1
|
Chen Y, Wang R, Li X, Wang Z, Cao B, Du J, Deng T, Han J, Yang M. Progress of research on the treatment of depression by traditional Chinese medicine prescriptions. Heliyon 2024; 10:e34970. [PMID: 39157399 PMCID: PMC11328063 DOI: 10.1016/j.heliyon.2024.e34970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Depression is a common psychiatric disorder that belongs to the category of "Depression Syndrome" in traditional Chinese medicine (TCM), and its etiology and pathogenesis are complex and unclear. It is characterized by high prevalence, high disability rate, and high recurrence rate, which seriously affect human health, and its treatment has become a research hotspot worldwide. At present, the antidepressants commonly used in the clinic are mainly Western medicine (WM), but there are problems such as frequent side effects and poor efficacy. Studies have found that the use of TCM prescriptions in the treatment of depression can achieve the same effect as WM; and when TCM prescriptions are combined with WM, the efficacy can be enhanced while the adverse effects of WM can be reduced. Pharmacological studies related to the treatment of depression with traditional Chinese medicine prescriptions (TCMPs) have focused on the neurobiochemical system, gut microbes, and energy metabolism in mitochondria. No one has yet reviewed the pharmacological mechanism of TCMPs for depression. So, this paper reviews the pharmacological mechanism of TCMPs for depression from the perspective of TCMPs, introduces the progress of research on classical TCMPs for depression and their antidepressant mechanism. This article aims to promote the application of TCMPs in the clinic and provide a new therapeutic idea for the clinical treatment of depression.
Collapse
Affiliation(s)
- Yiwei Chen
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Ruyu Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Zhiying Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Baorui Cao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxin Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Deng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxiang Han
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| | - Meina Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
2
|
Yarur HE, Casello SM, Tsai VS, Enriquez-Traba J, Kore R, Wang H, Arenivar M, Tejeda HA. Dynorphin / kappa-opioid receptor regulation of excitation-inhibition balance toggles afferent control of prefrontal cortical circuits in a pathway-specific manner. Mol Psychiatry 2023; 28:4801-4813. [PMID: 37644172 PMCID: PMC10914606 DOI: 10.1038/s41380-023-02226-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
The medial prefrontal cortex (mPFC) controls behavior via connections with limbic excitatory afferents that engage various inhibitory motifs to shape mPFC circuit function. The dynorphin (Dyn) / kappa-opioid receptor (KOR) system is highly enriched in the mPFC, and its dysregulation is implicated in neuropsychiatric disorders. However, it is unclear how the Dyn / KOR system modulates excitatory and inhibitory circuits that are integral for mPFC information processing and behavioral control. Here, we provide a circuit-based framework wherein mPFC Dyn / KOR signaling regulates excitation-inhibition balance by toggling which afferents drive mPFC neurons. Dyn / KOR regulation of afferent inputs is pathway-specific. Dyn acting on presynaptic KORs inhibits glutamate release from afferent inputs to the mPFC, including the basolateral amygdala (BLA), paraventricular nucleus of the thalamus, and contralateral cortex. The majority of excitatory synapses to mPFC neurons, including those from the ventral hippocampus (VH), do not express presynaptic KOR, rendering them insensitive to Dyn / KOR modulation. Dyn / KOR signaling also suppresses afferent-driven recruitment of specific inhibitory sub-networks, providing a basis for Dyn to disinhibit mPFC circuits. Specifically, Dyn / KOR signaling preferentially suppresses SST interneuron- relative to PV interneuron-mediated inhibition. Selective KOR action on afferents or within mPFC microcircuits gates how distinct limbic inputs drive spiking in mPFC neurons. Presynaptic Dyn / KOR signaling decreases KOR-positive input-driven (e.g. BLA) spiking of mPFC neurons. In contrast, KOR-negative input recruitment of mPFC neurons is enhanced by Dyn / KOR signaling via suppression of mPFC inhibitory microcircuits. Thus, by acting on distinct circuit elements, Dyn / KOR signaling shifts KOR-positive and negative afferent control of mPFC circuits, providing mechanistic insights into the role of neuropeptides in shaping mPFC function. Together, these findings highlight the utility of targeting the mPFC Dyn / KOR system as a means to treat neuropsychiatric disorders characterized by dysregulation in mPFC integration of long-range afferents with local inhibitory microcircuits.
Collapse
Affiliation(s)
- Hector E Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sanne M Casello
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Valerie S Tsai
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Juan Enriquez-Traba
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- NIH Graduate Partnership Program, Washington, DC, USA
| | - Rufina Kore
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Miguel Arenivar
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- NIH Graduate Partnership Program, Washington, DC, USA
| | - Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Joffe ME, Maksymetz J, Luschinger JR, Dogra S, Ferranti AS, Luessen DJ, Gallinger IM, Xiang Z, Branthwaite H, Melugin PR, Williford KM, Centanni SW, Shields BC, Lindsley CW, Calipari ES, Siciliano CA, Niswender CM, Tadross MR, Winder DG, Conn PJ. Acute restraint stress redirects prefrontal cortex circuit function through mGlu 5 receptor plasticity on somatostatin-expressing interneurons. Neuron 2022; 110:1068-1083.e5. [PMID: 35045338 PMCID: PMC8930582 DOI: 10.1016/j.neuron.2021.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022]
Abstract
Inhibitory interneurons orchestrate prefrontal cortex (PFC) activity, but we have a limited understanding of the molecular and experience-dependent mechanisms that regulate synaptic plasticity across PFC microcircuits. We discovered that mGlu5 receptor activation facilitates long-term potentiation at synapses from the basolateral amygdala (BLA) onto somatostatin-expressing interneurons (SST-INs) in mice. This plasticity appeared to be recruited during acute restraint stress, which induced intracellular calcium mobilization within SST-INs and rapidly potentiated postsynaptic strength onto SST-INs. Restraint stress and mGlu5 receptor activation each augmented BLA recruitment of SST-IN phasic feedforward inhibition, shunting information from other excitatory inputs, including the mediodorsal thalamus. Finally, studies using cell-type-specific mGlu5 receptor knockout mice revealed that mGlu5 receptor function in SST-expressing cells is necessary for restraint stress-induced changes to PFC physiology and related behaviors. These findings provide new insights into interneuron-specific synaptic plasticity mechanisms and suggest that SST-IN microcircuits may be promising targets for treating stress-induced psychiatric diseases.
Collapse
Affiliation(s)
- Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.
| | - James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA; Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Joseph R Luschinger
- Vanderbilt Center for Addiction Research, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Shalini Dogra
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA
| | - Anthony S Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA
| | - Deborah J Luessen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA
| | - Isabel M Gallinger
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA
| | - Zixiu Xiang
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA
| | - Hannah Branthwaite
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick R Melugin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kellie M Williford
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN, USA
| | - Samuel W Centanni
- Vanderbilt Center for Addiction Research, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Brenda C Shields
- Department of Neurobiology, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael R Tadross
- Department of Neurobiology, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Danny G Winder
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Puryear CB, Brooks J, Tan L, Smith K, Li Y, Cunningham J, Todtenkopf MS, Dean RL, Sanchez C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neurosci Biobehav Rev 2020; 108:658-678. [DOI: 10.1016/j.neubiorev.2019.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
5
|
Abstract
The influence of emotion on association-memory is often attributed to arousal, but negative stimuli are typically used to test for these effects. While prior studies of negative emotion on association-memory have found impairments, theories suggest that positive emotion may have a distinct effect on memory, and may lead to enhanced association-memory. Here we tested participants' memory for pairs of positive and neutral words using cued recall, supplemented with a mathematical modeling approach designed to disentangle item- versus association-memory effects that may otherwise confound cued-recall performance. In our main experiment, as well as in additional supplemental experiments, we consistently found enhanced association-memory due to positive emotion. Interestingly, we observed enhanced association-memory in pairs composed of two positive words, but not in pairings of one positive and one neutral word, indicating that this enhancement may only when a sufficient amount of positive emotion is present. These results provide further evidence that positive information is processed differently than negative and that, when examining association formation, valence as well as arousal must be considered. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Christopher R. Madan
- Department of Psychology, Boston College, Chestnut Hill,
MA, USA
- Department of Psychology, University of Alberta, Edmonton,
AB, Canada
- School of Psychology, University of Nottingham, Nottingham,
UK
| | | | | |
Collapse
|
6
|
Ferbinteanu J. Memory systems 2018 - Towards a new paradigm. Neurobiol Learn Mem 2019; 157:61-78. [PMID: 30439565 PMCID: PMC6389412 DOI: 10.1016/j.nlm.2018.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/29/2018] [Accepted: 11/10/2018] [Indexed: 12/26/2022]
Abstract
The multiple memory systems theory (MMS) postulates that the brain stores information based on the independent and parallel activity of a number of modules, each with distinct properties, dynamics, and neural basis. Much of the evidence for this theory comes from dissociation studies indicating that damage to restricted brain areas cause selective types of memory deficits. MMS has been the prevalent paradigm in memory research for more than thirty years, even as it has been adjusted several times to accommodate new data. However, recent empirical results indicating that the memory systems are not always dissociable constitute a challenge to fundamental tenets of the current theory because they suggest that representations formed by individual memory systems can contribute to more than one type of memory-driven behavioral strategy. This problem can be addressed by applying a dynamic network perspective to memory architecture. According to this view, memory networks can reconfigure or transiently couple in response to environmental demands. Within this context, the neural network underlying a specific memory system can act as an independent unit or as an integrated component of a higher order meta-network. This dynamic network model proposes a way in which empirical evidence that challenges the idea of distinct memory systems can be incorporated within a modular memory architecture. The model also provides a framework to account for the complex interactions among memory systems demonstrated at the behavioral level. Advances in the study of dynamic networks can generate new ideas to experimentally manipulate and control memory in basic or clinical research.
Collapse
Affiliation(s)
- J Ferbinteanu
- Dept. of Physiology and Pharmacology, Dept. of Neurology, SUNY Downstate Medical Center, 450 Clarkson Ave, Box 31, Brooklyn, NY 11203, USA.
| |
Collapse
|
7
|
Madan CR, Fujiwara E, Caplan JB, Sommer T. Emotional arousal impairs association-memory: Roles of amygdala and hippocampus. Neuroimage 2017; 156:14-28. [PMID: 28483720 DOI: 10.1016/j.neuroimage.2017.04.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022] Open
Abstract
Emotional arousal is well-known to enhance memory for individual items or events, whereas it can impair association memory. The neural mechanism of this association memory impairment by emotion is not known: In response to emotionally arousing information, amygdala activity may interfere with hippocampal associative encoding (e.g., via prefrontal cortex). Alternatively, emotional information may be harder to unitize, resulting in reduced availability of extra-hippocampal medial temporal lobe support for emotional than neutral associations. To test these opposing hypotheses, we compared neural processes underlying successful and unsuccessful encoding of emotional and neutral associations. Participants intentionally studied pairs of neutral and negative pictures (Experiments 1-3). We found reduced association-memory for negative pictures in all experiments, accompanied by item-memory increases in Experiment 2. High-resolution fMRI (Experiment 3) indicated that reductions in associative encoding of emotional information are localizable to an area in ventral-lateral amygdala, driven by attentional/salience effects in the central amygdala. Hippocampal activity was similar during both pair types, but a left hippocampal cluster related to successful encoding was observed only for negative pairs. Extra-hippocampal associative memory processes (e.g., unitization) were more effective for neutral than emotional materials. Our findings suggest that reduced emotional association memory is accompanied by increases in activity and functional coupling within the amygdala. This did not disrupt hippocampal association-memory processes, which indeed were critical for successful emotional association memory formation.
Collapse
Affiliation(s)
- Christopher R Madan
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany; University of Alberta, Edmonton, AB, Canada; Boston College, Chestnut Hill, MA, USA
| | - Esther Fujiwara
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany; University of Alberta, Edmonton, AB, Canada
| | - Jeremy B Caplan
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany; University of Alberta, Edmonton, AB, Canada
| | - Tobias Sommer
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
8
|
Lau T, Bigio B, Zelli D, McEwen BS, Nasca C. Stress-induced structural plasticity of medial amygdala stellate neurons and rapid prevention by a candidate antidepressant. Mol Psychiatry 2017; 22:227-234. [PMID: 27240534 PMCID: PMC5133196 DOI: 10.1038/mp.2016.68] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/27/2016] [Accepted: 03/02/2016] [Indexed: 12/18/2022]
Abstract
The adult brain is capable of adapting to internal and external stressors by undergoing structural plasticity, and failure to be resilient and preserve normal structure and function is likely to contribute to depression and anxiety disorders. Although the hippocampus has provided the gateway for understanding stress effects on the brain, less is known about the amygdala, a key brain area involved in the neural circuitry of fear and anxiety. Here, in mice more vulnerable to stressors, we demonstrate structural plasticity within the medial and basolateral regions of the amygdala in response to prolonged 21-day chronic restraint stress (CRS). Three days before the end of CRS, treatment with the putative, rapidly acting antidepressant, acetyl-l-carnitine (LAC) in the drinking water opposed the direction of these changes. Behaviorally, the LAC treatment during the last part of CRS enhanced resilience, opposing the effects of CRS, as shown by an increased social interaction and reduced passive behavior in a forced swim test. Furthermore, CRS mice treated with LAC show resilience of the CRS-induced structural remodeling of medial amygdala (MeA) stellate neurons. Within the basolateral amygdala (BLA), LAC did not reduce, but slightly enhanced, the CRS-increased length and number of intersections of pyramidal neurons. No structural changes were observed in MeA bipolar neurons, BLA stellate neurons or in lateral amygdala stellate neurons. Our findings identify MeA stellate neurons as an important component in the responses to stress and LAC action and show that LAC can promote structural plasticity of the MeA. This may be useful as a model for increasing resilience to stressors in at-risk populations.
Collapse
Affiliation(s)
- T. Lau
- Laboratory of Neuroendocrinology, The Rockefeller University, New York; 10065, USA
| | - B. Bigio
- The Rockefeller University, Center for Clinical & Translational Science, New York, USA
| | - D. Zelli
- Laboratory of Neuroendocrinology, The Rockefeller University, New York; 10065, USA
| | - BS. McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York; 10065, USA
| | - C. Nasca
- Laboratory of Neuroendocrinology, The Rockefeller University, New York; 10065, USA
| |
Collapse
|
9
|
Calhoon GG, Tye KM. Resolving the neural circuits of anxiety. Nat Neurosci 2015; 18:1394-404. [PMID: 26404714 DOI: 10.1038/nn.4101] [Citation(s) in RCA: 446] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/30/2015] [Indexed: 12/12/2022]
Abstract
Although anxiety disorders represent a major societal problem demanding new therapeutic targets, these efforts have languished in the absence of a mechanistic understanding of this subjective emotional state. While it is impossible to know with certainty the subjective experience of a rodent, rodent models hold promise in dissecting well-conserved limbic circuits. The application of modern approaches in neuroscience has already begun to unmask the neural circuit intricacies underlying anxiety by allowing direct examination of hypotheses drawn from existing psychological concepts. This information points toward an updated conceptual model for what neural circuit perturbations could give rise to pathological anxiety and thereby provides a roadmap for future therapeutic development.
Collapse
Affiliation(s)
- Gwendolyn G Calhoon
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|