1
|
Mazurie Z, Branchereau P, Cattaert D, Henkous N, Savona-Baron C, Vouimba RM. Acute stress differently modulates interneurons excitability and synaptic plasticity in the primary motor cortex of wild-type and SOD1 G93A mouse model of ALS. J Physiol 2024; 602:4987-5015. [PMID: 39216080 DOI: 10.1113/jp285210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Primary motor cortex (M1) network stability depends on activity of inhibitory interneurons, for which susceptibility to stress was previously demonstrated in limbic regions. Hyperexcitability in M1 following changes in the excitatory/inhibitory balance is a key pathological hallmark of amyotrophic lateral sclerosis (ALS). Using electrophysiological approaches, we assessed the impact of acute restraint stress on inhibitory interneurons excitability and global synaptic plasticity in M1 of the SOD1G93A ALS mouse model at a late pre-symptomatic stage (10-12.5 weeks). Based on their firing type (continuous, discontinuous, with accommodation or not) and electrophysiological characteristics (resting potential, rheobase, firing frequency), interneurons from M1 slices were separated into four clusters, labelled from 1 to 4. Among them, only interneurons from the first cluster, presenting continuous firing with few accommodations, tended to show increased excitability in wild-type (WT) and decreased excitability in SOD1G93A animals following stress. In vivo analyses of evoked field potentials showed that stress suppressed the theta burst-induced plasticity of an excitatory component (N1) recorded in the superficial layers of M1 in WT, with no impact on an inhibitory complex (N2-P1) from the deeper layers. In SOD1G93A mice, stress did not affect N1 but suppressed the N2-P1 plasticity. These data suggest that stress can alter M1 network functioning in a different manner in WT and SOD1G93A mice, possibly through changes of inhibitory interneurons excitability and synaptic plasticity. This suggests that stress-induced activity changes in M1 may therefore influence ALS outcomes. KEY POINTS: Disruption of the excitatory/inhibitory balance in the primary motor cortex (M1) has been linked to cortical hyperexcitability development, a key pathological hallmark of amyotrophic lateral sclerosis (ALS). Psychological stress was reported to influence excitatory/inhibitory balance in limbic regions, but very little is known about its influence on the M1 functioning under physiological or pathological conditions. Our study revealed that acute stress influences the excitatory/inhibitory balance within the M1, through changes in interneurons excitability along with network plasticity. Such changes were different in pathological (SOD1G93A ALS mouse model) vs. physiological (wild-type) conditions. The results of our study help us to better understand how stress modulates the M1 and highlight the need to further characterize stress-induced motor cortex changes because it may be of importance when evaluating ALS outcomes.
Collapse
Affiliation(s)
- Zoé Mazurie
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Pascal Branchereau
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Daniel Cattaert
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Nadia Henkous
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Catherine Savona-Baron
- Present address: BoRdeaux Institute of onCology (BRIC), INSERM U1312, University of Bordeaux, Bordeaux, France
| | - Rose-Marie Vouimba
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Tourtourikov I, Todorov T, Angelov T, Chamova T, Tournev I, Mitev V, Todorova A. Genetic Modifiers of ALS: The Impact of Chromogranin B P413L in a Bulgarian ALS Cohort. Genes (Basel) 2024; 15:1197. [PMID: 39336788 PMCID: PMC11431727 DOI: 10.3390/genes15091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the role of the CHGB P413L variant (rs742710) in sporadic amyotrophic lateral sclerosis (sALS) within the Bulgarian population. We analyzed 150 patients with sALS (85 male and 65 female) for the presence of this variant, its potential impact on disease susceptibility, and age of onset. Genotyping was performed using PCR amplification and direct Sanger sequencing. Statistical analyses included comparisons with control data from GnomAD v2.1.1, one-way ANOVA, and Kaplan-Meier survival analysis. Results revealed a higher frequency of the minor T allele in patients with sALS compared to all control groups and a statistically significant increase in carrier genotypes compared to non-Finnish Europeans (χ2 = 15.4572, p = 0.000440). However, the impact on age of onset was less clear, with no statistically significant differences observed across genotypes or between carriers and non-carriers of the T allele. Kaplan-Meier analysis suggested a potential 2.5-year-earlier onset in T allele carriers, but the small sample size of carriers limits the reliability of this finding. Our study provides evidence for an association between the CHGB P413L variant and sALS susceptibility in the Bulgarian population, while its effect on age of onset remains uncertain, highlighting the need for further research in larger, diverse cohorts.
Collapse
Affiliation(s)
- Ivan Tourtourikov
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
- Genetic Medico Diagnostic Laboratory Genica, 1612 Sofia, Bulgaria
| | - Tihomir Todorov
- Genetic Medico Diagnostic Laboratory Genica, 1612 Sofia, Bulgaria
| | - Teodor Angelov
- Department of Neurology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Teodora Chamova
- Department of Neurology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, Clinic of Nervous Diseases, Medical University of Sofia, UMBAL Aleksandrovska, 1431 Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, 1618 Sofia, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
- Genetic Medico Diagnostic Laboratory Genica, 1612 Sofia, Bulgaria
| |
Collapse
|
3
|
Goffin L, Lemoine D, Clotman F. Potential contribution of spinal interneurons to the etiopathogenesis of amyotrophic lateral sclerosis. Front Neurosci 2024; 18:1434404. [PMID: 39091344 PMCID: PMC11293063 DOI: 10.3389/fnins.2024.1434404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) consists of a group of adult-onset fatal and incurable neurodegenerative disorders characterized by the progressive death of motor neurons (MNs) throughout the central nervous system (CNS). At first, ALS was considered to be an MN disease, caused by cell-autonomous mechanisms acting specifically in MNs. Accordingly, data from ALS patients and ALS animal models revealed alterations in excitability in multiple neuronal populations, including MNs, which were associated with a variety of cellular perturbations such as protein aggregation, ribonucleic acid (RNA) metabolism defects, calcium dyshomeostasis, modified electrophysiological properties, and autophagy malfunctions. However, experimental evidence rapidly demonstrated the involvement of other types of cells, including glial cells, in the etiopathogenesis of ALS through non-cell autonomous mechanisms. Surprisingly, the contribution of pre-motor interneurons (INs), which regulate MN activity and could therefore critically modulate their excitability at the onset or during the progression of the disease, has to date been severely underestimated. In this article, we review in detail how spinal pre-motor INs are affected in ALS and their possible involvement in the etiopathogenesis of the disease.
Collapse
Affiliation(s)
| | | | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Xie M, Miller AS, Pallegar PN, Umpierre A, Liang Y, Wang N, Zhang S, Nagaraj NK, Fogarty ZC, Ghayal NB, Oskarsson B, Zhao S, Zheng J, Qi F, Nguyen A, Dickson DW, Wu LJ. Rod-shaped microglia interact with neuronal dendrites to regulate cortical excitability in TDP-43 related neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601396. [PMID: 39005475 PMCID: PMC11244918 DOI: 10.1101/2024.06.30.601396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Motor cortical hyperexcitability is well-documented in the presymptomatic stage of amyotrophic lateral sclerosis (ALS). However, the mechanisms underlying this early dysregulation are not fully understood. Microglia, as the principal immune cells of the central nervous system, have emerged as important players in sensing and regulating neuronal activity. Here we investigated the role of microglia in the motor cortical circuits in a mouse model of TDP-43 neurodegeneration (rNLS8). Utilizing multichannel probe recording and longitudinal in vivo calcium imaging in awake mice, we observed neuronal hyperactivity at the initial stage of disease progression. Spatial and single-cell RNA sequencing revealed that microglia are the primary responders to motor cortical hyperactivity. We further identified a unique subpopulation of microglia, rod-shaped microglia, which are characterized by a distinct morphology and transcriptional profile. Notably, rod-shaped microglia predominantly interact with neuronal dendrites and excitatory synaptic inputs to attenuate motor cortical hyperactivity. The elimination of rod-shaped microglia through TREM2 deficiency increased neuronal hyperactivity, exacerbated motor deficits, and further decreased survival rates of rNLS8 mice. Together, our results suggest that rod-shaped microglia play a neuroprotective role by attenuating cortical hyperexcitability in the mouse model of TDP-43 related neurodegeneration.
Collapse
|
5
|
Arnold FJ, Putka AF, Raychaudhuri U, Hsu S, Bedlack RS, Bennett CL, La Spada AR. Revisiting Glutamate Excitotoxicity in Amyotrophic Lateral Sclerosis and Age-Related Neurodegeneration. Int J Mol Sci 2024; 25:5587. [PMID: 38891774 PMCID: PMC11171854 DOI: 10.3390/ijms25115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder. While there are five FDA-approved drugs for treating this disease, each has only modest benefits. To design new and more effective therapies for ALS, particularly for sporadic ALS of unknown and diverse etiologies, we must identify key, convergent mechanisms of disease pathogenesis. This review focuses on the origin and effects of glutamate-mediated excitotoxicity in ALS (the cortical hyperexcitability hypothesis), in which increased glutamatergic signaling causes motor neurons to become hyperexcitable and eventually die. We characterize both primary and secondary contributions to excitotoxicity, referring to processes taking place at the synapse and within the cell, respectively. 'Primary pathways' include upregulation of calcium-permeable AMPA receptors, dysfunction of the EAAT2 astrocytic glutamate transporter, increased release of glutamate from the presynaptic terminal, and reduced inhibition by cortical interneurons-all of which have been observed in ALS patients and model systems. 'Secondary pathways' include changes to mitochondrial morphology and function, increased production of reactive oxygen species, and endoplasmic reticulum (ER) stress. By identifying key targets in the excitotoxicity cascade, we emphasize the importance of this pathway in the pathogenesis of ALS and suggest that intervening in this pathway could be effective for developing therapies for this disease.
Collapse
Affiliation(s)
- Frederick J. Arnold
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
| | - Alexandra F. Putka
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
| | - Urmimala Raychaudhuri
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Solomon Hsu
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Richard S. Bedlack
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
| | - Craig L. Bennett
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurology, University of California Irvine, Irvine, CA 92617, USA
| | - Albert R. La Spada
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
- Department of Neurology, University of California Irvine, Irvine, CA 92617, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- UCI Center for Neurotherapeutics, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Salzinger A, Ramesh V, Das Sharma S, Chandran S, Thangaraj Selvaraj B. Neuronal Circuit Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2024; 13:792. [PMID: 38786016 PMCID: PMC11120636 DOI: 10.3390/cells13100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The primary neural circuit affected in Amyotrophic Lateral Sclerosis (ALS) patients is the corticospinal motor circuit, originating in upper motor neurons (UMNs) in the cerebral motor cortex which descend to synapse with the lower motor neurons (LMNs) in the spinal cord to ultimately innervate the skeletal muscle. Perturbation of these neural circuits and consequent loss of both UMNs and LMNs, leading to muscle wastage and impaired movement, is the key pathophysiology observed. Despite decades of research, we are still lacking in ALS disease-modifying treatments. In this review, we document the current research from patient studies, rodent models, and human stem cell models in understanding the mechanisms of corticomotor circuit dysfunction and its implication in ALS. We summarize the current knowledge about cortical UMN dysfunction and degeneration, altered excitability in LMNs, neuromuscular junction degeneration, and the non-cell autonomous role of glial cells in motor circuit dysfunction in relation to ALS. We further highlight the advances in human stem cell technology to model the complex neural circuitry and how these can aid in future studies to better understand the mechanisms of neural circuit dysfunction underpinning ALS.
Collapse
Affiliation(s)
- Andrea Salzinger
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Vidya Ramesh
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Shreya Das Sharma
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Bhuvaneish Thangaraj Selvaraj
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
7
|
Odierna GL, Vucic S, Dyer M, Dickson T, Woodhouse A, Blizzard C. How do we get from hyperexcitability to excitotoxicity in amyotrophic lateral sclerosis? Brain 2024; 147:1610-1621. [PMID: 38408864 PMCID: PMC11068114 DOI: 10.1093/brain/awae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 02/28/2024] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease that, at present, has no effective cure. Evidence of increased circulating glutamate and hyperexcitability of the motor cortex in patients with amyotrophic lateral sclerosis have provided an empirical support base for the 'dying forward' excitotoxicity hypothesis. The hypothesis postulates that increased activation of upper motor neurons spreads pathology to lower motor neurons in the spinal cord in the form of excessive glutamate release, which triggers excitotoxic processes. Many clinical trials have focused on therapies that target excitotoxicity via dampening neuronal activation, but not all are effective. As such, there is a growing tension between the rising tide of evidence for the 'dying forward' excitotoxicity hypothesis and the failure of therapies that target neuronal activation. One possible solution to these contradictory outcomes is that our interpretation of the current evidence requires revision in the context of appreciating the complexity of the nervous system and the limitations of the neurobiological assays we use to study it. In this review we provide an evaluation of evidence relevant to the 'dying forward' excitotoxicity hypothesis and by doing so, identify key gaps in our knowledge that need to be addressed. We hope to provide a road map from hyperexcitability to excitotoxicity so that we can better develop therapies for patients suffering from amyotrophic lateral sclerosis. We conclude that studies of upper motor neuron activity and their synaptic output will play a decisive role in the future of amyotrophic lateral sclerosis therapy.
Collapse
Affiliation(s)
- G Lorenzo Odierna
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney 2050, Australia
| | - Marcus Dyer
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
- Department of Pharmaceutical and Pharmacological Sciences, Center for Neurosciences, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Tracey Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Adele Woodhouse
- The Wicking Dementia Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Catherine Blizzard
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
8
|
Costa-Pinto S, Gonçalves-Ribeiro J, Tedim-Moreira J, Socodato R, Relvas JB, Sebastião AM, Vaz SH. Communication defects with astroglia contribute to early impairments in the motor cortex plasticity of SOD1 G93A mice. Neurobiol Dis 2024; 193:106435. [PMID: 38336279 DOI: 10.1016/j.nbd.2024.106435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, involving the selective degeneration of cortical upper synapses in the primary motor cortex (M1). Excitotoxicity in ALS occurs due to an imbalance between excitation and inhibition, closely linked to the loss/gain of astrocytic function. Using the ALS SOD1G93A mice, we investigated the astrocytic contribution for the electrophysiological alterations observed in the M1 of SOD1G93A mice, throughout disease progression. Results showed that astrocytes are involved in synaptic dysfunction observed in presymptomatic SOD1G93A mice, since astrocytic glutamate transport currents are diminished and pharmacological inhibition of astrocytes only impaired long-term potentiation and basal transmission in wild-type mice. Proteomic analysis revealed major differences in neuronal transmission, metabolism, and immune system in upper synapses, confirming early communication deficits between neurons and astroglia. These results provide valuable insights into the early impact of upper synapses in ALS and the lack of supportive functions of cortical astrocytes, highlighting the possibility of manipulating astrocytes to improve synaptic function.
Collapse
Affiliation(s)
- Sara Costa-Pinto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Joana Tedim-Moreira
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto 4200-135, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto 4200-135, Portugal
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto 4200-135, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto 4200-135, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto 4200-135, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal.
| |
Collapse
|
9
|
Di Lazzaro V, Ranieri F, Bączyk M, de Carvalho M, Dileone M, Dubbioso R, Fernandes S, Kozak G, Motolese F, Ziemann U. Novel approaches to motoneuron disease/ALS treatment using non-invasive brain and spinal stimulation: IFCN handbook chapter. Clin Neurophysiol 2024; 158:114-136. [PMID: 38218077 DOI: 10.1016/j.clinph.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/15/2024]
Abstract
Non-invasive brain stimulation techniques have been exploited in motor neuron disease (MND) with multifold objectives: to support the diagnosis, to get insights in the pathophysiology of these disorders and, more recently, to slow down disease progression. In this review, we consider how neuromodulation can now be employed to treat MND, with specific attention to amyotrophic lateral sclerosis (ALS), the most common form with upper motoneuron (UMN) involvement, taking into account electrophysiological abnormalities revealed by human and animal studies that can be targeted by neuromodulation techniques. This review article encompasses repetitive transcranial magnetic stimulation methods (including low-frequency, high-frequency, and pattern stimulation paradigms), transcranial direct current stimulation as well as experimental findings with the newer approach of trans-spinal direct current stimulation. We also survey and discuss the trials that have been performed, and future perspectives.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy.
| | - Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Królowej Jadwigi Street 27/39, 61-871 Poznań, Poland
| | - Mamede de Carvalho
- Institute of Physiology, Institute of Molecular Medicine-JLA, Egas Moniz Study Centre, Faculty of Medicine, University of Lisbon, Lisbon 1649-028, Portugal; Department of Neurosciences and Mental Health, CHULN, Lisbon, Portugal
| | - Michele Dileone
- Faculty of Health Sciences, UCLM Talavera de la Reina, Toledo, Spain; Neurology Department, Hospital Nuestra Señora del Prado, Talavera de la Reina, Toledo, Spain
| | - Raffaele Dubbioso
- Neurophysiology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Napoli, Italy
| | - Sofia Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016-Lisboa, Portugal
| | - Gabor Kozak
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Francesco Motolese
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Yuan Y, Bailey JM, Rivera-Lopez GM, Atchison WD. Preferential potentiation of AMPA-mediated currents in brainstem hypoglossal motoneurons by subchronic exposure of mice expressing the human superoxide dismutase 1 G93A gene mutation to neurotoxicant methylmercury in vivo. Neurotoxicology 2024; 100:72-84. [PMID: 38065418 PMCID: PMC10877233 DOI: 10.1016/j.neuro.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
The exact causes of Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurological disorder due to loss of upper and/or lower motoneurons, remain elusive. Gene-environment interactions are believed to be an important factor in the development of ALS. We previously showed that in vivo exposure of mice overexpressing the human superoxide dismutase 1 (hSOD1) gene mutation (hSOD1G93A; G93A), a mouse model for ALS, to environmental neurotoxicant methylmercury (MeHg) accelerated the onset of ALS-like phenotype. Here we examined the time-course of effects of MeHg on AMPA receptor (AMPAR)-mediated currents in hypoglossal motoneurons in brainstem slices prepared from G93A, hSOD1wild-type (hWT) and non-carrier WT mice following in vivo exposure to MeHg. Mice were exposed daily to 3 ppm (approximately 0.7 mg/kg/day) MeHg via drinking water beginning at postnatal day 28 (P28) and continued until P47, 64 or 84, then acute brainstem slices were prepared, and spontaneous excitatory postsynaptic currents (sEPSCs) or AMPA-evoked currents were examined using whole cell patch-clamp recording technique. Brainstem slices of untreated littermates were prepared at the same time points to serve as control. MeHg exposure had no significant effect on either sEPSCs or AMPA-evoked currents in slices from hWT or WT mice during any of those exposure time periods under our experimental conditions. MeHg also did not cause any significant effect on sEPSCs or AMPA-currents in G93A hypoglossal motoneurons at P47 and P64. However, at P84, MeHg significantly increased amplitudes of both sEPSCs and AMPA-evoked currents in hypoglossal motineurons from G93A mice (p < 0.05), but not the sEPSC frequency, suggesting a postsynaptic action on AMPARs. MeHg exposure did not cause any significant effect on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs). Therefore, MeHg exposure in vivo caused differential effects on AMPARs in hypoglossal motoneurons from mice with different genetic backgrounds. MeHg appears to preferentially stimulate the AMPAR-mediated currents in G93A hypoglossal motoneurons in an exposure time-dependent manner, which may contribute to the AMPAR-mediated motoneuron excitotoxicity, thereby facilitating development of ALS-like phenotype.
Collapse
Affiliation(s)
- Yukun Yuan
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA.
| | - Jordan M Bailey
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - Gretchen M Rivera-Lopez
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| | - William D Atchison
- Department of Pharmacology/Toxicology, Michigan State University, Life Sciences Building, 1355 Bogue Street, East Lansing, MI 48824-1317, USA
| |
Collapse
|
11
|
Harley P, Kerins C, Gatt A, Neves G, Riccio F, Machado CB, Cheesbrough A, R'Bibo L, Burrone J, Lieberam I. Aberrant axon initial segment plasticity and intrinsic excitability of ALS hiPSC motor neurons. Cell Rep 2023; 42:113509. [PMID: 38019651 DOI: 10.1016/j.celrep.2023.113509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/06/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Dysregulated neuronal excitability is a hallmark of amyotrophic lateral sclerosis (ALS). We sought to investigate how functional changes to the axon initial segment (AIS), the site of action potential generation, could impact neuronal excitability in ALS human induced pluripotent stem cell (hiPSC) motor neurons. We find that early TDP-43 and C9orf72 hiPSC motor neurons show an increase in the length of the AIS and impaired activity-dependent AIS plasticity that is linked to abnormal homeostatic regulation of neuronal activity and intrinsic hyperexcitability. In turn, these hyperactive neurons drive increased spontaneous myofiber contractions of in vitro hiPSC motor units. In contrast, late hiPSC and postmortem ALS motor neurons show AIS shortening, and hiPSC motor neurons progress to hypoexcitability. At a molecular level, aberrant expression of the AIS master scaffolding protein ankyrin-G and AIS-specific voltage-gated sodium channels mirror these dynamic changes in AIS function and excitability. Our results point toward the AIS as an important site of dysfunction in ALS motor neurons.
Collapse
Affiliation(s)
- Peter Harley
- Centre for Gene Therapy & Regenerative Medicine, Kings College London, London SE1 9RT, UK; Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, UK; UCL Queen Square Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Caoimhe Kerins
- Centre for Gene Therapy & Regenerative Medicine, Kings College London, London SE1 9RT, UK; Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, UK; Centre for Craniofacial & Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Ariana Gatt
- Queen Square Brain Bank, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Guilherme Neves
- Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, UK
| | - Federica Riccio
- Centre for Gene Therapy & Regenerative Medicine, Kings College London, London SE1 9RT, UK; Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, UK
| | - Carolina Barcellos Machado
- Centre for Gene Therapy & Regenerative Medicine, Kings College London, London SE1 9RT, UK; Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, UK
| | - Aimee Cheesbrough
- Centre for Gene Therapy & Regenerative Medicine, Kings College London, London SE1 9RT, UK; Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, UK
| | - Lea R'Bibo
- Centre for Gene Therapy & Regenerative Medicine, Kings College London, London SE1 9RT, UK; Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, UK
| | - Juan Burrone
- Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, Kings College London, London SE1 1UL, UK.
| | - Ivo Lieberam
- Centre for Gene Therapy & Regenerative Medicine, Kings College London, London SE1 9RT, UK; Centre for Developmental Neurobiology, Kings College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, Kings College London, London SE1 1UL, UK.
| |
Collapse
|
12
|
Clark RM, Clark CM, Lewis KE, Dyer MS, Chuckowree JA, Hoyle JA, Blizzard CA, Dickson TC. Intranasal neuropeptide Y1 receptor antagonism improves motor deficits in symptomatic SOD1 ALS mice. Ann Clin Transl Neurol 2023; 10:1985-1999. [PMID: 37644692 PMCID: PMC10647012 DOI: 10.1002/acn3.51885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Neuropeptide Y (NPY) is a 36 amino acid peptide widely considered to provide neuroprotection in a range of neurodegenerative diseases. In the fatal motor neuron disease amyotrophic lateral sclerosis (ALS), recent evidence supports a link between NPY and ALS disease processes. The goal of this study was to determine the therapeutic potential and role of NPY in ALS, harnessing the brain-targeted intranasal delivery of the peptide, previously utilised to correct motor and cognitive phenotypes in other neurological conditions. METHODS To confirm the association with clinical disease characteristics, NPY expression was quantified in post-mortem motor cortex tissue of ALS patients and age-matched controls. The effect of NPY on ALS cortical pathophysiology was investigated using slice electrophysiology and multi-electrode array recordings of SOD1G93A cortical cultures in vitro. The impact of NPY on ALS disease trajectory was investigated by treating SOD1G93A mice intranasally with NPY and selective NPY receptor agonists and antagonists from pre-symptomatic and symptomatic phases of disease. RESULTS In the human post-mortem ALS motor cortex, we observe a significant increase in NPY expression, which is not present in the somatosensory cortex. In vitro, we demonstrate that NPY can ameliorate ALS hyperexcitability, while brain-targeted nasal delivery of NPY and a selective NPY Y1 receptor antagonist modified survival and motor deficits specifically within the symptomatic phase of the disease in the ALS SOD1G93A mouse. INTERPRETATION Taken together, these findings highlight the capacity for non-invasive brain-targeted interventions in ALS and support antagonism of NPY Y1Rs as a novel strategy to improve ALS motor function.
Collapse
Affiliation(s)
- Rosemary M. Clark
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Courtney M. Clark
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Katherine E.A. Lewis
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Marcus S. Dyer
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Jyoti A. Chuckowree
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Joshua A. Hoyle
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Catherine A. Blizzard
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmania7000Australia
| | - Tracey C. Dickson
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| |
Collapse
|
13
|
Dyer MS, Odierna GL, Clark RM, Woodhouse A, Blizzard CA. Synaptic remodeling follows upper motor neuron hyperexcitability in a rodent model of TDP-43. Front Cell Neurosci 2023; 17:1274979. [PMID: 37941604 PMCID: PMC10628445 DOI: 10.3389/fncel.2023.1274979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is an incurable disease characterized by relentlessly progressive degeneration of the corticomotor system. Cortical hyperexcitability has been identified as an early pre-symptomatic biomarker of ALS. This suggests that hyperexcitability occurs upstream in the ALS pathological cascade and may even be part of the mechanism that drives development of symptoms or loss of motor neurons in the spinal cord. However, many studies also indicate a loss to the synaptic machinery that mediates synaptic input which raises the question of which is the driver of disease, and which is a homeostatic response. Herein, we used an inducible mouse model of TDP-43 mediated ALS that permits for the construction of detailed phenotypic timelines. Our work comprehensively describes the relationship between intrinsic hyperexcitability and altered synaptic input onto motor cortical layer 5 pyramidal neurons over time. As a result, we have constructed the most complete timeline of electrophysiological changes following induction of TDP-43 dysfunction in the motor cortex. We report that intrinsic hyperexcitability of layer 5 pyramidal neurons precedes changes to excitatory synaptic connections, which manifest as an overall loss of inputs onto layer 5 pyramidal neurons. This finding highlights the importance of hyperexcitability as a primary mechanism of ALS and re-contextualizes synaptic changes as possibly representing secondary adaptive responses. Recognition of the relationship between intrinsic hyperexcitability and reduced excitatory synaptic input has important implications for the development of useful therapies against ALS. Novel strategies will need to be developed that target neuronal output by managing excitability against synapses separately.
Collapse
Affiliation(s)
- Marcus S. Dyer
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
- Department of Pharmaceutical and Pharmacological Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - G. Lorenzo Odierna
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rosemary M. Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Catherine A. Blizzard
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
14
|
Xie M, Pallegar PN, Parusel S, Nguyen AT, Wu LJ. Regulation of cortical hyperexcitability in amyotrophic lateral sclerosis: focusing on glial mechanisms. Mol Neurodegener 2023; 18:75. [PMID: 37858176 PMCID: PMC10585818 DOI: 10.1186/s13024-023-00665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of both upper and lower motor neurons, resulting in muscle weakness, atrophy, paralysis, and eventually death. Motor cortical hyperexcitability is a common phenomenon observed at the presymptomatic stage of ALS. Both cell-autonomous (the intrinsic properties of motor neurons) and non-cell-autonomous mechanisms (cells other than motor neurons) are believed to contribute to cortical hyperexcitability. Decoding the pathological relevance of these dynamic changes in motor neurons and glial cells has remained a major challenge. This review summarizes the evidence of cortical hyperexcitability from both clinical and preclinical research, as well as the underlying mechanisms. We discuss the potential role of glial cells, particularly microglia, in regulating abnormal neuronal activity during the disease progression. Identifying early changes such as neuronal hyperexcitability in the motor system may provide new insights for earlier diagnosis of ALS and reveal novel targets to halt the disease progression.
Collapse
Affiliation(s)
- Manling Xie
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Praveen N Pallegar
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Sebastian Parusel
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Aly A, Laszlo ZI, Rajkumar S, Demir T, Hindley N, Lamont DJ, Lehmann J, Seidel M, Sommer D, Franz-Wachtel M, Barletta F, Heumos S, Czemmel S, Kabashi E, Ludolph A, Boeckers TM, Henstridge CM, Catanese A. Integrative proteomics highlight presynaptic alterations and c-Jun misactivation as convergent pathomechanisms in ALS. Acta Neuropathol 2023; 146:451-475. [PMID: 37488208 PMCID: PMC10412488 DOI: 10.1007/s00401-023-02611-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease mainly affecting upper and lower motoneurons. Several functionally heterogeneous genes have been associated with the familial form of this disorder (fALS), depicting an extremely complex pathogenic landscape. This heterogeneity has limited the identification of an effective therapy, and this bleak prognosis will only improve with a greater understanding of convergent disease mechanisms. Recent evidence from human post-mortem material and diverse model systems has highlighted the synapse as a crucial structure actively involved in disease progression, suggesting that synaptic aberrations might represent a shared pathological feature across the ALS spectrum. To test this hypothesis, we performed the first comprehensive analysis of the synaptic proteome from post-mortem spinal cord and human iPSC-derived motoneurons carrying mutations in the major ALS genes. This integrated approach highlighted perturbations in the molecular machinery controlling vesicle release as a shared pathomechanism in ALS. Mechanistically, phosphoproteomic analysis linked the presynaptic vesicular phenotype to an accumulation of cytotoxic protein aggregates and to the pro-apoptotic activation of the transcription factor c-Jun, providing detailed insights into the shared pathobiochemistry in ALS. Notably, sub-chronic treatment of our iPSC-derived motoneurons with the fatty acid docosahexaenoic acid exerted a neuroprotective effect by efficiently rescuing the alterations revealed by our multidisciplinary approach. Together, this study provides strong evidence for the central and convergent role played by the synaptic microenvironment within the ALS spinal cord and highlights a potential therapeutic target that counteracts degeneration in a heterogeneous cohort of human motoneuron cultures.
Collapse
Affiliation(s)
- Amr Aly
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Zsofia I Laszlo
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Sandeep Rajkumar
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Tugba Demir
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Nicole Hindley
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Douglas J Lamont
- FingerPrints Proteomics Facility, Discovery Centre, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Johannes Lehmann
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Mira Seidel
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Daniel Sommer
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Francesca Barletta
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany
| | - Simon Heumos
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Stefan Czemmel
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany
| | - Edor Kabashi
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, Université de Paris, INSERM, UMR 1163, 75015, Paris, France
| | - Albert Ludolph
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm Site, Germany
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm Site, Germany
| | - Christopher M Henstridge
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK.
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Ulm Site, Germany.
| |
Collapse
|
16
|
Hutt A, Rich S, Valiante TA, Lefebvre J. Intrinsic neural diversity quenches the dynamic volatility of neural networks. Proc Natl Acad Sci U S A 2023; 120:e2218841120. [PMID: 37399421 PMCID: PMC10334753 DOI: 10.1073/pnas.2218841120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/19/2023] [Indexed: 07/05/2023] Open
Abstract
Heterogeneity is the norm in biology. The brain is no different: Neuronal cell types are myriad, reflected through their cellular morphology, type, excitability, connectivity motifs, and ion channel distributions. While this biophysical diversity enriches neural systems' dynamical repertoire, it remains challenging to reconcile with the robustness and persistence of brain function over time (resilience). To better understand the relationship between excitability heterogeneity (variability in excitability within a population of neurons) and resilience, we analyzed both analytically and numerically a nonlinear sparse neural network with balanced excitatory and inhibitory connections evolving over long time scales. Homogeneous networks demonstrated increases in excitability, and strong firing rate correlations-signs of instability-in response to a slowly varying modulatory fluctuation. Excitability heterogeneity tuned network stability in a context-dependent way by restraining responses to modulatory challenges and limiting firing rate correlations, while enriching dynamics during states of low modulatory drive. Excitability heterogeneity was found to implement a homeostatic control mechanism enhancing network resilience to changes in population size, connection probability, strength and variability of synaptic weights, by quenching the volatility (i.e., its susceptibility to critical transitions) of its dynamics. Together, these results highlight the fundamental role played by cell-to-cell heterogeneity in the robustness of brain function in the face of change.
Collapse
Affiliation(s)
- Axel Hutt
- Université de Strasbourg, CNRS, Inria, ICube, MLMS, MIMESIS, StrasbourgF-67000, France
| | - Scott Rich
- Krembil Brain Institute, Division of Clinical and Computational Neuroscience, University Health Network, Toronto, ONM5T 0S8, Canada
| | - Taufik A. Valiante
- Krembil Brain Institute, Division of Clinical and Computational Neuroscience, University Health Network, Toronto, ONM5T 0S8, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ONM5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ONM5S 1A8, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ONM5G 2C4, Canada
- Center for Advancing Neurotechnological Innovation to Application, University of Toronto, Toronto, ONM5G 2A2, Canada
- Max Planck-University of Toronto Center for Neural Science and Technology, University of Toronto, Toronto, ONM5S 3G8, Canada
| | - Jérémie Lefebvre
- Krembil Brain Institute, Division of Clinical and Computational Neuroscience, University Health Network, Toronto, ONM5T 0S8, Canada
- Department of Biology, University of Ottawa, Ottawa, ONK1N 6N5, Canada
- Department of Mathematics, University of Toronto, Toronto, ONM5S 2E4, Canada
| |
Collapse
|
17
|
Vorobyov V, Deev A, Chaprov K, Ustyugov AA, Lysikova E. Age-Related Modifications of Electroencephalogram Coherence in Mice Models of Alzheimer's Disease and Amyotrophic Lateral Sclerosis. Biomedicines 2023; 11:biomedicines11041151. [PMID: 37189768 DOI: 10.3390/biomedicines11041151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023] Open
Abstract
Evident similarities in pathological features in aging and Alzheimer's disease (AD) raise the question of a role for natural age-related adaptive mechanisms in the prevention/elimination of disturbances in interrelations between different brain areas. In our previous electroencephalogram (EEG) studies on 5xFAD- and FUS-transgenic mice, as models of AD and amyotrophic lateral sclerosis (ALS), this suggestion was indirectly confirmed. In the current study, age-related changes in direct EEG synchrony/coherence between the brain structures were evaluated. METHODS In 5xFAD mice of 6-, 9-, 12-, and 18-month ages and their wild-type (WT5xFAD) littermates, we analyzed baseline EEG coherence between the cortex, hippocampus/putamen, ventral tegmental area, and substantia nigra. Additionally, EEG coherence between the cortex and putamen was analyzed in 2- and 5-month-old FUS mice. RESULTS In the 5xFAD mice, suppressed levels of inter-structural coherence vs. those in WT5xFAD littermates were observed at ages of 6, 9, and 12 months. In 18-month-old 5xFAD mice, only the hippocampus ventral tegmental area coherence was significantly reduced. In 2-month-old FUS vs. WTFUS mice, the cortex-putamen coherence suppression, dominated in the right hemisphere, was observed. In 5-month-old mice, EEG coherence was maximal in both groups. CONCLUSION Neurodegenerative pathologies are accompanied by the significant attenuation of intracerebral EEG coherence. Our data are supportive for the involvement of age-related adaptive mechanisms in intracerebral disturbances produced by neurodegeneration.
Collapse
Affiliation(s)
- Vasily Vorobyov
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Alexander Deev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kirill Chaprov
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia
- Center of Pre-Clinical and Clinical Studies, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Ekaterina Lysikova
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| |
Collapse
|
18
|
Gulino R. Synaptic Dysfunction and Plasticity in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:ijms24054613. [PMID: 36902042 PMCID: PMC10003601 DOI: 10.3390/ijms24054613] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Recent evidence has supported the hypothesis that amyotrophic lateral sclerosis (ALS) is a multi-step disease, as the onset of symptoms occurs after sequential exposure to a defined number of risk factors. Despite the lack of precise identification of these disease determinants, it is known that genetic mutations may contribute to one or more of the steps leading to ALS onset, the remaining being linked to environmental factors and lifestyle. It also appears evident that compensatory plastic changes taking place at all levels of the nervous system during ALS etiopathogenesis may likely counteract the functional effects of neurodegeneration and affect the timing of disease onset and progression. Functional and structural events of synaptic plasticity probably represent the main mechanisms underlying this adaptive capability, causing a significant, although partial and transient, resiliency of the nervous system affected by a neurodegenerative disease. On the other hand, the failure of synaptic functions and plasticity may be part of the pathological process. The aim of this review was to summarize what it is known today about the controversial involvement of synapses in ALS etiopathogenesis, and an analysis of the literature, although not exhaustive, confirmed that synaptic dysfunction is an early pathogenetic process in ALS. Moreover, it appears that adequate modulation of structural and functional synaptic plasticity may likely support function sparing and delay disease progression.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| |
Collapse
|
19
|
Cavarsan CF, Steele PR, Genry LT, Reedich EJ, McCane LM, LaPre KJ, Puritz AC, Manuel M, Katenka N, Quinlan KA. Inhibitory interneurons show early dysfunction in a SOD1 mouse model of amyotrophic lateral sclerosis. J Physiol 2023; 601:647-667. [PMID: 36515374 PMCID: PMC9898203 DOI: 10.1113/jp284192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Few studies in amyotrophic lateral sclerosis (ALS) measure effects of the disease on inhibitory interneurons synapsing onto motoneurons (MNs). However, inhibitory interneurons could contribute to dysfunction, particularly if altered before MN neuropathology, and establish a long-term imbalance of inhibition/excitation. We directly assessed excitability and morphology of glycinergic (GlyT2 expressing) ventral lumbar interneurons from SOD1G93AGlyT2eGFP (SOD1) and wild-type GlyT2eGFP (WT) mice on postnatal days 6-10. Patch clamp revealed dampened excitability in SOD1 interneurons, including depolarized persistent inward currents (PICs), increased voltage and current threshold for firing action potentials, along with a marginal decrease in afterhyperpolarization duration. Primary neurites of ventral SOD1 inhibitory interneurons were larger in volume and surface area than WT. GlyT2 interneurons were then divided into three subgroups based on location: (1) interneurons within 100 μm of the ventral white matter, where Renshaw cells (RCs) are located, (2) interneurons interspersed with MNs in lamina IX, and (3) interneurons in the intermediate ventral area including laminae VII and VIII. Ventral interneurons in the RC area were the most profoundly affected, exhibiting more depolarized PICs and larger primary neurites. Interneurons in lamina IX had depolarized PIC onset. In lamina VII-VIII, interneurons were least affected. In summary, inhibitory interneurons show very early region-specific perturbations poised to impact excitatory/inhibitory balance of MNs, modify motor output and provide early biomarkers of ALS. Therapeutics like riluzole that universally reduce CNS excitability could exacerbate the inhibitory dysfunction described here. KEY POINTS: Spinal inhibitory interneurons could contribute to amyotrophic lateral sclerosis (ALS) pathology, but their excitability has never been directly measured. We studied the excitability and morphology of glycinergic interneurons in early postnatal transgenic mice (SOD1G93A GlyT2eGFP). Interneurons were less excitable and had marginally smaller somas but larger primary neurites in SOD1 mice. GlyT2 interneurons were analysed according to their localization within the ventral spinal cord. Interestingly, the greatest differences were observed in the most ventrally located interneurons. We conclude that inhibitory interneurons show presymptomatic changes that may contribute to excitatory/inhibitory imbalance in ALS.
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Preston R Steele
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Landon T Genry
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Emily J Reedich
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lynn M McCane
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Kay J LaPre
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Alyssa C Puritz
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marin Manuel
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Natallia Katenka
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI, USA
| | - Katharina A Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
20
|
Liang B, Thapa R, Zhang G, Moffitt C, Zhang Y, Zhang L, Johnston A, Ruby HP, Barbera G, Wong PC, Zhang Z, Chen R, Lin DT, Li Y. Aberrant neural activity in prefrontal pyramidal neurons lacking TDP-43 precedes neuron loss. Prog Neurobiol 2022; 215:102297. [PMID: 35667630 PMCID: PMC9258405 DOI: 10.1016/j.pneurobio.2022.102297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
Mislocalization of TAR DNA binding protein 43 kDa (TARDBP, or TDP-43) is a principal pathological hallmark identified in cases of neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). As an RNA binding protein, TDP-43 serves in the nuclear compartment to repress non-conserved cryptic exons to ensure the normal transcriptome. Multiple lines of evidence from animal models and human studies support the view that loss of TDP-43 leads to neuron loss, independent of its cytosolic aggregation. However, the underlying pathogenic pathways driven by the loss-of-function mechanism are still poorly defined. We employed a genetic approach to determine the impact of TDP-43 loss in pyramidal neurons of the prefrontal cortex (PFC). Using a custom-built miniscope imaging system, we performed repetitive in vivo calcium imaging from freely behaving mice for up to 7 months. By comparing calcium activity in PFC pyramidal neurons between TDP-43 depleted and TDP-43 intact mice, we demonstrated remarkably increased numbers of pyramidal neurons exhibiting hyperactive calcium activity after short-term TDP-43 depletion, followed by rapid activity declines prior to neuron loss. Our results suggest aberrant neural activity driven by loss of TDP-43 as the pathogenic pathway at early stage in ALS and FTD.
Collapse
Affiliation(s)
- Bo Liang
- School of Electrical Engineering & Computer Science, College of Engineering & Mines, University of North Dakota, 243 Centennial Drive Stop 7165, Grand Forks, ND 58202, USA.
| | - Rashmi Thapa
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Gracie Zhang
- Laramie High School, 1710 Boulder Drive, Laramie, WY 82070, USA.
| | - Casey Moffitt
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Yan Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Lifeng Zhang
- School of Electrical Engineering & Computer Science, College of Engineering & Mines, University of North Dakota, 243 Centennial Drive Stop 7165, Grand Forks, ND 58202, USA; Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA; Laramie High School, 1710 Boulder Drive, Laramie, WY 82070, USA; Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA; Department of Pathology, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 100N. Greene St., Baltimore, MD 21201, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Amanda Johnston
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Hyrum P Ruby
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Giovanni Barbera
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 100N. Greene St., Baltimore, MD 21201, USA.
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA.
| |
Collapse
|
21
|
Sai Swaroop R, Akhil PS, Sai Sanwid P, Bandana P, Raksha RK, Meghana M, Bibha C, Sivaramakrishnan V. Integrated multi-omic data analysis and validation with yeast model show oxidative phosphorylation modulates protein aggregation in amyotrophic lateral sclerosis. J Biomol Struct Dyn 2022:1-20. [PMID: 35749136 DOI: 10.1080/07391102.2022.2090441] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amyotrophic Lateral Sclerosis is a progressive, incurable amyloid aggregating neurodegenerative disease involving the motor neurons. Identifying potential biomarkers and therapeutic targets can assist in the better management of the disease. We used an integrative approach encompassing analysis of transcriptomic datasets of human and mice from the GEO database. Our analysis of ALS patient datasets showed deregulation in Non-alcoholic fatty acid liver disease and oxidative phosphorylation. Transgenic mice datasets of SOD1, FUS and TDP-43 showed deregulation in oxidative phosphorylation and ribosome-associated pathways. Commonality analysis between the human and mice datasets showed oxidative phosphorylation as a major deregulated pathway. Further, protein-protein and protein-drug interaction network analysis of mitochondrial electron transport chain showed enrichment of proteins and inhibitors of mitochondrial Complex III and IV. The results were further validated using the yeast model system. Inhibitor studies using metformin (Complex-I inhibitor) and malonate (Complex-II inhibitor) did not show any effect in mitigating the amyloids, while antimycin (Complex-III inhibitor) and azide (Complex-IV inhibitor) reduced amyloidogenesis. Knock-out of QCR8 (Complex-III) or COX8 (Complex-IV) cleared the amyloids. Taken together, our results show a critical role for mitochondrial oxidative phosphorylation in amyloidogenesis and as a potential therapeutic target in ALS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- R Sai Swaroop
- Disease Biology Lab, Dept. of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - P S Akhil
- Disease Biology Lab, Dept. of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India.,Scientist B, Central Water and Power Research Station, Khadakwasla, Pune
| | - Pradhan Sai Sanwid
- Disease Biology Lab, Dept. of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | | | - Rao K Raksha
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | - Manjunath Meghana
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | - Choudhary Bibha
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Dept. of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| |
Collapse
|
22
|
Genç B, Jara JH, Sanchez SS, Lagrimas AKB, Gözütok Ö, Koçak N, Zhu Y, Hande Özdinler P. Upper motor neurons are a target for gene therapy and UCHL1 is necessary and sufficient to improve cellular integrity of diseased upper motor neurons. Gene Ther 2022; 29:178-192. [PMID: 34853443 PMCID: PMC9018479 DOI: 10.1038/s41434-021-00303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
There are no effective cures for upper motor neuron (UMN) diseases, such as amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, and hereditary spastic paraplegia. Here, we show UMN loss occurs independent of spinal motor neuron degeneration and that UMNs are indeed effective cellular targets for gene therapy, which offers a potential solution especially for UMN disease patients. UCHL1 (ubiquitin C-terminal hydrolase-L1) is a deubiquitinating enzyme crucial for maintaining free ubiquitin levels. Corticospinal motor neurons (CSMN, a.k.a UMNs in mice) show early, selective, and profound degeneration in Uchl1nm3419 (UCHL1-/-) mice, which lack all UCHL1 function. When UCHL1 activity is ablated only from spinal motor neurons, CSMN remained intact. However, restoring UCHL1 specifically in CSMN of UCHL1-/- mice via directed gene delivery was sufficient to improve CSMN integrity to the healthy control levels. In addition, when UCHL1 gene was delivered selectively to CSMN that are diseased due to misfolded SOD1 toxicity and TDP-43 pathology via AAV-mediated retrograde transduction, the disease causing misfolded SOD1 and mutant human TDP-43 were reduced in hSOD1G93A and prpTDP-43A315T models, respectively. Diseased CSMN retained their neuronal integrity and cytoarchitectural stability in two different mouse models that represent two distinct causes of neurodegeneration in ALS.
Collapse
Affiliation(s)
- Barış Genç
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Javier H Jara
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Santana S Sanchez
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Amiko K B Lagrimas
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Öge Gözütok
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nuran Koçak
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yongling Zhu
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - P Hande Özdinler
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
23
|
Moya MV, Kim RD, Rao MN, Cotto BA, Pickett SB, Sferrazza CE, Heintz N, Schmidt EF. Unique molecular features and cellular responses differentiate two populations of motor cortical layer 5b neurons in a preclinical model of ALS. Cell Rep 2022; 38:110556. [PMID: 35320722 PMCID: PMC9059890 DOI: 10.1016/j.celrep.2022.110556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), lead to the selective degeneration of discrete cell types in the CNS despite the ubiquitous expression of many genes linked to disease. Therapeutic advancement depends on understanding the unique cellular adaptations that underlie pathology of vulnerable cells in the context of disease-causing mutations. Here, we employ bacTRAP molecular profiling to elucidate cell type-specific molecular responses of cortical upper motor neurons in a preclinical ALS model. Using two bacTRAP mouse lines that label distinct vulnerable or resilient projection neuron populations in motor cortex, we show that the regulation of oxidative phosphorylation (Oxphos) pathways is a common response in both cell types. However, differences in the baseline expression of genes involved in Oxphos and the handling of reactive oxygen species likely lead to the selective degeneration of the vulnerable cells. These results provide a framework to identify cell-type-specific processes in neurodegenerative disease. Moya et al. use bacTRAP mouse lines to characterize two highly related subpopulations of layer 5b projection neurons in motor cortex that are differentially susceptible to neurodegeneration in the SOD1-G93A mouse model of ALS. They identify the regulation of genes involved in bioenergetics as a key factor regulating susceptibility.
Collapse
Affiliation(s)
- Maria V Moya
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Rachel D Kim
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Meghana N Rao
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Bianca A Cotto
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Sarah B Pickett
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Caroline E Sferrazza
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Eric F Schmidt
- Laboratory of Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 260, New York, NY 10065, USA.
| |
Collapse
|
24
|
Poly-dipeptides produced from C9orf72 hexanucleotide repeats cause selective motor neuron hyperexcitability in ALS. Proc Natl Acad Sci U S A 2022; 119:e2113813119. [PMID: 35259014 PMCID: PMC8931230 DOI: 10.1073/pnas.2113813119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SignificanceThe GGGGCC hexanucleotide repeat expansion in the chromosome 9 open reading frame 72 (C9orf72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS). Despite myriad studies on the toxic effects of poly-dipeptides produced from the C9orf72 repeats, the mechanisms underlying the selective hyperexcitability of motor cortex that characterizes the early stages of C9orf72 ALS patients remain elusive. Here, we show that the proline-arginine poly-dipeptides cause hyperexcitability in cortical motor neurons by increasing persistent sodium currents conducted by the Nav1.2/β4 sodium channel complex, which is highly expressed in the motor cortex. These findings provide the basis for understanding how the C9orf72 mutation causes motor neuron hyperactivation that can lead to the motor neuron death in C9orf72 ALS.
Collapse
|
25
|
Handley EE, Reale LA, Chuckowree JA, Dyer MS, Barnett GL, Clark CM, Bennett W, Dickson TC, Blizzard CA. Estrogen Enhances Dendrite Spine Function and Recovers Deficits in Neuroplasticity in the prpTDP-43A315T Mouse Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2022; 59:2962-2976. [PMID: 35249200 PMCID: PMC9016039 DOI: 10.1007/s12035-022-02742-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/09/2022] [Indexed: 10/31/2022]
Abstract
AbstractAmyotrophic lateral sclerosis (ALS) attacks the corticomotor system, with motor cortex function affected early in disease. Younger females have a lower relative risk of succumbing to ALS than males and older females, implicating a role for female sex hormones in disease progression. However, the mechanisms driving this dimorphic incidence are still largely unknown. We endeavoured to determine if estrogen mitigates disease progression and pathogenesis, focussing upon the dendritic spine as a site of action. Using two-photon live imaging we identify, in the prpTDP-43A315T mouse model of ALS, that dendritic spines in the male motor cortex have a reduced capacity for remodelling than their wild-type controls. In contrast, females show higher capacity for remodelling, with peak plasticity corresponding to highest estrogen levels during the estrous cycle. Estrogen manipulation through ovariectomies and estrogen replacement with 17β estradiol in vivo was found to significantly alter spine density and mitigate disease severity. Collectively, these findings reveal that synpatic plasticity is reduced in ALS, which can be amelioriated with estrogen, in conjuction with improved disease outcomes.
Collapse
|
26
|
Cortical Hyperexcitability in the Driver’s Seat in ALS. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the degeneration of cortical and spinal motor neurons. With no effective treatment available to date, patients face progressive paralysis and eventually succumb to the disease due to respiratory failure within only a few years. Recent research has revealed the multifaceted nature of the mechanisms and cell types involved in motor neuron degeneration, thereby opening up new therapeutic avenues. Intriguingly, two key features present in both ALS patients and rodent models of the disease are cortical hyperexcitability and hyperconnectivity, the mechanisms of which are still not fully understood. We here recapitulate current findings arguing for cell autonomous and non-cell autonomous mechanisms causing cortical excitation and inhibition imbalance, which is involved in the degeneration of motor neurons in ALS. Moreover, we will highlight recent evidence that strongly indicates a cardinal role for the motor cortex as a main driver and source of the disease, thus arguing for a corticofugal trajectory of the pathology.
Collapse
|
27
|
Verma S, Khurana S, Vats A, Sahu B, Ganguly NK, Chakraborti P, Gourie-Devi M, Taneja V. Neuromuscular Junction Dysfunction in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2022; 59:1502-1527. [PMID: 34997540 DOI: 10.1007/s12035-021-02658-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by progressive degeneration of motor neurons leading to skeletal muscle denervation. Earlier studies have shown that motor neuron degeneration begins in motor cortex and descends to the neuromuscular junction (NMJ) in a dying forward fashion. However, accumulating evidences support that ALS is a distal axonopathy where early pathological changes occur at the NMJ, prior to onset of clinical symptoms and propagates towards the motor neuron cell body supporting "dying back" hypothesis. Despite several evidences, series of events triggering NMJ disassembly in ALS are still obscure. Neuromuscular junction is a specialized tripartite chemical synapse which involves a well-coordinated communication among the presynaptic motor neuron, postsynaptic skeletal muscle, and terminal Schwann cells. This review provides comprehensive insight into the role of NMJ in ALS pathogenesis. We have emphasized the molecular alterations in cellular components of NMJ leading to loss of effective neuromuscular transmission in ALS. Further, we provide a preview into research involved in exploring NMJ as potential target for designing effective therapies for ALS.
Collapse
Affiliation(s)
- Sagar Verma
- Department of Research, Sir Ganga Ram Hospital, Delhi, India.,Department of Biotechnology, Jamia Hamdard, Delhi, India
| | - Shiffali Khurana
- Department of Research, Sir Ganga Ram Hospital, Delhi, India.,Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Abhishek Vats
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bandana Sahu
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
| | | | | | | | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, Delhi, India.
| |
Collapse
|
28
|
Pasniceanu IS, Atwal MS, Souza CDS, Ferraiuolo L, Livesey MR. Emerging Mechanisms Underpinning Neurophysiological Impairments in C9ORF72 Repeat Expansion-Mediated Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Front Cell Neurosci 2022; 15:784833. [PMID: 34975412 PMCID: PMC8715728 DOI: 10.3389/fncel.2021.784833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by degeneration of upper and lower motor neurons and neurons of the prefrontal cortex. The emergence of the C9ORF72 hexanucleotide repeat expansion mutation as the leading genetic cause of ALS and FTD has led to a progressive understanding of the multiple cellular pathways leading to neuronal degeneration. Disturbances in neuronal function represent a major subset of these mechanisms and because such functional perturbations precede degeneration, it is likely that impaired neuronal function in ALS/FTD plays an active role in pathogenesis. This is supported by the fact that ALS/FTD patients consistently present with neurophysiological impairments prior to any apparent degeneration. In this review we summarize how the discovery of the C9ORF72 repeat expansion mutation has contributed to the current understanding of neuronal dysfunction in ALS/FTD. Here, we discuss the impact of the repeat expansion on neuronal function in relation to intrinsic excitability, synaptic, network and ion channel properties, highlighting evidence of conserved and divergent pathophysiological impacts between cortical and motor neurons and the influence of non-neuronal cells. We further highlight the emerging association between these dysfunctional properties with molecular mechanisms of the C9ORF72 mutation that appear to include roles for both, haploinsufficiency of the C9ORF72 protein and aberrantly generated dipeptide repeat protein species. Finally, we suggest that relating key pathological observations in C9ORF72 repeat expansion ALS/FTD patients to the mechanistic impact of the C9ORF72 repeat expansion on neuronal function will lead to an improved understanding of how neurophysiological dysfunction impacts upon pathogenesis.
Collapse
Affiliation(s)
- Iris-Stefania Pasniceanu
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Manpreet Singh Atwal
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Matthew R Livesey
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
29
|
Bączyk M, Manuel M, Roselli F, Zytnicki D. From Physiological Properties to Selective Vulnerability of Motor Units in Amyotrophic Lateral Sclerosis. ADVANCES IN NEUROBIOLOGY 2022; 28:375-394. [PMID: 36066833 DOI: 10.1007/978-3-031-07167-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spinal alpha-motoneurons are classified in several types depending on the contractile properties of the innervated muscle fibers. This diversity is further displayed in different levels of vulnerability of distinct motor units to neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS). We summarize recent data suggesting that, contrary to the excitotoxicity hypothesis, the most vulnerable motor units are hypoexcitable and experience a reduction in their firing prior to symptoms onset in ALS. We suggest that a dysregulation of activity-dependent transcriptional programs in these motoneurons alter crucial cellular functions such as mitochondrial biogenesis, autophagy, axonal sprouting capability and re-innervation of neuromuscular junctions.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Marin Manuel
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, Paris, France.
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
- Neurozentrum Ulm, Ulm, Germany
| | - Daniel Zytnicki
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, Paris, France
| |
Collapse
|
30
|
Kim J, Kim DW, Lee A, Mason M, Jouroukhin Y, Woo H, Yolken RH, Pletnikov MV. Homeostatic regulation of neuronal excitability by probiotics in male germ-free mice. J Neurosci Res 2021; 100:444-460. [PMID: 34935171 DOI: 10.1002/jnr.24999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/10/2021] [Accepted: 11/27/2021] [Indexed: 11/08/2022]
Abstract
Emerging evidence indicates that probiotics can influence the gut-brain axis to ameliorate somatic and behavioral symptoms associated with brain disorders. However, whether probiotics have effects on the electrophysiological activities of individual neurons in the brain has not been evaluated at a single-neuron resolution, and whether the neuronal effects of probiotics depend on the gut microbiome status have yet to be tested. Thus, we conducted whole-cell patch-clamp recording-assisted electrophysiological characterizations of the neuronal effects of probiotics in male germ-free (GF) mice with and without gut microbiome colonization. Two weeks of treatment with probiotics (Lactobacillus rhamnosus and Bifidobacterium animalis) significantly and selectively increased the intrinsic excitability of hippocampal CA1 pyramidal neurons, whereas reconstituting gut microbiota in GF mice reversed the effects of the probiotics leading to a decreased intrinsic excitability in hippocampal neurons. This bidirectional modulation of neuronal excitability by probiotics was observed in hippocampal neurons with corresponding basal membrane property and action potential waveform changes. However, unlike the hippocampus, the amygdala excitatory neurons did not show any electrophysiological changes to the probiotic treatment in either GF or conventionalized GF mice. Our findings demonstrate for the first time how probiotic treatment can have a significant influence on the electrophysiological properties of neurons, bidirectionally modulating their intrinsic excitability in a gut microbiota and brain area-specific manner.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian Lee
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madisen Mason
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Yan Jouroukhin
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hyewon Woo
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Robert H Yolken
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Physiology and Biophysics, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
31
|
Gento-Caro Á, Vilches-Herrando E, Portillo F, González-Forero D, Moreno-López B. Targeting autotaxin impacts disease advance in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Brain Pathol 2021; 32:e13022. [PMID: 34585475 PMCID: PMC9048519 DOI: 10.1111/bpa.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/19/2021] [Accepted: 09/08/2021] [Indexed: 01/18/2023] Open
Abstract
A preclinical strategy to broaden the search of potentially effective treatments in amyotrophic lateral sclerosis (ALS) relies on identifying factors controlling motor neuron (MN) excitability. These partners might be part of still unknown pathogenic pathways and/or useful for the design of new interventions to affect disease progression. In this framework, the bioactive membrane‐derived phospholipid lysophosphatidic acid (LPA) affects MN excitability through LPA receptor 1 (LPA1). Furthermore, LPA1 knockdown is neuroprotective in transgenic ALS SOD1‐G93A mice. On this basis, we raised the hypothesis that the major LPA‐synthesizing ectoenzyme, autotaxin (ATX), regulates MN excitability and is a potential target to modulate disease development in ALS mice. We show here that PF‐8380, a specific ATX inhibitor, reduced intrinsic membrane excitability (IME) of hypoglossal MNs in brainstem slices, supporting that baseline ATX activity regulates MN IME. PF‐8380‐induced alterations were prevented by a small‐interfering RNA directed against mRNA for lpa1. These outcomes support that impact of ATX‐originated lysophospholipids on MN IME engages, at least, the G‐protein‐coupled receptor LPA1. Interestingly, mRNAatx levels increased in the spinal cord of pre‐symptomatic (1–2 months old) SOD1‐G93A mice, thus preceding MN loss. The rise in transcripts levels also occurred in cultured spinal cord MNs from SOD1‐G93A embryos, suggesting that mRNAatx upregulation in MNs is an etiopathogenic event in the ALS cell model. Remarkably, chronic administration in the drinking water of the orally bioavailable ATX inhibitor PF‐8380 delayed MN loss, motor deterioration and prolonged life span in ALS mice. Treatment also led to a reduction in LPA1‐immunoreactive patches in transgenic animals mostly in MNs. These outcomes support that neuroprotective effects of interfering with ATX in SOD1‐G93A mice rely, at least in part, on LPA1 knockdown in MNs. Therefore, we propose ATX as a potential target and/or a biomarker in ALS and highlight ATX inhibitors as reasonable tools with therapeutic usefulness for this lethal pathology.
Collapse
Affiliation(s)
- Ángela Gento-Caro
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz-Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Esther Vilches-Herrando
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz-Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Federico Portillo
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz-Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - David González-Forero
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz-Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Bernardo Moreno-López
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz-Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| |
Collapse
|
32
|
Advances in Gene Delivery Methods to Label and Modulate Activity of Upper Motor Neurons: Implications for Amyotrophic Lateral Sclerosis. Brain Sci 2021; 11:brainsci11091112. [PMID: 34573134 PMCID: PMC8471472 DOI: 10.3390/brainsci11091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
The selective degeneration of both upper motor neurons (UMNs) and lower motor neurons (LMNs) is the pathological hallmark of amyotrophic lateral sclerosis (ALS). Unlike the simple organisation of LMNs in the brainstem and spinal cord, UMNs are embedded in the complex cytoarchitecture of the primary motor cortex, which complicates their identification. UMNs therefore remain a challenging neuronal population to study in ALS research, particularly in the early pre-symptomatic stages of animal models. A better understanding of the mechanisms that lead to selective UMN degeneration requires unequivocal visualization and cellular identification of vulnerable UMNs within the heterogeneous cortical neuronal population and circuitry. Here, we review recent novel gene delivery methods developed to cellularly identify vulnerable UMNs and modulate their activity in various mouse models. A critical overview of retrograde tracers, viral vectors encoding reporter genes and transgenic reporter mice used to visualize UMNs in mouse models of ALS is provided. Functional targeting of UMNs in vivo with the advent of optogenetic and chemogenetic technology is also discussed. These exciting gene delivery techniques will facilitate improved anatomical mapping, cell-specific gene expression profiling and targeted manipulation of UMN activity in mice. These advancements in the field pave the way for future work to uncover the precise role of UMNs in ALS and improve future therapeutic targeting of UMNs.
Collapse
|
33
|
Differential NPY-Y1 Receptor Density in the Motor Cortex of ALS Patients and Familial Model of ALS. Brain Sci 2021; 11:brainsci11080969. [PMID: 34439588 PMCID: PMC8393413 DOI: 10.3390/brainsci11080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Destabilization of faciliatory and inhibitory circuits is an important feature of corticomotor pathology in amyotrophic lateral sclerosis (ALS). While GABAergic inputs to upper motor neurons are reduced in models of the disease, less understood is the involvement of peptidergic inputs to upper motor neurons in ALS. The neuropeptide Y (NPY) system has been shown to confer neuroprotection against numerous pathogenic mechanisms implicated in ALS. However, little is known about how the NPY system functions in the motor system. Herein, we investigate post-synaptic NPY signaling on upper motor neurons in the rodent and human motor cortex, and on cortical neuron populations in vitro. Using immunohistochemistry, we show the increased density of NPY-Y1 receptors on the soma of SMI32-positive upper motor neurons in post-mortem ALS cases and SOD1G93A excitatory cortical neurons in vitro. Analysis of receptor density on Thy1-YFP-H-positive upper motor neurons in wild-type and SOD1G93A mouse tissue revealed that the distribution of NPY-Y1 receptors was changed on the apical processes at early-symptomatic and late-symptomatic disease stages. Together, our data demonstrate the differential density of NPY-Y1 receptors on upper motor neurons in a familial model of ALS and in ALS cases, indicating a novel pathway that may be targeted to modulate upper motor neuron activity.
Collapse
|
34
|
Retrograde Transgene Expression via Neuron-Specific Lentiviral Vector Depends on Both Species and Input Projections. Viruses 2021; 13:v13071387. [PMID: 34372593 PMCID: PMC8310113 DOI: 10.3390/v13071387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
For achieving retrograde gene transfer, we have so far developed two types of lentiviral vectors pseudotyped with fusion envelope glycoprotein, termed HiRet vector and NeuRet vector, consisting of distinct combinations of rabies virus and vesicular stomatitis virus glycoproteins. In the present study, we compared the patterns of retrograde transgene expression for the HiRet vs. NeuRet vectors by testing the cortical input system. These vectors were injected into the motor cortex in rats, marmosets, and macaques, and the distributions of retrograde labels were investigated in the cortex and thalamus. Our histological analysis revealed that the NeuRet vector generally exhibits a higher efficiency of retrograde gene transfer than the HiRet vector, though its capacity of retrograde transgene expression in the macaque brain is unexpectedly low, especially in terms of the intracortical connections, as compared to the rat and marmoset brains. It was also demonstrated that the NeuRet but not the HiRet vector displays sufficiently high neuron specificity and causes no marked inflammatory/immune responses at the vector injection sites in the primate (marmoset and macaque) brains. The present results indicate that the retrograde transgene efficiency of the NeuRet vector varies depending not only on the species but also on the input projections.
Collapse
|
35
|
Huang X, Roet KCD, Zhang L, Brault A, Berg AP, Jefferson AB, Klug-McLeod J, Leach KL, Vincent F, Yang H, Coyle AJ, Jones LH, Frost D, Wiskow O, Chen K, Maeda R, Grantham A, Dornon MK, Klim JR, Siekmann MT, Zhao D, Lee S, Eggan K, Woolf CJ. Human amyotrophic lateral sclerosis excitability phenotype screen: Target discovery and validation. Cell Rep 2021; 35:109224. [PMID: 34107252 PMCID: PMC8209673 DOI: 10.1016/j.celrep.2021.109224] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/14/2020] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Drug development is hampered by poor target selection. Phenotypic screens using neurons differentiated from patient stem cells offer the possibility to validate known and discover novel disease targets in an unbiased fashion. To identify targets for managing hyperexcitability, a pathological feature of amyotrophic lateral sclerosis (ALS), we design a multi-step screening funnel using patient-derived motor neurons. High-content live cell imaging is used to evaluate neuronal excitability, and from a screen against a chemogenomic library of 2,899 target-annotated compounds, 67 reduce the hyperexcitability of ALS motor neurons carrying the SOD1(A4V) mutation, without cytotoxicity. Bioinformatic deconvolution identifies 13 targets that modulate motor neuron excitability, including two known ALS excitability modulators, AMPA receptors and Kv7.2/3 ion channels, constituting target validation. We also identify D2 dopamine receptors as modulators of ALS motor neuron excitability. This screen demonstrates the power of human disease cell-based phenotypic screens for identifying clinically relevant targets for neurological disorders. Motor neuron hyperexcitability is observed in both ALS patients and their iPSC-derived neurons. Combining a high-content live imaging excitability phenotypic assay, high-throughput screening against a cross-annotated chemogenomic library, and bioinformatic enrichment analysis, Huang et al. identify targets modulating the hyperexcitability of ALS patient-derived motor neurons in an unbiased manner.
Collapse
Affiliation(s)
- Xuan Huang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kasper C D Roet
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Liying Zhang
- Medicine Design, Pfizer, Cambridge, MA 02139, USA
| | - Amy Brault
- Medicine Design, Pfizer, Groton, CT 06340, USA
| | - Allison P Berg
- Rare Disease Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Anne B Jefferson
- Pfizer Centers for Therapeutic Innovation (CTI), San Francisco, CA 94080, USA
| | | | - Karen L Leach
- Pfizer Centers for Therapeutic Innovation (CTI), Cambridge, MA 02139, USA
| | | | - Hongying Yang
- Pfizer Centers for Therapeutic Innovation (CTI), Cambridge, MA 02139, USA
| | - Anthony J Coyle
- Pfizer Centers for Therapeutic Innovation (CTI), Cambridge, MA 02139, USA
| | - Lyn H Jones
- Medicine Design, Pfizer, Cambridge, MA 02139, USA
| | - Devlin Frost
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Ole Wiskow
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Kuchuan Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Rie Maeda
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alyssa Grantham
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mary K Dornon
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Marco T Siekmann
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Dongyi Zhao
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Seungkyu Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Scekic-Zahirovic J, Sanjuan-Ruiz I, Kan V, Megat S, De Rossi P, Dieterlé S, Cassel R, Jamet M, Kessler P, Wiesner D, Tzeplaeff L, Demais V, Sahadevan S, Hembach KM, Muller HP, Picchiarelli G, Mishra N, Antonucci S, Dirrig-Grosch S, Kassubek J, Rasche V, Ludolph A, Boutillier AL, Roselli F, Polymenidou M, Lagier-Tourenne C, Liebscher S, Dupuis L. Cytoplasmic FUS triggers early behavioral alterations linked to cortical neuronal hyperactivity and inhibitory synaptic defects. Nat Commun 2021; 12:3028. [PMID: 34021132 PMCID: PMC8140148 DOI: 10.1038/s41467-021-23187-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gene mutations causing cytoplasmic mislocalization of the RNA-binding protein FUS lead to severe forms of amyotrophic lateral sclerosis (ALS). Cytoplasmic accumulation of FUS is also observed in other diseases, with unknown consequences. Here, we show that cytoplasmic mislocalization of FUS drives behavioral abnormalities in knock-in mice, including locomotor hyperactivity and alterations in social interactions, in the absence of widespread neuronal loss. Mechanistically, we identified a progressive increase in neuronal activity in the frontal cortex of Fus knock-in mice in vivo, associated with altered synaptic gene expression. Synaptic ultrastructural and morphological defects were more pronounced in inhibitory than excitatory synapses and associated with increased synaptosomal levels of FUS and its RNA targets. Thus, cytoplasmic FUS triggers synaptic deficits, which is leading to increased neuronal activity in frontal cortex and causing related behavioral phenotypes. These results indicate that FUS mislocalization may trigger deleterious phenotypes beyond motor neuron impairment in ALS, likely relevant also for other neurodegenerative diseases characterized by FUS mislocalization.
Collapse
Affiliation(s)
- Jelena Scekic-Zahirovic
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Inmaculada Sanjuan-Ruiz
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Vanessa Kan
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
- BioMedical Center, Medical Faculty, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Salim Megat
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Pierre De Rossi
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Stéphane Dieterlé
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Raphaelle Cassel
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
| | - Marguerite Jamet
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Pascal Kessler
- Université de Strasbourg, Inserm, Unité mixte de service du CRBS, UMS 038, Strasbourg, France
| | - Diana Wiesner
- Department of Neurology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Laura Tzeplaeff
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
| | - Valérie Demais
- Plateforme Imagerie In Vitro, CNRS UPS-3156, NeuroPôle, Strasbourg, France
| | - Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Katharina M Hembach
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | | | - Gina Picchiarelli
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Nibha Mishra
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Stefano Antonucci
- Department of Neurology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Sylvie Dirrig-Grosch
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France
| | - Jan Kassubek
- Department of Neurology, Ulm University, Ulm, Germany
| | - Volker Rasche
- Ulm University Medical Center, Department of Internal Medicine II, Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Anne-Laurence Boutillier
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | | | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany.
- BioMedical Center, Medical Faculty, Ludwig-Maximilians-University Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Luc Dupuis
- Université de Strasbourg, Inserm, Mécanismes centraux et périphériques de la neurodégénérescence, Strasbourg, France.
| |
Collapse
|
37
|
Neurophysiological Mechanisms Underlying Cortical Hyper-Excitability in Amyotrophic Lateral Sclerosis: A Review. Brain Sci 2021; 11:brainsci11050549. [PMID: 33925493 PMCID: PMC8145013 DOI: 10.3390/brainsci11050549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neuromotor disease characterized by the loss of upper and lower motor neurons (MNs), resulting in muscle paralysis and death. Early cortical hyper-excitability is a common pathological process observed clinically and in animal disease models. Although the mechanisms that underlie cortical hyper-excitability are not completely understood, the molecular and cellular mechanisms that cause enhanced neuronal intrinsic excitability and changes in excitatory and inhibitory synaptic activity are starting to emerge. Here, we review the evidence for an anterograde glutamatergic excitotoxic process, leading to cortical hyper-excitability via intrinsic cellular and synaptic mechanisms and for the role of interneurons in establishing disinhibition in clinical and experimental settings. Understanding the mechanisms that lead to these complex pathological processes will likely produce key insights towards developing novel therapeutic strategies to rescue upper MNs, thus alleviating the impact of this fatal disease.
Collapse
|
38
|
Mini-Review: Induced pluripotent stem cells and the search for new cell-specific ALS therapeutic targets. Neurosci Lett 2021; 755:135911. [PMID: 33892003 DOI: 10.1016/j.neulet.2021.135911] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/05/2021] [Accepted: 04/17/2021] [Indexed: 12/30/2022]
Abstract
Amongst the most important discoveries in ALS pathobiology are the works demonstrating that multiple cell types contribute to disease onset and progression. However, a significant limitation in ALS research is the inability to obtain tissues from ALS patient brain and spinal cord during the course of the disease. In vivo modeling has provided insights into the role of these cell subtypes in disease onset and progression. However, in vivo models also have shortcomings, including the reliance on a limited number of models based upon hereditary forms of the disease. Therefore, using human induced pluripotent stem cells (iPSC) reprogrammed from somatic cells of ALS patients, with both hereditary and sporadic forms of the disease, and differentiated into cell subtypes of both the central nervous system (CNS) and peripheral nervous system (PNS), have become powerful complementary tools for investigating basic mechanisms of disease as well as a platform for drug discovery. Motor neuron and other neuron subtypes, as well as non-neuronal cells have been differentiated from human iPSC and studied for their potential contributions to ALS pathobiology. As iPSC technologies have advanced, 3D modeling with multicellular systems organised in microfluidic chambers or organoids are the next step in validating the pathways and therapeutic targets already identified. Precision medicine approaches with iPSC using either traditional strategies of screening drugs that target a known pathogenic mechanism as well as "blind-to-target" drug screenings that allow for patient stratification based on drug response rather than clinical characteristics are now being employed.
Collapse
|
39
|
Traiffort E, Morisset-Lopez S, Moussaed M, Zahaf A. Defective Oligodendroglial Lineage and Demyelination in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22073426. [PMID: 33810425 PMCID: PMC8036314 DOI: 10.3390/ijms22073426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
Motor neurons and their axons reaching the skeletal muscle have long been considered as the best characterized targets of the degenerative process observed in amyotrophic lateral sclerosis (ALS). However, the involvement of glial cells was also more recently reported. Although oligodendrocytes have been underestimated for a longer time than other cells, they are presently considered as critically involved in axonal injury and also conversely constitute a target for the toxic effects of the degenerative neurons. In the present review, we highlight the recent advances regarding oligodendroglial cell involvement in the pathogenesis of ALS. First, we present the oligodendroglial cells, the process of myelination, and the tight relationship between axons and myelin. The histological abnormalities observed in ALS and animal models of the disease are described, including myelin defects and oligodendroglial accumulation of pathological protein aggregates. Then, we present data that establish the existence of dysfunctional and degenerating oligodendroglial cells, the chain of events resulting in oligodendrocyte degeneration, and the most recent molecular mechanisms supporting oligodendrocyte death and dysfunction. Finally, we review the arguments in support of the primary versus secondary involvement of oligodendrocytes in the disease and discuss the therapeutic perspectives related to oligodendrocyte implication in ALS pathogenesis.
Collapse
Affiliation(s)
- Elisabeth Traiffort
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
- Correspondence:
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Mireille Moussaed
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Amina Zahaf
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
| |
Collapse
|
40
|
Perkins EM, Burr K, Banerjee P, Mehta AR, Dando O, Selvaraj BT, Suminaite D, Nanda J, Henstridge CM, Gillingwater TH, Hardingham GE, Wyllie DJA, Chandran S, Livesey MR. Altered network properties in C9ORF72 repeat expansion cortical neurons are due to synaptic dysfunction. Mol Neurodegener 2021; 16:13. [PMID: 33663561 PMCID: PMC7931347 DOI: 10.1186/s13024-021-00433-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Physiological disturbances in cortical network excitability and plasticity are established and widespread in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients, including those harbouring the C9ORF72 repeat expansion (C9ORF72RE) mutation - the most common genetic impairment causal to ALS and FTD. Noting that perturbations in cortical function are evidenced pre-symptomatically, and that the cortex is associated with widespread pathology, cortical dysfunction is thought to be an early driver of neurodegenerative disease progression. However, our understanding of how altered network function manifests at the cellular and molecular level is not clear. METHODS To address this we have generated cortical neurons from patient-derived iPSCs harbouring C9ORF72RE mutations, as well as from their isogenic expansion-corrected controls. We have established a model of network activity in these neurons using multi-electrode array electrophysiology. We have then mechanistically examined the physiological processes underpinning network dysfunction using a combination of patch-clamp electrophysiology, immunocytochemistry, pharmacology and transcriptomic profiling. RESULTS We find that C9ORF72RE causes elevated network burst activity, associated with enhanced synaptic input, yet lower burst duration, attributable to impaired pre-synaptic vesicle dynamics. We also show that the C9ORF72RE is associated with impaired synaptic plasticity. Moreover, RNA-seq analysis revealed dysregulated molecular pathways impacting on synaptic function. All molecular, cellular and network deficits are rescued by CRISPR/Cas9 correction of C9ORF72RE. Our study provides a mechanistic view of the early dysregulated processes that underpin cortical network dysfunction in ALS-FTD. CONCLUSION These findings suggest synaptic pathophysiology is widespread in ALS-FTD and has an early and fundamental role in driving altered network function that is thought to contribute to neurodegenerative processes in these patients. The overall importance is the identification of previously unidentified defects in pre and postsynaptic compartments affecting synaptic plasticity, synaptic vesicle stores, and network propagation, which directly impact upon cortical function.
Collapse
Affiliation(s)
- Emma M. Perkins
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Karen Burr
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
| | - Poulomi Banerjee
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
| | - Arpan R. Mehta
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
| | - Owen Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Bhuvaneish T. Selvaraj
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
| | - Daumante Suminaite
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Jyoti Nanda
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
| | - Christopher M. Henstridge
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY UK
| | - Thomas H. Gillingwater
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Giles E. Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - David J. A. Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
- Centre for Brain Development and Repair, inStem, Bangalore, 560065 India
| | - Siddharthan Chandran
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
- Centre for Brain Development and Repair, inStem, Bangalore, 560065 India
| | - Matthew R. Livesey
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ UK
| |
Collapse
|
41
|
Bączyk M, Alami NO, Delestrée N, Martinot C, Tang L, Commisso B, Bayer D, Doisne N, Frankel W, Manuel M, Roselli F, Zytnicki D. Synaptic restoration by cAMP/PKA drives activity-dependent neuroprotection to motoneurons in ALS. J Exp Med 2021; 217:151829. [PMID: 32484501 PMCID: PMC7398175 DOI: 10.1084/jem.20191734] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022] Open
Abstract
Excessive excitation is hypothesized to cause motoneuron (MN) degeneration in amyotrophic lateral sclerosis (ALS), but actual proof of hyperexcitation in vivo is missing, and trials based on this concept have failed. We demonstrate, by in vivo single-MN electrophysiology, that, contrary to expectations, excitatory responses evoked by sensory and brainstem inputs are reduced in MNs of presymptomatic mutSOD1 mice. This impairment correlates with disrupted postsynaptic clustering of Homer1b, Shank, and AMPAR subunits. Synaptic restoration can be achieved by activation of the cAMP/PKA pathway, by either intracellular injection of cAMP or DREADD-Gs stimulation. Furthermore, we reveal, through independent control of signaling and excitability allowed by multiplexed DREADD/PSAM chemogenetics, that PKA-induced restoration of synapses triggers an excitation-dependent decrease in misfolded SOD1 burden and autophagy overload. In turn, increased MN excitability contributes to restoring synaptic structures. Thus, the decrease of excitation to MN is an early but reversible event in ALS. Failure of the postsynaptic site, rather than hyperexcitation, drives disease pathobiochemistry.
Collapse
Affiliation(s)
- Marcin Bączyk
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Najwa Ouali Alami
- Department of Neurology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Nicolas Delestrée
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Clémence Martinot
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Linyun Tang
- Department of Neurology, Ulm University, Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Barbara Commisso
- Department of Neurology, Ulm University, Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - David Bayer
- Department of Neurology, Ulm University, Ulm, Germany.,Cellular and Molecular Mechanisms in Aging Research Training Group, Ulm University, Ulm, Germany
| | - Nicolas Doisne
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Wayne Frankel
- Department of Genetics & Development, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY
| | - Marin Manuel
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Daniel Zytnicki
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
42
|
Huh S, Heckman CJ, Manuel M. Time Course of Alterations in Adult Spinal Motoneuron Properties in the SOD1(G93A) Mouse Model of ALS. eNeuro 2021; 8:ENEURO.0378-20.2021. [PMID: 33632815 PMCID: PMC8009670 DOI: 10.1523/eneuro.0378-20.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/02/2023] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease, motoneuron electrical properties are already altered during embryonic development. Motoneurons must therefore exhibit a remarkable capacity for homeostatic regulation to maintain a normal motor output for most of the life of the patient. In the present article, we demonstrate how maintaining homeostasis could come at a very high cost. We studied the excitability of spinal motoneurons from young adult SOD1(G93A) mice to end-stage. Initially, homeostasis is highly successful in maintaining their overall excitability. This initial success, however, is achieved by pushing some cells far above the normal range of passive and active conductances. As the disease progresses, both passive and active conductances shrink below normal values in the surviving cells. This shrinkage may thus promote survival, implying the previously large values contribute to degeneration. These results support the hypothesis that motoneuronal homeostasis may be "hypervigilant" in ALS and a source of accumulating stress.
Collapse
Affiliation(s)
- Seoan Huh
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL
| | - Charles J Heckman
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL
- Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL
- Department of Physical Therapy and Human Movement Science, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL
| | - Marin Manuel
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique, Paris 75006, France
| |
Collapse
|
43
|
Gento-Caro Á, Vilches-Herrando E, García-Morales V, Portillo F, Rodríguez-Bey G, González-Forero D, Moreno-López B. Interfering with lysophosphatidic acid receptor edg2/lpa 1 signalling slows down disease progression in SOD1-G93A transgenic mice. Neuropathol Appl Neurobiol 2021; 47:1004-1018. [PMID: 33508894 DOI: 10.1111/nan.12699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 01/18/2023]
Abstract
AIMS Alterations in excitability represent an early hallmark in Amyotrophic Lateral Sclerosis (ALS). Therefore, deciphering the factors that impact motor neuron (MN) excitability offers an opportunity to uncover further aetiopathogenic mechanisms, neuroprotective agents, therapeutic targets, and/or biomarkers in ALS. Here, we hypothesised that the lipokine lysophosphatidic acid (lpa) regulates MN excitability via the G-protein-coupled receptor lpa1 . Then, modulating lpa1 -mediated signalling might affect disease progression in the ALS SOD1-G93A mouse model. METHODS The influence of lpa-lpa1 signalling on the electrical properties, Ca2+ dynamic and survival of MNs was tested in vitro. Expression of lpa1 in cultured MNs and in the spinal cord of SOD1-G93A mice was analysed. ALS mice were chronically treated with a small-interfering RNA against lpa1 (siRNAlpa1 ) or with the lpa1 inhibitor AM095. Motor skills, MN loss, and lifespan were evaluated. RESULTS AM095 reduced MN excitability. Conversely, exogenous lpa increased MN excitability by modulating task1 'leak' potassium channels downstream of lpa1 . Lpa-lpa1 signalling evoked an excitotoxic response in MNs via voltage-sensitive calcium channels. Cultured SOD1-G93A MNs displayed lpa1 upregulation and heightened vulnerability to lpa. In transgenic mice, lpa1 was upregulated mostly in spinal cord MNs before cell loss. Chronic administration of either siRNAlpa1 or AM095 reduced lpa1 expression at least in MNs, delayed MN death, improved motor skills, and prolonged life expectancy of ALS mice. CONCLUSIONS These results suggest that stressed lpa-lpa1 signalling contributes to MN degeneration in SOD1-G93A mice. Consequently, disrupting lpa1 slows down disease progression. This highlights LPA1 signalling as a potential target and/or biomarker in ALS.
Collapse
Affiliation(s)
- Ángela Gento-Caro
- Grupo de Neurodegeneración y Neurorreparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Esther Vilches-Herrando
- Grupo de Neurodegeneración y Neurorreparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Victoria García-Morales
- Grupo de Neurodegeneración y Neurorreparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Federico Portillo
- Grupo de Neurodegeneración y Neurorreparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Guillermo Rodríguez-Bey
- Grupo de Neurodegeneración y Neurorreparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Department of Human Genetics. Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - David González-Forero
- Grupo de Neurodegeneración y Neurorreparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Bernardo Moreno-López
- Grupo de Neurodegeneración y Neurorreparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| |
Collapse
|
44
|
Van Hook MJ, Monaco C, Bierlein ER, Smith JC. Neuronal and Synaptic Plasticity in the Visual Thalamus in Mouse Models of Glaucoma. Front Cell Neurosci 2021; 14:626056. [PMID: 33584206 PMCID: PMC7873902 DOI: 10.3389/fncel.2020.626056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Homeostatic plasticity plays important role in regulating synaptic and intrinsic neuronal function to stabilize output following perturbations to circuit activity. In glaucoma, a neurodegenerative disease of the visual system commonly associated with elevated intraocular pressure (IOP), the early disease is associated with altered synaptic inputs to retinal ganglion cells (RGCs), changes in RGC intrinsic excitability, and deficits in optic nerve transport and energy metabolism. These early functional changes can precede RGC degeneration and are likely to alter RGC outputs to their target structures in the brain and thereby trigger homeostatic changes in synaptic and neuronal properties in those brain regions. In this study, we sought to determine whether and how neuronal and synaptic function is altered in the dorsal lateral geniculate nucleus (dLGN), an important RGC projection target in the thalamus, and how functional changes related to IOP. We accomplished this using patch-clamp recordings from thalamocortical (TC) relay neurons in the dLGN in two established mouse models of glaucoma—the DBA/2J (D2) genetic mouse model and an inducible glaucoma model with intracameral microbead injections to elevate IOP. We found that the intrinsic excitability of TC neurons was enhanced in D2 mice and these functional changes were mirrored in recordings of TC neurons from microbead-injected mice. Notably, many neuronal properties were correlated with IOP in older D2 mice, when IOP rises. The frequency of miniature excitatory synaptic currents (mEPSCs) was reduced in 9-month-old D2 mice, and vGlut2 staining of RGC synaptic terminals was reduced in an IOP-dependent manner. These data suggest that glaucoma-associated changes to neuronal excitability and synaptic inputs in the dLGN might represent a combination of both stabilizing/homeostatic plasticity and pathological dysfunction.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Corrine Monaco
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Elizabeth R Bierlein
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jennie C Smith
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
45
|
Liu J, Wang Z, Shen D, Yang X, Liu M, Cui L. Split phenomenon of antagonistic muscle groups in amyotrophic lateral sclerosis: relative preservation of flexor muscles. Neurol Res 2020; 43:372-380. [PMID: 33372862 DOI: 10.1080/01616412.2020.1866354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective: In addition to the split hand sign, other split phenomena of different muscles also exist in amyotrophic lateral sclerosis (ALS). We analyzed the incidence of split phenomena in multiple antagonistic muscle groups in ALS patients and explored whether clinical factors affected their occurrence.Methods: 618 ALS patients were included from a single ALS center. Muscle strength in upper and lower limbs was evaluated using the modified Medical Research Council (MRC) scoring system (range from 1 to 13). Split phenomena between different antagonistic muscle groups were summarized, and the correlations with clinical factors were analyzed.Results: Split phenomena were detected in 22.3% antagonistic muscles for flexion and extension of the elbow, 11.9% for the wrist, 23.9% for fingers, 18.2% for the ankle, and 14.7% for toes. These manifestations were characterized by preferential wasting of the elbow, wrist, and finger extensor muscles compared with the flexor muscles, and the ankle and toe dorsiflexor muscles compared with the plantar flexor muscles. The presence of muscle wasting was more common when the muscle strength was stronger than a modified MRC grade 6. No definite correlation was found between split phenomena and clinical factors, including age-at-onset, gender, disease duration, the region of onset, and pyramidal tract damage.Discussion: Split phenomena of antagonistic muscle groups widely exist in ALS patients. No definitive and consistent clinical factors were observed that affected the occurrence of these phenomena.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhili Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Neurosciences Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Dyer MS, Reale LA, Lewis KE, Walker AK, Dickson TC, Woodhouse A, Blizzard CA. Mislocalisation of TDP-43 to the cytoplasm causes cortical hyperexcitability and reduced excitatory neurotransmission in the motor cortex. J Neurochem 2020; 157:1300-1315. [PMID: 33064315 DOI: 10.1111/jnc.15214] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease pathologically characterised by mislocalisation of the RNA-binding protein TAR-DNA-binding protein 43 (TDP-43) from the nucleus to the cytoplasm. Changes to neuronal excitability and synapse dysfunction in the motor cortex are early pathological changes occurring in people with ALS and mouse models of disease. To investigate the effect of mislocalised TDP-43 on the function of motor cortex neurons we utilised mouse models that express either human wild-type (TDP-43WT ) or nuclear localisation sequence-deficient TDP-43 (TDP-43ΔNLS ) on an inducible promoter that enriches expression to forebrain neurons. Pathophysiology was investigated through immunohistochemistry and whole-cell patch-clamp electrophysiology. Thirty days expression of TDP-43ΔNLS in adult mice did not cause any changes in the number of CTIP2-positive neurons in the motor cortex. However, at this time-point, the expression of TDP-43ΔNLS drives intrinsic hyperexcitability in layer V excitatory neurons of the motor cortex. This hyperexcitability occurs concomitantly with a decrease in excitatory synaptic input to these cells and fluctuations in both directions of ionotropic glutamate receptors. This pathophysiology is not present with TDP-43WT expression, demonstrating that the localisation of TDP-43 to the cytoplasm is crucial for the altered excitability phenotype. This study has important implications for the mechanisms of toxicity of one of the most notorious proteins linked to ALS, TDP-43. We provide the first evidence that TDP-43 mislocalisation causes aberrant synaptic function and a hyperexcitability phenotype in the motor cortex, linking some of the earliest dysfunctions to arise in people with ALS to mislocalisation of TDP-43.
Collapse
Affiliation(s)
- Marcus S Dyer
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Laura A Reale
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Katherine E Lewis
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, Qld, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| |
Collapse
|
47
|
Finkbeiner S. Functional genomics, genetic risk profiling and cell phenotypes in neurodegenerative disease. Neurobiol Dis 2020; 146:105088. [PMID: 32977020 PMCID: PMC7686089 DOI: 10.1016/j.nbd.2020.105088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/03/2022] Open
Abstract
Human genetics provides unbiased insights into the causes of human disease, which can be used to create a foundation for effective ways to more accurately diagnose patients, stratify patients for more successful clinical trials, discover and develop new therapies, and ultimately help patients choose the safest and most promising therapeutic option based on their risk profile. But the process for translating basic observations from human genetics studies into pathogenic disease mechanisms and treatments is laborious and complex, and this challenge has particularly slowed the development of interventions for neurodegenerative disease. In this review, we discuss the many steps in the process, the important considerations at each stage, and some of the latest tools and technologies that are available to help investigators translate insights from human genetics into diagnostic and therapeutic strategies that will lead to the sort of advances in clinical care that make a difference for patients.
Collapse
Affiliation(s)
- Steven Finkbeiner
- Center for Systems and Therapeutics, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA; Departments of Neurology and Physiology, University of Califorina, San Francisco, CA 94158, USA.
| |
Collapse
|
48
|
Nolan M, Scott C, Gamarallage MP, Lunn D, Carpenter K, McDonough E, Meyer D, Kaanumalle S, Santamaria-Pang A, Turner MR, Talbot K, Ansorge O. Quantitative patterns of motor cortex proteinopathy across ALS genotypes. Acta Neuropathol Commun 2020; 8:98. [PMID: 32616036 PMCID: PMC7331195 DOI: 10.1186/s40478-020-00961-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Degeneration of the primary motor cortex is a defining feature of amyotrophic lateral sclerosis (ALS), which is associated with the accumulation of microscopic protein aggregates in neurons and glia. However, little is known about the quantitative burden and pattern of motor cortex proteinopathies across ALS genotypes. We combined quantitative digital image analysis with multi-level generalized linear modelling in an independent cohort of 82 ALS cases to explore the relationship between genotype, total proteinopathy load and cellular vulnerability to aggregate formation. Primary motor cortex phosphorylated (p)TDP-43 burden and microglial activation were more severe in sporadic ALS-TDP disease than C9-ALS. Oligodendroglial pTDP-43 pathology was a defining feature of ALS-TDP in sporadic ALS, C9-ALS and ALS with OPTN, HNRNPA1 or TARDBP mutations. ALS-FUS and ALS-SOD1 showed less cortical proteinopathy in relation to spinal cord pathology than ALS-TDP, where pathology was more evenly spread across the motor cortex-spinal cord axis. Neuronal pTDP-43 aggregates were rare in GAD67+ and Parvalbumin+ inhibitory interneurons, consistent with predominant accumulation in excitatory neurons. Finally, we show that cortical microglia, but not astrocytes, contain pTDP-43. Our findings suggest divergent quantitative, genotype-specific vulnerability of the ALS primary motor cortex to proteinopathies, which may have implications for our understanding of disease pathogenesis and the development of genotype-specific therapies.
Collapse
|
49
|
Gunes ZI, Kan VWY, Ye X, Liebscher S. Exciting Complexity: The Role of Motor Circuit Elements in ALS Pathophysiology. Front Neurosci 2020; 14:573. [PMID: 32625051 PMCID: PMC7311855 DOI: 10.3389/fnins.2020.00573] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the degeneration of both upper and lower motor neurons. Despite decades of research, we still to date lack a cure or disease modifying treatment, emphasizing the need for a much-improved insight into disease mechanisms and cell type vulnerability. Altered neuronal excitability is a common phenomenon reported in ALS patients, as well as in animal models of the disease, but the cellular and circuit processes involved, as well as the causal relevance of those observations to molecular alterations and final cell death, remain poorly understood. Here, we review evidence from clinical studies, cell type-specific electrophysiology, genetic manipulations and molecular characterizations in animal models and culture experiments, which argue for a causal involvement of complex alterations of structure, function and connectivity of different neuronal subtypes within the cortical and spinal cord motor circuitries. We also summarize the current knowledge regarding the detrimental role of astrocytes and reassess the frequently proposed hypothesis of glutamate-mediated excitotoxicity with respect to changes in neuronal excitability. Together, these findings suggest multifaceted cell type-, brain area- and disease stage- specific disturbances of the excitation/inhibition balance as a cardinal aspect of ALS pathophysiology.
Collapse
Affiliation(s)
- Zeynep I Gunes
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Vanessa W Y Kan
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - XiaoQian Ye
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
50
|
Jara JH, Sheets PL, Nigro MJ, Perić M, Brooks C, Heller DB, Martina M, Andjus PR, Ozdinler PH. The Electrophysiological Determinants of Corticospinal Motor Neuron Vulnerability in ALS. Front Mol Neurosci 2020; 13:73. [PMID: 32508590 PMCID: PMC7248374 DOI: 10.3389/fnmol.2020.00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
The brain is complex and heterogeneous. Even though numerous independent studies indicate cortical hyperexcitability as a potential contributor to amyotrophic lateral sclerosis (ALS) pathology, the mechanisms that are responsible for upper motor neuron (UMN) vulnerability remain elusive. To reveal the electrophysiological determinants of corticospinal motor neuron (CSMN, a.k.a UMN in mice) vulnerability, we investigated the motor cortex of hSOD1G93A mice at P30 (postnatal day 30), a presymptomatic time point. Glutamate uncaging by laser scanning photostimulation (LSPS) revealed altered dynamics especially within the inhibitory circuitry and more specifically in L2/3 of the motor cortex, whereas the excitatory microcircuits were unchanged. Observed microcircuitry changes were specific to CSMN in the motor column. Electrophysiological evaluation of the intrinsic properties in response to the microcircuit changes, as well as the exon microarray expression profiles of CSMN isolated from hSOD1G93A and healthy mice at P30, revealed the presence of a very dynamic set of events, ultimately directed to establish, maintain and retain the balance at this early stage. Also, the expression profile of key voltage-gated potassium and sodium channel subunits as well as of the inhibitory GABA receptor subunits and modulatory proteins began to suggest the challenges CSMN face at this early age. Since neurodegeneration is initiated when neurons can no longer maintain balance, the complex cellular events that occur at this critical time point help reveal how CSMN try to cope with the challenges of disease manifestation. This information is critically important for the proper modulation of UMNs and for developing effective treatment strategies.
Collapse
Affiliation(s)
- Javier H Jara
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Patrick L Sheets
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Maximiliano José Nigro
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Mina Perić
- Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Carolyn Brooks
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel B Heller
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Marco Martina
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Pavle R Andjus
- Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - P Hande Ozdinler
- Davee Department of Neurology and Clinical Neurological Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|