1
|
Manukjan N, Fulton D, Ahmed Z, Blankesteijn WM, Foulquier S. Vascular endothelial growth factor: a double-edged sword in the development of white matter lesions. Neural Regen Res 2025; 20:191-192. [PMID: 39657085 DOI: 10.4103/nrr.nrr-d-23-01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/07/2024] [Indexed: 12/17/2024] Open
Affiliation(s)
- Narek Manukjan
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands (Manukjan N, Blankesteijn WM, Foulquier S)
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands (Manukjan N, Blankesteijn WM, Foulquier S)
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, UK (Manukjan N, Fulton D, Ahmed Z)
| | - Daniel Fulton
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, UK (Manukjan N, Fulton D, Ahmed Z)
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, UK (Fulton D, Ahmed Z)
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, UK (Manukjan N, Fulton D, Ahmed Z)
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, UK (Fulton D, Ahmed Z)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands (Manukjan N, Blankesteijn WM, Foulquier S)
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands (Manukjan N, Blankesteijn WM, Foulquier S)
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands (Manukjan N, Blankesteijn WM, Foulquier S)
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands (Manukjan N, Blankesteijn WM, Foulquier S)
- MHeNs-School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands (Foulquier S)
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands (Foulquier S)
| |
Collapse
|
2
|
Liu C, Ju R. Potential Role of Endoplasmic Reticulum Stress in Modulating Protein Homeostasis in Oligodendrocytes to Improve White Matter Injury in Preterm Infants. Mol Neurobiol 2024; 61:5295-5307. [PMID: 38180617 DOI: 10.1007/s12035-023-03905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Preterm white matter injury (WMI) is a demyelinating disease with high incidence and mortality in premature infants. Oligodendrocyte cells (OLs) are a specialized glial cell that produces myelin proteins and adheres to the axons providing energy and metabolic support which susceptible to endoplasmic reticulum protein quality control. Disruption of cellular protein homeostasis led to OLs dysfunction and cell death, immediately, the unfolded protein response (UPR) activated to attempt to restore the protein homeostasis via IRE1/XBP1s, PERK/eIF2α and ATF6 pathway that reduced protein translation, strengthen protein-folding capacity, and degraded unfolding/misfolded protein. Moreover, recent works have revealed the conspicuousness function of ER signaling pathways in regulating influenced factors such as calcium homeostasis, mitochondrial reactive oxygen generation, and autophagy activation to regulate protein hemostasis and improve the myelination function of OLs. Each of the regulation modes and their corresponding molecular mechanisms provides unique opportunities and distinct perspectives to obtain a deep understanding of different actions of ER stress in maintaining OLs' health and function. Therefore, our review focuses on summarizing the current understanding of ER stress on OLs' protein homeostasis micro-environment in myelination during white matter development, as well as the pathophysiology of WMI, and discussing the further potential experimental therapeutics targeting these factors that restore the function of the UPR in OLs myelination function.
Collapse
Affiliation(s)
- Chang Liu
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Rong Ju
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
3
|
Xiao J. Role of the Gut Microbiota-Brain Axis in Brain Damage in Preterm Infants. ACS Pharmacol Transl Sci 2024; 7:1197-1204. [PMID: 38751622 PMCID: PMC11091980 DOI: 10.1021/acsptsci.3c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
The greatest repository of microbes in the human body, the intestinal microbiome, is involved in neurological development, aging, and brain illnesses such as white matter injury (WMI) in preterm newborns. Intestinal microorganisms constitute a microbial gut-brain axis that serves as a crucial conduit for communication between the gut and the nervous system. This axis controls inflammatory cytokines, which in turn influence the differentiation of premyelinating oligodendrocytes (pre-OLs) and influence the incidence of WMI in premature newborns through the metabolites generated by gut microbes. Here, we describe the effects of white matter injury (WMI) on intestinal dysbiosis and gut dysfunction and explain the most recent research findings on the gut-brain axis in both humans and animals. We also emphasize the delicate relationship that exists between the microbiota and the brain following acute brain injury. The role that the intestinal microflora plays in influencing host metabolism, the immune system, brain health, and the course of disease is becoming increasingly clear, but there are still gaps in the field of WMI treatment. Thus, this review demonstrates the function of the gut microflora-brain axis in WMI and elucidates the possible mechanisms underlying the communication between gut bacteria and the developing brain via the gut-brain axis, potentially opening up new avenues for microbial-based intervention and treatment for preterm WMI.
Collapse
Affiliation(s)
- Jie Xiao
- Department
of Pathology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, 435000 Huangshi, P. R. China
| |
Collapse
|
4
|
Manukjan N, Majcher D, Leenders P, Caiment F, van Herwijnen M, Smeets HJ, Suidgeest E, van der Weerd L, Vanmierlo T, Jansen JFA, Backes WH, van Oostenbrugge RJ, Staals J, Fulton D, Ahmed Z, Blankesteijn WM, Foulquier S. Hypoxic oligodendrocyte precursor cell-derived VEGFA is associated with blood-brain barrier impairment. Acta Neuropathol Commun 2023; 11:128. [PMID: 37550790 PMCID: PMC10405482 DOI: 10.1186/s40478-023-01627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
Cerebral small vessel disease is characterised by decreased cerebral blood flow and blood-brain barrier impairments which play a key role in the development of white matter lesions. We hypothesised that cerebral hypoperfusion causes local hypoxia, affecting oligodendrocyte precursor cell-endothelial cell signalling leading to blood-brain barrier dysfunction as an early mechanism for the development of white matter lesions. Bilateral carotid artery stenosis was used as a mouse model for cerebral hypoperfusion. Pimonidazole, a hypoxic cell marker, was injected prior to humane sacrifice at day 7. Myelin content, vascular density, blood-brain barrier leakages, and hypoxic cell density were quantified. Primary mouse oligodendrocyte precursor cells were exposed to hypoxia and RNA sequencing was performed. Vegfa gene expression and protein secretion was examined in an oligodendrocyte precursor cell line exposed to hypoxia. Additionally, human blood plasma VEGFA levels were measured and correlated to blood-brain barrier permeability in normal-appearing white matter and white matter lesions of cerebral small vessel disease patients and controls. Cerebral blood flow was reduced in the stenosis mice, with an increase in hypoxic cell number and blood-brain barrier leakages in the cortical areas but no changes in myelin content or vascular density. Vegfa upregulation was identified in hypoxic oligodendrocyte precursor cells, which was mediated via Hif1α and Epas1. In humans, VEGFA plasma levels were increased in patients versus controls. VEGFA plasma levels were associated with increased blood-brain barrier permeability in normal appearing white matter of patients. Cerebral hypoperfusion mediates hypoxia induced VEGFA expression in oligodendrocyte precursor cells through Hif1α/Epas1 signalling. VEGFA could in turn increase BBB permeability. In humans, increased VEGFA plasma levels in cerebral small vessel disease patients were associated with increased blood-brain barrier permeability in the normal appearing white matter. Our results support a role of VEGFA expression in cerebral hypoperfusion as seen in cerebral small vessel disease.
Collapse
Affiliation(s)
- Narek Manukjan
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Daria Majcher
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Peter Leenders
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, GROW–School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Marcel van Herwijnen
- Department of Toxicogenomics, GROW–School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Hubert J. Smeets
- Department of Toxicogenomics, GROW–School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Ernst Suidgeest
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, P.O. Box 9500, 2300 RA Leiden, the Netherlands
| | - Louise van der Weerd
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, P.O. Box 9500, 2300 RA Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9500, 2300 RA Leiden, The Netherlands
| | - Tim Vanmierlo
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Jacobus F. A. Jansen
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Walter H. Backes
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Robert J. van Oostenbrugge
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Julie Staals
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Daniel Fulton
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - W. Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
5
|
Chen W, Wang R, Chen C. Cerebral Myelination in a Bronchopulmonary Dysplasia Murine Model. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1321. [PMID: 37628321 PMCID: PMC10453924 DOI: 10.3390/children10081321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
INTRODUCTION Bronchopulmonary dysplasia (BPD) is a devastating disease in preterm infants concurrent with neurodevelopmental disorders. Chronic hyperoxia exposure might also cause brain injury, but the evidence was insufficient. METHODS Neonatal C57BL/6J mice were exposed to hyperoxia from P0 to induce a BPD disease model. Lung histopathological morphology analyses were performed at P10, P15, and P20. Cerebral myelination was assessed using MBP (myelin basic protein, a major myelin protein), NfH (neurofilament heavy chain, a biomarker of neurofilament heavy chain), and GFAP (glial fibrillary acidic protein, a marker of astrocytes) as biomarkers by western blot and immunofluorescence. RESULTS Mice exposed to hyperoxia exhibited reduced and enlarged alveoli in lungs. During hyperoxia exposure, MBP declined at P10, but then increased to a comparable level to the air group at P15 and P20. Meanwhile, GFAP elevated significantly at P10, and the elevation sustained to P15 and P20. CONCLUSION Neonatal hyperoxia exposure caused an arrest of lung development, as well as an obstacle of myelination process in white matter of the immature brain, with a decline of MBP in the generation period of myelin and persistent astrogliosis.
Collapse
Affiliation(s)
- Wenwen Chen
- Children’s Hospital of Fudan University, Shanghai 201102, China; (W.C.); (R.W.)
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai 201102, China
- Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou 363000, China
| | - Ran Wang
- Children’s Hospital of Fudan University, Shanghai 201102, China; (W.C.); (R.W.)
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai 201102, China
| | - Chao Chen
- Children’s Hospital of Fudan University, Shanghai 201102, China; (W.C.); (R.W.)
- Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai 201102, China
| |
Collapse
|
6
|
Strauss E, Gotz-Więckowska A, Sobaniec A, Chmielarz-Czarnocińska A, Szpecht D, Januszkiewicz-Lewandowska D. Hypoxia-Inducible Pathway Polymorphisms and Their Role in the Complications of Prematurity. Genes (Basel) 2023; 14:genes14050975. [PMID: 37239335 DOI: 10.3390/genes14050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Excessive oxidative stress resulting from hyperoxia or hypoxia is a recognized risk factor for diseases of prematurity. However, the role of the hypoxia-related pathway in the development of these diseases has not been well studied. Therefore, this study aimed to investigate the association between four functional single nucleotide polymorphisms (SNPs) in the hypoxia-related pathway, and the development of complications of prematurity in relation to perinatal hypoxia. A total of 334 newborns born before or on the 32nd week of gestation were included in the study. The SNPs studied were HIF1A rs11549465 and rs11549467, VEGFA rs2010963, and rs833061. The findings suggest that the HIF1A rs11549465T allele is an independent protective factor against necrotizing enterocolitis (NEC), but may increase the risk of diffuse white matter injury (DWMI) in newborns exposed to hypoxia at birth and long-term oxygen supplementation. In addition, the rs11549467A allele was found to be an independent protective factor against respiratory distress syndrome (RDS). No significant associations with VEGFA SNPs were observed. These findings indicate the potential involvement of the hypoxia-inducible pathway in the pathogenesis of complications of prematurity. Studies with larger sample sizes are needed to confirm these results and explore their clinical implications.
Collapse
Affiliation(s)
- Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Anna Gotz-Więckowska
- Department of Ophthalmology, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569 Poznan, Poland
| | - Alicja Sobaniec
- Department of Neonatology, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
| | - Anna Chmielarz-Czarnocińska
- Department of Ophthalmology, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569 Poznan, Poland
| | - Dawid Szpecht
- Department of Neonatology, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
| | - Danuta Januszkiewicz-Lewandowska
- Department of Medical Diagnostics, Poznan University of Medical Sciences, Dobra Street 38a, 60-595 Poznan, Poland
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| |
Collapse
|
7
|
Gadra EC, Cristancho AG. A Simplified Paradigm of Late Gestation Transient Prenatal Hypoxia to Investigate Functional and Structural Outcomes from a Developmental Hypoxic Insult. Bio Protoc 2022; 12:e4519. [PMID: 36313199 PMCID: PMC9548518 DOI: 10.21769/bioprotoc.4519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022] Open
Abstract
Late-gestation transient intrauterine hypoxia is a common cause of birth injury. It can lead to long-term neurodevelopmental disabilities even in the absence of gross anatomic injury. Currently, postnatal models of hypoxia-ischemia are most commonly used to study the effect of oxygen deprivation in the fetal brain. These models, however, are unable to take into account placental factors that influence the response to hypoxia, exhibit levels of cell death not seen in many human patients, and are unable to model preterm hypoxia. To address this gap in research, we have developed a protocol to induce transient hypoxia in fetal mice. A pregnant dam at gestational day 17.5 is placed into a hypoxia chamber. Over 30 min, the inspired oxygen is titrated from 21% (ambient air) to 5%. The dam remains in the chamber for up to 8 h, after which fetal brains can be collected or pups delivered for postnatal studies. This protocol recapitulates phenotypes seen in human patients exposed to transient in utero hypoxia and is readily reproducible by researchers. Graphical abstract.
Collapse
Affiliation(s)
- Elyse C. Gadra
- Division of Child Neurology, Children’s Hospital of Philadelphia, PA, USA
| | - Ana G. Cristancho
- Division of Child Neurology, Children’s Hospital of Philadelphia, PA, USA
,
Department of Pediatrics, Children’s Hospital of Philadelphia, PA, USA
,
Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
,
*For correspondence:
| |
Collapse
|
8
|
Cristancho AG, Gadra EC, Samba IM, Zhao C, Ouyang M, Magnitsky S, Huang H, Viaene AN, Anderson SA, Marsh ED. Deficits in Seizure Threshold and Other Behaviors in Adult Mice without Gross Neuroanatomic Injury after Late Gestation Transient Prenatal Hypoxia. Dev Neurosci 2022; 44:246-265. [PMID: 35279653 PMCID: PMC9464267 DOI: 10.1159/000524045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Intrauterine hypoxia is a common cause of brain injury in children resulting in a broad spectrum of long-term neurodevelopmental sequela, including life-long disabilities that can occur even in the absence of severe neuroanatomic damage. Postnatal hypoxia-ischemia rodent models are commonly used to understand the effects of ischemia and transient hypoxia on the developing brain. Postnatal models, however, have some limitations. First, they do not test the impact of placental pathologies on outcomes from hypoxia. Second, they primarily recapitulate severe injury because they provoke substantial cell death, which is not seen in children with mild hypoxic injury. Lastly, they do not model preterm hypoxic injury. Prenatal models of hypoxia in mice may allow us to address some of these limitations to expand our understanding of developmental brain injury. The published rodent models of prenatal hypoxia employ multiple days of hypoxic exposure or complicated surgical procedures, making these models challenging to perform consistently in mice. Furthermore, large animal models suggest that transient prenatal hypoxia without ischemia is sufficient to lead to significant functional impairment to the developing brain. However, these large animal studies are resource-intensive and not readily amenable to mechanistic molecular studies. Therefore, here we characterized the effect of late gestation (embryonic day 17.5) transient prenatal hypoxia (5% inspired oxygen) on long-term anatomical and neurodevelopmental outcomes in mice. Late gestation transient prenatal hypoxia increased hypoxia-inducible factor 1 alpha protein levels (a marker of hypoxic exposure) in the fetal brain. Hypoxia exposure predisposed animals to decreased weight at postnatal day 2, which normalized by day 8. However, hypoxia did not affect gestational age at birth, litter size at birth, or pup survival. No differences in fetal brain cell death or long-term gray or white matter changes resulted from hypoxia. Animals exposed to prenatal hypoxia did have several long-term functional consequences, including sex-dichotomous changes. Hypoxia exposure was associated with a decreased seizure threshold and abnormalities in hindlimb strength and repetitive behaviors in males and females. Males exposed to hypoxia had increased anxiety-related deficits, whereas females had deficits in social interaction. Neither sex developed any motor or visual learning deficits. This study demonstrates that late gestation transient prenatal hypoxia in mice is a simple, clinically relevant paradigm for studying putative environmental and genetic modulators of the long-term effects of hypoxia on the developing brain.
Collapse
Affiliation(s)
- Ana G. Cristancho
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Elyse C. Gadra
- Department of Child and Adolescent Psychiatry and Behavioral Services, The Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
| | - Ima M. Samba
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
| | - Chenying Zhao
- Radiology Research, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, U.S.A
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Minhui Ouyang
- Radiology Research, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, U.S.A
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, U.S.A
| | - Sergey Magnitsky
- Radiology Research, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, U.S.A
| | - Hao Huang
- Radiology Research, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, U.S.A
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, U.S.A
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A. and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Stewart A. Anderson
- Department of Child and Adolescent Psychiatry and Behavioral Services, The Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Eric D. Marsh
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, U.S.A
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| |
Collapse
|
9
|
Guo F, Zhang S. Hypoxia inducible factor and diffuse white matter injury in the premature brain: perspectives from genetic studies in mice. Neural Regen Res 2022; 17:105-107. [PMID: 34100442 PMCID: PMC8451551 DOI: 10.4103/1673-5374.314301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Fuzheng Guo
- Department of Neurology, School of Medicine, the University of California, Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
| | - Sheng Zhang
- Department of Neurology, School of Medicine, the University of California, Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
| |
Collapse
|
10
|
Wang Y, Zhang Y, Zhang S, Kim B, Hull VL, Xu J, Prabhu P, Gregory M, Martinez-Cerdeno V, Zhan X, Deng W, Guo F. PARP1-mediated PARylation activity is essential for oligodendroglial differentiation and CNS myelination. Cell Rep 2021; 37:109695. [PMID: 34610310 PMCID: PMC9586836 DOI: 10.1016/j.celrep.2021.109695] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/21/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
The function of poly(ADP-ribosyl) polymerase 1 (PARP1) in myelination and remyelination of the central nervous system (CNS) remains enigmatic. Here, we report that PARP1 is an intrinsic driver for oligodendroglial development and myelination. Genetic PARP1 depletion impairs the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes and impedes CNS myelination. Mechanistically, PARP1-mediated PARylation activity is not only necessary but also sufficient for OPC differentiation. At the molecular level, we identify the RNA-binding protein Myef2 as a PARylated target, which controls OPC differentiation through the PARylation-modulated derepression of myelin protein expression. Furthermore, PARP1’s enzymatic activity is necessary for oligodendrocyte and myelin regeneration after demyelination. Together, our findings suggest that PARP1-mediated PARylation activity may be a potential therapeutic target for promoting OPC differentiation and remyelination in neurological disorders characterized by arrested OPC differentiation and remyelination failure such as multiple sclerosis. Wang et al. show that PARP1-mediated PARylation promotes oligodendroglial differentiation and regeneration. They demonstrate that PARP1 PARylates proteins relating to RNA metabolism under physiological conditions and that Myef2 is identified as one of the potential targets that mediates PARP1-regulated myelin gene expression at the posttranscriptional level during oligodendroglial development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Yanhong Zhang
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Sheng Zhang
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Bokyung Kim
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Vanessa L Hull
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Jie Xu
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Preeti Prabhu
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Maria Gregory
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Veronica Martinez-Cerdeno
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Xinhua Zhan
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Wenbin Deng
- Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA
| | - Fuzheng Guo
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
11
|
Wang Y, Hull V, Sternbach S, Popovich B, Burns T, McDonough J, Guo F, Pleasure D. Ablating the Transporter Sodium-Dependent Dicarboxylate Transporter 3 Prevents Leukodystrophy in Canavan Disease Mice. Ann Neurol 2021; 90:845-850. [PMID: 34498299 DOI: 10.1002/ana.26211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022]
Abstract
Canavan disease is caused by ASPA mutations that diminish brain aspartoacylase activity, and it is characterized by excessive brain storage of the aspartoacylase substrate, N-acetyl-l-aspartate (NAA), and by astroglial and intramyelinic vacuolation. Astroglia and the arachnoid mater express sodium-dependent dicarboxylate transporter (NaDC3), encoded by SLC13A3, a sodium-coupled transporter for NAA and other dicarboxylates. Constitutive Slc13a3 deletion in aspartoacylase-deficient Canavan disease mice prevents brain NAA overaccumulation, ataxia, and brain vacuolation. ANN NEUROL 2021;90:845-850.
Collapse
Affiliation(s)
- Yan Wang
- Institute for Pediatric Regenerative Medicine, UC Davis, c/o Shriners Hospital, Sacramento, CA
| | - Vanessa Hull
- Institute for Pediatric Regenerative Medicine, UC Davis, c/o Shriners Hospital, Sacramento, CA
| | - Sarah Sternbach
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH
| | - Brad Popovich
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH
| | - Travis Burns
- Institute for Pediatric Regenerative Medicine, UC Davis, c/o Shriners Hospital, Sacramento, CA
| | - Jennifer McDonough
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH
| | - Fuzheng Guo
- Institute for Pediatric Regenerative Medicine, UC Davis, c/o Shriners Hospital, Sacramento, CA
| | - David Pleasure
- Institute for Pediatric Regenerative Medicine, UC Davis, c/o Shriners Hospital, Sacramento, CA
| |
Collapse
|