Immunology, University of Louisville School of Medicine, Louisville, Kentucky; and
| | - Kristofer K Rau
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky; Department of Anesthesiology, University of Louisville, Louisville, Kentucky
| | - Charles H Hubscher
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky;
| |
Collapse
|
25
|
Fujita M, Kasai E, Omachi S, Sakaguchi G, Shinohara S. A novel method for assessing bladder-related pain reveals the involvement of nerve growth factor in pain associated with cyclophosphamide-induced chronic cystitis in mice. Eur J Pain 2015; 20:79-91. [PMID: 25820250 DOI: 10.1002/ejp.693] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pain is a prominent feature of interstitial cystitis/painful bladder syndrome (IC/PBS), but the underlying mechanisms are not fully understood. There is a lack of well-characterized research tools, such as pain evaluation methods and experimental animal models, for investigating non-ulcerative cystitis. We developed a novel method for evaluating bladder pain in mice with cyclophosphamide (CYP)-induced cystitis. METHODS Cystitis was produced by a single intraperitoneal injection of CYP (300 mg/kg) or repeated injections of CYP (150 mg/kg once daily for 4 days). Blunt stimulation with a cotton probe was applied to the abdominal region, and the thresholds for withdrawal responses were measured quantitatively using an anaesthesiometer. RESULTS The single injection of CYP provoked acute cystitis with severe bladder inflammation in mice. In these mice, we could detect an increased sensitivity to blunt stimulation, which was abolished by intravesical lidocaine. The stimulation induced phosphorylation of extracellular signal-regulated kinases in bladder-projecting sensory neurons. Chronic treatment with CYP produced persistent pain responses to the blunt stimulus. Although there were few signs of bladder inflammation in these mice, the concentration of nerve growth factor (NGF) was elevated in bladder tissue, and NGF antiserum inhibited the hypersensitivity. CONCLUSIONS The blunt probe method is useful for evaluating bladder pain signalling in mice, and revealed the involvement of an NGF-sensitive pain pathway in chronic cystitis pain. This assessment method may be useful for studying the pathophysiology of bladder pain and for developing therapeutic strategies for non-ulcerative IC/PBS in patients.
Collapse
Affiliation(s)
- M Fujita
- Pain & Neurology, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
| | - E Kasai
- Pain & Neurology, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
| | - S Omachi
- Pain & Neurology, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
| | - G Sakaguchi
- Pain & Neurology, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
| | - S Shinohara
- Pain & Neurology, Discovery Research Laboratories for Core Therapeutic Areas, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
| |
Collapse
|
26
|
Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 2014; 94:1099-142. [PMID: 25287861 PMCID: PMC4187032 DOI: 10.1152/physrev.00034.2013] [Citation(s) in RCA: 778] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide. Discovered 30 years ago, it is produced as a consequence of alternative RNA processing of the calcitonin gene. CGRP has two major forms (α and β). It belongs to a group of peptides that all act on an unusual receptor family. These receptors consist of calcitonin receptor-like receptor (CLR) linked to an essential receptor activity modifying protein (RAMP) that is necessary for full functionality. CGRP is a highly potent vasodilator and, partly as a consequence, possesses protective mechanisms that are important for physiological and pathological conditions involving the cardiovascular system and wound healing. CGRP is primarily released from sensory nerves and thus is implicated in pain pathways. The proven ability of CGRP antagonists to alleviate migraine has been of most interest in terms of drug development, and knowledge to date concerning this potential therapeutic area is discussed. Other areas covered, where there is less information known on CGRP, include arthritis, skin conditions, diabetes, and obesity. It is concluded that CGRP is an important peptide in mammalian biology, but it is too early at present to know if new medicines for disease treatment will emerge from our knowledge concerning this molecule.
Collapse
Affiliation(s)
- F A Russell
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - R King
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S-J Smillie
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - X Kodji
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S D Brain
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| |
Collapse
|
27
|
Stojilkovic SS, Leiva-Salcedo E, Rokic MB, Coddou C. Regulation of ATP-gated P2X channels: from redox signaling to interactions with other proteins. Antioxid Redox Signal 2014; 21:953-70. [PMID: 23944253 PMCID: PMC4116155 DOI: 10.1089/ars.2013.5549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The family of purinergic P2X receptors (P2XRs) is a part of ligand-gated superfamily of channels activated by extracellular adenosine-5'-triphosphate. P2XRs are present in virtually all mammalian tissues as well as in tissues of other vertebrate and nonvertebrate species and mediate a large variety of functions, including fast transmission at central synapses, contraction of smooth muscle cells, platelet aggregation, and macrophage activation to proliferation and cell death. RECENT ADVANCES The recent solving of crystal structure of the zebrafish P2X4.1R is a major advance in the understanding of structural correlates of channel activation and regulation. Combined with growing information obtained in the post-structure era and the reinterpretation of previous work within the context of the tridimensional structure, these data provide a better understanding of how the channel operates at the molecular levels. CRITICAL ISSUES This review focuses on the relationship between redox signaling and P2XR function. We also discuss other allosteric modulation of P2XR gating in the physiological/pathophysiological context. This includes the summary of extracellular actions of trace metals, which can be released to the synaptic cleft, pH decrease that happens during ischemia and inflammation, and calcium, an extracellular and intracellular messenger. FUTURE DIRECTIONS Our evolving understanding of activation and regulation of P2XRs is helpful in clarifying the mechanism by which these channels trigger and modulate cellular functions. Further research is required to identify the signaling pathways contributing to the regulation of the receptor activity and to develop novel and receptor-specific allosteric modulators, which could be used in vivo with therapeutic potential.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- 1 Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| | | | | | | |
Collapse
|
28
|
Hagenston AM, Simonetti M. Neuronal calcium signaling in chronic pain. Cell Tissue Res 2014; 357:407-26. [PMID: 25012522 DOI: 10.1007/s00441-014-1942-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/03/2014] [Indexed: 01/03/2023]
Abstract
Acute physiological pain, the unpleasant sensory response to a noxious stimulus, is essential for animals and humans to avoid potential injury. Pathological pain that persists after the original insult or injury has subsided, however, not only results in individual suffering but also imposes a significant cost on society. Improving treatments for long-lasting pathological pain requires a comprehensive understanding of the biological mechanisms underlying pain perception and the development of pain chronicity. In this review, we aim to highlight some of the major findings related to the involvement of neuronal calcium signaling in the processes that mediate chronic pain.
Collapse
Affiliation(s)
- Anna M Hagenston
- University of Heidelberg, Neurobiology, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany,
| | | |
Collapse
|
29
|
Ye Y, Ono K, Bernabé DG, Viet CT, Pickering V, Dolan JC, Hardt M, Ford AP, Schmidt BL. Adenosine triphosphate drives head and neck cancer pain through P2X2/3 heterotrimers. Acta Neuropathol Commun 2014; 2:62. [PMID: 24903857 PMCID: PMC4229781 DOI: 10.1186/2051-5960-2-62] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 11/15/2022] Open
Abstract
Introduction Cancer pain creates a poor quality of life and decreases survival. The basic neurobiology of cancer pain is poorly understood. Adenosine triphosphate (ATP) and the ATP ionotropic receptor subunits, P2X2 and P2X3, mediate cancer pain in animal models; however, it is unknown whether this mechanism operates in human, and if so, what the relative contribution of P2X2- and P2X3-containing trimeric channels to cancer pain is. Here, we studied head and neck squamous cell carcinoma (HNSCC), which causes the highest level of function-induced pain relative to other types of cancer. Results We show that the human HNSCC tissues contain significantly increased levels of ATP compared to the matched normal tissues. The high levels of ATP are secreted by the cancer and positively correlate with self-reported function-induced pain in patients. The human HNSCC microenvironment is densely innervated by nerve fibers expressing both P2X2 and P2X3 subunits. In animal models of HNSCC we showed that ATP in the cancer microenvironment likely heightens pain perception through the P2X2/3 trimeric receptors. Nerve growth factor (NGF), another cancer-derived pain mediator found in both human and mouse HNSCC, induces P2X2 and P2X3 hypersensitivity and increases subunit expression in murine trigeminal ganglion (TG) neurons. Conclusions These data identify a key peripheral mechanism in cancer pain and highlight the clinical potential of specifically targeting nociceptors expressing both P2X2 and P2X3 subunits (e.g., P2X2/3 heterotrimers) to alleviate cancer pain. Electronic supplementary material The online version of this article (doi:10.1186/2051-5960-2-62) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Gölöncsér F, Sperlágh B. Effect of genetic deletion and pharmacological antagonism of P2X7 receptors in a mouse animal model of migraine. J Headache Pain 2014; 15:24. [PMID: 24885962 PMCID: PMC4016653 DOI: 10.1186/1129-2377-15-24] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Purine receptors participate in peripheral and central sensitization and are associated with migraine headache. We investigated the role of P2X7 receptor (P2X7) in a nitroglycerin (NTG)-induced mouse model of migraine. METHODS Intraperitoneal NTG injection (15 mg/kg) triggered thermal hyperalgesia in the hindpaws of wild-type C57BL/6J mice, followed by the induction of c-fos in upper cervical spinal cord and trigeminal nucleus caudalis. The effect of genetic deletion of P2X7 and the selective P2X7 antagonist Brilliant Blue G (BBG) were examined on hyperalgesia and c-fos induction. RESULTS NTG decreased the paw withdrawal threshold in both wild-type and P2X7 knockout mice. Nevertheless, subacute BBG treatment (50 mg/kg/day i.p.) completely prevented the effect of NTG in wild-type, but not in knockout mice. Whereas P2X7 deficiency differentially affected the expression of c-fos, the average number of fos-immuno-reactive neurons in trigeminal nucleus caudalis, but not in upper cervical spinal cord was lower in BBG-treated wild-type mice after NTG treatment. CONCLUSIONS Our results show that P2X7 receptors might participate in the pathogenesis of migraine, although upregulation of other P2X receptors probably compensate for the loss of its action in knockout mice. The data also suggest the therapeutic potential of P2X7 antagonists for the treatment of migraine.
Collapse
Affiliation(s)
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083, Budapest, Szigony u,, 43, Hungary.
| |
Collapse
|
31
|
Abstract
Migraine is one of the most common neurological disorders. Despite its prevalence, the basic physiology of the molecules and mechanisms that contribute to migraine headache is still poorly understood, making the discovery of more effective treatments extremely difficult. The consistent presence of head-specific pain during migraine suggests an important role for activation of the peripheral nociceptors localized to the head. Accordingly, this review will cover the current understanding of the biological mechanisms leading to episodic activation and sensitization of the trigeminovascular pain pathway, focusing on recent advances regarding activation and modulation of ion channels.
Collapse
Affiliation(s)
- Jin Yan
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
32
|
Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 2013; 66:102-92. [PMID: 24335194 DOI: 10.1124/pr.113.008029] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
33
|
Giniatullin R, Nistri A. Desensitization properties of P2X3 receptors shaping pain signaling. Front Cell Neurosci 2013; 7:245. [PMID: 24367291 PMCID: PMC3854565 DOI: 10.3389/fncel.2013.00245] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/18/2013] [Indexed: 12/02/2022] Open
Abstract
ATP-gated P2X3 receptors are mostly expressed by nociceptive sensory neurons and participate in transduction of pain signals. P2X3 receptors show a combination of fast desensitization onset and slow recovery. Moreover, even low nanomolar agonist concentrations unable to evoke a response, can induce desensitization via a phenomenon called “high affinity desensitization.” We have also observed that recovery from desensitization is agonist-specific and can range from seconds to minutes. The recovery process displays unusually high temperature dependence. Likewise, recycling of P2X3 receptors in peri-membrane regions shows unexpectedly large temperature sensitivity. By applying kinetic modeling, we have previously shown that desensitization characteristics of P2X3 receptor are best explained with a cyclic model of receptor operation involving three agonist molecules binding a single receptor and that desensitization is primarily developing from the open receptor state. Mutagenesis experiments suggested that desensitization depends on a certain conformation of the ATP binding pocket and on the structure of the transmembrane domains forming the ion pore. Further molecular determinants of desensitization have been identified by mutating the intracellular N- and C-termini of P2X3 receptor. Unlike other P2X receptors, the P2X3 subtype is facilitated by extracellular calcium that acts via specific sites in the ectodomain neighboring the ATP binding pocket. Thus, substitution of serine275 in this region (called “left flipper”) converts the natural facilitation induced by extracellular calcium to receptor inhibition. Given their strategic location in nociceptive neurons and unique desensitization properties, P2X3 receptors represent an attractive target for development of new analgesic drugs via promotion of desensitization aimed at suppressing chronic pain.
Collapse
Affiliation(s)
- Rashid Giniatullin
- 1Department of Neurobiology, A. I. Virtanen Institute, University of Eastern Finland Kuopio, Finland
| | - Andrea Nistri
- 2Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste Italy
| |
Collapse
|
34
|
Fabbretti E. ATP P2X3 receptors and neuronal sensitization. Front Cell Neurosci 2013; 7:236. [PMID: 24363643 PMCID: PMC3849726 DOI: 10.3389/fncel.2013.00236] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/08/2013] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence indicates the importance of extracellular adenosine triphosphate (ATP) in the modulation of neuronal function. In particular, fine control of ATP release and the selective and discrete ATP receptor operation are crucial elements of the crosstalk between neuronal and non-neuronal cells in the peripheral and central nervous systems. In peripheral neurons, ATP signaling gives an important contribution to neuronal sensitization, especially that involved in neuropathic pain. Among other subtypes, P2X3 receptors expressed on sensory neurons are sensitive even to nanomolar concentrations of extracellular ATP, and therefore are important transducers of pain stimuli. P2X3 receptor function is highly sensitive to soluble factors like neuropeptides and neurotrophins, and is controlled by transduction mechanisms, protein-protein interactions and discrete membrane compartmentalization. More recent findings have demonstrated that P2X3 receptors interact with the synaptic scaffold protein calcium/calmodulin-dependent serine protein kinase (CASK) in a state dependent fashion, indicating that CASK plays a crucial role in the modulation of P2X3 receptor stability and efficiency. Activation of P2X3 receptors within CASK/P2X3 complex has important consequences for neuronal plasticity and possibly for the release of neuromodulators and neurotransmitters. Better understanding of the interactome machinery of P2X3 receptors and their integration with other receptors and channels on neuronal surface membranes, is proposed to be essential to unveil the process of neuronal sensitization and related, abnormal pain signaling.
Collapse
Affiliation(s)
- Elsa Fabbretti
- University of Nova Gorica, Center for Biomedical Sciences and Engineering Nova Gorica, Slovenia
| |
Collapse
|
35
|
Vilotti S, Marchenkova A, Ntamati N, Nistri A. B-type natriuretic peptide-induced delayed modulation of TRPV1 and P2X3 receptors of mouse trigeminal sensory neurons. PLoS One 2013; 8:e81138. [PMID: 24312267 PMCID: PMC3842315 DOI: 10.1371/journal.pone.0081138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/18/2013] [Indexed: 01/24/2023] Open
Abstract
Important pain transducers of noxious stimuli are small- and medium-diameter sensory neurons that express transient receptor vanilloid-1 (TRPV1) channels and/or adenosine triphosphate (ATP)-gated P2X3 receptors whose activity is upregulated by endogenous neuropeptides in acute and chronic pain models. Little is known about the role of endogenous modulators in restraining the expression and function of TRPV1 and P2X3 receptors. In dorsal root ganglia, evidence supports the involvement of the natriuretic peptide system in the modulation of nociceptive transmission especially via the B-type natriuretic peptide (BNP) that activates the natriuretic peptide receptor-A (NPR-A) to downregulate sensory neuron excitability. Since the role of BNP in trigeminal ganglia (TG) is unclear, we investigated the expression of BNP in mouse TG in situ or in primary cultures and its effect on P2X3 and TRPV1 receptors of patch-clamped cultured neurons. Against scant expression of BNP, almost all neurons expressed NPR-A at membrane level. While BNP rapidly increased cGMP production and Akt kinase phosphorylation, there was no early change in passive neuronal properties or responses to capsaicin, α,β-meATP or GABA. Nonetheless, 24 h application of BNP depressed TRPV1 mediated currents (an effect blocked by the NPR-A antagonist anantin) without changing responses to α,β-meATP or GABA. Anantin alone decreased basal cGMP production and enhanced control α,β-meATP-evoked responses, implying constitutive regulation of P2X3 receptors by ambient BNP. These data suggest a slow modulatory action by BNP on TRPV1 and P2X3 receptors outlining the role of this peptide as a negative regulator of trigeminal sensory neuron excitability to nociceptive stimuli.
Collapse
Affiliation(s)
- Sandra Vilotti
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Anna Marchenkova
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Niels Ntamati
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
- * E-mail:
| |
Collapse
|
36
|
Burnstock G. Introduction and perspective, historical note. Front Cell Neurosci 2013; 7:227. [PMID: 24312014 PMCID: PMC3836022 DOI: 10.3389/fncel.2013.00227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/04/2013] [Indexed: 12/11/2022] Open
Abstract
P2 nucleotide receptors were proposed to consist of two subfamilies based on pharmacology in 1985, named P2X and P2Y receptors. Later, this was confirmed following cloning of the receptors for nucleotides and studies of transduction mechanisms in the early 1990s. P2X receptors are ion channels and seven subtypes are recognized that form trimeric homomultimers or heteromultimers. P2X receptors are involved in neuromuscular and synaptic neurotransmission and neuromodulation. They are also expressed on many types of non-neuronal cells to mediate smooth muscle contraction, secretion, and immune modulation. The emphasis in this review will be on the pathophysiology of P2X receptors and therapeutic potential of P2X receptor agonists and antagonists for neurodegenerative and inflammatory disorders, visceral and neuropathic pain, irritable bowel syndrome, diabetes, kidney failure, bladder incontinence and cancer, as well as disorders if the special senses, airways, skin, cardiovascular, and musculoskeletal systems.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, UK
- Department of Pharmacology, The University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
37
|
Sekino Y, Nakano J, Hamaue Y, Chuganji S, Sakamoto J, Yoshimura T, Origuchi T, Okita M. Sensory hyperinnervation and increase in NGF, TRPV1 and P2X3expression in the epidermis following cast immobilization in rats. Eur J Pain 2013; 18:639-48. [DOI: 10.1002/j.1532-2149.2013.00412.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Y. Sekino
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Japan
| | - J. Nakano
- Department of Physical Therapy Science; Unit of Physical and Occupational Therapy Sciences; Nagasaki University Graduate School of Biochemical Sciences; Japan
| | - Y. Hamaue
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Japan
| | - S. Chuganji
- Department of Physical Therapy Science; Unit of Physical and Occupational Therapy Sciences; Nagasaki University Graduate School of Biochemical Sciences; Japan
| | - J. Sakamoto
- Department of Rehabilitation; Nagasaki University Hospital; Japan
| | - T. Yoshimura
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Japan
| | - T. Origuchi
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Japan
| | - M. Okita
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Japan
| |
Collapse
|
38
|
Laycock H, Valente J, Bantel C, Nagy I. Peripheral mechanisms of burn injury-associated pain. Eur J Pharmacol 2013; 716:169-78. [DOI: 10.1016/j.ejphar.2013.01.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/22/2013] [Accepted: 01/29/2013] [Indexed: 12/12/2022]
|
39
|
Takeda M, Ikeda M, Takahashi M, Kanazawa T, Nasu M, Matsumoto S. Suppression of ATP-induced excitability in rat small-diameter trigeminal ganglion neurons by activation of GABAB receptor. Brain Res Bull 2013; 98:155-62. [PMID: 24004472 DOI: 10.1016/j.brainresbull.2013.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to investigate whether a GABAB receptor agonist could modulate ATP-activated neuronal excitability of nociceptive TRG neurons using perforated whole-cell patch-clamp and immunohistochemical techniques. Immunohistochemical analysis revealed that 86% of P2X3 receptor-immunoreactive, small-diameter TRG neurons co-expressed GABAB receptor. Under voltage-clamp conditions (Vh=-60mV), application of ATP activated the inward current in acutely isolated rat TRG neurons in a dose-dependent manner (10-50 μM) and this current could be blocked by pyridoxal-phosphate-6-azophenyl-27,47-disulfonic acid (PPADS) (10 μM), a selective P2 purinoreceptor antagonist. The peak amplitude of ATP-activated currents was significantly inhibited after application of GABAB receptor agonist, baclofen (10-50 μM), in a concentration-dependent and reversible manner. The baclofen-induced inhibition of ATP-activated current was abolished by co-application of 3-amino-2 (4-chlorophenyl)-2hydroxypropysufonic acid) saclofen, a GABAB receptor antagonist (50 μM). Under current-clamp conditions, application of 20 μM ATP significantly depolarized the membrane potential resulting in increased mean action potential frequencies, and these ATP-induced effects were significantly inhibited by baclofen and these effects were antagonized by co-application of saclofen. Together, the results suggested that GABAB receptor activation could inhibit the ATP-induced excitability of small-diameter TRG neurons activated through the P2X3 receptor. Thus, the interaction between P2X3 and GABAB receptors of small-diameter TRG neuronal cell bodies is a potential therapeutic target for the treatment of trigeminal nociception.
Collapse
Affiliation(s)
- Mamoru Takeda
- Department of Physiology, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo 102-8159, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Extracellular pH and neuronal depolarization serve as dynamic switches to rapidly mobilize trkA to the membrane of adult sensory neurons. J Neurosci 2013; 33:8202-15. [PMID: 23658159 DOI: 10.1523/jneurosci.4408-12.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of the nerve growth factor (NGF) receptor trkA and tissue acidosis are critically linked to inflammation-associated nociceptor sensitization. This study explored how increased acidity is linked to sensory neuron sensitization to NGF. Adult Wistar rat primary sensory neurons grown at physiological pH 7.4, then either kept at pH 7.4 or challenged for 30 min in pH 6.5 medium, provided a model of acidosis. Nonpermeabilizing trkA immunofluorescence revealed a significant increase in trkA mobilization to the plasma membrane from intracellular stores in response to proton challenge. This was confirmed using a surface protein biotinylation assay and Brefeldin A disruption of the rough endoplasmic reticulum-Golgi-trans-Golgi network. Mobilization of trkA to the membrane at pH 6.5 was abolished in neurons treated with the acid-sensitive ion channel blocker, amiloride. While elevated levels of NGF-independent trkA phosphorylation occurred at pH 6.5 alone, the level of activation was significantly increased in response to NGF challenge. Exposure of sensory neurons to pH 6.5 medium also resulted in strong calcium (Ca(2+)) transients that were reversible upon reintroduction to physiological pH. The pH 6.5-induced mobilization of trkA to the membrane was Ca(2+) dependent, as BAPTA-AM Ca(2+) chelation abrogated the response. Interestingly, KCl-induced depolarization was sufficient to induce mobilization of trkA to the cell surface at pH 7.4, but did not augment the response to pH 6.5. In conclusion, increased mobilization of trkA to neuronal membranes in response to either acidosis or neuronal depolarization provides two novel mechanisms by which sensory neurons can rapidly sensitize to NGF and has important implications for inflammatory pain states.
Collapse
|
41
|
Gnanasekaran A, Sundukova M, Hullugundi S, Birsa N, Bianchini G, Hsueh YP, Nistri A, Fabbretti E. Calcium/calmodulin-dependent serine protein kinase (CASK) is a new intracellular modulator of P2X3 receptors. J Neurochem 2013; 126:102-12. [PMID: 23600800 DOI: 10.1111/jnc.12272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/20/2022]
Abstract
ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of painful stimuli and are modulated by extracellular algogenic substances, via changes in the receptor phosphorylation state. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in interacting and controlling P2X3 receptor expression and function in mouse trigeminal ganglia. Most ganglion neurons in situ or in culture co-expressed P2X3 and CASK. CASK was immunoprecipitated with P2X3 receptors from trigeminal ganglia and from P2X3/CASK-cotransfected human embryonic kidney (HEK) cells. Recombinant P2X3/CASK expression in HEK cells increased serine phosphorylation of P2X3 receptors, typically associated with receptor upregulation. CASK deletion mutants also enhanced P2X3 subunit expression. After silencing CASK, cell surface P2X3 receptor expression was decreased, which is consistent with depressed P2X3 currents. The reduction in P2X3 expression levels was reversed by the proteasomal inhibitor MG-132. Moreover, neuronal CASK/P2X3 interaction was up-regulated by nerve growth factor (NGF) signaling and down-regulated by P2X3 agonist-induced desensitization. These data suggest a novel interaction between CASK and P2X3 receptors with positive outcome for receptor stability and function. As CASK-mediated control of P2X3 receptors was dependent on the receptor activation state, CASK represents an intracellular gateway to regulate purinergic nociceptive signaling.
Collapse
Affiliation(s)
- Aswini Gnanasekaran
- Neuroscience Department, International School for Advanced Studies-SISSA, Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hullugundi SK, Ferrari MD, van den Maagdenberg AMJM, Nistri A. The mechanism of functional up-regulation of P2X3 receptors of trigeminal sensory neurons in a genetic mouse model of familial hemiplegic migraine type 1 (FHM-1). PLoS One 2013; 8:e60677. [PMID: 23577145 PMCID: PMC3618040 DOI: 10.1371/journal.pone.0060677] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/01/2013] [Indexed: 12/05/2022] Open
Abstract
A knock-in (KI) mouse model of FHM-1 expressing the R192Q missense mutation of the Cacna1a gene coding for the α1 subunit of CaV2.1 channels shows, at the level of the trigeminal ganglion, selective functional up-regulation of ATP -gated P2X3 receptors of sensory neurons that convey nociceptive signals to the brainstem. Why P2X3 receptors are constitutively more responsive, however, remains unclear as their membrane expression and TRPV1 nociceptor activity are the same as in wildtype (WT) neurons. Using primary cultures of WT or KI trigeminal ganglia, we investigated whether soluble compounds that may contribute to initiating (or maintaining) migraine attacks, such as TNFα, CGRP, and BDNF, might be responsible for increasing P2X3 receptor responses. Exogenous application of TNFα potentiated P2X3 receptor-mediated currents of WT but not of KI neurons, most of which expressed both the P2X3 receptor and the TNFα receptor TNFR2. However, sustained TNFα neutralization failed to change WT or KI P2X3 receptor currents. This suggests that endogenous TNFα does not regulate P2X3 receptor responses. Nonetheless, on cultures made from both genotypes, exogenous TNFα enhanced TRPV1 receptor-mediated currents expressed by a few neurons, suggesting transient amplification of TRPV1 nociceptor responses. CGRP increased P2X3 receptor currents only in WT cultures, although prolonged CGRP receptor antagonism or BDNF neutralization reduced KI currents to WT levels. Our data suggest that, in KI trigeminal ganglion cultures, constitutive up-regulation of P2X3 receptors probably is already maximal and is apparently contributed by basal CGRP and BDNF levels, thereby rendering these neurons more responsive to extracellular ATP.
Collapse
Affiliation(s)
- Swathi K. Hullugundi
- Neuroscience Department, International School for Advanced Studies (SISSA),Trieste, Italy
| | - Michel D. Ferrari
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Arn M. J. M. van den Maagdenberg
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Human Genetics, Leiden Genetics University Medical Centre, Leiden, The Netherlands
| | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA),Trieste, Italy
- * E-mail:
| |
Collapse
|
43
|
Purinergic mechanisms and pain--an update. Eur J Pharmacol 2013; 716:24-40. [PMID: 23524093 DOI: 10.1016/j.ejphar.2013.01.078] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/11/2012] [Accepted: 01/09/2013] [Indexed: 12/12/2022]
Abstract
There is a brief summary of the background literature about purinergic signalling. The review then considers purinergic mechanosensory transduction involved in visceral, cutaneous and musculoskeletal nociception and on the roles played by P2X3, P2X2/3, P2X4, P2X7 and P2Y₁₂ receptors in neuropathic and inflammatory pain. Current developments of compounds for the therapeutic treatment of both visceral and neuropathic pain are discussed.
Collapse
|
44
|
Franceschini A, Nair A, Bele T, van den Maagdenberg AM, Nistri A, Fabbretti E. Functional crosstalk in culture between macrophages and trigeminal sensory neurons of a mouse genetic model of migraine. BMC Neurosci 2012; 13:143. [PMID: 23171280 PMCID: PMC3511260 DOI: 10.1186/1471-2202-13-143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/31/2012] [Indexed: 01/15/2023] Open
Abstract
Background Enhanced activity of trigeminal ganglion neurons is thought to underlie neuronal sensitization facilitating the onset of chronic pain attacks, including migraine. Recurrent headache attacks might establish a chronic neuroinflammatory ganglion profile contributing to the hypersensitive phenotype. Since it is difficult to study this process in vivo, we investigated functional crosstalk between macrophages and sensory neurons in primary cultures from trigeminal sensory ganglia of wild-type (WT) or knock-in (KI) mice expressing the Cacna1a gene mutation (R192Q) found in familial hemiplegic migraine-type 1. After studying the number and morphology of resident macrophages in culture, the consequences of adding host macrophages on macrophage phagocytosis and membrane currents mediated by pain-transducing P2X3 receptors on sensory neurons were examined. Results KI ganglion cultures constitutively contained a larger number of active macrophages, although no difference in P2X3 receptor expression was found. Co-culturing WT or KI ganglia with host macrophages (active as much as resident cells) strongly stimulated single cell phagocytosis. The same protocol had no effect on P2X3 receptor expression in WT or KI co-cultures, but it largely enhanced WT neuron currents that grew to the high amplitude constitutively seen for KI neurons. No further potentiation of KI neuronal currents was observed. Conclusions Trigeminal ganglion cultures from a genetic mouse model of migraine showed basal macrophage activation together with enhanced neuronal currents mediated by P2X3 receptors. This phenotype could be replicated in WT cultures by adding host macrophages, indicating an important functional crosstalk between macrophages and sensory neurons.
Collapse
Affiliation(s)
- Alessia Franceschini
- Department of Neuroscience and Italian Institute of Technology Unit, International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, 34136, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Magni G, Ceruti S. P2Y purinergic receptors: new targets for analgesic and antimigraine drugs. Biochem Pharmacol 2012; 85:466-77. [PMID: 23146663 DOI: 10.1016/j.bcp.2012.10.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
Millions of individuals worldwide suffer from acute and, more severely, chronic pain conditions (e.g., neuropathic pain, and migraine). The latter bear tremendous personal, familial, and social costs, since sufferers and their relatives undergo a complete turnaround of their lives with the search of relief from pain becoming their pivotal thought. Sadly, to date no effective pharmacological approaches are available which can alleviate chronic pain significantly or in the long run in all patients. The current central strategy for the development of new and effective painkillers lies in the hypothesis that cellular and/or molecular players in nociception must exists that are not targeted by "classical" analgesics, and therefore researchers have put tremendous efforts into the in-depth analysis of the pathways leading to pain development and maintenance over time. In this complex scenario, two outsiders are now taking the center stage: glial cells in sensory ganglia and in the central nervous system, thanks to their ability to communicate with neurons and to modulate their firing, and the purinergic system. Extracellular purine and pyrimidine nucleotides are involved in the physiology of virtually every body district, and their extracellular concentrations massively increase under pathological situations, suggesting that they might represent potential targets for the modulation of disease-associated symptoms, like pain. Here, we provide an overview of the present knowledge of the role of nucleotides in nociception, with a particular emphasis on G protein-coupled P2Y receptors and their involvement in the communication between first- and second-order neurons in sensory nerve pathways and surrounding glial cells.
Collapse
Affiliation(s)
- Giulia Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
46
|
Sundukova M, Vilotti S, Abbate R, Fabbretti E, Nistri A. Functional differences between ATP-gated human and rat P2X3 receptors are caused by critical residues of the intracellular C-terminal domain. J Neurochem 2012; 122:557-67. [PMID: 22639984 DOI: 10.1111/j.1471-4159.2012.07810.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP-activated P2X3 receptors of sensory ganglion neurons contribute to pain transduction and are involved in chronic pain signaling. Although highly homologous (97%) in rat and human species, it is unclear whether P2X3 receptors have identical function. Studying human and rat P2X3 receptors expressed in patch-clamped human embryonic kidney (HEK) cells, we investigated the role of non-conserved tyrosine residues in the C-terminal domain (rat tyrosine-393 and human tyrosine-376) as key determinants of receptor function. In comparison with rat P2X3 receptors, human P2X3 receptors were more expressed and produced larger responses with slower desensitization and faster recovery. In general, desensitization was closely related to peak current amplitude for rat and human receptors. Downsizing human receptor expression to the same level of the rat one still yielded larger responses retaining slower desensitization and faster recovery. Mutating phenylalanine-376 into tyrosine in the rat receptor did not change current amplitude; yet, it retarded desensitization onset, demonstrating how this residue was important to functionally link these two receptor states. Conversely, removing tyrosine from position 376 strongly down-regulated human receptor function. The different topology of tyrosine residues in the C-terminal domain has contrasting functional consequences and is sufficient to account for species-specific properties of this pain-transducing channel.
Collapse
Affiliation(s)
- Mayya Sundukova
- Neuroscience Department and Italian Institute of Technology Unit, International School for Advanced Studies-SISSA, Trieste, Italy
| | | | | | | | | |
Collapse
|
47
|
Wang S, Dai Y, Kobayashi K, Zhu W, Kogure Y, Yamanaka H, Wan Y, Zhang W, Noguchi K. Potentiation of the P2X3 ATP receptor by PAR-2 in rat dorsal root ganglia neurons, through protein kinase-dependent mechanisms, contributes to inflammatory pain. Eur J Neurosci 2012; 36:2293-301. [PMID: 22616675 DOI: 10.1111/j.1460-9568.2012.08142.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proinflammatory agents trypsin and mast cell tryptase cleave and activate protease-activated receptor-2 (PAR-2), which is expressed on sensory nerves and causes neurogenic inflammation. P2X3 is a subtype of the ionotropic receptors for adenosine 5'-triphosphate (ATP), and is mainly localized on nociceptors. Here, we show that a functional interaction of the PAR-2 and P2X3 in primary sensory neurons could contribute to inflammatory pain. PAR-2 activation increased the P2X3 currents evoked by α, β, methylene ATP in dorsal root ganglia (DRG) neurons. Application of inhibitors of either protein kinase C (PKC) or protein kinase A (PKA) suppressed this potentiation. Consistent with this, a PKC or PKA activator mimicked the PAR-2-mediated potentiation of P2X3 currents. In the in vitro phosphorylation experiments, application of a PAR-2 agonist failed to establish phosphorylation of the P2X3 either on the serine or the threonine site. In contrast, application of a PAR-2 agonist induced trafficking of the P2X3 from the cytoplasm to the plasma membrane. These findings indicate that PAR-2 agonists may potentiate the P2X3, and the mechanism of this potentiation is likely to be a result of translocation, but not phosphorylation. The functional interaction between P2X3 and PAR-2 was also confirmed by detection of the α, β, methylene-ATP-evoked extracellular signal-regulated kinases (ERK) activation, a marker of neuronal signal transduction in DRG neurons, and pain behavior. These results demonstrate a functional interaction of the protease signal with the ATP signal, and a novel mechanism through which protease released in response to tissue inflammation might trigger the sensation to pain through P2X3 activation.
Collapse
Affiliation(s)
- Shenglan Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100088, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
The inhibitory action of the antimigraine nonsteroidal anti-inflammatory drug naproxen on P2X3 receptor-mediated responses in rat trigeminal neurons. Neuroscience 2012; 209:32-8. [DOI: 10.1016/j.neuroscience.2012.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/30/2012] [Accepted: 02/10/2012] [Indexed: 11/18/2022]
|
49
|
In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization. Purinergic Signal 2011; 8:3-26. [PMID: 22095157 PMCID: PMC3265711 DOI: 10.1007/s11302-011-9271-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/19/2011] [Indexed: 12/20/2022] Open
Abstract
Treating pain by inhibiting ATP activation of P2X3-containing receptors heralds an exciting new approach to pain management, and Afferent's program marks the vanguard in a new class of drugs poised to explore this approach to meet the significant unmet needs in pain management. P2X3 receptor subunits are expressed predominately and selectively in so-called C- and Aδ-fiber primary afferent neurons in most tissues and organ systems, including skin, joints, and hollow organs, suggesting a high degree of specificity to the pain sensing system in the human body. P2X3 antagonists block the activation of these fibers by ATP and stand to offer an alternative approach to the management of pain and discomfort. In addition, P2X3 is expressed pre-synaptically at central terminals of C-fiber afferent neurons, where ATP further sensitizes transmission of painful signals. As a result of the selectivity of the expression of P2X3, there is a lower likelihood of adverse effects in the brain, gastrointestinal, or cardiovascular tissues, effects which remain limiting factors for many existing pain therapeutics. In the periphery, ATP (the factor that triggers P2X3 receptor activation) can be released from various cells as a result of tissue inflammation, injury or stress, as well as visceral organ distension, and stimulate these local nociceptors. The P2X3 receptor rationale has aroused a formidable level of investigation producing many reports that clarify the potential role of ATP as a pain mediator, in chronic sensitized states in particular, and has piqued the interest of pharmaceutical companies. P2X receptor-mediated afferent activation has been implicated in inflammatory, visceral, and neuropathic pain states, as well as in airways hyperreactivity, migraine, itch, and cancer pain. It is well appreciated that oftentimes new mechanisms translate poorly from models into clinical efficacy and effectiveness; however, the breadth of activity seen from P2X3 inhibition in models offers a realistic chance that this novel mechanism to inhibit afferent nerve sensitization may find its place in the sun and bring some merciful relief to the torment of persistent discomfort and pain. The development philosophy at Afferent is to conduct proof of concept patient studies and best identify target patient groups that may benefit from this new intervention.
Collapse
|
50
|
Using antibodies against P2Y and P2X receptors in purinergic signaling research. Purinergic Signal 2011; 8:61-79. [PMID: 22086554 PMCID: PMC3265709 DOI: 10.1007/s11302-011-9278-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/13/2011] [Indexed: 01/07/2023] Open
Abstract
The broad expression pattern of the G protein-coupled P2Y receptors has demonstrated that these receptors are fundamental determinants in many physiological responses, including neuromodulation, vasodilation, inflammation, and cell migration. P2Y receptors couple either G(q) or G(i) upon activation, thereby activating different signaling pathways. Ionotropic ATP (P2X) receptors bind extracellular nucleotides, a signal which is transduced within the P2X protein complex into a cation channel opening, which usually leads to intracellular calcium concentration elevation. As such, this family of proteins initiates or shapes several cellular processes including synaptic transmission, gene expression, proliferation, migration, and apoptosis. The ever-growing range of applications for antibodies in the last 30 years attests to their major role in medicine and biological research. Antibodies have been used as therapeutic tools in cancer and inflammatory diseases, as diagnostic reagents (flow cytometry, ELISA, and immunohistochemistry, to name a few applications), and in widespread use in biological research, including Western blot, immunoprecipitation, and ELISPOT. In this article, we will showcase several of the advances that scientists around the world have achieved using the line of antibodies developed at Alomone Labs for P2Y and P2X receptors.
Collapse
|