1
|
Harracksingh AN, Singh A, Mayorova TD, Bejoy B, Hornbeck J, Elkhatib W, McEdwards G, Gauberg J, Taha A, Islam IM, Erclik T, Currie MA, Noyes M, Senatore A. Mint/X11 PDZ domains from non-bilaterian animals recognize and bind Ca V2 calcium channel C-termini in vitro. Sci Rep 2024; 14:21615. [PMID: 39284887 PMCID: PMC11405698 DOI: 10.1038/s41598-024-70652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
PDZ domain mediated interactions with voltage-gated calcium (CaV) channel C-termini play important roles in localizing membrane Ca2+ signaling. The first such interaction was described between the scaffolding protein Mint-1 and CaV2.2 in mammals. In this study, we show through various in silico analyses that Mint is an animal-specific gene with a highly divergent N-terminus but a strongly conserved C-terminus comprised of a phosphotyrosine binding domain, two tandem PDZ domains (PDZ-1 and PDZ-2), and a C-terminal auto-inhibitory element that binds and inhibits PDZ-1. In addition to CaV2 chanels, most genes that interact with Mint are also deeply conserved including amyloid precursor proteins, presenilins, neurexin, and CASK and Veli which form a tripartite complex with Mint in bilaterians. Through yeast and bacterial 2-hybrid experiments, we show that Mint and CaV2 channels from cnidarians and placozoans interact in vitro, and in situ hybridization revealed co-expression in dissociated neurons from the cnidarian Nematostella vectensis. Unexpectedly, the Mint orthologue from the ctenophore Hormiphora californiensis strongly bound the divergent C-terminal ligands of cnidarian and placozoan CaV2 channels, despite neither the ctenophore Mint, nor the placozoan and cnidarian orthologues, binding the ctenophore CaV2 channel C-terminus. Altogether, our analyses suggest that the capacity of Mint to bind CaV2 channels predates bilaterian animals, and that evolutionary changes in CaV2 channel C-terminal sequences resulted in altered binding modalities with Mint.
Collapse
Affiliation(s)
- Alicia N Harracksingh
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Anhadvir Singh
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Tatiana D Mayorova
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- NINDS, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian Bejoy
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Jillian Hornbeck
- Institute for Systems Genetics, NYU Grossman School of Medicine, 550 1st Ave, New York, NY, 10016, USA
| | - Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Gregor McEdwards
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Julia Gauberg
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Abdul Taha
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Ishrat Maliha Islam
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Ted Erclik
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Mark A Currie
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Marcus Noyes
- Institute for Systems Genetics, NYU Grossman School of Medicine, 550 1st Ave, New York, NY, 10016, USA
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
2
|
Harracksingh AN, Singh A, Mayorova T, Bejoy B, Hornbeck J, Elkhatib W, McEdwards G, Gauberg J, Taha ARW, Islam IM, Erclik T, Currie MA, Noyes M, Senatore A. Mint/X11 PDZ domains from non-bilaterian animals recognize and bind Ca V 2 calcium channel C-termini in vitro . BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582151. [PMID: 38463976 PMCID: PMC10925089 DOI: 10.1101/2024.02.26.582151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
PDZ domain mediated interactions with voltage-gated calcium (Ca V ) channel C-termini play important roles in localizing membrane Ca 2+ signaling. The first such interaction was described between the scaffolding protein Mint-1 and Ca V 2.2 in mammals. In this study, we show through various in silico analyses that Mint is an animal-specific gene with a highly divergent N-terminus but a strongly conserved C-terminus comprised of a phosphotyrosine binding domain, two tandem PDZ domains (PDZ-1 and PDZ-2), and a C-terminal auto-inhibitory element that binds and inhibits PDZ-1. In addition to Ca V 2 channels, most genes that interact with Mint are also deeply conserved including amyloid precursor proteins, presenilins, neurexin, and CASK and Veli which form a tripartite complex with Mint in bilaterians. Through yeast and bacterial 2-hybrid experiments, we show that Mint and Ca V 2 channels from cnidarians and placozoans interact in vitro , and in situ hybridization revealed co-expression in dissociated neurons from the cnidarian Nematostella vectensis . Unexpectedly, the Mint orthologue from the ctenophore Hormiphora californiensis strongly binds the divergent C-terminal ligands of cnidarian and placozoan Ca V 2 channels, despite neither the ctenophore Mint, nor the placozoan and cnidarian orthologues, binding the ctenophore Ca V 2 channel C-terminus. Altogether, our analyses suggest that the capacity of Mint to bind CaV2 channels predates pre-bilaterian animals, and that evolutionary changes in Ca V 2 channel C-terminal sequences resulted in altered binding modalities with Mint.
Collapse
|
3
|
Kang CJ, Guzmán-Clavel LE, Lei K, Koo M, To S, Roche JP. The exocyst subunit Sec15 is critical for proper synaptic development and function at the Drosophila NMJ. Mol Cell Neurosci 2024; 128:103914. [PMID: 38086519 DOI: 10.1016/j.mcn.2023.103914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The exocyst protein complex is important for targeted vesicle fusion in a variety of cell types, however, its function in neurons is still not entirely known. We found that presynaptic knockdown (KD) of the exocyst component sec15 by transgenic RNAi expression caused a number of unexpected morphological and physiological defects in the synapse. These include the development of active zones (AZ) devoid of essential presynaptic proteins, an increase in the branching of the presynaptic arbor, the appearance of satellite boutons, and a decrease in the amplitude of stimulated postsynaptic currents as well as a decrease in the frequency of spontaneous synaptic vesicle release. We also found the release of extracellular vesicles from the presynaptic neuron was greatly diminished in the Sec15 KDs. These effects were mimicked by presynaptic knockdown of Rab11, a protein known to interact with the exocyst. sec15 RNAi expression caused an increase in phosphorylated Mothers against decapentaplegic (pMad) in the presynaptic terminal, an indication of enhanced bone morphogenic protein (BMP) signaling. Some morphological phenotypes caused by Sec15 knockdown were reduced by attenuation of BMP signaling through knockdown of wishful thinking (Wit), while other phenotypes were unaffected. Individual knockdown of multiple proteins of the exocyst complex also displayed a morphological phenotype similar to Sec15 KD. We conclude that Sec15, functioning as part of the exocyst complex, is critically important for proper formation and function of neuronal synapses. We propose a model in which Sec15 is involved in the trafficking of vesicles from the recycling endosome to the cell membrane as well as possibly trafficking extracellular vesicles for presynaptic release and these processes are necessary for the correct structure and function of the synapse.
Collapse
Affiliation(s)
- Chris J Kang
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Luis E Guzmán-Clavel
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Katherine Lei
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Martin Koo
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Steven To
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - John P Roche
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America; Department of Biology, Amherst College, Amherst, MA 01002, United States of America.
| |
Collapse
|
4
|
Mrestani A, Dannhäuser S, Pauli M, Kollmannsberger P, Hübsch M, Morris L, Langenhan T, Heckmann M, Paul MM. Nanoscaled RIM clustering at presynaptic active zones revealed by endogenous tagging. Life Sci Alliance 2023; 6:e202302021. [PMID: 37696575 PMCID: PMC10494931 DOI: 10.26508/lsa.202302021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Chemical synaptic transmission involves neurotransmitter release from presynaptic active zones (AZs). The AZ protein Rab-3-interacting molecule (RIM) is important for normal Ca2+-triggered release. However, its precise localization within AZs of the glutamatergic neuromuscular junctions of Drosophila melanogaster remains elusive. We used CRISPR/Cas9-assisted genome engineering of the rim locus to incorporate small epitope tags for targeted super-resolution imaging. A V5-tag, derived from simian virus 5, and an HA-tag, derived from human influenza virus, were N-terminally fused to the RIM Zinc finger. Whereas both variants are expressed in co-localization with the core AZ scaffold Bruchpilot, electrophysiological characterization reveals that AP-evoked synaptic release is disturbed in rimV5-Znf but not in rimHA-Znf In addition, rimHA-Znf synapses show intact presynaptic homeostatic potentiation. Combining super-resolution localization microscopy and hierarchical clustering, we detect ∼10 RIMHA-Znf subclusters with ∼13 nm diameter per AZ that are compacted and increased in numbers in presynaptic homeostatic potentiation.
Collapse
Affiliation(s)
- Achmed Mrestani
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Sven Dannhäuser
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Martin Pauli
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | | | - Martha Hübsch
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Lydia Morris
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Tobias Langenhan
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Manfred Heckmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Mila M Paul
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Dunn TW, Fan X, Lee J, Smith P, Gandhi R, Sossin WS. The role of specific isoforms of Ca V2 and the common C-terminal of Ca V2 in calcium channel function in sensory neurons of Aplysia. Sci Rep 2023; 13:20216. [PMID: 37980443 PMCID: PMC10657410 DOI: 10.1038/s41598-023-47573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023] Open
Abstract
The presynaptic release apparatus can be specialized to enable specific synaptic functions. Habituation is the diminishing of a physiological response to a frequently repeated stimulus and in Aplysia, habituation to touch is mediated by a decrease in transmitter release from the sensory neurons that respond to touch even after modest rates of action potential firing. This synaptic depression is not common among Aplysia synaptic connections suggesting the presence of a release apparatus specialized for this depression. We found that specific splice forms of ApCaV2, the calcium channel required for transmitter release, are preferentially used in sensory neurons, consistent with a specialized release apparatus. However, we were not able to find a specific ApCaV2 splice uniquely required for synaptic depression. The C-terminus of ApCaV2 alpha1 subunit retains conserved binding to Aplysia rab-3 interacting molecule (ApRIM) and ApRIM-binding protein (ApRBP) and the C-terminus is required for full synaptic expression of ApCaV2. We also identified a splice form of ApRIM that did not interact with the ApCav2 alpha 1 subunit, but it was not preferentially used in sensory neurons.
Collapse
Affiliation(s)
- Tyler W Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Xiaotang Fan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jiwon Lee
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Petranea Smith
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Rushali Gandhi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
6
|
Jetti SK, Crane AB, Akbergenova Y, Aponte-Santiago NA, Cunningham KL, Whittaker CA, Littleton JT. Molecular logic of synaptic diversity between Drosophila tonic and phasic motoneurons. Neuron 2023; 111:3554-3569.e7. [PMID: 37611584 DOI: 10.1016/j.neuron.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/22/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Although neuronal subtypes display unique synaptic organization and function, the underlying transcriptional differences that establish these features are poorly understood. To identify molecular pathways that contribute to synaptic diversity, single-neuron Patch-seq RNA profiling was performed on Drosophila tonic and phasic glutamatergic motoneurons. Tonic motoneurons form weaker facilitating synapses onto single muscles, while phasic motoneurons form stronger depressing synapses onto multiple muscles. Super-resolution microscopy and in vivo imaging demonstrated that synaptic active zones in phasic motoneurons are more compact and display enhanced Ca2+ influx compared with their tonic counterparts. Genetic analysis identified unique synaptic properties that mapped onto gene expression differences for several cellular pathways, including distinct signaling ligands, post-translational modifications, and intracellular Ca2+ buffers. These findings provide insights into how unique transcriptomes drive functional and morphological differences between neuronal subtypes.
Collapse
Affiliation(s)
- Suresh K Jetti
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Andrés B Crane
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicole A Aponte-Santiago
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Krout M, Oh KH, Xiong A, Frankel EB, Kurshan PT, Kim H, Richmond JE. C. elegans Clarinet/CLA-1 recruits RIMB-1/RIM-binding protein and UNC-13 to orchestrate presynaptic neurotransmitter release. Proc Natl Acad Sci U S A 2023; 120:e2220856120. [PMID: 37186867 PMCID: PMC10214197 DOI: 10.1073/pnas.2220856120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Synaptic transmission requires the coordinated activity of multiple synaptic proteins that are localized at the active zone (AZ). We previously identified a Caenorhabditis elegans protein named Clarinet (CLA-1) based on homology to the AZ proteins Piccolo, Rab3-interactingmolecule (RIM)/UNC-10 and Fife. At the neuromuscular junction (NMJ), cla-1 null mutants exhibit release defects that are greatly exacerbated in cla-1;unc-10 double mutants. To gain insights into the coordinated roles of CLA-1 and UNC-10, we examined the relative contributions of each to the function and organization of the AZ. Using a combination of electrophysiology, electron microscopy, and quantitative fluorescence imaging we explored the functional relationship of CLA-1 to other key AZ proteins including: RIM1, Cav2.1 channels, RIM1-binding protein, and Munc13 (C. elegans UNC-10, UNC-2, RIMB-1 and UNC-13, respectively). Our analyses show that CLA-1 acts in concert with UNC-10 to regulate UNC-2 calcium channel levels at the synapse via recruitment of RIMB-1. In addition, CLA-1 exerts a RIMB-1-independent role in the localization of the priming factor UNC-13. Thus C. elegans CLA-1/UNC-10 exhibit combinatorial effects that have overlapping design principles with other model organisms: RIM/RBP and RIM/ELKS in mouse and Fife/RIM and BRP/RBP in Drosophila. These data support a semiconserved arrangement of AZ scaffolding proteins that are necessary for the localization and activation of the fusion machinery within nanodomains for precise coupling to Ca2+ channels.
Collapse
Affiliation(s)
- Mia Krout
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL60607
| | - Kelly H. Oh
- Department of Cell Biology and Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL60064
| | - Ame Xiong
- Department of Cell Biology and Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL60064
| | - Elisa B. Frankel
- Department of Genetics, Albert Einstein College of Medicine, New York, NY10461
| | - Peri T. Kurshan
- Department of Genetics, Albert Einstein College of Medicine, New York, NY10461
| | - Hongkyun Kim
- Department of Genetics, Albert Einstein College of Medicine, New York, NY10461
| | - Janet E. Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL60607
| |
Collapse
|
8
|
Ghelani T, Escher M, Thomas U, Esch K, Lützkendorf J, Depner H, Maglione M, Parutto P, Gratz S, Matkovic-Rachid T, Ryglewski S, Walter AM, Holcman D, O‘Connor Giles K, Heine M, Sigrist SJ. Interactive nanocluster compaction of the ELKS scaffold and Cacophony Ca 2+ channels drives sustained active zone potentiation. SCIENCE ADVANCES 2023; 9:eade7804. [PMID: 36800417 PMCID: PMC9937578 DOI: 10.1126/sciadv.ade7804] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/17/2023] [Indexed: 06/01/2023]
Abstract
At presynaptic active zones (AZs), conserved scaffold protein architectures control synaptic vesicle (SV) release by defining the nanoscale distribution and density of voltage-gated Ca2+ channels (VGCCs). While AZs can potentiate SV release in the minutes range, we lack an understanding of how AZ scaffold components and VGCCs engage into potentiation. We here establish dynamic, intravital single-molecule imaging of endogenously tagged proteins at Drosophila AZs undergoing presynaptic homeostatic potentiation. During potentiation, the numbers of α1 VGCC subunit Cacophony (Cac) increased per AZ, while their mobility decreased and nanoscale distribution compacted. These dynamic Cac changes depended on the interaction between Cac channel's intracellular carboxyl terminus and the membrane-close amino-terminal region of the ELKS-family protein Bruchpilot, whose distribution compacted drastically. The Cac-ELKS/Bruchpilot interaction was also needed for sustained AZ potentiation. Our single-molecule analysis illustrates how the AZ scaffold couples to VGCC nanoscale distribution and dynamics to establish a state of sustained potentiation.
Collapse
Affiliation(s)
- Tina Ghelani
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Molecular and Theoretical Neuroscience Leibniz-Forschungs Institut für Molekulare Pharmakologie (FMP) im CharitéCrossOver (CCO) Charité–University Medicine Berlin Charité Campus Mitte, Charité Platz, 110117 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | - Marc Escher
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Ulrich Thomas
- Department of Cellular Neurobiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Klara Esch
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Janine Lützkendorf
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Harald Depner
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Marta Maglione
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
- Institute for Chemistry and Biochemistry, SupraFAB, Freie Universität Berlin, Altensteinstr. 23a, 14195 Berlin, Germany
| | - Pierre Parutto
- Group of Applied Mathematics and Computational Biology, IBENS, Ecole Normale Superieure, Paris, France
- Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
- Churchill College, University of Cambridge, Cambridge CB3 0DS, UK
| | - Scott Gratz
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Tanja Matkovic-Rachid
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Stefanie Ryglewski
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander M. Walter
- Molecular and Theoretical Neuroscience Leibniz-Forschungs Institut für Molekulare Pharmakologie (FMP) im CharitéCrossOver (CCO) Charité–University Medicine Berlin Charité Campus Mitte, Charité Platz, 110117 Berlin, Germany
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - David Holcman
- Group of Applied Mathematics and Computational Biology, IBENS, Ecole Normale Superieure, Paris, France
- Churchill College, University of Cambridge, Cambridge CB3 0DS, UK
| | - Kate O‘Connor Giles
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Martin Heine
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Stephan J. Sigrist
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
9
|
Jetti SK, Crane AB, Akbergenova Y, Aponte-Santiago NA, Cunningham KL, Whittaker CA, Littleton JT. Molecular Logic of Synaptic Diversity Between Drosophila Tonic and Phasic Motoneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524447. [PMID: 36711745 PMCID: PMC9882338 DOI: 10.1101/2023.01.17.524447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although neuronal subtypes display unique synaptic organization and function, the underlying transcriptional differences that establish these features is poorly understood. To identify molecular pathways that contribute to synaptic diversity, single neuron PatchSeq RNA profiling was performed on Drosophila tonic and phasic glutamatergic motoneurons. Tonic motoneurons form weaker facilitating synapses onto single muscles, while phasic motoneurons form stronger depressing synapses onto multiple muscles. Super-resolution microscopy and in vivo imaging demonstrated synaptic active zones in phasic motoneurons are more compact and display enhanced Ca 2+ influx compared to their tonic counterparts. Genetic analysis identified unique synaptic properties that mapped onto gene expression differences for several cellular pathways, including distinct signaling ligands, post-translational modifications and intracellular Ca 2+ buffers. These findings provide insights into how unique transcriptomes drive functional and morphological differences between neuronal subtypes.
Collapse
Affiliation(s)
- Suresh K Jetti
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Andrés B Crane
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Nicole A Aponte-Santiago
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
10
|
Cunningham KL, Littleton JT. Mechanisms controlling the trafficking, localization, and abundance of presynaptic Ca 2+ channels. Front Mol Neurosci 2023; 15:1116729. [PMID: 36710932 PMCID: PMC9880069 DOI: 10.3389/fnmol.2022.1116729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) mediate Ca2+ influx to trigger neurotransmitter release at specialized presynaptic sites termed active zones (AZs). The abundance of VGCCs at AZs regulates neurotransmitter release probability (Pr ), a key presynaptic determinant of synaptic strength. Given this functional significance, defining the processes that cooperate to establish AZ VGCC abundance is critical for understanding how these mechanisms set synaptic strength and how they might be regulated to control presynaptic plasticity. VGCC abundance at AZs involves multiple steps, including channel biosynthesis (transcription, translation, and trafficking through the endomembrane system), forward axonal trafficking and delivery to synaptic terminals, incorporation and retention at presynaptic sites, and protein recycling. Here we discuss mechanisms that control VGCC abundance at synapses, highlighting findings from invertebrate and vertebrate models.
Collapse
Affiliation(s)
- Karen L. Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | |
Collapse
|
11
|
Jin Y, Zhai RG. Presynaptic Cytomatrix Proteins. ADVANCES IN NEUROBIOLOGY 2023; 33:23-42. [PMID: 37615862 DOI: 10.1007/978-3-031-34229-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The Cytomatrix Assembled at the active Zone (CAZ) of a presynaptic terminal displays electron-dense appearance and defines the center of the synaptic vesicle release. The protein constituents of CAZ are multiple-domain scaffolds that interact extensively with each other and also with an ensemble of synaptic vesicle proteins to ensure docking, fusion, and recycling. Reflecting the central roles of the active zone in synaptic transmission, CAZ proteins are highly conserved throughout evolution. As the nervous system increases complexity and diversity in types of neurons and synapses, CAZ proteins expand in the number of gene and protein isoforms and interacting partners. This chapter summarizes the discovery of the core CAZ proteins and current knowledge of their functions.
Collapse
Affiliation(s)
- Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
12
|
Sarkar D, Kang J, Wassie AT, Schroeder ME, Peng Z, Tarr TB, Tang AH, Niederst ED, Young JZ, Su H, Park D, Yin P, Tsai LH, Blanpied TA, Boyden ES. Revealing nanostructures in brain tissue via protein decrowding by iterative expansion microscopy. Nat Biomed Eng 2022; 6:1057-1073. [PMID: 36038771 PMCID: PMC9551354 DOI: 10.1038/s41551-022-00912-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 06/22/2022] [Indexed: 12/25/2022]
Abstract
Many crowded biomolecular structures in cells and tissues are inaccessible to labelling antibodies. To understand how proteins within these structures are arranged with nanoscale precision therefore requires that these structures be decrowded before labelling. Here we show that an iterative variant of expansion microscopy (the permeation of cells and tissues by a swellable hydrogel followed by isotropic hydrogel expansion, to allow for enhanced imaging resolution with ordinary microscopes) enables the imaging of nanostructures in expanded yet otherwise intact tissues at a resolution of about 20 nm. The method, which we named 'expansion revealing' and validated with DNA-probe-based super-resolution microscopy, involves gel-anchoring reagents and the embedding, expansion and re-embedding of the sample in homogeneous swellable hydrogels. Expansion revealing enabled us to use confocal microscopy to image the alignment of pre-synaptic calcium channels with post-synaptic scaffolding proteins in intact brain circuits, and to uncover periodic amyloid nanoclusters containing ion-channel proteins in brain tissue from a mouse model of Alzheimer's disease. Expansion revealing will enable the further discovery of previously unseen nanostructures within cells and tissues.
Collapse
Affiliation(s)
- Deblina Sarkar
- Media Lab, MIT, Cambridge, MA, 02139, USA.,MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, 02139, USA.,These authors contributed equally
| | - Jinyoung Kang
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, 02139, USA.,These authors contributed equally
| | - Asmamaw T Wassie
- Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA.,These authors contributed equally
| | - Margaret E. Schroeder
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, 02139, USA.,Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, 02139, USA
| | - Zhuyu Peng
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, 02139, USA.,The Picower Institute for Learning and Memory, MIT, Cambridge, MA, 02139, USA
| | - Tyler B. Tarr
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ai-Hui Tang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Emily D. Niederst
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, 02139, USA
| | - Jennie, Z. Young
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, 02139, USA.,The Picower Institute for Learning and Memory, MIT, Cambridge, MA, 02139, USA
| | - Hanquan Su
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Demian Park
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, 02139, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA. .,The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Correspondence and requests for materials should be addressed to Li-Huei Tsai, Thomas A. Blanpied or Edward S. Boyden. , ,
| | - Edward S. Boyden
- MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, 02139, USA.,MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, 02139, USA.,Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA.,Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, 02139, USA.,Koch Institute, MIT, Cambridge, MA, 02139, USA.,Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.,Media Arts and Sciences, MIT, Cambridge, MA, 02139, USA.,K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, 02139, USA.,Correspondence and requests for materials should be addressed to Li-Huei Tsai, Thomas A. Blanpied or Edward S. Boyden. , ,
| |
Collapse
|
13
|
Cunningham KL, Sauvola CW, Tavana S, Littleton JT. Regulation of presynaptic Ca 2+ channel abundance at active zones through a balance of delivery and turnover. eLife 2022; 11:78648. [PMID: 35833625 PMCID: PMC9352347 DOI: 10.7554/elife.78648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) mediate Ca2+ influx to trigger neurotransmitter release at specialized presynaptic sites termed active zones (AZs). The abundance of VGCCs at AZs regulates neurotransmitter release probability (Pr), a key presynaptic determinant of synaptic strength. Although biosynthesis, delivery, and recycling cooperate to establish AZ VGCC abundance, experimentally isolating these distinct regulatory processes has been difficult. Here, we describe how the AZ levels of cacophony (Cac), the sole VGCC-mediating synaptic transmission in Drosophila, are determined. We also analyzed the relationship between Cac, the conserved VGCC regulatory subunit α2δ, and the core AZ scaffold protein Bruchpilot (BRP) in establishing a functional AZ. We find that Cac and BRP are independently regulated at growing AZs, as Cac is dispensable for AZ formation and structural maturation, and BRP abundance is not limiting for Cac accumulation. Additionally, AZs stop accumulating Cac after an initial growth phase, whereas BRP levels continue to increase given extended developmental time. AZ Cac is also buffered against moderate increases or decreases in biosynthesis, whereas BRP lacks this buffering. To probe mechanisms that determine AZ Cac abundance, intravital FRAP and Cac photoconversion were used to separately measure delivery and turnover at individual AZs over a multi-day period. Cac delivery occurs broadly across the AZ population, correlates with AZ size, and is rate-limited by α2δ. Although Cac does not undergo significant lateral transfer between neighboring AZs over the course of development, Cac removal from AZs does occur and is promoted by new Cac delivery, generating a cap on Cac accumulation at mature AZs. Together, these findings reveal how Cac biosynthesis, synaptic delivery, and recycling set the abundance of VGCCs at individual AZs throughout synapse development and maintenance.
Collapse
Affiliation(s)
- Karen L Cunningham
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Chad W Sauvola
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Sara Tavana
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
14
|
Paul MM, Dannhäuser S, Morris L, Mrestani A, Hübsch M, Gehring J, Hatzopoulos GN, Pauli M, Auger GM, Bornschein G, Scholz N, Ljaschenko D, Müller M, Sauer M, Schmidt H, Kittel RJ, DiAntonio A, Vakonakis I, Heckmann M, Langenhan T. The human cognition-enhancing CORD7 mutation increases active zone number and synaptic release. Brain 2022; 145:3787-3802. [DOI: 10.1093/brain/awac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Humans carrying the CORD7 (cone-rod dystrophy 7) mutation possess increased verbal IQ and working memory. This autosomal dominant syndrome is caused by the single-amino acid R844H exchange (human numbering) located in the 310 helix of the C2A domain of RIMS1/RIM1 (Rab3-interacting molecule 1). RIM is an evolutionarily conserved multi-domain protein and essential component of presynaptic active zones, which is centrally involved in fast, Ca2+-triggered neurotransmitter release. How the CORD7 mutation affects synaptic function has remained unclear thus far. Here, we established Drosophila melanogaster as a disease model for clarifying the effects of the CORD7 mutation on RIM function and synaptic vesicle release.
To this end, using protein expression and X-ray crystallography, we solved the molecular structure of the Drosophila C2A domain at 1.92 Å resolution and by comparison to its mammalian homolog ascertained that the location of the CORD7 mutation is structurally conserved in fly RIM. Further, CRISPR/Cas9-assisted genomic engineering was employed for the generation of rim alleles encoding the R915H CORD7 exchange or R915E,R916E substitutions (fly numbering) to effect local charge reversal at the 310 helix. Through electrophysiological characterization by two-electrode voltage clamp and focal recordings we determined that the CORD7 mutation exerts a semi-dominant rather than a dominant effect on synaptic transmission resulting in faster, more efficient synaptic release and increased size of the readily releasable pool but decreased sensitivity for the fast calcium chelator BAPTA. In addition, the rim CORD7 allele increased the number of presynaptic active zones but left their nanoscopic organization unperturbed as revealed by super-resolution microscopy of the presynaptic scaffold protein Bruchpilot/ELKS/CAST.
We conclude that the CORD7 mutation leads to tighter release coupling, an increased readily releasable pool size and more release sites thereby promoting more efficient synaptic transmitter release. These results strongly suggest that similar mechanisms may underlie the CORD7 disease phenotype in patients and that enhanced synaptic transmission may contribute to their increased cognitive abilities.
Collapse
Affiliation(s)
- Mila M. Paul
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
- Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Sven Dannhäuser
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Lydia Morris
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Achmed Mrestani
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Department of Neurology, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Martha Hübsch
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Jennifer Gehring
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | | | - Martin Pauli
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Genevieve M. Auger
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Grit Bornschein
- Carl Ludwig Institute of Physiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Nicole Scholz
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Dmitrij Ljaschenko
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Martin Müller
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, 97074 Würzburg, Germany
| | - Hartmut Schmidt
- Carl Ludwig Institute of Physiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Robert J. Kittel
- Carl Ludwig Institute of Physiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Aaron DiAntonio
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | - Manfred Heckmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Tobias Langenhan
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Sauvola CW, Littleton JT. SNARE Regulatory Proteins in Synaptic Vesicle Fusion and Recycling. Front Mol Neurosci 2021; 14:733138. [PMID: 34421538 PMCID: PMC8377282 DOI: 10.3389/fnmol.2021.733138] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Membrane fusion is a universal feature of eukaryotic protein trafficking and is mediated by the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) family. SNARE proteins embedded in opposing membranes spontaneously assemble to drive membrane fusion and cargo exchange in vitro. Evolution has generated a diverse complement of SNARE regulatory proteins (SRPs) that ensure membrane fusion occurs at the right time and place in vivo. While a core set of SNAREs and SRPs are common to all eukaryotic cells, a specialized set of SRPs within neurons confer additional regulation to synaptic vesicle (SV) fusion. Neuronal communication is characterized by precise spatial and temporal control of SNARE dynamics within presynaptic subdomains specialized for neurotransmitter release. Action potential-elicited Ca2+ influx at these release sites triggers zippering of SNAREs embedded in the SV and plasma membrane to drive bilayer fusion and release of neurotransmitters that activate downstream targets. Here we discuss current models for how SRPs regulate SNARE dynamics and presynaptic output, emphasizing invertebrate genetic findings that advanced our understanding of SRP regulation of SV cycling.
Collapse
Affiliation(s)
- Chad W Sauvola
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
16
|
Weiss JT, Donlea JM. Sleep deprivation results in diverse patterns of synaptic scaling across the Drosophila mushroom bodies. Curr Biol 2021; 31:3248-3261.e3. [PMID: 34107302 PMCID: PMC8355077 DOI: 10.1016/j.cub.2021.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022]
Abstract
Sleep is essential for a variety of plastic processes, including learning and memory. However, the consequences of insufficient sleep on circuit connectivity remain poorly understood. To better appreciate the effects of sleep loss on synaptic connectivity across a memory-encoding circuit, we examined changes in the distribution of synaptic markers in the Drosophila mushroom body (MB). Protein-trap tags for active zone components indicate that recent sleep time is inversely correlated with Bruchpilot (BRP) abundance in the MB lobes; sleep loss elevates BRP while sleep induction reduces BRP across the MB. Overnight sleep deprivation also elevated levels of dSyd-1 and Cacophony, but not other pre-synaptic proteins. Cell-type-specific genetic reporters show that MB-intrinsic Kenyon cells (KCs) exhibit increased pre-synaptic BRP throughout the axonal lobes after sleep deprivation; similar increases were not detected in projections from large interneurons or dopaminergic neurons that innervate the MB. These results indicate that pre-synaptic plasticity in KCs is responsible for elevated levels of BRP in the MB lobes of sleep-deprived flies. Because KCs provide synaptic inputs to several classes of post-synaptic partners, we next used a fluorescent reporter for synaptic contacts to test whether each class of KC output connections is scaled uniformly by sleep loss. The KC output synapses that we observed here can be divided into three classes: KCs to MB interneurons; KCs to dopaminergic neurons; and KCs to MB output neurons. No single class showed uniform scaling across each constituent member, indicating that different rules may govern plasticity during sleep loss across cell types.
Collapse
Affiliation(s)
- Jacqueline T Weiss
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey M Donlea
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Huang S, Sigrist SJ. Presynaptic and postsynaptic long-term plasticity in sleep homeostasis. Curr Opin Neurobiol 2021; 69:1-10. [DOI: 10.1016/j.conb.2020.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 12/25/2022]
|
18
|
Piekut T, Wong YY, Walker SE, Smith CL, Gauberg J, Harracksingh AN, Lowden C, Novogradac BB, Cheng HYM, Spencer GE, Senatore A. Early Metazoan Origin and Multiple Losses of a Novel Clade of RIM Presynaptic Calcium Channel Scaffolding Protein Homologs. Genome Biol Evol 2021; 12:1217-1239. [PMID: 32413100 PMCID: PMC7456537 DOI: 10.1093/gbe/evaa097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
The precise localization of CaV2 voltage-gated calcium channels at the synapse active zone requires various interacting proteins, of which, Rab3-interacting molecule or RIM is considered particularly important. In vertebrates, RIM interacts with CaV2 channels in vitro via a PDZ domain that binds to the extreme C-termini of the channels at acidic ligand motifs of D/E-D/E/H-WC-COOH, and knockout of RIM in vertebrates and invertebrates disrupts CaV2 channel synaptic localization and synapse function. Here, we describe a previously uncharacterized clade of RIM proteins bearing domain architectures homologous to those of known RIM homologs, but with some notable differences including key amino acids associated with PDZ domain ligand specificity. This novel RIM emerged near the stem lineage of metazoans and underwent extensive losses, but is retained in select animals including the early-diverging placozoan Trichoplax adhaerens, and molluscs. RNA expression and localization studies in Trichoplax and the mollusc snail Lymnaea stagnalis indicate differential regional/tissue type expression, but overlapping expression in single isolated neurons from Lymnaea. Ctenophores, the most early-diverging animals with synapses, are unique among animals with nervous systems in that they lack the canonical RIM, bearing only the newly identified homolog. Through phylogenetic analysis, we find that CaV2 channel D/E-D/E/H-WC-COOH like PDZ ligand motifs were present in the common ancestor of cnidarians and bilaterians, and delineate some deeply conserved C-terminal structures that distinguish CaV1 from CaV2 channels, and CaV1/CaV2 from CaV3 channels.
Collapse
Affiliation(s)
| | | | - Sarah E Walker
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Carolyn L Smith
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | |
Collapse
|
19
|
Hidalgo S, Campusano JM, Hodge JJL. The Drosophila ortholog of the schizophrenia-associated CACNA1A and CACNA1B voltage-gated calcium channels regulate memory, sleep and circadian rhythms. Neurobiol Dis 2021; 155:105394. [PMID: 34015490 DOI: 10.1016/j.nbd.2021.105394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia exhibits up to 80% heritability. A number of genome wide association studies (GWAS) have repeatedly shown common variants in voltage-gated calcium (Cav) channel genes CACNA1C, CACNA1I and CACNA1G have a major contribution to the risk of the disease. More recently, studies using whole exome sequencing have also found that CACNA1B (Cav2.2 N-type) deletions and rare disruptive variants in CACNA1A (Cav2.1 P/Q-type) are associated with schizophrenia. The negative symptoms of schizophrenia include behavioural defects such as impaired memory, sleep and circadian rhythms. It is not known how variants in schizophrenia-associated genes contribute to cognitive and behavioural symptoms, thus hampering the development of treatment for schizophrenia symptoms. In order to address this knowledge gap, we studied behavioural phenotypes in a number of loss of function mutants for the Drosophila ortholog of the Cav2 gene family called cacophony (cac). cac mutants showed several behavioural features including decreased night-time sleep and hyperactivity similar to those reported in human patients. The change in timing of sleep-wake cycles suggested disrupted circadian rhythms, with the loss of night-time sleep being caused by loss of cac just in the circadian clock neurons. These animals also showed a reduction in rhythmic circadian behaviour a phenotype that also could be mapped to the central clock. Furthermore, reduction of cac just in the clock resulted in a lengthening of the 24 h period. In order to understand how loss of Cav2 function may lead to cognitive deficits and underlying cellular pathophysiology we targeted loss of function of cac to the memory centre of the fly, called the mushroom bodies (MB). This manipulation was sufficient to cause reduction in both short- and intermediate-term associative memory. Memory impairment was accompanied by a decrease in Ca2+ transients in response to a depolarizing stimulus, imaged in the MB presynaptic terminals. This work shows loss of cac Cav2 channel function alone causes a number of cognitive and behavioural deficits and underlying reduced neuronal Ca2+ transients, establishing Drosophila as a high-throughput in vivo genetic model to study the Cav channel pathophysiology related to schizophrenia.
Collapse
Affiliation(s)
- Sergio Hidalgo
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, UK; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Jorge M Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, UK.
| |
Collapse
|
20
|
Hidalgo S, Campusano JM, Hodge JJL. Assessing olfactory, memory, social and circadian phenotypes associated with schizophrenia in a genetic model based on Rim. Transl Psychiatry 2021; 11:292. [PMID: 34001859 PMCID: PMC8128896 DOI: 10.1038/s41398-021-01418-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia shows high heritability and several of the genes associated with this disorder are involved in calcium (Ca2+) signalling and synaptic function. One of these is the Rab-3 interacting molecule-1 (RIM1), which has recently been associated with schizophrenia by Genome Wide Association Studies (GWAS). However, its contribution to the pathophysiology of this disorder remains unexplored. In this work, we use Drosophila mutants of the orthologue of RIM1, Rim, to model some aspects of the classical and non-classical symptoms of schizophrenia. Rim mutants showed several behavioural features relevant to schizophrenia including social distancing and altered olfactory processing. These defects were accompanied by reduced evoked Ca2+ influx and structural changes in the presynaptic terminals sent by the primary olfactory neurons to higher processing centres. In contrast, expression of Rim-RNAi in the mushroom bodies (MBs), the main memory centre in flies, spared learning and memory suggesting a differential role of Rim in different synapses. Circadian deficits have been reported in schizophrenia. We observed circadian locomotor activity deficits in Rim mutants, revealing a role of Rim in the pacemaker ventral lateral clock neurons (LNvs). These changes were accompanied by impaired day/night remodelling of dorsal terminal synapses from a subpopulation of LNvs and impaired day/night release of the circadian neuropeptide pigment dispersing factor (PDF) from these terminals. Lastly, treatment with the commonly used antipsychotic haloperidol rescued Rim locomotor deficits to wildtype. This work characterises the role of Rim in synaptic functions underlying behaviours disrupted in schizophrenia.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, UK
| | - Jorge M Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, UK.
| |
Collapse
|
21
|
Petzoldt AG, Götz TWB, Driller JH, Lützkendorf J, Reddy-Alla S, Matkovic-Rachid T, Liu S, Knoche E, Mertel S, Ugorets V, Lehmann M, Ramesh N, Beuschel CB, Kuropka B, Freund C, Stelzl U, Loll B, Liu F, Wahl MC, Sigrist SJ. RIM-binding protein couples synaptic vesicle recruitment to release sites. J Cell Biol 2021; 219:151735. [PMID: 32369542 PMCID: PMC7337501 DOI: 10.1083/jcb.201902059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/03/2020] [Accepted: 04/07/2020] [Indexed: 11/24/2022] Open
Abstract
At presynaptic active zones, arrays of large conserved scaffold proteins mediate fast and temporally precise release of synaptic vesicles (SVs). SV release sites could be identified by clusters of Munc13, which allow SVs to dock in defined nanoscale relation to Ca2+ channels. We here show in Drosophila that RIM-binding protein (RIM-BP) connects release sites physically and functionally to the ELKS family Bruchpilot (BRP)-based scaffold engaged in SV recruitment. The RIM-BP N-terminal domain, while dispensable for SV release site organization, was crucial for proper nanoscale patterning of the BRP scaffold and needed for SV recruitment of SVs under strong stimulation. Structural analysis further showed that the RIM-BP fibronectin domains form a “hinge” in the protein center, while the C-terminal SH3 domain tandem binds RIM, Munc13, and Ca2+ channels release machinery collectively. RIM-BPs’ conserved domain architecture seemingly provides a relay to guide SVs from membrane far scaffolds into membrane close release sites.
Collapse
Affiliation(s)
- Astrid G Petzoldt
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Torsten W B Götz
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Jan Heiner Driller
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany
| | - Janine Lützkendorf
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Suneel Reddy-Alla
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | | | - Sunbin Liu
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany
| | - Elena Knoche
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Sara Mertel
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Vladimir Ugorets
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Berlin, Germany
| | - Niraja Ramesh
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | | | - Benno Kuropka
- Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Christian Freund
- Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Ulrich Stelzl
- Institut für Pharmazeutische Wissenschaften, Graz, Austria
| | - Bernhard Loll
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany.,NeuroCure, Charité, Berlin, Germany
| |
Collapse
|
22
|
Gao T, Zhang Z, Yang Y, Zhang H, Li N, Liu B. Impact of RIM-BPs in neuronal vesicles release. Brain Res Bull 2021; 170:129-136. [PMID: 33581313 DOI: 10.1016/j.brainresbull.2021.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Accurate signal transmission between neurons is accomplished by vesicle release with high spatiotemporal resolution in the central nervous system. The vesicle release occurs mainly in the active zone (AZ), a unique area on the presynaptic membrane. Many structural proteins expressed in the AZ connect with other proteins nearby. They can also regulate the precise release of vesicles through protein-protein interactions. RIM-binding proteins (RIM-BPs) are one of the essential proteins in the AZ. This review summarizes the structures and functions of three subtypes of RIM-BPs, including the interaction between RIM-BPs and other proteins such as Bassoon and voltage-gated calcium channel, their significance in stabilizing the AZ structure in the presynaptic region and collecting ion channels, and ultimately regulating the fusion and release of neuronal vesicles.
Collapse
Affiliation(s)
- Tianyu Gao
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Panjin Campus of Dalian University of Technology, Panjin, 124221, China
| | - Yunong Yang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Na Li
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| | - Bo Liu
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
23
|
Gauberg J, Abdallah S, Elkhatib W, Harracksingh AN, Piekut T, Stanley EF, Senatore A. Conserved biophysical features of the Ca V2 presynaptic Ca 2+ channel homologue from the early-diverging animal Trichoplax adhaerens. J Biol Chem 2020; 295:18553-18578. [PMID: 33097592 PMCID: PMC7939481 DOI: 10.1074/jbc.ra120.015725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
The dominant role of CaV2 voltage-gated calcium channels for driving neurotransmitter release is broadly conserved. Given the overlapping functional properties of CaV2 and CaV1 channels, and less so CaV3 channels, it is unclear why there have not been major shifts toward dependence on other CaV channels for synaptic transmission. Here, we provide a structural and functional profile of the CaV2 channel cloned from the early-diverging animal Trichoplax adhaerens, which lacks a nervous system but possesses single gene homologues for CaV1-CaV3 channels. Remarkably, the highly divergent channel possesses similar features as human CaV2.1 and other CaV2 channels, including high voltage-activated currents that are larger in external Ba2+ than in Ca2+; voltage-dependent kinetics of activation, inactivation, and deactivation; and bimodal recovery from inactivation. Altogether, the functional profile of Trichoplax CaV2 suggests that the core features of presynaptic CaV2 channels were established early during animal evolution, after CaV1 and CaV2 channels emerged via proposed gene duplication from an ancestral CaV1/2 type channel. The Trichoplax channel was relatively insensitive to mammalian CaV2 channel blockers ω-agatoxin-IVA and ω-conotoxin-GVIA and to metal cation blockers Cd2+ and Ni2+ Also absent was the capacity for voltage-dependent G-protein inhibition by co-expressed Trichoplax Gβγ subunits, which nevertheless inhibited the human CaV2.1 channel, suggesting that this modulatory capacity evolved via changes in channel sequence/structure, and not G proteins. Last, the Trichoplax channel was immunolocalized in cells that express an endomorphin-like peptide implicated in cell signaling and locomotive behavior and other likely secretory cells, suggesting contributions to regulated exocytosis.
Collapse
Affiliation(s)
- Julia Gauberg
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Salsabil Abdallah
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Alicia N Harracksingh
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Thomas Piekut
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Elise F Stanley
- Laboratory of Synaptic Transmission, Krembil Research Institute, Toronto, Ontario, Canada
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
24
|
Disentangling the Roles of RIM and Munc13 in Synaptic Vesicle Localization and Neurotransmission. J Neurosci 2020; 40:9372-9385. [PMID: 33139401 PMCID: PMC7724145 DOI: 10.1523/jneurosci.1922-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
Efficient neurotransmitter release at the presynaptic terminal requires docking of synaptic vesicles to the active zone membrane and formation of fusion-competent synaptic vesicles near voltage-gated Ca2+ channels. Rab3-interacting molecule (RIM) is a critical active zone organizer, as it recruits Ca2+ channels and activates synaptic vesicle docking and priming via Munc13-1. However, our knowledge about Munc13-independent contributions of RIM to active zone functions is limited. To identify the functions that are solely mediated by RIM, we used genetic manipulations to control RIM and Munc13-1 activity in cultured hippocampal neurons from mice of either sex and compared synaptic ultrastructure and neurotransmission. We found that RIM modulates synaptic vesicle localization in the proximity of the active zone membrane independent of Munc13-1. In another step, both RIM and Munc13 mediate synaptic vesicle docking and priming. In addition, while the activity of both RIM and Munc13-1 is required for Ca2+-evoked release, RIM uniquely controls neurotransmitter release efficiency. However, activity-dependent augmentation of synaptic vesicle pool size relies exclusively on the action of Munc13s. Based on our results, we extend previous findings and propose a refined model in which RIM and Munc13-1 act in overlapping and independent stages of synaptic vesicle localization and release. SIGNIFICANCE STATEMENT The presynaptic active zone is composed of scaffolding proteins that functionally interact to localize synaptic vesicles to release sites, ensuring neurotransmission. Our current knowledge of the presynaptic active zone function relies on structure-function analysis, which has provided detailed information on the network of interactions and the impact of active zone proteins. Yet, the hierarchical, redundant, or independent cooperation of each active zone protein to synapse functions is not fully understood. Rab3-interacting molecule and Munc13 are the two key functionally interacting active zone proteins. Here, we dissected the distinct actions of Rab3-interacting molecule and Munc13-1 from both ultrastructural and physiological aspects. Our findings provide a more detailed view of how these two presynaptic proteins orchestrate their functions to achieve synaptic transmission.
Collapse
|
25
|
Rizalar FS, Roosen DA, Haucke V. A Presynaptic Perspective on Transport and Assembly Mechanisms for Synapse Formation. Neuron 2020; 109:27-41. [PMID: 33098763 DOI: 10.1016/j.neuron.2020.09.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023]
Abstract
Neurons are highly polarized cells with a single axon and multiple dendrites derived from the cell body to form tightly associated pre- and postsynaptic compartments. As the biosynthetic machinery is largely restricted to the somatodendritic domain, the vast majority of presynaptic components are synthesized in the neuronal soma, packaged into synaptic precursor vesicles, and actively transported along the axon to sites of presynaptic biogenesis. In contrast with the significant progress that has been made in understanding synaptic transmission and processing of information at the post-synapse, comparably little is known about the formation and dynamic remodeling of the presynaptic compartment. We review here our current understanding of the mechanisms that govern the biogenesis, transport, and assembly of the key components for presynaptic neurotransmission, discuss how alterations in presynaptic assembly may impact nervous system function or lead to disease, and outline key open questions for future research.
Collapse
Affiliation(s)
- Filiz Sila Rizalar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dorien A Roosen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
26
|
Nosov G, Kahms M, Klingauf J. The Decade of Super-Resolution Microscopy of the Presynapse. Front Synaptic Neurosci 2020; 12:32. [PMID: 32848695 PMCID: PMC7433402 DOI: 10.3389/fnsyn.2020.00032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 07/21/2020] [Indexed: 01/05/2023] Open
Abstract
The presynaptic compartment of the chemical synapse is a small, yet extremely complex structure. Considering its size, most methods of optical microscopy are not able to resolve its nanoarchitecture and dynamics. Thus, its ultrastructure could only be studied by electron microscopy. In the last decade, new methods of optical superresolution microscopy have emerged allowing the study of cellular structures and processes at the nanometer scale. While this is a welcome addition to the experimental arsenal, it has necessitated careful analysis and interpretation to ensure the data obtained remains artifact-free. In this article we review the application of nanoscopic techniques to the study of the synapse and the progress made over the last decade with a particular focus on the presynapse. We find to our surprise that progress has been limited, calling for imaging techniques and probes that allow dense labeling, multiplexing, longer imaging times, higher temporal resolution, while at least maintaining the spatial resolution achieved thus far.
Collapse
Affiliation(s)
- Georgii Nosov
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany.,CIM-IMPRS Graduate Program in Münster, Münster, Germany
| | - Martin Kahms
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Jurgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| |
Collapse
|
27
|
Chou VT, Johnson SA, Van Vactor D. Synapse development and maturation at the drosophila neuromuscular junction. Neural Dev 2020; 15:11. [PMID: 32741370 PMCID: PMC7397595 DOI: 10.1186/s13064-020-00147-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Synapses are the sites of neuron-to-neuron communication and form the basis of the neural circuits that underlie all animal cognition and behavior. Chemical synapses are specialized asymmetric junctions between a presynaptic neuron and a postsynaptic target that form through a series of diverse cellular and subcellular events under the control of complex signaling networks. Once established, the synapse facilitates neurotransmission by mediating the organization and fusion of synaptic vesicles and must also retain the ability to undergo plastic changes. In recent years, synaptic genes have been implicated in a wide array of neurodevelopmental disorders; the individual and societal burdens imposed by these disorders, as well as the lack of effective therapies, motivates continued work on fundamental synapse biology. The properties and functions of the nervous system are remarkably conserved across animal phyla, and many insights into the synapses of the vertebrate central nervous system have been derived from studies of invertebrate models. A prominent model synapse is the Drosophila melanogaster larval neuromuscular junction, which bears striking similarities to the glutamatergic synapses of the vertebrate brain and spine; further advantages include the simplicity and experimental versatility of the fly, as well as its century-long history as a model organism. Here, we survey findings on the major events in synaptogenesis, including target specification, morphogenesis, and the assembly and maturation of synaptic specializations, with a emphasis on work conducted at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Vivian T Chou
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth A Johnson
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Gabhane JW, Bhange VP, Patil PD, Bankar ST, Kumar S. Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3121-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
29
|
Verhage M, Sørensen JB. SNAREopathies: Diversity in Mechanisms and Symptoms. Neuron 2020; 107:22-37. [PMID: 32559416 DOI: 10.1016/j.neuron.2020.05.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Neuronal SNAREs and their key regulators together drive synaptic vesicle exocytosis and synaptic transmission as a single integrated membrane fusion machine. Human pathogenic mutations have now been reported for all eight core components, but patients are diagnosed with very different neurodevelopmental syndromes. We propose to unify these syndromes, based on etiology and mechanism, as "SNAREopathies." Here, we review the strikingly diverse clinical phenomenology and disease severity and the also remarkably diverse genetic mechanisms. We argue that disease severity generally scales with functional redundancy and, conversely, that the large effect of mutations in some SNARE genes is the price paid for extensive integration and exceptional specialization. Finally, we discuss how subtle differences in components being rate limiting in different types of neurons helps to explain the main symptoms.
Collapse
Affiliation(s)
- Matthijs Verhage
- Department of Functional Genomics, Vrije Universiteit (VU) Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands; Department of Clinical Genetics, UMC Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands.
| | - Jakob B Sørensen
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
30
|
RIMB-1/RIM-Binding Protein and UNC-10/RIM Redundantly Regulate Presynaptic Localization of the Voltage-Gated Calcium Channel in Caenorhabditis elegans. J Neurosci 2019; 39:8617-8631. [PMID: 31530643 DOI: 10.1523/jneurosci.0506-19.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 11/21/2022] Open
Abstract
Presynaptic active zones (AZs) contain many molecules essential for neurotransmitter release and are assembled in a highly organized manner. A network of adaptor proteins known as cytomatrix at the AZ (CAZ) is important for shaping the structural characteristics of AZ. Rab3-interacting molecule (RIM)-binding protein (RBP) family are binding partners of the CAZ protein RIM and also bind the voltage-gated calcium channels (VGCCs) in mice and flies. Here, we investigated the physiological roles of RIMB-1, the homolog of RBPs in the nematode Caenorhabditis elegans RIMB-1 is expressed broadly in neurons and predominantly localized at presynaptic sites. Loss-of-function animals of rimb-1 displayed slight defects in motility and response to pharmacological inhibition of synaptic transmission, suggesting a modest involvement of rimb-1 in synapse function. We analyzed genetic interactions of rimb-1 by testing candidate genes and by an unbiased forward genetic screen for rimb-1 enhancer. Both analyses identified the RIM homolog UNC-10 that acts together with RIMB-1 to regulate presynaptic localization of the P/Q-type VGCC UNC-2/Cav2. We also find that the precise localization of RIMB-1 to presynaptic sites requires presynaptic UNC-2/Cav2. RIMB-1 has multiple FN3 and SH3 domains. Our transgenic rescue analysis with RIMB-1 deletion constructs revealed a functional requirement of a C-terminal SH3 in regulating UNC-2/Cav2 localization. Together, these findings suggest a redundant role of RIMB-1/RBP and UNC-10/RIM to regulate the abundance of UNC-2/Cav2 at the presynaptic AZ in C. elegans, depending on the bidirectional interplay between CAZ adaptor and channel proteins.SIGNIFICANCE STATEMENT Presynaptic active zones (AZs) are highly organized structures for synaptic transmission with characteristic networks of adaptor proteins called cytomatrix at the AZ (CAZ). In this study, we characterized a CAZ protein RIMB-1, named for RIM-binding protein (RBP), in the nematode Caenorhabditis elegans Through systematic analyses of genetic interactions and an unbiased genetic enhancer screen of rimb-1, we revealed a redundant role of two CAZ proteins RIMB-1/RBP and UNC-10/RIM in regulating presynaptic localization of UNC-2/Cav2, a voltage-gated calcium channel (VGCC) critical for proper neurotransmitter release. Additionally, the precise localization of RIMB-1/RBP requires presynaptic UNC-2/Cav2. These findings provide new mechanistic insight about how the interplay among multiple CAZ adaptor proteins and VGCC contributes to the organization of presynaptic AZ.
Collapse
|
31
|
Chen DS, Delbare SYN, White SL, Sitnik J, Chatterjee M, DoBell E, Weiss O, Clark AG, Wolfner MF. Female Genetic Contributions to Sperm Competition in Drosophila melanogaster. Genetics 2019; 212:789-800. [PMID: 31101677 PMCID: PMC6614900 DOI: 10.1534/genetics.119.302284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/11/2019] [Indexed: 11/18/2022] Open
Abstract
In many species, sperm can remain viable in the reproductive tract of a female well beyond the typical interval to remating. This creates an opportunity for sperm from different males to compete for oocyte fertilization inside the female's reproductive tract. In Drosophila melanogaster, sperm characteristics and seminal fluid content affect male success in sperm competition. On the other hand, although genome-wide association studies (GWAS) have demonstrated that female genotype plays a role in sperm competition outcome as well, the biochemical, sensory, and physiological processes by which females detect and selectively use sperm from different males remain elusive. Here, we functionally tested 26 candidate genes implicated via a GWAS for their contribution to the female's role in sperm competition, measured as changes in the relative success of the first male to mate (P1). Of these 26 candidates, we identified eight genes that affect P1 when knocked down in females, and showed that five of them do so when knocked down in the female nervous system. In particular, Rim knockdown in sensory pickpocket (ppk)+ neurons lowered P1, confirming previously published results, and a novel candidate, caup, lowered P1 when knocked down in octopaminergic Tdc2+ neurons. These results demonstrate that specific neurons in the female's nervous system play a functional role in sperm competition and expand our understanding of the genetic, neuronal, and mechanistic basis of female responses to multiple matings. We propose that these neurons in females are used to sense, and integrate, signals from courtship or ejaculates, to modulate sperm competition outcome accordingly.
Collapse
Affiliation(s)
- Dawn S Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Sofie Y N Delbare
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Simone L White
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Jessica Sitnik
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Martik Chatterjee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Elizabeth DoBell
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Orli Weiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
32
|
Chakrabarti R, Wichmann C. Nanomachinery Organizing Release at Neuronal and Ribbon Synapses. Int J Mol Sci 2019; 20:E2147. [PMID: 31052288 PMCID: PMC6539712 DOI: 10.3390/ijms20092147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022] Open
Abstract
A critical aim in neuroscience is to obtain a comprehensive view of how regulated neurotransmission is achieved. Our current understanding of synapses relies mainly on data from electrophysiological recordings, imaging, and molecular biology. Based on these methodologies, proteins involved in a synaptic vesicle (SV) formation, mobility, and fusion at the active zone (AZ) membrane have been identified. In the last decade, electron tomography (ET) combined with a rapid freezing immobilization of neuronal samples opened a window for understanding the structural machinery with the highest spatial resolution in situ. ET provides significant insights into the molecular architecture of the AZ and the organelles within the presynaptic nerve terminal. The specialized sensory ribbon synapses exhibit a distinct architecture from neuronal synapses due to the presence of the electron-dense synaptic ribbon. However, both synapse types share the filamentous structures, also commonly termed as tethers that are proposed to contribute to different steps of SV recruitment and exocytosis. In this review, we discuss the emerging views on the role of filamentous structures in SV exocytosis gained from ultrastructural studies of excitatory, mainly central neuronal compared to ribbon-type synapses with a focus on inner hair cell (IHC) ribbon synapses. Moreover, we will speculate on the molecular entities that may be involved in filament formation and hence play a crucial role in the SV cycle.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
- Collaborative Research Center 1286 "Quantitative Synaptology", 37099 Göttingen, Germany.
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
33
|
Endogenous Tagging Reveals Differential Regulation of Ca 2+ Channels at Single Active Zones during Presynaptic Homeostatic Potentiation and Depression. J Neurosci 2019; 39:2416-2429. [PMID: 30692227 PMCID: PMC6435823 DOI: 10.1523/jneurosci.3068-18.2019] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Neurons communicate through Ca2+-dependent neurotransmitter release at presynaptic active zones (AZs). Neurotransmitter release properties play a key role in defining information flow in circuits and are tuned during multiple forms of plasticity. Despite their central role in determining neurotransmitter release properties, little is known about how Ca2+ channel levels are modulated to calibrate synaptic function. We used CRISPR to tag the Drosophila CaV2 Ca2+ channel Cacophony (Cac) and, in males in which all Cac channels are tagged, investigated the regulation of endogenous Ca2+ channels during homeostatic plasticity. We found that heterogeneously distributed Cac is highly predictive of neurotransmitter release probability at individual AZs and differentially regulated during opposing forms of presynaptic homeostatic plasticity. Specifically, AZ Cac levels are increased during chronic and acute presynaptic homeostatic potentiation (PHP), and live imaging during acute expression of PHP reveals proportional Ca2+ channel accumulation across heterogeneous AZs. In contrast, endogenous Cac levels do not change during presynaptic homeostatic depression (PHD), implying that the reported reduction in Ca2+ influx during PHD is achieved through functional adaptions to pre-existing Ca2+ channels. Thus, distinct mechanisms bidirectionally modulate presynaptic Ca2+ levels to maintain stable synaptic strength in response to diverse challenges, with Ca2+ channel abundance providing a rapidly tunable substrate for potentiating neurotransmitter release over both acute and chronic timescales. SIGNIFICANCE STATEMENT Presynaptic Ca2+ dynamics play an important role in establishing neurotransmitter release properties. Presynaptic Ca2+ influx is modulated during multiple forms of homeostatic plasticity at Drosophila neuromuscular junctions to stabilize synaptic communication. However, it remains unclear how this dynamic regulation is achieved. We used CRISPR gene editing to endogenously tag the sole Drosophila Ca2+ channel responsible for synchronized neurotransmitter release, and found that channel abundance is regulated during homeostatic potentiation, but not homeostatic depression. Through live imaging experiments during the adaptation to acute homeostatic challenge, we visualize the accumulation of endogenous Ca2+ channels at individual active zones within 10 min. We propose that differential regulation of Ca2+ channels confers broad capacity for tuning neurotransmitter release properties to maintain neural communication.
Collapse
|
34
|
Lembke KM, Law AD, Ahrar J, Morton DB. Deletion of a specific exon in the voltage-gated calcium channel gene cacophony disrupts locomotion in Drosophila larvae. ACTA ACUST UNITED AC 2019; 222:jeb.191106. [PMID: 30397173 DOI: 10.1242/jeb.191106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/29/2018] [Indexed: 01/17/2023]
Abstract
TAR DNA-binding protein 43 (TDP-43) is an RNA-binding protein that regulates transcription, translation and alternative splicing of mRNA. We have shown previously that null mutations of the Drosophila ortholog, Tar DNA-binding homolog (tbph), causes severe locomotion defects in larvae that are mediated by a reduction in the expression of a type II voltage-gated calcium channel, cacophony (cac). We also showed that TDP-43 regulates the inclusion of alternatively spliced exons of cacophony; tbph mutants showed significantly increased expression of cacophony isoforms lacking exon 7, a particularly notable finding as only one out of the 15 predicted isoforms lacks exon 7. To investigate the function of exon 7, we generated Drosophila mutant lines with a deletion that eliminates exon 7. This deletion phenocopies many defects in tbph mutants: a reduction in cacophony protein (Dmca1A) expression, locomotion defects in male and female third instar larvae, disrupted larval motor output, and also reduced activity levels in adult male flies. All these defects were rescued by expression of cacophony transcripts containing exon 7. By contrast, expression of a cacophony cDNA lacking exon 7 resulted in reduced cacophony protein levels and failed to rescue larval locomotion.
Collapse
Affiliation(s)
- Kayly M Lembke
- Program in Molecular and Cellular Biosciences, Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexander D Law
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jasmine Ahrar
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - David B Morton
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
35
|
Ghelani T, Sigrist SJ. Coupling the Structural and Functional Assembly of Synaptic Release Sites. Front Neuroanat 2018; 12:81. [PMID: 30386217 PMCID: PMC6198076 DOI: 10.3389/fnana.2018.00081] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/18/2018] [Indexed: 01/04/2023] Open
Abstract
Information processing in our brains depends on the exact timing of calcium (Ca2+)-activated exocytosis of synaptic vesicles (SVs) from unique release sites embedded within the presynaptic active zones (AZs). While AZ scaffolding proteins obviously provide an efficient environment for release site function, the molecular design creating such release sites had remained unknown for a long time. Recent advances in visualizing the ultrastructure and topology of presynaptic protein architectures have started to elucidate how scaffold proteins establish “nanodomains” that connect voltage-gated Ca2+ channels (VGCCs) physically and functionally with release-ready SVs. Scaffold proteins here seem to operate as “molecular rulers or spacers,” regulating SV-VGCC physical distances within tens of nanometers and, thus, influence the probability and plasticity of SV release. A number of recent studies at Drosophila and mammalian synapses show that the stable positioning of discrete clusters of obligate release factor (M)Unc13 defines the position of SV release sites, and the differential expression of (M)Unc13 isoforms at synapses can regulate SV-VGCC coupling. We here review the organization of matured AZ scaffolds concerning their intrinsic organization and role for release site formation. Moreover, we also discuss insights into the developmental sequence of AZ assembly, which often entails a tightening between VGCCs and SV release sites. The findings discussed here are retrieved from vertebrate and invertebrate preparations and include a spectrum of methods ranging from cell biology, super-resolution light and electron microscopy to biophysical and electrophysiological analysis. Our understanding of how the structural and functional organization of presynaptic AZs are coupled has matured, as these processes are crucial for the understanding of synapse maturation and plasticity, and, thus, accurate information transfer and storage at chemical synapses.
Collapse
Affiliation(s)
- Tina Ghelani
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Stephan J Sigrist
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
36
|
Stawarski M, Justs KA, Hernandez RX, Macleod GT. The application of 'kisser' probes for resolving the distribution and microenvironment of membrane proteins in situ. J Neurogenet 2018; 32:236-245. [PMID: 30175639 DOI: 10.1080/01677063.2018.1503260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Membrane proteins play a lead role in the formation and function of synapses, but, despite revolutions in immunology and molecular genetics, limitations persist in our ability to investigate membrane proteins in the context of an intact synapse. Here, we introduce a simple but novel approach to resolving the distribution of endogenous membrane proteins in either live or fixed tissues. The technique involves transgenic expression of a protein with an extracellular tag, a generic transmembrane domain, and an intracellular terminus that mimics the intracellular anchoring motifs of the endogenous protein of interest. We provide three examples where these kisser probes can be used to answer questions regarding the synaptic distribution of endogenous proteins and their microenvironment that would be difficult to resolve by other contemporary means: (i) the live distribution of untagged proteins at the neuromuscular junction (Cacophony and Shaker), (ii) the relative distribution of an untagged protein (PMCA) in pre- versus post-synaptic membranes separated by only 20 nm across the cleft of a fixed synapse, and (iii) the live targeting of functional probes (chemical and protein fluorescent pH reporters) to membrane protein-defined subcellular domains.
Collapse
Affiliation(s)
- Michal Stawarski
- a Department of Biomedicine , University of Basel , Basel , Switzerland
| | - Karlis Anthony Justs
- b Wilkes Honors College , Florida Atlantic University, John D MacArthur Campus , Jupiter , FL, USA
| | - Roberto Xander Hernandez
- b Wilkes Honors College , Florida Atlantic University, John D MacArthur Campus , Jupiter , FL, USA
| | - Gregory Talisker Macleod
- b Wilkes Honors College , Florida Atlantic University, John D MacArthur Campus , Jupiter , FL, USA
| |
Collapse
|
37
|
Harris KP, Littleton JT, Stewart BA. Postsynaptic Syntaxin 4 negatively regulates the efficiency of neurotransmitter release. J Neurogenet 2018; 32:221-229. [PMID: 30175640 PMCID: PMC6317344 DOI: 10.1080/01677063.2018.1501372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
Signaling from the postsynaptic compartment regulates multiple aspects of synaptic development and function. Syntaxin 4 (Syx4) is a plasma membrane t-SNARE that promotes the growth and plasticity of Drosophila neuromuscular junctions (NMJs) by regulating the localization of key synaptic proteins in the postsynaptic compartment. Here, we describe electrophysiological analyses and report that loss of Syx4 leads to enhanced neurotransmitter release, despite a decrease in the number of active zones. We describe a requirement for postsynaptic Syx4 in regulating several presynaptic parameters, including Ca2+ cooperativity and the abundance of the presynaptic calcium channel Cacophony (Cac) at active zones. These findings indicate Syx4 negatively regulates presynaptic neurotransmitter release through a retrograde signaling mechanism from the postsynaptic compartment.
Collapse
Affiliation(s)
- Kathryn P Harris
- a Department of Biology , University of Toronto Mississauga , Mississauga , ON, Canada
- b Department of Cell and Systems Biology , University of Toronto , Toronto , ON, Canada
| | - J Troy Littleton
- c The Picower Institute for Learning and Memory , Massachusetts Institute of Technology , Cambridge , MA , USA
- d Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
- e Department of Brain and Cognitive Sciences , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Bryan A Stewart
- a Department of Biology , University of Toronto Mississauga , Mississauga , ON, Canada
- b Department of Cell and Systems Biology , University of Toronto , Toronto , ON, Canada
| |
Collapse
|
38
|
Böhme MA, Grasskamp AT, Walter AM. Regulation of synaptic release-site Ca 2+ channel coupling as a mechanism to control release probability and short-term plasticity. FEBS Lett 2018; 592:3516-3531. [PMID: 29993122 DOI: 10.1002/1873-3468.13188] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Synaptic transmission relies on the rapid fusion of neurotransmitter-containing synaptic vesicles (SVs), which happens in response to action potential (AP)-induced Ca2+ influx at active zones (AZs). A highly conserved molecular machinery cooperates at SV-release sites to mediate SV plasma membrane attachment and maturation, Ca2+ sensing, and membrane fusion. Despite this high degree of conservation, synapses - even within the same organism, organ or neuron - are highly diverse regarding the probability of APs to trigger SV fusion. Additionally, repetitive activation can lead to either strengthening or weakening of transmission. In this review, we discuss mechanisms controlling release probability and this short-term plasticity. We argue that an important layer of control is exerted by evolutionarily conserved AZ scaffolding proteins, which determine the coupling distance between SV fusion sites and voltage-gated Ca2+ channels (VGCC) and, thereby, shape synapse-specific input/output behaviors. We propose that AZ-scaffold modifications may occur to adapt the coupling distance during synapse maturation and plastic regulation of synapse strength.
Collapse
Affiliation(s)
- Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| |
Collapse
|
39
|
Akbergenova Y, Cunningham KL, Zhang YV, Weiss S, Littleton JT. Characterization of developmental and molecular factors underlying release heterogeneity at Drosophila synapses. eLife 2018; 7:38268. [PMID: 29989549 PMCID: PMC6075867 DOI: 10.7554/elife.38268] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/30/2018] [Indexed: 12/14/2022] Open
Abstract
Neurons communicate through neurotransmitter release at specialized synaptic regions known as active zones (AZs). Using biosensors to visualize single synaptic vesicle fusion events at Drosophila neuromuscular junctions, we analyzed the developmental and molecular determinants of release probability (Pr) for a defined connection with ~300 AZs. Pr was heterogeneous but represented a stable feature of each AZ. Pr remained stable during high frequency stimulation and retained heterogeneity in mutants lacking the Ca2+ sensor Synaptotagmin 1. Pr correlated with both presynaptic Ca2+ channel abundance and Ca2+ influx at individual release sites. Pr heterogeneity also correlated with glutamate receptor abundance, with high Pr connections developing receptor subtype segregation. Intravital imaging throughout development revealed that AZs acquire high Pr during a multi-day maturation period, with Pr heterogeneity largely reflecting AZ age. The rate of synapse maturation was activity-dependent, as both increases and decreases in neuronal activity modulated glutamate receptor field size and segregation. To send a message to its neighbor, a neuron releases chemicals called neurotransmitters into the gap – or synapse – between them. The neurotransmitter molecules bind to proteins on the receiver neuron called receptors. But what causes the sender neuron to release neurotransmitter in the first place? The process starts when an electrical impulse called an action potential arrives at the sender cell. Its arrival causes channels in the membrane of the sender neuron to open, so that calcium ions flood into the cell. The calcium ions interact with packages of neurotransmitter molecules, known as synaptic vesicles. This causes some of the vesicles to empty their contents into the synapse. But this process is not particularly reliable. Only a small fraction of action potentials cause vesicles to fuse with the synaptic membrane. How likely this is to occur varies greatly between neurons, and even between synapses formed by the same neuron. Synapses that are likely to release neurotransmitter are said to be strong. They are good at passing messages from the sender neuron to the receiver. Synapses with a low probability of release are said to be weak. But what exactly differs between strong and weak synapses? Akbergenova et al. studied synapses between motor neurons and muscle cells in the fruit fly Drosophila. Each motor neuron forms several hundred synapses. Some of these synapses are 50 times more likely to release neurotransmitter than others. Using calcium imaging and genetics, Akbergenova et al. showed that sender cells at strong synapses have more calcium channels than sender cells at weak synapses. The subtypes and arrangement of receptor proteins also differ between the receiver neurons of strong versus weak synapses. Finally, studies in larvae revealed that newly formed synapses all start out weak and then gradually become stronger. How fast this strengthening occurs depends on how active the neuron at the synapse is. This study has shown, in unprecedented detail, key molecular factors that make some fruit fly synapses more likely to release neurotransmitter than others. Many proteins at synapses of mammals resemble those at fruit fly synapses. This means that similar factors may also explain differences in synaptic strength in the mammalian brain. Changes in the strength of synapses underlie the ability to learn. Furthermore, many neurological and psychiatric disorders result from disruption of synapses. Understanding the molecular basis of synapses will thus provide clues to the origins of certain brain diseases.
Collapse
Affiliation(s)
- Yulia Akbergenova
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Yao V Zhang
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Shirley Weiss
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
40
|
Ehmann N, Owald D, Kittel RJ. Drosophila active zones: From molecules to behaviour. Neurosci Res 2018; 127:14-24. [DOI: 10.1016/j.neures.2017.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 11/15/2022]
|
41
|
Walter AM, Böhme MA, Sigrist SJ. Vesicle release site organization at synaptic active zones. Neurosci Res 2017; 127:3-13. [PMID: 29275162 DOI: 10.1016/j.neures.2017.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
Information transfer between nerve cells (neurons) forms the basis of behavior, emotion, and survival. Signal transduction from one neuron to another occurs at synapses, and relies on both electrical and chemical signal propagation. At chemical synapses, incoming electrical action potentials trigger the release of chemical neurotransmitters that are sensed by the connected cell and here reconverted to an electrical signal. The presynaptic conversion of an electrical to a chemical signal is an energy demanding, highly regulated process that relies on a complex, evolutionarily conserved molecular machinery. Here, we review the biophysical characteristics of this process, the current knowledge of the molecules operating in this reaction and genetic specializations that may have evolved to shape inter-neuronal signaling.
Collapse
Affiliation(s)
- Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.
| | - Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology/Genetics, Takustraße 6, 14195 Berlin, Germany; NeuroCure, Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
42
|
Badawi Y, Nishimune H. Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging. Neurosci Res 2017; 127:78-88. [PMID: 29221906 DOI: 10.1016/j.neures.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022]
Abstract
Neurotransmitter release occurs at active zones, which are specialized regions of the presynaptic membrane. A dense collection of proteins at the active zone provides a platform for molecular interactions that promote recruitment, docking, and priming of synaptic vesicles. At mammalian neuromuscular junctions (NMJs), muscle-derived laminin β2 interacts with presynaptic voltage-gated calcium channels to organize active zones. The molecular architecture of presynaptic active zones has been revealed using super-resolution microscopy techniques that combine nanoscale resolution and multiple molecular identification. Interestingly, the active zones of adult NMJs are not stable structures and thus become impaired during aging due to the selective degeneration of specific active zone proteins. This review will discuss recent progress in the understanding of active zone nanoarchitecture and the mechanisms underlying active zone organization in mammalian NMJs. Furthermore, we will summarize the age-related degeneration of active zones at NMJs, and the role of exercise in maintaining active zones.
Collapse
Affiliation(s)
- Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
43
|
Xuan Z, Manning L, Nelson J, Richmond JE, Colón-Ramos DA, Shen K, Kurshan PT. Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release. eLife 2017; 6:29276. [PMID: 29160205 PMCID: PMC5728718 DOI: 10.7554/elife.29276] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 11/20/2017] [Indexed: 01/03/2023] Open
Abstract
Active zone proteins cluster synaptic vesicles at presynaptic terminals and coordinate their release. In forward genetic screens, we isolated a novel Caenorhabditis elegans active zone gene, clarinet (cla-1). cla-1 mutants exhibit defects in synaptic vesicle clustering, active zone structure and synapse number. As a result, they have reduced spontaneous vesicle release and increased synaptic depression. cla-1 mutants show defects in vesicle distribution near the presynaptic dense projection, with fewer undocked vesicles contacting the dense projection and more docked vesicles at the plasma membrane. cla-1 encodes three isoforms containing common C-terminal PDZ and C2 domains with homology to vertebrate active zone proteins Piccolo and RIM. The C-termini of all isoforms localize to the active zone. Specific loss of the ~9000 amino acid long isoform results in vesicle clustering defects and increased synaptic depression. Our data indicate that specific isoforms of clarinet serve distinct functions, regulating synapse development, vesicle clustering and release.
Collapse
Affiliation(s)
- Zhao Xuan
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Laura Manning
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Jessica Nelson
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, San Juan, Puerto Rico
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, United States.,Howard Hughes Medical Institute
| | - Peri T Kurshan
- Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
44
|
Restoration of Motor Defects Caused by Loss of Drosophila TDP-43 by Expression of the Voltage-Gated Calcium Channel, Cacophony, in Central Neurons. J Neurosci 2017; 37:9486-9497. [PMID: 28847811 DOI: 10.1523/jneurosci.0554-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 01/08/2023] Open
Abstract
Defects in the RNA-binding protein, TDP-43, are known to cause a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar dementia. A variety of experimental systems have shown that neurons are sensitive to TDP-43 expression levels, yet the specific functional defects resulting from TDP-43 dysregulation have not been well described. Using the Drosophila TDP-43 ortholog TBPH, we previously showed that TBPH-null animals display locomotion defects as third instar larvae. Furthermore, loss of TBPH caused a reduction in cacophony, a Type II voltage-gated calcium channel, expression and that genetically restoring cacophony in motor neurons in TBPH mutant animals was sufficient to rescue the locomotion defects. In the present study, we examined the relative contributions of neuromuscular junction physiology and the motor program to the locomotion defects and identified subsets of neurons that require cacophony expression to rescue the defects. At the neuromuscular junction, we showed mEPP amplitudes and frequency require TBPH. Cacophony expression in motor neurons rescued mEPP frequency but not mEPP amplitude. We also showed that TBPH mutants displayed reduced motor neuron bursting and coordination during crawling and restoring cacophony selectively in two pairs of cells located in the brain, the AVM001b/2b neurons, also rescued the locomotion and motor defects, but not the defects in neuromuscular junction physiology. These results suggest that the behavioral defects associated with loss of TBPH throughout the nervous system can be associated with defects in a small number of genes in a limited number of central neurons, rather than peripheral defects.SIGNIFICANCE STATEMENT TDP-43 dysfunction is a common feature in neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal lobar dementia, and Alzheimer's disease. Loss- and gain-of-function models have shown that neurons are sensitive to TDP-43 expression levels, but the specific defects caused by TDP-43 loss of function have not been described in detail. A Drosophila loss-of-function model displays pronounced locomotion defects that can be reversed by restoring the expression levels of a voltage-gated calcium channel, cacophony. We show these defects can be rescued by expression of cacophony in motor neurons and by expression in two pairs of neurons in the brain. These data suggest that loss of TDP-43 can disrupt the central circuitry of the CNS, opening up identification of alternative therapeutic targets for TDP-43 proteinopathies.
Collapse
|
45
|
Lübbert M, Goral RO, Satterfield R, Putzke T, van den Maagdenberg AM, Kamasawa N, Young SM. A novel region in the Ca V2.1 α 1 subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone. eLife 2017; 6. [PMID: 28786379 PMCID: PMC5548488 DOI: 10.7554/elife.28412] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/06/2017] [Indexed: 01/23/2023] Open
Abstract
In central nervous system (CNS) synapses, action potential-evoked neurotransmitter release is principally mediated by CaV2.1 calcium channels (CaV2.1) and is highly dependent on the physical distance between CaV2.1 and synaptic vesicles (coupling). Although various active zone proteins are proposed to control coupling and abundance of CaV2.1 through direct interactions with the CaV2.1 α1 subunit C-terminus at the active zone, the role of these interaction partners is controversial. To define the intrinsic motifs that regulate coupling, we expressed mutant CaV2.1 α1 subunits on a CaV2.1 null background at the calyx of Held presynaptic terminal. Our results identified a region that directly controlled fast synaptic vesicle release and vesicle docking at the active zone independent of CaV2.1 abundance. In addition, proposed individual direct interactions with active zone proteins are insufficient for CaV2.1 abundance and coupling. Therefore, our work advances our molecular understanding of CaV2.1 regulation of neurotransmitter release in mammalian CNS synapses.
Collapse
Affiliation(s)
- Matthias Lübbert
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - R Oliver Goral
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, United States
| | - Rachel Satterfield
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Travis Putzke
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | | | - Naomi Kamasawa
- Max Planck Florida Electron Microscopy Core, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Samuel M Young
- Research Group Molecular Mechanisms of Synaptic Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, United States.,Department of Otolaryngology, University of Iowa, Iowa City, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, United States.,Aging Mind Brain Initiative, University of Iowa, Iowa City, United States
| |
Collapse
|
46
|
Torres VI, Inestrosa NC. Vertebrate Presynaptic Active Zone Assembly: a Role Accomplished by Diverse Molecular and Cellular Mechanisms. Mol Neurobiol 2017; 55:4513-4528. [PMID: 28685386 DOI: 10.1007/s12035-017-0661-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/14/2017] [Indexed: 01/22/2023]
Abstract
Among all the biological systems in vertebrates, the central nervous system (CNS) is the most complex, and its function depends on specialized contacts among neurons called synapses. The assembly and organization of synapses must be exquisitely regulated for a normal brain function and network activity. There has been a tremendous effort in recent decades to understand the molecular and cellular mechanisms participating in the formation of new synapses and their organization, maintenance, and regulation. At the vertebrate presynapses, proteins such as Piccolo, Bassoon, RIM, RIM-BPs, CAST/ELKS, liprin-α, and Munc13 are constant residents and participate in multiple and dynamic interactions with other regulatory proteins, which define network activity and normal brain function. Here, we review the function of these active zone (AZ) proteins and diverse factors involved in AZ assembly and maintenance, with an emphasis on axonal trafficking of precursor vesicles, protein homo- and hetero-oligomeric interactions as a mechanism of AZ trapping and stabilization, and the role of F-actin in presynaptic assembly and its modulation by Wnt signaling.
Collapse
Affiliation(s)
- Viviana I Torres
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
47
|
Tong XJ, López-Soto EJ, Li L, Liu H, Nedelcu D, Lipscombe D, Hu Z, Kaplan JM. Retrograde Synaptic Inhibition Is Mediated by α-Neurexin Binding to the α2δ Subunits of N-Type Calcium Channels. Neuron 2017; 95:326-340.e5. [PMID: 28669545 DOI: 10.1016/j.neuron.2017.06.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/20/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022]
Abstract
The synaptic adhesion molecules Neurexin and Neuroligin alter the development and function of synapses and are linked to autism in humans. In C. elegans, post-synaptic Neurexin (NRX-1) and pre-synaptic Neuroligin (NLG-1) mediate a retrograde synaptic signal that inhibits acetylcholine (ACh) release at neuromuscular junctions. Here, we show that the retrograde signal decreases ACh release by inhibiting the function of pre-synaptic UNC-2/CaV2 calcium channels. Post-synaptic NRX-1 binds to an auxiliary subunit of pre-synaptic UNC-2/CaV2 channels (UNC-36/α2δ), decreasing UNC-36 abundance at pre-synaptic elements. Retrograde inhibition is mediated by a soluble form of NRX-1's ectodomain, which is released from the post-synaptic membrane by the SUP-17/ADAM10 protease. Mammalian Neurexin-1α binds α2δ-3 and decreases CaV2.2 current in transfected cells, whereas Neurexin-1α has no effect on CaV2.2 reconstituted with α2δ-1 and α2δ-2. Collectively, these results suggest that α-Neurexin binding to α2δ is a conserved mechanism for regulating synaptic transmission.
Collapse
Affiliation(s)
- Xia-Jing Tong
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Eduardo Javier López-Soto
- Department of Neuroscience and Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Lei Li
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Haowen Liu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Nedelcu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Diane Lipscombe
- Department of Neuroscience and Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Zhitao Hu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Bruckner JJ, Zhan H, Gratz SJ, Rao M, Ukken F, Zilberg G, O'Connor-Giles KM. Fife organizes synaptic vesicles and calcium channels for high-probability neurotransmitter release. J Cell Biol 2016; 216:231-246. [PMID: 27998991 PMCID: PMC5223599 DOI: 10.1083/jcb.201601098] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 10/19/2016] [Accepted: 11/29/2016] [Indexed: 11/22/2022] Open
Abstract
Fife is a Piccolo-RIM–related protein that regulates neurotransmission and motor behavior through an unknown mechanism. Here, Bruckner et al. show that Fife organizes synaptic vesicle docking and coupling to calcium channels to establish and modulate synaptic strength. The strength of synaptic connections varies significantly and is a key determinant of communication within neural circuits. Mechanistic insight into presynaptic factors that establish and modulate neurotransmitter release properties is crucial to understanding synapse strength, circuit function, and neural plasticity. We previously identified Drosophila Piccolo-RIM-related Fife, which regulates neurotransmission and motor behavior through an unknown mechanism. Here, we demonstrate that Fife localizes and interacts with RIM at the active zone cytomatrix to promote neurotransmitter release. Loss of Fife results in the severe disruption of active zone cytomatrix architecture and molecular organization. Through electron tomographic and electrophysiological studies, we find a decrease in the accumulation of release-ready synaptic vesicles and their release probability caused by impaired coupling to Ca2+ channels. Finally, we find that Fife is essential for the homeostatic modulation of neurotransmission. We propose that Fife organizes active zones to create synaptic vesicle release sites within nanometer distance of Ca2+ channel clusters for reliable and modifiable neurotransmitter release.
Collapse
Affiliation(s)
- Joseph J Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Hong Zhan
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Scott J Gratz
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Monica Rao
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Fiona Ukken
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Gregory Zilberg
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Kate M O'Connor-Giles
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706 .,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
49
|
Senatore A, Raiss H, Le P. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora. Front Physiol 2016; 7:481. [PMID: 27867359 PMCID: PMC5095125 DOI: 10.3389/fphys.2016.00481] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/07/2016] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it.
Collapse
Affiliation(s)
- Adriano Senatore
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Hamad Raiss
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Phuong Le
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| |
Collapse
|
50
|
RIM-binding protein 2 regulates release probability by fine-tuning calcium channel localization at murine hippocampal synapses. Proc Natl Acad Sci U S A 2016; 113:11615-11620. [PMID: 27671655 DOI: 10.1073/pnas.1605256113] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (CaVs) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2-deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in CaV2.1 clustering at AZs, which likely alters Ca2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses.
Collapse
|