1
|
Mishra A, Tostaeva G, Nentwich M, Espinal E, Markowitz N, Winfield J, Freund E, Gherman S, Mehta AD, Bickel S. Motifs of human hippocampal and cortical high frequency oscillations structure processing and memory of naturalistic stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617305. [PMID: 39416218 PMCID: PMC11483033 DOI: 10.1101/2024.10.08.617305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The discrete events of our narrative experience are organized by the neural substrate that underlies episodic memory. This narrative process is segmented into discrete units by event boundaries. This permits a replay process that acts to consolidate each event into a narrative memory. High frequency oscillations (HFOs) are a potential mechanism for synchronizing neural activity during these processes. Here, we use intracranial recordings from participants viewing and freely recalling a naturalistic stimulus. We show that hippocampal HFOs increase following event boundaries and that coincident hippocampal-cortical HFOs (co-HFOs) occur in cortical regions previously shown to underlie event segmentation (inferior parietal, precuneus, lateral occipital, inferior frontal cortices). We also show that event-specific patterns of co-HFOs that occur during event viewing re-occur following the subsequent three event boundaries (in decaying fashion) and also during recall. This is consistent with models that support replay as a mechanism for memory consolidation. Hence, HFOs may coordinate activity across brain regions serving widespread event segmentation, encode naturalistic memory, and bind representations to assemble memory of a coherent, continuous experience.
Collapse
|
2
|
Garrett JC, Verzhbinsky IA, Kaestner E, Carlson C, Doyle WK, Devinsky O, Thesen T, Halgren E. Binding of cortical functional modules by synchronous high-frequency oscillations. Nat Hum Behav 2024; 8:1988-2002. [PMID: 39134741 DOI: 10.1038/s41562-024-01952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 07/09/2024] [Indexed: 08/21/2024]
Abstract
Whether high-frequency phase-locked oscillations facilitate integration ('binding') of information across widespread cortical areas is controversial. Here we show with intracranial electroencephalography that cortico-cortical co-ripples (~100-ms-long ~90 Hz oscillations) increase during reading and semantic decisions, at the times and co-locations when and where binding should occur. Fusiform wordform areas co-ripple with virtually all language areas, maximally from 200 to 400 ms post-word-onset. Semantically specified target words evoke strong co-rippling between wordform, semantic, executive and response areas from 400 to 800 ms, with increased co-rippling between semantic, executive and response areas prior to correct responses. Co-ripples were phase-locked at zero lag over long distances (>12 cm), especially when many areas were co-rippling. General co-activation, indexed by non-oscillatory high gamma, was mainly confined to early latencies in fusiform and earlier visual areas, preceding co-ripples. These findings suggest that widespread synchronous co-ripples may assist the integration of multiple cortical areas for sustained periods during cognition.
Collapse
Affiliation(s)
- Jacob C Garrett
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Ilya A Verzhbinsky
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
| | - Chad Carlson
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Werner K Doyle
- Department of Neurosurgery, New York University Langone School of Medicine, New York, NY, USA
| | - Orrin Devinsky
- Department of Neurology, New York University Langone School of Medicine, New York, NY, USA
| | - Thomas Thesen
- Department of Medical Education, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Eric Halgren
- Departments of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Li Z, Wang J, Tang C, Wang P, Ren P, Li S, Yi L, Liu Q, Sun L, Li K, Ding W, Bao H, Yao L, Na M, Luan G, Liang X. Coordinated NREM sleep oscillations among hippocampal subfields modulate synaptic plasticity in humans. Commun Biol 2024; 7:1236. [PMID: 39354050 PMCID: PMC11445409 DOI: 10.1038/s42003-024-06941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
The integration of hippocampal oscillations during non-rapid eye movement (NREM) sleep is crucial for memory consolidation. However, how cardinal sleep oscillations bind across various subfields of the human hippocampus to promote information transfer and synaptic plasticity remains unclear. Using human intracranial recordings from 25 epilepsy patients, we find that hippocampal subfields, including DG/CA3, CA1, and SUB, all exhibit significant delta and spindle power during NREM sleep. The DG/CA3 displays strong coupling between delta and ripple oscillations with all the other hippocampal subfields. In contrast, the regions of CA1 and SUB exhibit more precise coordination, characterized by event-level triple coupling between delta, spindle, and ripple oscillations. Furthermore, we demonstrate that the synaptic plasticity within the hippocampal circuit, as indexed by delta-wave slope, is linearly modulated by spindle power. In contrast, ripples act as a binary switch that triggers a sudden increase in delta-wave slope. Overall, these results suggest that different subfields of the hippocampus regulate one another through diverse layers of sleep oscillation synchronization, collectively facilitating information processing and synaptic plasticity during NREM sleep.
Collapse
Affiliation(s)
- Zhipeng Li
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Jing Wang
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Chongyang Tang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Peng Wang
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Peng Ren
- Institute of Science and Technology for Brain-Inspired Intelligence and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Siyang Li
- Zhejiang Lab, Hangzhou, Zhejiang, 311100, China
| | - Liye Yi
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiuyi Liu
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Lili Sun
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaizhou Li
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Wencai Ding
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, 150081, Harbin, China
- Department of Neurosurgery, BeijingTiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| | - Xia Liang
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China.
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China.
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, 150001, China.
- Research Center for Social Computing and Information Retrieval, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
4
|
Kucewicz MT, Cimbalnik J, Garcia-Salinas JS, Brazdil M, Worrell GA. High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams? Brain 2024; 147:2966-2982. [PMID: 38743818 PMCID: PMC11370809 DOI: 10.1093/brain/awae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Despite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected in the human mesial temporal lobe and neocortical intracranial recordings spanning gamma/epsilon (60-150 Hz), ripple (80-250 Hz) and higher frequency ranges. Separate from other non-oscillatory activities, these brief electrophysiological oscillations of distinct duration, frequency and amplitude are thought to be generated by coordinated spiking of neuronal ensembles within volumes as small as a single cortical column. Although the exact origins, mechanisms and physiological roles in health and disease remain elusive, they have been associated with human memory consolidation and cognitive processing. Recent studies suggest their involvement in encoding and recall of episodic memory with a possible role in the formation and reactivation of memory traces. High frequency oscillations are detected during encoding, throughout maintenance, and right before recall of remembered items, meeting a basic definition for an engram activity. The temporal coordination of high frequency oscillations reactivated across cortical and subcortical neural networks is ideally suited for integrating multimodal memory representations, which can be replayed and consolidated during states of wakefulness and sleep. High frequency oscillations have been shown to reflect coordinated bursts of neuronal assembly firing and offer a promising substrate for tracking and modulation of the hypothetical electrophysiological engram.
Collapse
Affiliation(s)
- Michal T Kucewicz
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Bioelectronics, Neurophysiology and Engineering Laboratory, Mayo Clinic, Departments of Neurology and Biomedical Engineering & Physiology, Mayo Clinic, Rochester, MN 55902, USA
| | - Jan Cimbalnik
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Department of Biomedical Engineering, St. Anne’s University Hospital in Brno & International Clinical Research Center, Brno 602 00, Czech Republic
- Brno Epilepsy Center, 1th Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, member of the ERN-EpiCARE, Brno 602 00, Czech Republic
| | - Jesus S Garcia-Salinas
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Milan Brazdil
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Brno Epilepsy Center, 1th Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, member of the ERN-EpiCARE, Brno 602 00, Czech Republic
- Behavioural and Social Neuroscience Research Group, CEITEC—Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Gregory A Worrell
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Bioelectronics, Neurophysiology and Engineering Laboratory, Mayo Clinic, Departments of Neurology and Biomedical Engineering & Physiology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
5
|
Martinez JD, Wilson LG, Brancaleone WP, Peterson KG, Popke DS, Garzon VC, Perez Tremble RE, Donnelly MJ, Mendez Ortega SL, Torres D, Shaver JJ, Jiang S, Yang Z, Aton SJ. Hypnotic treatment improves sleep architecture and EEG disruptions and rescues memory deficits in a mouse model of fragile X syndrome. Cell Rep 2024; 43:114266. [PMID: 38787724 DOI: 10.1016/j.celrep.2024.114266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/20/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Fragile X syndrome (FXS) is associated with disrupted cognition and sleep abnormalities. Sleep loss negatively impacts cognitive function, and one untested possibility is that disrupted cognition in FXS is exacerbated by abnormal sleep. We tested whether ML297, a hypnotic acting on G-protein-activated inward-rectifying potassium (GIRK) channels, could reverse sleep phenotypes and disrupted memory in Fmr1-/y mice. Fmr1-/y mice exhibit reduced non-rapid eye movement (NREM) sleep and fragmented NREM architecture, altered sleep electroencephalogram (EEG) oscillations, and reduced EEG coherence between cortical areas; these are partially reversed following ML297 administration. Treatment following contextual fear or spatial learning restores disrupted memory consolidation in Fmr1-/y mice. During memory recall, Fmr1-/y mice show an altered balance of activity among hippocampal principal neurons vs. parvalbumin-expressing interneurons; this is partially reversed by ML297. Because sleep disruption could impact neurophysiological phenotypes in FXS, augmenting sleep may improve disrupted cognition in this disorder.
Collapse
Affiliation(s)
- Jessy D Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lydia G Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William P Brancaleone
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathryn G Peterson
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Donald S Popke
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Valentina Caicedo Garzon
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roxanne E Perez Tremble
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcus J Donnelly
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Daniel Torres
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Shaver
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sha Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhongying Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Staresina BP. Coupled sleep rhythms for memory consolidation. Trends Cogn Sci 2024; 28:339-351. [PMID: 38443198 DOI: 10.1016/j.tics.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
How do passing moments turn into lasting memories? Sheltered from external tasks and distractions, sleep constitutes an optimal state for the brain to reprocess and consolidate previous experiences. Recent work suggests that consolidation is governed by the intricate interaction of slow oscillations (SOs), spindles, and ripples - electrophysiological sleep rhythms that orchestrate neuronal processing and communication within and across memory circuits. This review describes how sequential SO-spindle-ripple coupling provides a temporally and spatially fine-tuned mechanism to selectively strengthen target memories across hippocampal and cortical networks. Coupled sleep rhythms might be harnessed not only to enhance overnight memory retention, but also to combat memory decline associated with healthy ageing and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Latreille V, Avigdor T, Thomas J, Crane J, Sziklas V, Jones-Gotman M, Frauscher B. Scalp and hippocampal sleep correlates of memory function in drug-resistant temporal lobe epilepsy. Sleep 2024; 47:zsad228. [PMID: 37658793 PMCID: PMC10851866 DOI: 10.1093/sleep/zsad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/22/2023] [Indexed: 09/05/2023] Open
Abstract
Seminal animal studies demonstrated the role of sleep oscillations such as cortical slow waves, thalamocortical spindles, and hippocampal ripples in memory consolidation. In humans, whether ripples are involved in sleep-related memory processes is less clear. Here, we explored the interactions between sleep oscillations (measured as traits) and general episodic memory abilities in 26 adults with drug-resistant temporal lobe epilepsy who performed scalp-intracranial electroencephalographic recordings and neuropsychological testing, including two analogous hippocampal-dependent verbal and nonverbal memory tasks. We explored the relationships between hemispheric scalp (spindles, slow waves) and hippocampal physiological and pathological oscillations (spindles, slow waves, ripples, and epileptic spikes) and material-specific memory function. To differentiate physiological from pathological ripples, we used multiple unbiased data-driven clustering approaches. At the individual level, we found material-specific cerebral lateralization effects (left-verbal memory, right-nonverbal memory) for all scalp spindles (rs > 0.51, ps < 0.01) and fast spindles (rs > 0.61, ps < 0.002). Hippocampal epileptic spikes and short pathological ripples, but not physiological oscillations, were negatively (rs > -0.59, ps < 0.01) associated with verbal learning and retention scores, with left lateralizing and antero-posterior effects. However, data-driven clustering failed to separate the ripple events into defined clusters. Correlation analyses with the resulting clusters revealed no meaningful or significant associations with the memory scores. Our results corroborate the role of scalp spindles in memory processes in patients with drug-resistant temporal lobe epilepsy. Yet, physiological and pathological ripples were not separable when using data-driven clustering, and thus our findings do not provide support for a role of sleep ripples as trait-like characteristics of general memory abilities in epilepsy.
Collapse
Affiliation(s)
- Véronique Latreille
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Tamir Avigdor
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - John Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Joelle Crane
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Department of Psychology, McGill University, Montreal, Canada
| | - Viviane Sziklas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Department of Psychology, McGill University, Montreal, Canada
| | - Marilyn Jones-Gotman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Department of Psychology, McGill University, Montreal, Canada
| | - Birgit Frauscher
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
- Analytical Neurophysiology (ANPHY) Lab, Duke University Medical Center, Durham, NC, USA
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Department of Biomedical Engineering. Duke Pratt School of Engineering, Durham NC, USA
| |
Collapse
|
8
|
Weiss SA, Fried I, Engel J, Bragin A, Wang S, Sperling MR, Wong RK, Nir Y, Staba RJ. Pathological neurons generate ripples at the UP-DOWN transition disrupting information transfer. Epilepsia 2024; 65:362-377. [PMID: 38041560 PMCID: PMC10922301 DOI: 10.1111/epi.17845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE To confirm and investigate why pathological high-frequency oscillations (pHFOs), including ripples (80-200 Hz) and fast ripples (200-600 Hz), are generated during the UP-DOWN transition of the slow wave and if information transmission mediated by ripple temporal coupling is disrupted in the seizure-onset zone (SOZ). METHODS We isolated 217 total units from 175.95 intracranial electroencephalography (iEEG) contact-hours of synchronized macro- and microelectrode recordings from 6 patients. Sleep slow oscillation (.1-2 Hz) epochs were identified in the iEEG recording. iEEG HFOs that occurred superimposed on the slow wave were transformed to phasors and adjusted by the phase of maximum firing in nearby units (i.e., maximum UP). We tested whether, in the SOZ, HFOs and associated action potentials (APs) occur more often at the UP-DOWN transition. We also examined ripple temporal correlations using cross-correlograms. RESULTS At the group level in the SOZ, HFO and HFO-associated AP probability was highest during the UP-DOWN transition of slow wave excitability (p < < .001). In the non-SOZ, HFO and HFO-associated AP was highest during the DOWN-UP transition (p < < .001). At the unit level in the SOZ, 15.6% and 20% of units exhibited more robust firing during ripples (Cohen's d = .11-.83) and fast ripples (d = .36-.90) at the UP-DOWN transition (p < .05 f.d.r. corrected), respectively. By comparison, also in the SOZ, 6.6% (d = .14-.30) and 8.5% (d = .33-.41) of units had significantly less firing during ripples and fast ripples at the UP-DOWN transition, respectively. Additional data shows that ripple and fast ripple temporal correlations, involving global slow waves, between the hippocampus, entorhinal cortex, and parahippocampal gyrus were reduced by >50% in the SOZ compared to the non-SOZ (N = 3). SIGNIFICANCE The UP-DOWN transition of slow wave excitability facilitates the activation of pathological neurons to generate pHFOs. Ripple temporal correlations across brain regions may be important in memory consolidation and are disrupted in the SOZ, perhaps by pHFO generation.
Collapse
Affiliation(s)
- Shennan A Weiss
- Dept. of Neurology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, USA
| | - Itzhak Fried
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Jerome Engel
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Anatol Bragin
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Shuang Wang
- Depts of Neurology, Epilepsy Center, Second Affiliated Hospital of Medical College, Zhejiang University, Zhejiang, China
| | - Michael R. Sperling
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Robert K.S. Wong
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Richard J Staba
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| |
Collapse
|
9
|
Aksamaz S, Mölle M, Akinola EO, Gromodka E, Bazhenov M, Marshall L. Single closed-loop acoustic stimulation targeting memory consolidation suppressed hippocampal ripple and thalamo-cortical spindle activity in mice. Eur J Neurosci 2024; 59:595-612. [PMID: 37605315 PMCID: PMC11214843 DOI: 10.1111/ejn.16116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
Brain rhythms of sleep reflect neuronal activity underlying sleep-associated memory consolidation. The modulation of brain rhythms, such as the sleep slow oscillation (SO), is used both to investigate neurophysiological mechanisms as well as to measure the impact of sleep on presumed functional correlates. Previously, closed-loop acoustic stimulation in humans targeted to the SO Up-state successfully enhanced the slow oscillation rhythm and phase-dependent spindle activity, although effects on memory retention have varied. Here, we aim to disclose relations between stimulation-induced hippocampo-thalamo-cortical activity and retention performance on a hippocampus-dependent object-place recognition task in mice by applying acoustic stimulation at four estimated SO phases compared to sham condition. Across the 3-h retention interval at the beginning of the light phase closed-loop stimulation failed to improve retention significantly over sham. However, retention during SO Up-state stimulation was significantly higher than for another SO phase. At all SO phases, acoustic stimulation was accompanied by a sharp increase in ripple activity followed by about a second-long suppression of hippocampal sharp wave ripple and longer maintained suppression of thalamo-cortical spindle activity. Importantly, dynamics of SO-coupled hippocampal ripple activity distinguished SOUp-state stimulation. Non-rapid eye movement (NREM) sleep was not impacted by stimulation, yet preREM sleep duration was effected. Results reveal the complex effect of stimulation on the brain dynamics and support the use of closed-loop acoustic stimulation in mice to investigate the inter-regional mechanisms underlying memory consolidation.
Collapse
Affiliation(s)
- Sonat Aksamaz
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
| | - Matthias Mölle
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck,
Germany
| | - Esther Olubukola Akinola
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
| | - Erik Gromodka
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego,
La Jolla, CA, USA
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology,
University of Lübeck, Lübeck, Germany
- University Medical Center Schleswig-Holstein,
Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck,
Germany
| |
Collapse
|
10
|
Fukuyama K, Motomura E, Okada M. Age-Dependent Activation of Pannexin1 Function Contributes to the Development of Epileptogenesis in Autosomal Dominant Sleep-related Hypermotor Epilepsy Model Rats. Int J Mol Sci 2024; 25:1619. [PMID: 38338895 PMCID: PMC10855882 DOI: 10.3390/ijms25031619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
To explore the processes of epileptogenesis/ictogenesis, this study determined the age-dependent development of the functional abnormalities in astroglial transmission associated with pannexin1-hemichannel using a genetic rat model of autosomal dominant sleep-related hypermotor epilepsy (ADSHE) named 'S286L-TG'. Pannexin1 expression in the plasma membrane of primary cultured cortical astrocytes and the orbitofrontal cortex (OFC), which is an ADSHE focus region, were determined using capillary immunoblotting. Astroglial D-serine releases induced by artificial high-frequency oscillation (HFO)-evoked stimulation, the removal of extracellular Ca2+, and the P2X7 receptor agonist (BzATP) were determined using ultra-high performance liquid chromatography (UHPLC). The expressions of pannexin1 in the plasma membrane fraction of the OFC in S286L-TG at four weeks old were almost equivalent when compared to the wild type. The pannexin1 expression in the OFC of the wild type non-statistically decreased age-dependently, whereas that in S286L-TG significantly increased age-dependently, resulting in relatively increasing pannexin1 expression from the 7- (at the onset of interictal discharge) and 10-week-old (after the ADSHE seizure onset) S286L-TG compared to the wild type. However, no functional abnormalities of astroglial pannexin1 expression or D-serine release through the pannexin1-hemichannels from the cultured astrocytes of S286L-TG could be detected. Acutely HFO-evoked stimulation, such as physiological ripple burst (200 Hz) and epileptogenic fast ripple burst (500 Hz), frequency-dependently increased both pannexin1 expression in the astroglial plasma membrane and astroglial D-serine release. Neither the selective inhibitors of pannexin1-hemichannel (10PANX) nor connexin43-hemichannel (Gap19) affected astroglial D-serine release during the resting stage, whereas HFO-evoked D-serine release was suppressed by both inhibitors. The inhibitory effect of 10PANX on the ripple burst-evoked D-serine release was more predominant than that of Gap19, whereas fast ripple burst-evoked D-serine release was predominantly suppressed by Gap19 rather than 10PANX. Astroglial D-serine release induced by acute exposure to BzATP was suppressed by 10PANX but not by Gap19. These results suggest that physiological ripple burst during the sleep spindle plays important roles in the organization of some components of cognition in healthy individuals, but conversely, it contributes to the initial development of epileptogenesis/ictogenesis in individuals who have ADSHE vulnerability via activation of the astroglial excitatory transmission associated with pannexin1-hemichannels.
Collapse
Affiliation(s)
| | | | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (E.M.)
| |
Collapse
|
11
|
Verzhbinsky IA, Rubin DB, Kajfez S, Bu Y, Kelemen JN, Kapitonava A, Williams ZM, Hochberg LR, Cash SS, Halgren E. Co-occurring ripple oscillations facilitate neuronal interactions between cortical locations in humans. Proc Natl Acad Sci U S A 2024; 121:e2312204121. [PMID: 38157452 PMCID: PMC10769862 DOI: 10.1073/pnas.2312204121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2024] Open
Abstract
How the human cortex integrates ("binds") information encoded by spatially distributed neurons remains largely unknown. One hypothesis suggests that synchronous bursts of high-frequency oscillations ("ripples") contribute to binding by facilitating integration of neuronal firing across different cortical locations. While studies have demonstrated that ripples modulate local activity in the cortex, it is not known whether their co-occurrence coordinates neural firing across larger distances. We tested this hypothesis using local field-potentials and single-unit firing from four 96-channel microelectrode arrays in the supragranular cortex of 3 patients. Neurons in co-rippling locations showed increased short-latency co-firing, prediction of each other's firing, and co-participation in neural assemblies. Effects were similar for putative pyramidal and interneurons, during non-rapid eye movement sleep and waking, in temporal and Rolandic cortices, and at distances up to 16 mm (the longest tested). Increased co-prediction during co-ripples was maintained when firing-rate changes were equated, indicating that it was not secondary to non-oscillatory activation. Co-rippling enhanced prediction was strongly modulated by ripple phase, supporting the most common posited mechanism for binding-by-synchrony. Co-ripple enhanced prediction is reciprocal, synergistic with local upstates, and further enhanced when multiple sites co-ripple, supporting re-entrant facilitation. Together, these results support the hypothesis that trans-cortical co-occurring ripples increase the integration of neuronal firing of neurons in different cortical locations and do so in part through phase-modulation rather than unstructured activation.
Collapse
Affiliation(s)
- Ilya A. Verzhbinsky
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA92093
- Medical Scientist Training Program, University of California San Diego, La Jolla, CA92093
| | - Daniel B. Rubin
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA02114
| | - Sophie Kajfez
- Department of Radiology, University of California San Diego, La Jolla, CA92093
| | - Yiting Bu
- Department of Neurosciences, University of California San Diego, La Jolla, CA92093
| | - Jessica N. Kelemen
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA02114
| | - Anastasia Kapitonava
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA02114
| | - Ziv M. Williams
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA02114
| | - Leigh R. Hochberg
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA02114
- Center for Neurorestoration and Neurotechnology, Department of Veterans Affairs, Providence, RI02908
- Carney Institute for Brain Science and School of Engineering, Brown University, Providence, RI02912
| | - Sydney S. Cash
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA02114
| | - Eric Halgren
- Department of Radiology, University of California San Diego, La Jolla, CA92093
- Department of Neurosciences, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
12
|
Keil J, Kiiski H, Doherty L, Hernandez-Urbina V, Vassiliou C, Dean C, Müschenich M, Bahmani H. Artificial sharp-wave-ripples to support memory and counter neurodegeneration. Brain Res 2024; 1822:148646. [PMID: 37871674 DOI: 10.1016/j.brainres.2023.148646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Information processed in our sensory neocortical areas is transported to the hippocampus during memory encoding, and between hippocampus and neocortex during memory consolidation, and retrieval. Short bursts of high-frequency oscillations, so called sharp-wave-ripples, have been proposed as a potential mechanism for this information transfer: They can synchronize neural activity to support the formation of local neural networks to store information, and between distant cortical sites to act as a bridge to transfer information between sensory cortical areas and hippocampus. In neurodegenerative diseases like Alzheimer's Disease, different neuropathological processes impair normal neural functioning and neural synchronization as well as sharp-wave-ripples, which impairs consolidation and retrieval of information, and compromises memory. Here, we formulate a new hypothesis, that artificially inducing sharp-wave-ripples with noninvasive high-frequency visual stimulation could potentially support memory functioning, as well as target the neuropathological processes underlying neurodegenerative diseases. We also outline key challenges for empirical tests of the hypothesis.
Collapse
Affiliation(s)
- Julian Keil
- Department of Psychology, Christian-Albrechts-University Kiel, Germany; Ababax Health GmbH, Berlin, Germany; Department of Cognitive Science, University of Potsdam, Germany.
| | - Hanni Kiiski
- Ababax Health GmbH, Berlin, Germany; Department of Cognitive Science, University of Potsdam, Germany
| | | | | | - Chrystalleni Vassiliou
- German Center for Neurodegenerative Diseases, Charité University of Medicine, Berlin, Germany
| | - Camin Dean
- German Center for Neurodegenerative Diseases, Charité University of Medicine, Berlin, Germany
| | | | - Hamed Bahmani
- Ababax Health GmbH, Berlin, Germany; Bernstein Center for Computational Neuroscience, Tuebingen, Germany
| |
Collapse
|
13
|
Weiss SA, Fried I, Engel J, Bragin A, Wang S, Sperling MR, Wong RK, Nir Y, Staba RJ. Pathological neurons generate ripples at the UP-DOWN transition disrupting information transfer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.01.23293365. [PMID: 37609251 PMCID: PMC10441494 DOI: 10.1101/2023.08.01.23293365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Objective To confirm and investigate why pathological HFOs (pHFOs), including Ripples [80-200 Hz] and fast ripples [200-600 Hz], are generated during the UP-DOWN transition of the slow wave and if pHFOs interfere with information transmission. Methods We isolated 217 total units from 175.95 iEEG contact-hours of synchronized macro- and microelectrode recordings from 6 patients. Sleep slow oscillation (0.1-2 Hz) epochs were identified in the iEEG recording. iEEG HFOs that occurred superimposed on the slow wave were transformed to phasors and adjusted by the phase of maximum firing in nearby units (i.e., maximum UP). We tested whether, in the seizure onset zone (SOZ), HFOs and associated action potentials (AP) occur more often at the UP-DOWN transition. We also examined ripple temporal correlations using cross correlograms. Results At the group level in the SOZ, HFO and HFO-associated AP probability was highest during the UP-DOWN transition of slow wave excitability (p<<0.001). In the non-SOZ, HFO and HFO-associated AP was highest during the DOWN-UP transition (p<<0.001). At the unit level in the SOZ, 15.6% and 20% of units exhibited more robust firing during ripples (Cohen's d=0.11-0.83) and fast ripples (d=0.36-0.90) at the UP-DOWN transition (p<0.05 f.d.r corrected), respectively. By comparison, also in the SOZ, 6.6% (d=0.14-0.30) and 8.5% (d=0.33-0.41) of units had significantly less firing during ripples and fast ripples at the UP-DOWN transition, respectively. Additional data shows ripple temporal correlations, involving global slow waves, between the hippocampus, entorhinal cortex, and parahippocampal gyrus were reduced by ~50-80% in the SOZ compared to the non-SOZ (N=3). Significance The UP-DOWN transition of slow wave excitability facilitates the activation of pathological neurons to generate pHFOs. The pathological neurons and pHFOs disrupt ripple temporal correlations across brain regions that transfer information and may be important in memory consolidation.
Collapse
Affiliation(s)
- Shennan A Weiss
- Dept. of Neurology
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, USA
| | | | - Jerome Engel
- Dept. of Neurology
- Dept. of Neurosurgery
- Dept. of Neurobiology
- Dept. of Psychiatry and Biobehavioral Sciences
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | | | - Shuang Wang
- Depts of Neurology, Epilepsy Center, Second Affiliated Hospital of Medical College, Zhejiang University, Zhejiang, China
| | - Michael R. Sperling
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Robert K.S. Wong
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | | |
Collapse
|
14
|
Staresina BP, Niediek J, Borger V, Surges R, Mormann F. How coupled slow oscillations, spindles and ripples coordinate neuronal processing and communication during human sleep. Nat Neurosci 2023; 26:1429-1437. [PMID: 37429914 PMCID: PMC10400429 DOI: 10.1038/s41593-023-01381-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
Learning and plasticity rely on fine-tuned regulation of neuronal circuits during offline periods. An unresolved puzzle is how the sleeping brain, in the absence of external stimulation or conscious effort, coordinates neuronal firing rates (FRs) and communication within and across circuits to support synaptic and systems consolidation. Using intracranial electroencephalography combined with multiunit activity recordings from the human hippocampus and surrounding medial temporal lobe (MTL) areas, we show that, governed by slow oscillation (SO) up-states, sleep spindles set a timeframe for ripples to occur. This sequential coupling leads to a stepwise increase in (1) neuronal FRs, (2) short-latency cross-correlations among local neuronal assemblies and (3) cross-regional MTL interactions. Triggered by SOs and spindles, ripples thus establish optimal conditions for spike-timing-dependent plasticity and systems consolidation. These results unveil how the sequential coupling of specific sleep rhythms orchestrates neuronal processing and communication during human sleep.
Collapse
Affiliation(s)
- Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| | - Johannes Niediek
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Valeri Borger
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
15
|
van Schalkwijk FJ, Weber J, Hahn MA, Lendner JD, Inostroza M, Lin JJ, Helfrich RF. An evolutionary conserved division-of-labor between archicortical and neocortical ripples organizes information transfer during sleep. Prog Neurobiol 2023:102485. [PMID: 37353109 DOI: 10.1016/j.pneurobio.2023.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Systems-level memory consolidation during sleep depends on the temporally precise interplay between cardinal sleep oscillations. Specifically, hippocampal ripples constitute a key substrate of the hippocampal-neocortical dialogue underlying memory formation. Recently, it became evident that ripples are not unique to archicortex, but constitute a wide-spread neocortical phenomenon. To date, little is known about the morphological similarities between archi- and neocortical ripples. Moreover, it remains undetermined if neocortical ripples fulfill distinct functional roles. Leveraging intracranial recordings from the human medial temporal lobe (MTL) and neocortex during sleep, our results reveal region-specific functional specializations, albeit a near-uniform morphology. While MTL ripples synchronize the memory network to trigger directional MTL-to-neocortical information flow, neocortical ripples reduce information flow to minimize interference. At the population level, MTL ripples confined population dynamics to a low-dimensional subspace, while neocortical ripples diversified the population response; thus, constituting an effective mechanism to functionally uncouple the MTL-neocortical network. Critically, we replicated the key findings in rodents, where the same division-of-labor between archi- and neocortical ripples was evident. In sum, these results uncover an evolutionary preserved mechanism where the precisely coordinated interplay between MTL and neocortical ripples temporally segregates MTL information transfer from subsequent neocortical processing during sleep.
Collapse
Affiliation(s)
- Frank J van Schalkwijk
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| | - Jan Weber
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany; International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, Germany.
| | - Michael A Hahn
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| | - Janna D Lendner
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen; Hoppe-Seyler-Str 3, 72076 Tübingen, Germany.
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
| | - Jack J Lin
- Department of Neurology, University of California, Davis, 4860 Y St., Sacramento, CA 95817, USA; The Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA.
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| |
Collapse
|