1
|
Undurraga JA, Luke R, Van Yper L, Monaghan JJM, McAlpine D. The neural representation of an auditory spatial cue in the primate cortex. Curr Biol 2024; 34:2162-2174.e5. [PMID: 38718798 DOI: 10.1016/j.cub.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024]
Abstract
Humans make use of small differences in the timing of sounds at the two ears-interaural time differences (ITDs)-to locate their sources. Despite extensive investigation, however, the neural representation of ITDs in the human brain is contentious, particularly the range of ITDs explicitly represented by dedicated neural detectors. Here, using magneto- and electro-encephalography (MEG and EEG), we demonstrate evidence of a sparse neural representation of ITDs in the human cortex. The magnitude of cortical activity to sounds presented via insert earphones oscillated as a function of increasing ITD-within and beyond auditory cortical regions-and listeners rated the perceptual quality of these sounds according to the same oscillating pattern. This pattern was accurately described by a population of model neurons with preferred ITDs constrained to the narrow, sound-frequency-dependent range evident in other mammalian species. When scaled for head size, the distribution of ITD detectors in the human cortex is remarkably like that recorded in vivo from the cortex of rhesus monkeys, another large primate that uses ITDs for source localization. The data solve a long-standing issue concerning the neural representation of ITDs in humans and suggest a representation that scales for head size and sound frequency in an optimal manner.
Collapse
Affiliation(s)
- Jaime A Undurraga
- Department of Linguistics, Macquarie University, 16 University Avenue, Sydney, NSW 2109, Australia; Interacoustics Research Unit, Technical University of Denmark, Ørsteds Plads, Building 352, 2800 Kgs. Lyngby, Denmark.
| | - Robert Luke
- Department of Linguistics, Macquarie University, 16 University Avenue, Sydney, NSW 2109, Australia; The Bionics Institute, 384-388 Albert St., East Melbourne, VIC 3002, Australia
| | - Lindsey Van Yper
- Department of Linguistics, Macquarie University, 16 University Avenue, Sydney, NSW 2109, Australia; Institute of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark; Research Unit for ORL, Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, 5230 Odense, Denmark
| | - Jessica J M Monaghan
- Department of Linguistics, Macquarie University, 16 University Avenue, Sydney, NSW 2109, Australia; National Acoustic Laboratories, Australian Hearing Hub, 16 University Avenue, Sydney, NSW 2109, Australia
| | - David McAlpine
- Department of Linguistics, Macquarie University, 16 University Avenue, Sydney, NSW 2109, Australia; Macquarie University Hearing and the Australian Hearing Hub, Macquarie University, 16 University Avenue, Sydney, NSW 2109, Australia.
| |
Collapse
|
2
|
Bae A, Peña JL. Barn owls specialized sound-driven behavior: Lessons in optimal processing and coding by the auditory system. Hear Res 2024; 443:108952. [PMID: 38242019 DOI: 10.1016/j.heares.2024.108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The barn owl, a nocturnal raptor with remarkably efficient prey-capturing abilities, has been one of the initial animal models used for research of brain mechanisms underlying sound localization. Some seminal findings made from their specialized sound localizing auditory system include discoveries of a midbrain map of auditory space, mechanisms towards spatial cue detection underlying sound-driven orienting behavior, and circuit level changes supporting development and experience-dependent plasticity. These findings have explained properties of vital hearing functions and inspired theories in spatial hearing that extend across diverse animal species, thereby cementing the barn owl's legacy as a powerful experimental system for elucidating fundamental brain mechanisms. This concise review will provide an overview of the insights from which the barn owl model system has exemplified the strength of investigating diversity and similarity of brain mechanisms across species. First, we discuss some of the key findings in the specialized system of the barn owl that elucidated brain mechanisms toward detection of auditory cues for spatial hearing. Then we examine how the barn owl has validated mathematical computations and theories underlying optimal hearing across species. And lastly, we conclude with how the barn owl has advanced investigations toward developmental and experience dependent plasticity in sound localization, as well as avenues for future research investigations towards bridging commonalities across species. Analogous to the informative power of Astrophysics for understanding nature through diverse exploration of planets, stars, and galaxies across the universe, miscellaneous research across different animal species pursues broad understanding of natural brain mechanisms and behavior.
Collapse
Affiliation(s)
- Andrea Bae
- Albert Einstein College of Medicine, NY, USA
| | - Jose L Peña
- Albert Einstein College of Medicine, NY, USA.
| |
Collapse
|
3
|
Capshaw G, Brown AD, Peña JL, Carr CE, Christensen-Dalsgaard J, Tollin DJ, Womack MC, McCullagh EA. The continued importance of comparative auditory research to modern scientific discovery. Hear Res 2023; 433:108766. [PMID: 37084504 PMCID: PMC10321136 DOI: 10.1016/j.heares.2023.108766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
A rich history of comparative research in the auditory field has afforded a synthetic view of sound information processing by ears and brains. Some organisms have proven to be powerful models for human hearing due to fundamental similarities (e.g., well-matched hearing ranges), while others feature intriguing differences (e.g., atympanic ears) that invite further study. Work across diverse "non-traditional" organisms, from small mammals to avians to amphibians and beyond, continues to propel auditory science forward, netting a variety of biomedical and technological advances along the way. In this brief review, limited primarily to tetrapod vertebrates, we discuss the continued importance of comparative studies in hearing research from the periphery to central nervous system with a focus on outstanding questions such as mechanisms for sound capture, peripheral and central processing of directional/spatial information, and non-canonical auditory processing, including efferent and hormonal effects.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98105, USA
| | - José L Peña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Daniel J Tollin
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molly C Womack
- Department of Biology, Utah State University, Logan, UT 84322, USA.
| | - Elizabeth A McCullagh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
4
|
Brown AD, Hayward T, Portfors CV, Coffin AB. On the value of diverse organisms in auditory research: From fish to flies to humans. Hear Res 2023; 432:108754. [PMID: 37054531 PMCID: PMC10424633 DOI: 10.1016/j.heares.2023.108754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Historically, diverse organisms have contributed to our understanding of auditory function. In recent years, the laboratory mouse has become the prevailing non-human model in auditory research, particularly for biomedical studies. There are many questions in auditory research for which the mouse is the most appropriate (or the only) model system available. But mice cannot provide answers for all auditory problems of basic and applied importance, nor can any single model system provide a synthetic understanding of the diverse solutions that have evolved to facilitate effective detection and use of acoustic information. In this review, spurred by trends in funding and publishing and inspired by parallel observations in other domains of neuroscience, we highlight a few examples of the profound impact and lasting benefits of comparative and basic organismal research in the auditory system. We begin with the serendipitous discovery of hair cell regeneration in non-mammalian vertebrates, a finding that has fueled an ongoing search for pathways to hearing restoration in humans. We then turn to the problem of sound source localization - a fundamental task that most auditory systems have been compelled to solve despite large variation in the magnitudes and kinds of spatial acoustic cues available, begetting varied direction-detecting mechanisms. Finally, we consider the power of work in highly specialized organisms to reveal exceptional solutions to sensory problems - and the diverse returns of deep neuroethological inquiry - via the example of echolocating bats. Throughout, we consider how discoveries made possible by comparative and curiosity-driven organismal research have driven fundamental scientific, biomedical, and technological advances in the auditory field.
Collapse
Affiliation(s)
- Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St, Seattle, WA, 98105 USA; Virginia-Merrill Bloedel Hearing Research Center, University of Washington, 1701 NE Columbia Rd, Seattle, WA, 98195 USA.
| | - Tamasen Hayward
- College of Arts and Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Christine V Portfors
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Allison B Coffin
- College of Arts and Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA; School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA; Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA.
| |
Collapse
|
5
|
Maldarelli G, Firzlaff U, Kettler L, Ondracek JM, Luksch H. Two Types of Auditory Spatial Receptive Fields in Different Parts of the Chicken's Midbrain. J Neurosci 2022; 42:4669-4680. [PMID: 35508384 PMCID: PMC9186802 DOI: 10.1523/jneurosci.2204-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
The optic tectum (OT) is an avian midbrain structure involved in the integration of visual and auditory stimuli. Studies in the barn owl, an auditory specialist, have shown that spatial auditory information is topographically represented in the OT. Little is known about how auditory space is represented in the midbrain of birds with generalist hearing, i.e., most of avian species lacking peripheral adaptations such as facial ruffs or asymmetric ears. Thus, we conducted in vivo extracellular recordings of single neurons in the OT and in the external portion of the formatio reticularis lateralis (FRLx), a brain structure located between the inferior colliculus (IC) and the OT, in anaesthetized chickens of either sex. We found that most of the auditory spatial receptive fields (aSRFs) were spatially confined both in azimuth and elevation, divided into two main classes: round aSRFs, mainly present in the OT, and annular aSRFs, with a ring-like shape around the interaural axis, mainly present in the FRLx. Our data further indicate that interaural time difference (ITD) and interaural level difference (ILD) play a role in the formation of both aSRF classes. These results suggest that, unlike mammals and owls which have a congruent representation of visual and auditory space in the OT, generalist birds separate the computation of auditory space in two different midbrain structures. We hypothesize that the FRLx-annular aSRFs define the distance of a sound source from the axis of the lateral visual fovea, whereas the OT-round aSRFs are involved in multimodal integration of the stimulus around the lateral fovea.SIGNIFICANCE STATEMENT Previous studies implied that auditory spatial receptive fields (aSRFs) in the midbrain of generalist birds are only confined along azimuth. Interestingly, we found SRFs s in the chicken to be confined along both azimuth and elevation. Moreover, the auditory receptive fields are arranged in a concentric manner around the overlapping interaural and visual axes. These data suggest that in generalist birds, which mainly rely on vision, the auditory system mainly serves to align auditory stimuli with the visual axis, while auditory specialized birds like the barn owl compute sound sources more precisely and integrate sound positions in the multimodal space map of the optic tectum (OT).
Collapse
Affiliation(s)
- Gianmarco Maldarelli
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Uwe Firzlaff
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Lutz Kettler
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Janie M Ondracek
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Harald Luksch
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| |
Collapse
|
6
|
Krumm B, Klump GM, Köppl C, Beutelmann R, Langemann U. Chickens have excellent sound localization ability. J Exp Biol 2022; 225:jeb243601. [PMID: 35156129 DOI: 10.1242/jeb.243601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/08/2022] [Indexed: 02/27/2024]
Abstract
The mechanisms of sound localization are actively debated, especially which cues are predominately used and why. Our study provides behavioural data in chickens (Gallus gallus) and relates these to estimates of the perceived physical cues. Sound localization acuity was quantified as the minimum audible angle (MAA) in azimuth. Pure-tone MAA was 12.3, 9.3, 8.9 and 14.5 deg for frequencies of 500, 1000, 2000 and 4000 Hz, respectively. Broadband-noise MAA was 12.2 deg, which indicates excellent behavioural acuity. We determined 'external cues' from head-related transfer functions of chickens. These were used to derive 'internal cues', taking into account published data on the effect of the coupled middle ears. Our estimates of the internal cues indicate that chickens likely relied on interaural time difference cues alone at low frequencies of 500 and 1000 Hz, whereas at 2000 and 4000 Hz, interaural level differences may be the dominant cue.
Collapse
Affiliation(s)
- Bianca Krumm
- Cluster of Excellence "Hearing4all 2.0", Division for Animal Physiology and Behaviour, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
- Cluster of Excellence "Hearing4all 2.0", Division for Cochlea and Auditory Brainstem Physiology, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Georg M Klump
- Cluster of Excellence "Hearing4all 2.0", Division for Animal Physiology and Behaviour, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence "Hearing4all 2.0", Division for Cochlea and Auditory Brainstem Physiology, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Rainer Beutelmann
- Cluster of Excellence "Hearing4all 2.0", Division for Animal Physiology and Behaviour, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Ulrike Langemann
- Cluster of Excellence "Hearing4all 2.0", Division for Animal Physiology and Behaviour, School of Medicine and Health Sciences, Department of Neuroscience, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
7
|
Ferger R, Shadron K, Fischer BJ, Peña JL. Barn Owl's Auditory Space Map Activity Matching Conditions for a Population Vector Readout to Drive Adaptive Sound-Localizing Behavior. J Neurosci 2021; 41:10305-10315. [PMID: 34764158 PMCID: PMC8672686 DOI: 10.1523/jneurosci.1061-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022] Open
Abstract
Space-specific neurons in the owl's midbrain form a neural map of auditory space, which supports sound-orienting behavior. Previous work proposed that a population vector (PV) readout of this map, implementing statistical inference, predicts the owl's sound localization behavior. This model also predicts the frontal localization bias normally observed and how sound-localizing behavior changes when the signal-to-noise ratio varies, based on the spread of activity across the map. However, the actual distribution of population activity and whether this pattern is consistent with premises of the PV readout model on a trial-by-trial basis remains unknown. To answer these questions, we investigated whether the population response profile across the midbrain map in the optic tectum of the barn owl matches these predictions using in vivo multielectrode array recordings. We found that response profiles of recorded subpopulations are sufficient for estimating the stimulus interaural time difference using responses from single trials. Furthermore, this decoder matches the expected differences in trial-by-trial variability and frontal bias between stimulus conditions of low and high signal-to-noise ratio. These results support the hypothesis that a PV readout of the midbrain map can mediate statistical inference in sound-localizing behavior of barn owls.SIGNIFICANCE STATEMENT While the tuning of single neurons in the owl's midbrain map of auditory space has been considered predictive of the highly specialized sound-localizing behavior of this species, response properties across the population remain largely unknown. For the first time, this study analyzed the spread of population responses across the map using multielectrode recordings and how it changes with signal-to-noise ratio. The observed responses support the hypothesis concerning the ability of a population vector readout to predict biases in orienting behaviors and mediate uncertainty-dependent behavioral commands. The results are of significance for understanding potential mechanisms for the implementation of optimal behavioral commands across species.
Collapse
Affiliation(s)
- Roland Ferger
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Keanu Shadron
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Brian J Fischer
- Department of Mathematics, Seattle University, Seattle, Washington 98122
| | - José L Peña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|
8
|
Christensen-Dalsgaard J, Kuokkanen P, Matthews JE, Carr CE. Strongly directional responses to tones and conspecific calls in the auditory nerve of the Tokay gecko, Gekko gecko. J Neurophysiol 2021; 125:887-902. [PMID: 33534648 DOI: 10.1152/jn.00576.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The configuration of lizard ears, where sound can reach both surfaces of the eardrums, produces a strongly directional ear, but the subsequent processing of sound direction by the auditory pathway is unknown. We report here on directional responses from the first stage, the auditory nerve. We used laser vibrometry to measure eardrum responses in Tokay geckos and in the same animals recorded 117 auditory nerve single fiber responses to free-field sound from radially distributed speakers. Responses from all fibers showed strongly lateralized activity at all frequencies, with an ovoidal directivity that resembled the eardrum directivity. Geckos are vocal and showed pronounced nerve fiber directionality to components of the call. To estimate the accuracy with which a gecko could discriminate between sound sources, we computed the Fisher information (FI) for each neuron. FI was highest just contralateral to the midline, front and back. Thus, the auditory nerve could provide a population code for sound source direction, and geckos should have a high capacity to differentiate between midline sound sources. In brain, binaural comparisons, for example, by IE (ipsilateral excitatory, contralateral inhibitory) neurons, should sharpen the lateralized responses and extend the dynamic range of directionality.NEW & NOTEWORTHY In mammals, the two ears are unconnected pressure receivers, and sound direction is computed from binaural interactions in the brain, but in lizards, the eardrums interact acoustically, producing a strongly directional response. We show strongly lateralized responses from gecko auditory nerve fibers to directional sound stimulation and high Fisher information on either side of the midline. Thus, already the auditory nerve provides a population code for sound source direction in the gecko.
Collapse
Affiliation(s)
| | - Paula Kuokkanen
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
9
|
Gene delivery to neurons in the auditory brainstem of barn owls using standard recombinant adeno-associated virus vectors. CURRENT RESEARCH IN NEUROBIOLOGY 2020; 1:100001. [PMID: 36249276 PMCID: PMC9559881 DOI: 10.1016/j.crneur.2020.100001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 11/21/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are a commonly used tool for gene delivery. There is a large choice of different serotypes whose transduction efficiency varies for different animal species. In this study, three rAAV vectors were tested for transduction efficiency in the auditory brainstem of adult barn owls (Tyto alba) which are not standard laboratory animals. Injections with rAAV serotypes 2/1 and 2/5 resulted in reliable expression in various nuclei of the auditory brainstem of barn owls. Both vectors showed evidence of being spread by axonal transport. However, only rAAV2/5 also showed expression in regions far distant from the injection site, suggesting long-range axonal transport in connections along the auditory pathway. In contrast, injections with rAAV2/9 resulted in no expression. Our results demonstrate for the first time that commercially available rAAV vectors can be used for reliable gene expression in the barn owl auditory brainstem and pave the way toward optogenetic manipulation of neural activity in this important animal species in neuroethology and auditory physiology. Standard rAAV vectors effectively mediate gene expression in the barn-owl brain. rAAV2/1 was best suited for confined expression around the targeted injection site. Due to more axonal transport, rAAV2/5 resulted in wider spread of expressed genes. rAAV-mediated expression is expected to remain stable for an extended period of time. rAAV expression and stability are excellent prerequisites for optogenetic experiments.
Collapse
|