1
|
Xiang R, Wang J, Chen Z, Tao J, Peng Q, Ding R, Zhou T, Tu Z, Wang S, Yang T, Chen J, Jia Z, Li X, Zhang X, Chen S, Cheng N, Zhao M, Li J, Xue Q, Zhang H, Jiang C, Xing N, Ouyang K, Pekny A, Michalowska MM, de Pablo Y, Wilhelmsson U, Mitsios N, Liu C, Xu X, Fan X, Pekna M, Pekny M, Chen X, Liu L, Mulder J, Wang M, Wang J. Spatiotemporal transcriptomic maps of mouse intracerebral hemorrhage at single-cell resolution. Neuron 2025:S0896-6273(25)00309-5. [PMID: 40412375 DOI: 10.1016/j.neuron.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 01/24/2025] [Accepted: 04/25/2025] [Indexed: 05/27/2025]
Abstract
Intracerebral hemorrhage (ICH) is a prevalent disease with high mortality. Despite advances in clinical care, the prognosis of ICH remains poor due to an incomplete understanding of the complex pathological processes. To address this challenge, we generated single-cell-resolution spatiotemporal transcriptomic maps of the mouse brain following ICH. This dataset is the most extensive resource available, providing detailed information about the temporal expression of genes along with a high-resolution cellular profile and preserved cellular organization. We identified 100 distinct cell subclasses, 17 of which were found to play significant roles in the pathophysiology of ICH. We also report similarities and differences between two experimental ICH models and human postmortem ICH brain tissue. This study advances the understanding of the local and global responses of brain cells to ICH. It provides a valuable resource that can facilitate future research and aid the development of novel therapies for this devastating condition.
Collapse
Affiliation(s)
- Rong Xiang
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan Chen
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Tao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Zhou
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhencheng Tu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoshuai Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Jing Chen
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Zihan Jia
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueping Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinru Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai Chen
- Department of Neurology, The People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Nannan Cheng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengke Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiaxin Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qidi Xue
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Houlian Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chao Jiang
- Department of Neurology, The People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kang Ouyang
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Albert Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 405 30 Sweden
| | - Malgorzata M Michalowska
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 405 30 Sweden
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 405 30 Sweden
| | - Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 405 30 Sweden
| | - Nicholas Mitsios
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Chuanyu Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 40530, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 405 30 Sweden; University of Newcastle, Newcastle, NSW 2308, Australia; Florey Institute of Neuroscience and Mental Health, Parkville VIC 3052, Australia.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden.
| | - Mingyue Wang
- BGI Research, Hangzhou 310030, China; Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Sullivan KR, Ravens A, Walker AC, Shepherd JD. "Arc - A viral vector of memory and synaptic plasticity". Curr Opin Neurobiol 2025; 91:102979. [PMID: 39956025 PMCID: PMC11938376 DOI: 10.1016/j.conb.2025.102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 02/18/2025]
Abstract
Learning induces gene expression and memory consolidation requires new protein synthesis. Many of these activity-induced genes are transcription factors. One of the exceptions is a key immediate early gene, Arc, which has been implicated in several forms of synaptic plasticity and is critical for long-term memory formation. Recently, Arc was discovered to have retroviral properties, such as the ability to form virus-like capsids, that were repurposed from an ancient retrotransposon. Arc capsids are released in extracellular vesicles that mediate intercellular communication. Here, we review Arc's role in synaptic plasticity and propose a model for how Arc mediates memory consolidation via a novel intercellular non-cell autonomous form of long-term depression.
Collapse
Affiliation(s)
| | - Alicia Ravens
- Department of Neurobiology, University of Utah, United States
| | - Alicia C Walker
- Department of Neurobiology, University of Utah, United States
| | | |
Collapse
|
3
|
Murase S, Severin D, Dye L, Mesik L, Moreno C, Kirkwood A, Quinlan EM. Adult visual deprivation engages associative, presynaptic plasticity of thalamic input to cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626829. [PMID: 39677752 PMCID: PMC11643054 DOI: 10.1101/2024.12.04.626829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Associative plasticity at thalamocortical synapses is thought to be constrained by age in the mammalian cortex. However, here we show for the first time that prolonged visual deprivation induces robust and reversible plasticity at synapses between first order visual thalamus and cortical layer 4 pyramidal neurons. The plasticity is associative and expressed by changes in presynaptic function, thereby amplifying and relaying the change in efferent drive to the visual cortex.
Collapse
|
4
|
Kushinsky D, Tsivourakis E, Apelblat D, Roethler O, Breger-Mikulincer M, Cohen-Kashi Malina K, Spiegel I. Daily light-induced transcription in visual cortex neurons drives downward firing rate homeostasis and stabilizes sensory processing. Cell Rep 2024; 43:114701. [PMID: 39244753 DOI: 10.1016/j.celrep.2024.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/05/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Balancing plasticity and stability in neural circuits is essential for an animal's ability to learn from its environment while preserving proper processing and perception of sensory information. However, unlike the mechanisms that drive plasticity in neural circuits, the activity-induced molecular mechanisms that convey functional stability remain poorly understood. Focusing on the visual cortex of adult mice and combining transcriptomics, electrophysiology, and in vivo calcium imaging, we find that the daily appearance of light induces, in excitatory neurons, a large gene program along with rapid and transient increases in the ratio of excitation and inhibition (E/I ratio) and neural activity. Furthermore, we find that the light-induced transcription factor NPAS4 drives these daily normalizations of the E/I ratio and neural activity rates and that it stabilizes the neurons' response properties. These findings indicate that daily sensory-induced transcription normalizes the E/I ratio and drives downward firing rate homeostasis to maintain proper sensory processing and perception.
Collapse
Affiliation(s)
- Dahlia Kushinsky
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Emmanouil Tsivourakis
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Apelblat
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Roethler
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | | | - Katayun Cohen-Kashi Malina
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Ivo Spiegel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Bridi MCD, Hong S, Severin D, Moreno C, Contreras A, Kirkwood A. Blockade of GluN2B-Containing NMDA Receptors Prevents Potentiation and Depression of Responses during Ocular Dominance Plasticity. J Neurosci 2024; 44:e0021232024. [PMID: 39117456 PMCID: PMC11376332 DOI: 10.1523/jneurosci.0021-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/03/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Monocular deprivation (MD) causes an initial decrease in synaptic responses to the deprived eye in juvenile mouse primary visual cortex (V1) through Hebbian long-term depression (LTD). This is followed by a homeostatic increase, which has been attributed either to synaptic scaling or to a slide threshold for Hebbian long-term potentiation (LTP) rather than scaling. We therefore asked in mice of all sexes whether the homeostatic increase during MD requires GluN2B-containing NMDA receptor activity, which is required to slide the plasticity threshold but not for synaptic scaling. Selective GluN2B blockade from 2-6 d after monocular lid suture prevented the homeostatic increase in miniature excitatory postsynaptic current (mEPSC) amplitude in monocular V1 of acute slices and prevented the increase in visually evoked responses in binocular V1 in vivo. The decrease in mEPSC amplitude and visually evoked responses during the first 2 d of MD also required GluN2B activity. Together, these results support the idea that GluN2B-containing NMDA receptors first play a role in LTD immediately following eye closure and then promote homeostasis during prolonged MD by sliding the plasticity threshold in favor of LTP.
Collapse
Affiliation(s)
- Michelle C D Bridi
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Su Hong
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Daniel Severin
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Cristian Moreno
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Altagracia Contreras
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Alfredo Kirkwood
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
6
|
Mehta K, Yentsch H, Lee J, Yook Y, Lee KY, Gao TT, Tsai NP, Zhang K. Phosphatidylinositol-3-phosphate mediates Arc capsid secretion through the multivesicular body pathway. Proc Natl Acad Sci U S A 2024; 121:e2322422121. [PMID: 39178227 PMCID: PMC11363301 DOI: 10.1073/pnas.2322422121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) is an immediate early gene that plays a vital role in learning and memory. Arc protein has structural and functional properties similar to viral Group-specific antigen (Gag) protein and mediates the intercellular RNA transfer through virus-like capsids. However, the regulators and secretion pathway through which Arc capsids maneuver cargos are unclear. Here, we identified that phosphatidylinositol-3-phosphate (PI3P) mediates Arc capsid assembly and secretion through the endosomal-multivesicular body (MVB) pathway. Indeed, reconstituted Arc protein preferably binds to PI3P. In HEK293T cells, Arc forms puncta that colocalize with FYVE, an endosomal PI3P marker, as well as Rab5 and CD63, early endosomal and MVB markers, respectively. Superresolution imaging resolves Arc accumulates within the intraluminal vesicles of MVB. CRISPR double knockout of RalA and RalB, crucial GTPases for MVB biogenesis and exocytosis, severely reduces the Arc-mediated RNA transfer efficiency. RalA/B double knockdown in cultured rat cortical neurons increases the percentage of mature dendritic spines. Intake of extracellular vesicles purified from Arc-expressing wild-type, but not RalA/B double knockdown, cells in mouse cortical neurons reduces their surface GlutA1 levels. These results suggest that unlike the HIV Gag, whose membrane targeting requires interaction with plasma-membrane-specific phosphatidyl inositol (4,5) bisphosphate (PI(4,5)P2), the assembly of Arc capsids is mediated by PI3P at endocytic membranes. Understanding Arc's secretion pathway helps gain insights into its role in intercellular cargo transfer and highlights the commonality and distinction of trafficking mechanisms between structurally resembled capsid proteins.
Collapse
Affiliation(s)
- Kritika Mehta
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- NSF Science and Technology Center for Quantitative Cell Biology (STC-QCB) Center, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Henry Yentsch
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Jungbin Lee
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Yeeun Yook
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Tianyu Terry Gao
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Kai Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- NSF Science and Technology Center for Quantitative Cell Biology (STC-QCB) Center, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL61801
- Neuroscience Program, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
7
|
Joy MT, Carmichael ST. Activity-dependent transcriptional programs in memory regulate motor recovery after stroke. Commun Biol 2024; 7:1048. [PMID: 39183218 PMCID: PMC11345429 DOI: 10.1038/s42003-024-06723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
Stroke causes death of brain tissue leading to long-term deficits. Behavioral evidence from neurorehabilitative therapies suggest learning-induced neuroplasticity can lead to beneficial outcomes. However, molecular and cellular mechanisms that link learning and stroke recovery are unknown. We show that in a mouse model of stroke, which exhibits enhanced recovery of function due to genetic perturbations of learning and memory genes, animals display activity-dependent transcriptional programs that are normally active during formation or storage of new memories. The expression of neuronal activity-dependent genes are predictive of recovery and occupy a molecular latent space unique to motor recovery. With motor recovery, networks of activity-dependent genes are co-expressed with their transcription factor targets forming gene regulatory networks that support activity-dependent transcription, that are normally diminished after stroke. Neuronal activity-dependent changes at the circuit level are influenced by interactions with microglia. At the molecular level, we show that enrichment of activity-dependent programs in neurons lead to transcriptional changes in microglia where they differentially interact to support intercellular signaling pathways for axon guidance, growth and synaptogenesis. Together, these studies identify activity-dependent transcriptional programs as a fundamental mechanism for neural repair post-stroke.
Collapse
Affiliation(s)
- Mary T Joy
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
8
|
Kim DW, Moon HC, Lee BH, Park HY. Decoding Arc transcription: a live-cell study of stimulation patterns and transcriptional output. Learn Mem 2024; 31:a054024. [PMID: 39260877 PMCID: PMC11407692 DOI: 10.1101/lm.054024.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) plays a crucial role in synaptic plasticity, a process integral to learning and memory. Arc transcription is induced within a few minutes of stimulation, making it a useful marker for neuronal activity. However, the specific neuronal activity patterns that initiate Arc transcription have remained elusive due to the inability to observe mRNA transcription in live cells in real time. Using a genetically encoded RNA indicator (GERI) mouse model that expresses endogenous Arc mRNA tagged with multiple GFPs, we investigated Arc transcriptional activity in response to various electrical field stimulation patterns. The GERI mouse model was generated by crossing the Arc-PBS knock-in mouse, engineered with binding sites in the 3' untranslated region (UTR) of Arc mRNA, and the transgenic mouse expressing the cognate binding protein fused to GFP. In dissociated hippocampal neurons, we found that the pattern of stimulation significantly affects Arc transcription. Specifically, theta-burst stimulation consisting of high-frequency (100 Hz) bursts delivered at 10 Hz frequency induced the highest rate of Arc transcription. Concurrently, the amplitudes of nuclear calcium transients also reached their peak with 10 Hz burst stimulation, indicating a correlation between calcium concentration and transcription. However, our dual-color single-cell imaging revealed that there were no significant differences in calcium amplitudes between Arc-positive and Arc-negative neurons upon 10 Hz burst stimulation, suggesting the involvement of other factors in the induction of Arc transcription. Our live-cell RNA imaging provides a deeper insight into the complex regulation of transcription by activity patterns and calcium signaling pathways.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungseok C Moon
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Hun Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
9
|
Koesters AG, Rich MM, Engisch KL. Diverging from the Norm: Reevaluating What Miniature Excitatory Postsynaptic Currents Tell Us about Homeostatic Synaptic Plasticity. Neuroscientist 2024; 30:49-70. [PMID: 35904350 DOI: 10.1177/10738584221112336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The idea that the nervous system maintains a set point of network activity and homeostatically returns to that set point in the face of dramatic disruption-during development, after injury, in pathologic states, and during sleep/wake cycles-is rapidly becoming accepted as a key plasticity behavior, placing it alongside long-term potentiation and depression. The dramatic growth in studies of homeostatic synaptic plasticity of miniature excitatory synaptic currents (mEPSCs) is attributable, in part, to the simple yet elegant mechanism of uniform multiplicative scaling proposed by Turrigiano and colleagues: that neurons sense their own activity and globally multiply the strength of every synapse by a single factor to return activity to the set point without altering established differences in synaptic weights. We have recently shown that for mEPSCs recorded from control and activity-blocked cultures of mouse cortical neurons, the synaptic scaling factor is not uniform but is close to 1 for the smallest mEPSC amplitudes and progressively increases as mEPSC amplitudes increase, which we term divergent scaling. Using insights gained from simulating uniform multiplicative scaling, we review evidence from published studies and conclude that divergent synaptic scaling is the norm rather than the exception. This conclusion has implications for hypotheses about the molecular mechanisms underlying synaptic scaling.
Collapse
Affiliation(s)
- Andrew G Koesters
- Department of Behavior, Cognition, and Neurophysiology, Environmental Health Effects Laboratory, Naval Medical Research Unit-Dayton, Wright-Patterson AFB, OH, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Kathrin L Engisch
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
10
|
Mehta K, Yentsch H, Lee J, Gao TT, Zhang K. Phosphatidylinositol 3-phosphate mediates Arc capsids secretion through the multivesicular body pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572392. [PMID: 38187623 PMCID: PMC10769229 DOI: 10.1101/2023.12.19.572392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) is an immediate early gene that plays a vital role in learning and memory. The recent discovery that Arc mediates the inter-neuronal RNA transfer implies its role in regulating neuronal functions across long distances. Arc protein has structural and functional properties similar to viral Group-specific antigen (Gag). By assembling into high-order, virus-like capsids, Arc mediates the intercellular RNA transfer. However, the exact secretion pathway through which Arc capsids maneuver cargos is unclear. Here, we identified that Arc capsids assemble and secrete through the endosomal-multivesicular body (MVB) pathway. Arc's endosomal entry is likely mediated by phosphatidylinositol-3-phosphate (PI3P). Indeed, reconstituted Arc protein preferably binds to PI3P. In mammalian cells, Arc forms puncta that colocalizes with FYVE, an endosomal PI3P marker, and competitive binding to PI3P via prolonged FYVE expression reduces the average number of Arc puncta per cell. Overexpression of MTMR1, a PI3P phosphatase, significantly reduces Arc capsid secretion. Arc capsids secrete through the endosomal-MVB axis as extracellular vesicles. Live-cell imaging shows that fluorescently labeled Arc primarily colocalizes Rab5 and CD63, early endosomal and MVB markers, respectively. Superresolution imaging resolves Arc accumulates within the intraluminal vesicles of MVB. CRISPR double knockout of RalA and RalB, crucial GTPases for MVB biogenesis and exocytosis, severely reduces Arc-mediated RNA transfer efficiency. These results suggest that, unlike the Human Immunodeficiency Virus Gag, which assembles on and bud off from the plasma membrane, Arc capsids assemble at the endocytic membranes of the endosomal-MVB pathway mediated by PI3P. Understanding Arc's secretion pathway helps gain insights into its role in intercellular cargo transfer and highlights the commonality and distinction of trafficking mechanisms between structurally resembled capsid proteins.
Collapse
|
11
|
Ribeiro FM, Castelo-Branco M, Gonçalves J, Martins J. Visual Cortical Plasticity: Molecular Mechanisms as Revealed by Induction Paradigms in Rodents. Int J Mol Sci 2023; 24:ijms24054701. [PMID: 36902131 PMCID: PMC10003432 DOI: 10.3390/ijms24054701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Assessing the molecular mechanism of synaptic plasticity in the cortex is vital for identifying potential targets in conditions marked by defective plasticity. In plasticity research, the visual cortex represents a target model for intense investigation, partly due to the availability of different in vivo plasticity-induction protocols. Here, we review two major protocols: ocular-dominance (OD) and cross-modal (CM) plasticity in rodents, highlighting the molecular signaling pathways involved. Each plasticity paradigm has also revealed the contribution of different populations of inhibitory and excitatory neurons at different time points. Since defective synaptic plasticity is common to various neurodevelopmental disorders, the potentially disrupted molecular and circuit alterations are discussed. Finally, new plasticity paradigms are presented, based on recent evidence. Stimulus-selective response potentiation (SRP) is one of the paradigms addressed. These options may provide answers to unsolved neurodevelopmental questions and offer tools to repair plasticity defects.
Collapse
Affiliation(s)
- Francisco M. Ribeiro
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Gonçalves
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
12
|
Latina V, De Introna M, Caligiuri C, Loviglio A, Florio R, La Regina F, Pignataro A, Ammassari-Teule M, Calissano P, Amadoro G. Immunotherapy with Cleavage-Specific 12A12mAb Reduces the Tau Cleavage in Visual Cortex and Improves Visuo-Spatial Recognition Memory in Tg2576 AD Mouse Model. Pharmaceutics 2023; 15:pharmaceutics15020509. [PMID: 36839831 PMCID: PMC9965010 DOI: 10.3390/pharmaceutics15020509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Tau-targeted immunotherapy is a promising approach for treatment of Alzheimer's disease (AD). Beyond cognitive decline, AD features visual deficits consistent with the manifestation of Amyloid β-protein (Aβ) plaques and neurofibrillary tangles (NFT) in the eyes and higher visual centers, both in animal models and affected subjects. We reported that 12A12-a monoclonal cleavage-specific antibody (mAb) which in vivo neutralizes the neurotoxic, N-terminal 20-22 kDa tau fragment(s)-significantly reduces the retinal accumulation in Tg(HuAPP695Swe)2576 mice of both tau and APP/Aβ pathologies correlated with local inflammation and synaptic deterioration. Here, we report the occurrence of N-terminal tau cleavage in the primary visual cortex (V1 area) and the beneficial effect of 12A12mAb treatment on phenotype-associated visuo-spatial deficits in this AD animal model. We found out that non-invasive administration of 12 A12mAb markedly reduced the pathological accumulation of both truncated tau and Aβ in the V1 area, correlated to significant improvement in visual recognition memory performance along with local increase in two direct readouts of cortical synaptic plasticity, including the dendritic spine density and the expression level of activity-regulated cytoskeleton protein Arc/Arg3.1. Translation of these findings to clinical therapeutic interventions could offer an innovative tau-directed opportunity to delay or halt the visual impairments occurring during AD progression.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Margherita De Introna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Chiara Caligiuri
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Alessia Loviglio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Rita Florio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Martine Ammassari-Teule
- IRCCS Santa Lucia Foundation (FSL), Centro di Ricerca Europeo sul Cervello (CERC), Via Fosso del Fiorano 64-65, 00143 Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Ercole Ramarini 32, 00015 Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-06-49255252
| |
Collapse
|
13
|
Ghatak S, Nakamura T, Lipton SA. Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer's disease: Mechanistic insights and potential therapies. Front Neural Circuits 2023; 17:1099467. [PMID: 36817649 PMCID: PMC9932935 DOI: 10.3389/fncir.2023.1099467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is arguably the most common cause of dementia in the elderly and is marked by progressive synaptic degeneration, which in turn leads to cognitive decline. Studies in patients and in various AD models have shown that one of the early signatures of AD is neuronal hyperactivity. This excessive electrical activity contributes to dysregulated neural network function and synaptic damage. Mechanistically, evidence suggests that hyperexcitability accelerates production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that contribute to neural network impairment and synapse loss. This review focuses on the pathways and molecular changes that cause hyperexcitability and how RNS-dependent posttranslational modifications, represented predominantly by protein S-nitrosylation, mediate, at least in part, the deleterious effects of hyperexcitability on single neurons and the neural network, resulting in synaptic loss in AD.
Collapse
Affiliation(s)
- Swagata Ghatak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,*Correspondence: Tomohiro Nakamura,
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States,Stuart A. Lipton,
| |
Collapse
|
14
|
Eriksen MS, Bramham CR. Molecular physiology of Arc/Arg3.1: The oligomeric state hypothesis of synaptic plasticity. Acta Physiol (Oxf) 2022; 236:e13886. [PMID: 36073248 PMCID: PMC9787330 DOI: 10.1111/apha.13886] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
The immediate early gene, Arc, is a pivotal regulator of synaptic plasticity, memory, and cognitive flexibility. But what is Arc protein? How does it work? Inside the neuron, Arc is a protein interaction hub and dynamic regulator of intra-cellular signaling in synaptic plasticity. In remarkable contrast, Arc can also self-assemble into retrovirus-like capsids that are released in extracellular vesicles and capable of intercellular transfer of RNA. Elucidation of the molecular basis of Arc hub and capsid functions, and the relationship between them, is vital for progress. Here, we discuss recent findings on Arc structure-function and regulation of oligomerization that are giving insight into the molecular physiology of Arc. The unique features of mammalian Arc are emphasized, while drawing comparisons with Drosophila Arc and retroviral Gag. The Arc N-terminal domain, found only in mammals, is proposed to play a key role in regulating Arc hub signaling, oligomerization, and formation of capsids. Bringing together several lines of evidence, we hypothesize that Arc function in synaptic plasticity-long-term potentiation (LTP) and long-term depression (LTD)-are dictated by different oligomeric forms of Arc. Specifically, monomer/dimer function in LTP, tetramer function in basic LTD, and 32-unit oligomer function in enhanced LTD. The role of mammalian Arc capsids is unclear but likely depends on the cross-section of captured neuronal activity-induced RNAs. As the functional states of Arc are revealed, it may be possible to selectively manipulate specific forms of Arc-dependent plasticity and intercellular communication involved in brain function and dysfunction.
Collapse
Affiliation(s)
| | - Clive R. Bramham
- Department of BiomedicineUniversity of BergenBergenNorway,Mohn Research Center for the BrainUniversity of BergenBergenNorway
| |
Collapse
|
15
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
16
|
Mahringer D, Zmarz P, Okuno H, Bito H, Keller GB. Functional correlates of immediate early gene expression in mouse visual cortex. PEER COMMUNITY JOURNAL 2022; 2:e45. [PMID: 37091727 PMCID: PMC7614465 DOI: 10.24072/pcjournal.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
During visual development, response properties of layer 2/3 neurons in visual cortex are shaped by experience. Both visual and visuomotor experience are necessary to co-ordinate the integration of bottom-up visual input and top-down motor-related input. Whether visual and visuomotor experience engage different plasticity mechanisms, possibly associated with the two separate input pathways, is still unclear. To begin addressing this, we measured the expression level of three different immediate early genes (IEG) (c-fos, egr1 or Arc) and neuronal activity in layer 2/3 neurons of visual cortex before and after a mouse's first visual exposure in life, and subsequent visuomotor learning. We found that expression levels of all three IEGs correlated positively with neuronal activity, but that first visual and first visuomotor exposure resulted in differential changes in IEG expression patterns. In addition, IEG expression levels differed depending on whether neurons exhibited primarily visually driven or motor-related activity. Neurons with strong motor-related activity preferentially expressed EGR1, while neurons that developed strong visually driven activity preferentially expressed Arc. Our findings are consistent with the interpretation that bottom-up visual input and top-down motor-related input are associated with different IEG expression patterns and hence possibly also with different plasticity pathways.
Collapse
Affiliation(s)
- David Mahringer
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Pawel Zmarz
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Hiroyuki Okuno
- Department of Biochemistry and Molecular Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima 890-8544, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Georg B Keller
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
17
|
Reyes-Resina I, Samer S, Kreutz MR, Oelschlegel AM. Molecular Mechanisms of Memory Consolidation That Operate During Sleep. Front Mol Neurosci 2021; 14:767384. [PMID: 34867190 PMCID: PMC8636908 DOI: 10.3389/fnmol.2021.767384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The role of sleep for brain function has been in the focus of interest for many years. It is now firmly established that sleep and the corresponding brain activity is of central importance for memory consolidation. Less clear are the underlying molecular mechanisms and their specific contribution to the formation of long-term memory. In this review, we summarize the current knowledge of such mechanisms and we discuss the several unknowns that hinder a deeper appreciation of how molecular mechanisms of memory consolidation during sleep impact synaptic function and engram formation.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Sebastian Samer
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anja M Oelschlegel
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
18
|
Amorim FE, Chapot RL, Moulin TC, Lee JLC, Amaral OB. Memory destabilization during reconsolidation: a consequence of homeostatic plasticity? ACTA ACUST UNITED AC 2021; 28:371-389. [PMID: 34526382 DOI: 10.1101/lm.053418.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022]
Abstract
Remembering is not a static process: When retrieved, a memory can be destabilized and become prone to modifications. This phenomenon has been demonstrated in a number of brain regions, but the neuronal mechanisms that rule memory destabilization and its boundary conditions remain elusive. Using two distinct computational models that combine Hebbian plasticity and synaptic downscaling, we show that homeostatic plasticity can function as a destabilization mechanism, accounting for behavioral results of protein synthesis inhibition upon reactivation with different re-exposure times. Furthermore, by performing systematic reviews, we identify a series of overlapping molecular mechanisms between memory destabilization and synaptic downscaling, although direct experimental links between both phenomena remain scarce. In light of these results, we propose a theoretical framework where memory destabilization can emerge as an epiphenomenon of homeostatic adaptations prompted by memory retrieval.
Collapse
Affiliation(s)
- Felippe E Amorim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Renata L Chapot
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Thiago C Moulin
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala 751 24, Sweden
| | - Jonathan L C Lee
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Olavo B Amaral
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
19
|
Pardasani M, Marathe SD, Purnapatre MM, Dalvi U, Abraham NM. Multimodal learning of pheromone locations. FASEB J 2021; 35:e21836. [PMID: 34407246 PMCID: PMC7611819 DOI: 10.1096/fj.202100167r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 11/11/2022]
Abstract
Memorizing pheromonal locations is critical for many mammalian species as it involves finding mates and avoiding competitors. In rodents, pheromonal information is perceived by the main and accessory olfactory systems. However, the role of somatosensation in context-dependent learning and memorizing of pheromone locations remains unexplored. We addressed this problem by training female mice on a multimodal task to locate pheromones by sampling volatiles emanating from male urine through the orifices of varying dimensions or shapes that are sensed by their vibrissae. In this novel pheromone location assay, female mice’ preference toward male urine scent decayed over time when they were permitted to explore pheromones vs neutral stimuli, water. On training them for the associations involving olfactory and whisker systems, it was established that they were able to memorize the location of opposite sex pheromones, when tested 15 days later. This memory was not formed either when the somatosensory inputs through whisker pad were blocked or when the pheromonal cues were replaced with that of same sex. The association between olfactory and somatosensory systems was further confirmed by the enhanced expression of the activity-regulated cytoskeleton protein. Furthermore, the activation of main olfactory bulb circuitry by pheromone volatiles did not cause any modulation in learning and memorizing non-pheromonal volatiles. Our study thus provides the evidence for associations formed between different sensory modalities facilitating the long-term memory formation relevant to social and reproductive behaviors.
Collapse
Affiliation(s)
- Meenakshi Pardasani
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Shruti D Marathe
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Maitreyee Mandar Purnapatre
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India.,Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Urvashi Dalvi
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India.,Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Nixon M Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| |
Collapse
|
20
|
Liu DC, Lee KY, Lizarazo S, Cook JK, Tsai NP. ER stress-induced modulation of neural activity and seizure susceptibility is impaired in a fragile X syndrome mouse model. Neurobiol Dis 2021; 158:105450. [PMID: 34303799 DOI: 10.1016/j.nbd.2021.105450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/18/2021] [Indexed: 01/29/2023] Open
Abstract
Imbalanced neuronal excitability homeostasis is commonly observed in patients with fragile X syndrome (FXS) and the animal model of FXS, the Fmr1 KO. While alterations of neuronal intrinsic excitability and synaptic activity at the steady state in FXS have been suggested to contribute to such a deficit and ultimately the increased susceptibility to seizures in FXS, it remains largely unclear whether and how the homeostatic response of neuronal excitability following extrinsic challenges is disrupted in FXS. Our previous work has shown that the acute response following induction of endoplasmic reticulum (ER) stress can reduce neural activity and seizure susceptibility. Because many signaling pathways associated with ER stress response are mediated by Fmr1, we asked whether acute ER stress-induced reduction of neural activity and seizure susceptibility are altered in FXS. Our results first revealed that acute ER stress can trigger a protein synthesis-dependent prevention of neural network synchronization in vitro and a reduction of susceptibility to kainic acid-induced seizures in vivo in wild-type but not in Fmr1 KO mice. Mechanistically, we found that acute ER stress-induced activation of murine double minute-2 (Mdm2), ubiquitination of p53, and the subsequent transient protein synthesis are all impaired in Fmr1 KO neurons. Employing a p53 inhibitor, Pifithrin-α, to mimic p53 inactivation, we were able to blunt the increase in neural network synchronization and reduce the seizure susceptibility in Fmr1 KO mice following ER stress induction. In summary, our data revealed a novel cellular defect in Fmr1 KO mice and suggest that an impaired response to common extrinsic challenges may contribute to imbalanced neuronal excitability homeostasis in FXS.
Collapse
Affiliation(s)
- Dai-Chi Liu
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Simon Lizarazo
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jessie K Cook
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nien-Pei Tsai
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
21
|
Ewall G, Parkins S, Lin A, Jaoui Y, Lee HK. Cortical and Subcortical Circuits for Cross-Modal Plasticity Induced by Loss of Vision. Front Neural Circuits 2021; 15:665009. [PMID: 34113240 PMCID: PMC8185208 DOI: 10.3389/fncir.2021.665009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Cortical areas are highly interconnected both via cortical and subcortical pathways, and primary sensory cortices are not isolated from this general structure. In primary sensory cortical areas, these pre-existing functional connections serve to provide contextual information for sensory processing and can mediate adaptation when a sensory modality is lost. Cross-modal plasticity in broad terms refers to widespread plasticity across the brain in response to losing a sensory modality, and largely involves two distinct changes: cross-modal recruitment and compensatory plasticity. The former involves recruitment of the deprived sensory area, which includes the deprived primary sensory cortex, for processing the remaining senses. Compensatory plasticity refers to plasticity in the remaining sensory areas, including the spared primary sensory cortices, to enhance the processing of its own sensory inputs. Here, we will summarize potential cellular plasticity mechanisms involved in cross-modal recruitment and compensatory plasticity, and review cortical and subcortical circuits to the primary sensory cortices which can mediate cross-modal plasticity upon loss of vision.
Collapse
Affiliation(s)
- Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Samuel Parkins
- Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
| | - Amy Lin
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yanis Jaoui
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
22
|
Heavner WE, Lautz JD, Speed HE, Gniffke EP, Immendorf KB, Welsh JP, Baertsch NA, Smith SEP. Remodeling of the Homer-Shank interactome mediates homeostatic plasticity. Sci Signal 2021; 14:14/681/eabd7325. [PMID: 33947797 DOI: 10.1126/scisignal.abd7325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurons maintain stable levels of excitability using homeostatic synaptic scaling, which adjusts the strength of a neuron's postsynaptic inputs to compensate for extended changes in overall activity. Here, we investigated whether prolonged changes in activity affect network-level protein interactions at the synapse. We assessed a glutamatergic synapse protein interaction network (PIN) composed of 380 binary associations among 21 protein members in mouse neurons. Manipulating the activation of cultured mouse cortical neurons induced widespread bidirectional PIN alterations that reflected rapid rearrangements of glutamate receptor associations involving synaptic scaffold remodeling. Sensory deprivation of the barrel cortex in live mice (by whisker trimming) caused specific PIN rearrangements, including changes in the association between the glutamate receptor mGluR5 and the kinase Fyn. These observations are consistent with emerging models of experience-dependent plasticity involving multiple types of homeostatic responses. However, mice lacking Homer1 or Shank3B did not undergo normal PIN rearrangements, suggesting that the proteins encoded by these autism spectrum disorder-linked genes serve as structural hubs for synaptic homeostasis. Our approach demonstrates how changes in the protein content of synapses during homeostatic plasticity translate into functional PIN alterations that mediate changes in neuron excitability.
Collapse
Affiliation(s)
- Whitney E Heavner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Haley E Speed
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Edward P Gniffke
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karen B Immendorf
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - John P Welsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.,University of Washington Autism Center, Seattle, WA 98195, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA. .,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
23
|
Chokshi V, Grier BD, Dykman A, Lantz CL, Niebur E, Quinlan EM, Lee HK. Naturalistic Spike Trains Drive State-Dependent Homeostatic Plasticity in Superficial Layers of Visual Cortex. Front Synaptic Neurosci 2021; 13:663282. [PMID: 33935679 PMCID: PMC8081846 DOI: 10.3389/fnsyn.2021.663282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The history of neural activity determines the synaptic plasticity mechanisms employed in the brain. Previous studies report a rapid reduction in the strength of excitatory synapses onto layer 2/3 (L2/3) pyramidal neurons of the primary visual cortex (V1) following two days of dark exposure and subsequent re-exposure to light. The abrupt increase in visually driven activity is predicted to drive homeostatic plasticity, however, the parameters of neural activity that trigger these changes are unknown. To determine this, we first recorded spike trains in vivo from V1 layer 4 (L4) of dark exposed (DE) mice of both sexes that were re-exposed to light through homogeneous or patterned visual stimulation. We found that delivering the spike patterns recorded in vivo to L4 of V1 slices was sufficient to reduce the amplitude of miniature excitatory postsynaptic currents (mEPSCs) of V1 L2/3 neurons in DE mice, but not in slices obtained from normal reared (NR) controls. Unexpectedly, the same stimulation pattern produced an up-regulation of mEPSC amplitudes in V1 L2/3 neurons from mice that received 2 h of light re-exposure (LE). A Poisson spike train exhibiting the same average frequency as the patterns recorded in vivo was equally effective at depressing mEPSC amplitudes in L2/3 neurons in V1 slices prepared from DE mice. Collectively, our results suggest that the history of visual experience modifies the responses of V1 neurons to stimulation and that rapid homeostatic depression of excitatory synapses can be driven by non-patterned input activity.
Collapse
Affiliation(s)
- Varun Chokshi
- The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
- Cell Molecular Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
| | - Bryce D. Grier
- The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Andrew Dykman
- The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Crystal L. Lantz
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Ernst Niebur
- The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Elizabeth M. Quinlan
- Department of Biology, University of Maryland, College Park, MD, United States
- Neuroscience and Cognitive Science Program, Brain and Behavior Institute, University of Maryland, College Park, MD, United States
| | - Hey-Kyoung Lee
- The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
- Cell Molecular Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
24
|
Haider HF, Hoare DJ, Ribeiro SF, Ribeiro D, Caria H, Trigueiros N, Borrego LM, Szczepek AJ, Papoila AL, Elarbed A, da Luz Martins M, Paço J, Sereda M. Evidence for biological markers of tinnitus: A systematic review. PROGRESS IN BRAIN RESEARCH 2021; 262:345-398. [PMID: 33931188 DOI: 10.1016/bs.pbr.2021.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Subjective tinnitus is a phantom sound heard only by the affected person and may be a symptom of various diseases. Tinnitus diagnosis and monitoring is based on subjective audiometric and psychometric methods. This review aimed to synthesize evidence for tinnitus presence or its severity. We searched several electronic databases, citation searches of the included primary studies through Web of Science, and further hand searches. At least two authors performed all systematic review steps. Sixty-two records were included and were categorized according the biological variable. Evidence for possible tinnitus biomarkers come from oxidative stress, interleukins, steroids and neurotransmitters categories. We found conflicting evidence for full blood count, vitamins, lipid profile, neurotrophic factors, or inorganic ions. There was no evidence for an association between tinnitus and the remaining categories. The current review evidences that larger studies, with stricter exclusion criteria and powerful harmonized methodological design are needed. Protocol published on PROSPERO (CRD42017070998).
Collapse
Affiliation(s)
- Haúla F Haider
- ENT Department, Hospital Cuf Tejo-Nova Medical School, Lisbon, Portugal; CUF Academic and Research Medical Center, Lisbon, Portugal; Comprehensive Health Research Centre (CHRC), Lisbon, Portugal.
| | - Derek J Hoare
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Sara F Ribeiro
- ENT Department, Hospital Cuf Tejo-Nova Medical School, Lisbon, Portugal; CUF Academic and Research Medical Center, Lisbon, Portugal
| | - Diogo Ribeiro
- ENT Department, Hospital Cuf Tejo-Nova Medical School, Lisbon, Portugal; CUF Academic and Research Medical Center, Lisbon, Portugal
| | - Helena Caria
- Deafness Research Group, BTR Unit, BioISI, Faculty of Sciences, University of Lisbon (FCUL), Portugal; ESS/IPS-Biomedical Sciences Department, School of Health, Polytechnic Institute of Setubal, Portugal
| | - Nuno Trigueiros
- ENT Department, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Luís Miguel Borrego
- Department of Immunology, Chronic Diseases Research Center (CEDOC), Faculty of Medical Sciences, NOVA Medical School, Lisbon, Portugal; Department of Immunoallergy, LUZ SAUDE, Hospital da Luz, Lisbon, Portugal
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ana Luísa Papoila
- Bioestatistics Department, Faculty of Medical Sciences, NOVA Medical School, Lisbon, Portugal
| | - Asma Elarbed
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Maria da Luz Martins
- ENT Department, Hospital Cuf Tejo-Nova Medical School, Lisbon, Portugal; CUF Academic and Research Medical Center, Lisbon, Portugal
| | - João Paço
- ENT Department, Hospital Cuf Tejo-Nova Medical School, Lisbon, Portugal; CUF Academic and Research Medical Center, Lisbon, Portugal
| | - Magdalena Sereda
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
25
|
Jenks KR, Shepherd JD. Experience-Dependent Development and Maintenance of Binocular Neurons in the Mouse Visual Cortex. Cell Rep 2021; 30:1982-1994.e4. [PMID: 32049025 PMCID: PMC7041998 DOI: 10.1016/j.celrep.2020.01.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/25/2019] [Accepted: 01/08/2020] [Indexed: 11/15/2022] Open
Abstract
The development of neuronal circuits requires both hard-wired gene expression and experience-dependent plasticity. Sensory processing, such as binocular vision, is especially sensitive to perturbations of experience. We investigated the experience-dependent development of the binocular visual cortex at single-cell resolution by using two-photon calcium imaging in awake mice. At eye-opening, the majority of visually responsive neurons are monocular. Binocular neurons emerge later with visual experience and acquire distinct visual response properties. Surprisingly, rather than mirroring the effects of visual deprivation, mice that lack the plasticity gene Arc show increased numbers of binocular neurons and a shift in ocular dominance during development. Strikingly, acutely removing Arc in the adult binocular visual cortex also increases the number of binocular neurons, suggesting that the maintenance of binocular circuits requires ongoing plasticity. Thus, experience-dependent plasticity is critical for the development and maintenance of circuits required to process binocular vision. Jenks and Shepherd show that neurons responding to both eyes in the mouse visual cortex develop with experience. These binocular neurons acquire unique visual response properties, such as a preference for horizonal orientations. The neuronal gene Arc limits and maintains the number of binocular neurons, even in the adult cortex.
Collapse
Affiliation(s)
- Kyle R Jenks
- Department of Neurobiology and Anatomy, The University of Utah, Salt Lake City, Utah 84112, USA
| | - Jason D Shepherd
- Department of Neurobiology and Anatomy, The University of Utah, Salt Lake City, Utah 84112, USA; Department of Ophthalmology and Visual Sciences, The University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
26
|
Salery M, Godino A, Nestler EJ. Drug-activated cells: From immediate early genes to neuronal ensembles in addiction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 90:173-216. [PMID: 33706932 DOI: 10.1016/bs.apha.2020.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Beyond their rapid rewarding effects, drugs of abuse can durably alter an individual's response to their environment as illustrated by the compulsive drug seeking and risk of relapse triggered by drug-associated stimuli. The persistence of these associations even long after cessation of drug use demonstrates the enduring mark left by drugs on brain reward circuits. However, within these circuits, neuronal populations are differently affected by drug exposure and growing evidence indicates that relatively small subsets of neurons might be involved in the encoding and expression of drug-mediated associations. The identification of sparse neuronal populations recruited in response to drug exposure has benefited greatly from the study of immediate early genes (IEGs) whose induction is critical in initiating plasticity programs in recently activated neurons. In particular, the development of technologies to manipulate IEG-expressing cells has been fundamental to implicate broadly distributed neuronal ensembles coincidently activated by either drugs or drug-associated stimuli and to then causally establish their involvement in drug responses. In this review, we summarize the literature regarding IEG regulation in different learning paradigms and addiction models to highlight their role as a marker of activity and plasticity. As the exploration of neuronal ensembles in addiction improves our understanding of drug-associated memory encoding, it also raises several questions regarding the cellular and molecular characteristics of these discrete neuronal populations as they become incorporated in drug-associated neuronal ensembles. We review recent efforts towards this goal and discuss how they will offer a more comprehensive understanding of addiction pathophysiology.
Collapse
Affiliation(s)
- Marine Salery
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
27
|
The aging mouse brain: cognition, connectivity and calcium. Cell Calcium 2021; 94:102358. [PMID: 33517250 DOI: 10.1016/j.ceca.2021.102358] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
Aging is a complex process that differentially impacts multiple cognitive, sensory, neuronal and molecular processes. Technological innovations now allow for parallel investigation of neuronal circuit function, structure and molecular composition in the brain of awake behaving adult mice. Thus, mice have become a critical tool to better understand how aging impacts the brain. However, a more granular systems-based approach, which considers the impact of age on key features relating to neural processing, is required. Here, we review evidence probing the impact of age on the mouse brain. We focus on a range of processes relating to neuronal function, including cognitive abilities, sensory systems, synaptic plasticity and calcium regulation. Across many systems, we find evidence for prominent age-related dysregulation even before 12 months of age, suggesting that emerging age-related alterations can manifest by late adulthood. However, we also find reports suggesting that some processes are remarkably resilient to aging. The evidence suggests that aging does not drive a parallel, linear dysregulation of all systems, but instead impacts some processes earlier, and more severely, than others. We propose that capturing the more fine-scale emerging features of age-related vulnerability and resilience may provide better opportunities for the rejuvenation of the aged brain.
Collapse
|
28
|
Transcriptional Profiling of Whisker Follicles and of the Striatum in Methamphetamine Self-Administered Rats. Int J Mol Sci 2020; 21:ijms21228856. [PMID: 33238484 PMCID: PMC7700365 DOI: 10.3390/ijms21228856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Methamphetamine (MA) use disorder is a chronic neuropsychiatric disease characterized by recurrent binge episodes, intervals of abstinence, and relapses to MA use. Therefore, identification of the key genes and pathways involved is important for improving the diagnosis and treatment of this disorder. In this study, high-throughput RNA sequencing was performed to find the key genes and examine the comparability of gene expression between whisker follicles and the striatum of rats following MA self-administration. A total of 253 and 87 differentially expressed genes (DEGs) were identified in whisker follicles and the striatum, respectively. Multivariate and network analyses were performed on these DEGs to find hub genes and key pathways within the constructed network. A total of 129 and 49 genes were finally selected from the DEG sets of whisker follicles and of the striatum. Statistically significant DEGs were found to belong to the classes of genes involved in nicotine addiction, cocaine addiction, and amphetamine addiction in the striatum as well as in Parkinson’s, Huntington’s, and Alzheimer’s diseases in whisker follicles. Of note, several genes and pathways including retrograde endocannabinoid signaling and the synaptic vesicle cycle pathway were common between the two tissues. Therefore, this study provides the first data on gene expression levels in whisker follicles and in the striatum in relation to MA reward and thereby may accelerate the research on the whisker follicle as an alternative source of biomarkers for the diagnosis of MA use disorder.
Collapse
|
29
|
Tau modulates visual plasticity in adult and old mice. Neurobiol Aging 2020; 95:214-224. [DOI: 10.1016/j.neurobiolaging.2020.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/10/2020] [Accepted: 07/25/2020] [Indexed: 11/20/2022]
|
30
|
Napoli D, Lupori L, Mazziotti R, Sagona G, Bagnoli S, Samad M, Sacramento EK, Kirkpartick J, Putignano E, Chen S, Terzibasi Tozzini E, Tognini P, Baldi P, Kwok JC, Cellerino A, Pizzorusso T. MiR-29 coordinates age-dependent plasticity brakes in the adult visual cortex. EMBO Rep 2020; 21:e50431. [PMID: 33026181 DOI: 10.15252/embr.202050431] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Visual cortical circuits show profound plasticity during early life and are later stabilized by molecular "brakes" limiting excessive rewiring beyond a critical period. The mechanisms coordinating the expression of these factors during the transition from development to adulthood remain unknown. We found that miR-29a expression in the visual cortex dramatically increases with age, but it is not experience-dependent. Precocious high levels of miR-29a blocked ocular dominance plasticity and caused an early appearance of perineuronal nets. Conversely, inhibition of miR-29a in adult mice using LNA antagomirs activated ocular dominance plasticity, reduced perineuronal nets, and restored their juvenile chemical composition. Activated adult plasticity had the typical functional and proteomic signature of critical period plasticity. Transcriptomic and proteomic studies indicated that miR-29a manipulation regulates the expression of plasticity brakes in specific cortical circuits. These data indicate that miR-29a is a regulator of the plasticity brakes promoting age-dependent stabilization of visual cortical connections.
Collapse
Affiliation(s)
- Debora Napoli
- BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy.,Institute of Neuroscience, National Research Council, Pisa, Italy
| | | | - Raffaele Mazziotti
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA University of Florence, Florence, Italy
| | - Giulia Sagona
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA University of Florence, Florence, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Sara Bagnoli
- BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | | | - Joanna Kirkpartick
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Elena Putignano
- Institute of Neuroscience, National Research Council, Pisa, Italy
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | | | - Paola Tognini
- BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | - Jessica Cf Kwok
- School of Biomedical Sciences, University of Leeds, Leeds, UK.,Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Alessandro Cellerino
- BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy.,Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Tommaso Pizzorusso
- BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy.,Institute of Neuroscience, National Research Council, Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA University of Florence, Florence, Italy
| |
Collapse
|
31
|
MEF2C and HDAC5 regulate Egr1 and Arc genes to increase dendritic spine density and complexity in early enriched environment. Neuronal Signal 2020; 4:NS20190147. [PMID: 32714604 PMCID: PMC7378308 DOI: 10.1042/ns20190147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/16/2023] Open
Abstract
We investigated the effects of environmental enrichment during critical period of early postnatal life and how it interplays with the epigenome to affect experience-dependent visual cortical plasticity. Mice raised in an EE from birth to during CP have increased spine density and dendritic complexity in the visual cortex. EE upregulates synaptic plasticity genes, Arc and Egr1, and a transcription factor MEF2C. We also observed an increase in MEF2C binding to the promoters of Arc and Egr1. In addition, pups raised in EE show a reduction in HDAC5 and its binding to promoters of Mef2c, Arc and Egr1 genes. With an overexpression of Mef2c, neurite outgrowth increased in complexity. Our results suggest a possible underlying molecular mechanism of EE, acting through MEF2C and HDAC5, which drive Arc and Egr1. This could lead to the observed increased dendritic spine density and complexity induced by early EE.
Collapse
|
32
|
Yang X. Characterizing spine issues: If offers novel therapeutics to Angelman syndrome. Dev Neurobiol 2020; 80:200-209. [PMID: 32378784 DOI: 10.1002/dneu.22757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/01/2020] [Indexed: 12/28/2022]
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by severe mental retardation, microcephaly, speech impairment, frequent epilepsy, EEG abnormalities, ataxic movements, tongue protrusion, bursts of laughter, sleep abruptions, and hyperactivity. AS results from loss of function of the imprinted UBE3A (ubiquitin-protein ligase E3A) gene on chromosome 15q11-q13, including a mutation on the maternal allele of Ube3a, a large deletion of the maternally inherited chromosomal region 15q11-13, paternal uniparental disomy of chromosome 15q11-13, or an imprinting defect. The Ube3a maternal deleted mouse model recaptured the major phenotypes of AS patients include seizure, learning and memory impairments, sleep disturbance, and motor problems. Owing to the activity-dependent structural and functional plasticity, dendritic spines are believed as the basic subcellular compartment for learning and memory and the sites where LTP and LTD are induced. Defects of spine formation and dynamics are common among several neurodevelopmental disorders and neuropsychiatric disorders including AS and reflect the underlying synaptopathology, which drives clinically relevant behavioral deficits. This review will summarize the impaired spine density, morphology, and synaptic plasticity in AS and propose that future explorations on spine dynamics and synaptic plasticity may help develop novel interventions and therapy for neurodevelopmental disorders like AS.
Collapse
Affiliation(s)
- Xin Yang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
33
|
Persic D, Thomas ME, Pelekanos V, Ryugo DK, Takesian AE, Krumbholz K, Pyott SJ. Regulation of auditory plasticity during critical periods and following hearing loss. Hear Res 2020; 397:107976. [PMID: 32591097 PMCID: PMC8546402 DOI: 10.1016/j.heares.2020.107976] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods—when plasticity facilitates the optimization of neural circuits in concert with the external environment—and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway, where they serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss-induced plasticity with tinnitus will continue to advance our understanding of this disorder and lead to new approaches to its treatment. During CPs, brain plasticity is enhanced and sensitive to acoustic experience. Enhanced plasticity can be reinstated in the adult brain following hearing loss. Molecular, cellular, and circuit-level mechanisms regulate CP and adult plasticity. Plasticity resulting from hearing loss may contribute to the emergence of tinnitus. Modifying plasticity in the adult brain may offer new treatments for tinnitus.
Collapse
Affiliation(s)
- Dora Persic
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands
| | - Maryse E Thomas
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Vassilis Pelekanos
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia; School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia; Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Katrin Krumbholz
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Sonja J Pyott
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
34
|
Dubes S, Favereaux A, Thoumine O, Letellier M. miRNA-Dependent Control of Homeostatic Plasticity in Neurons. Front Cell Neurosci 2019; 13:536. [PMID: 31866828 PMCID: PMC6906196 DOI: 10.3389/fncel.2019.00536] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/19/2019] [Indexed: 11/13/2022] Open
Abstract
Homeostatic plasticity is a form of plasticity in which neurons compensate for changes in neuronal activity through the control of key physiological parameters such as the number and the strength of their synaptic inputs and intrinsic excitability. Recent studies revealed that miRNAs, which are small non-coding RNAs repressing mRNA translation, participate in this process by controlling the translation of multiple effectors such as glutamate transporters, receptors, signaling molecules and voltage-gated ion channels. In this review, we present and discuss the role of miRNAs in both cell-wide and compartmentalized forms of homeostatic plasticity as well as their implication in pathological processes associated with homeostatic failure.
Collapse
Affiliation(s)
- Sandra Dubes
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Alexandre Favereaux
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Olivier Thoumine
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Mathieu Letellier
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| |
Collapse
|
35
|
Lee HK, Kirkwood A. Mechanisms of Homeostatic Synaptic Plasticity in vivo. Front Cell Neurosci 2019; 13:520. [PMID: 31849610 PMCID: PMC6901705 DOI: 10.3389/fncel.2019.00520] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/06/2019] [Indexed: 11/13/2022] Open
Abstract
Synapses undergo rapid activity-dependent plasticity to store information, which when left uncompensated can lead to destabilization of neural function. It has been well documented that homeostatic changes, which operate at a slower time scale, are required to maintain stability of neural networks. While there are many mechanisms that can endow homeostatic control, sliding threshold and synaptic scaling are unique in that they operate by providing homeostatic control of synaptic strength. The former mechanism operates by adjusting the threshold for synaptic plasticity, while the latter mechanism directly alters the gain of synapses. Both modes of homeostatic synaptic plasticity have been studied across various preparations from reduced in vitro systems, such as neuronal cultures, to in vivo intact circuitry. While most of the cellular and molecular mechanisms of homeostatic synaptic plasticity have been worked out using reduced preparations, there are unique challenges present in intact circuitry in vivo, which deserve further consideration. For example, in an intact circuit, neurons receive distinct set of inputs across their dendritic tree which carry unique information. Homeostatic synaptic plasticity in vivo needs to operate without compromising processing of these distinct set of inputs to preserve information processing while maintaining network stability. In this mini review, we will summarize unique features of in vivo homeostatic synaptic plasticity, and discuss how sliding threshold and synaptic scaling may act across different activity regimes to provide homeostasis.
Collapse
Affiliation(s)
- Hey-Kyoung Lee
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Alfredo Kirkwood
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
36
|
Chokshi V, Gao M, Grier BD, Owens A, Wang H, Worley PF, Lee HK. Input-Specific Metaplasticity in the Visual Cortex Requires Homer1a-Mediated mGluR5 Signaling. Neuron 2019; 104:736-748.e6. [PMID: 31563294 DOI: 10.1016/j.neuron.2019.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 06/24/2019] [Accepted: 08/09/2019] [Indexed: 11/17/2022]
Abstract
Effective sensory processing depends on sensory experience-dependent metaplasticity, which allows homeostatic maintenance of neural network activity and preserves feature selectivity. Following a strong increase in sensory drive, plasticity mechanisms that decrease the strength of excitatory synapses are preferentially engaged to maintain stability in neural networks. Such adaptation has been demonstrated in various model systems, including mouse primary visual cortex (V1), where excitatory synapses on layer 2/3 (L2/3) neurons undergo rapid reduction in strength when visually deprived mice are reexposed to light. Here, we report that this form of plasticity is specific to intracortical inputs to V1 L2/3 neurons and depends on the activity of NMDA receptors (NMDARs) and group I metabotropic glutamate receptor 5 (mGluR5). Furthermore, we found that expression of the immediate early gene (IEG) Homer1a (H1a) and its subsequent interaction with mGluR5s are necessary for this input-specific metaplasticity.
Collapse
Affiliation(s)
- Varun Chokshi
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Cell Molecular Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ming Gao
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bryce D Grier
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ashley Owens
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Wang
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Paul F Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hey-Kyoung Lee
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Cell Molecular Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
37
|
Penrod RD, Kumar J, Smith LN, McCalley D, Nentwig T, Hughes B, Barry G, Glover K, Taniguchi M, Cowan CW. Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) regulates anxiety- and novelty-related behaviors. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12561. [PMID: 30761730 PMCID: PMC6692244 DOI: 10.1111/gbb.12561] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 01/19/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
The activity-regulated cytoskeleton-associated protein (Arc, also known as Arg3.1) regulates glutamatergic synapse plasticity and has been linked to neuropsychiatric illness; however, its role in behaviors associated with mood and anxiety disorders remains unclear. We find that stress upregulates Arc expression in the adult mouse nucleus accumbens (NAc)-a brain region implicated in mood and anxiety behaviors. Global Arc knockout mice have altered AMPAR-subunit surface levels in the adult NAc, and the Arc-deficient mice show reductions in anxiety-like behavior, deficits in social novelty preference, and antidepressive-like behavior. Viral-mediated expression of Arc in the adult NAc of male, global Arc KO mice restores normal levels of anxiety-like behavior in the elevated plus maze (EPM). Consistent with this finding, viral-mediated reduction of Arc in the adult NAc reduces anxiety-like behavior in male, but not female, mice in the EPM. NAc-specific reduction of Arc also produced significant deficits in both object and social novelty preference tasks. Together our findings indicate that Arc is essential for regulating normal mood- and anxiety-related behaviors and novelty discrimination, and that Arc's function within the adult NAc contributes to these behavioral effects.
Collapse
Affiliation(s)
- Rachel D. Penrod
- Departments of Neuroscience and Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston SC 29425
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont MA 02478
| | - Jaswinder Kumar
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont MA 02478
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas TX 75390-9070
| | - Laura N. Smith
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont MA 02478
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas TX 75390-9070
| | - Daniel McCalley
- Departments of Neuroscience and Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston SC 29425
| | - Todd Nentwig
- Departments of Neuroscience and Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston SC 29425
| | - Brandon Hughes
- Departments of Neuroscience and Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston SC 29425
| | - Gabriella Barry
- Department of Science and Mathematics, Honors College, College of Charleston, Charleston SC 29424
| | - Kelsey Glover
- Department of Science and Mathematics, Honors College, College of Charleston, Charleston SC 29424
| | - Makoto Taniguchi
- Departments of Neuroscience and Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston SC 29425
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont MA 02478
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas TX 75390-9070
| | - Christopher W. Cowan
- Departments of Neuroscience and Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston SC 29425
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont MA 02478
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas TX 75390-9070
| |
Collapse
|
38
|
Livingstone RW, Elder MK, Barrett MC, Westlake CM, Peppercorn K, Tate WP, Abraham WC, Williams JM. Secreted Amyloid Precursor Protein-Alpha Promotes Arc Protein Synthesis in Hippocampal Neurons. Front Mol Neurosci 2019; 12:198. [PMID: 31474829 PMCID: PMC6702288 DOI: 10.3389/fnmol.2019.00198] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Secreted amyloid precursor protein-α (sAPPα) is a neuroprotective and memory-enhancing molecule, however, the mechanisms through which sAPPα promotes these effects are not well understood. Recently, we have shown that sAPPα enhances cell-surface expression of glutamate receptors. Activity-related cytoskeletal-associated protein Arc (Arg3.1) is an immediate early gene capable of modulating long-term potentiation, long-term depression and homeostatic plasticity through regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor localization. Accordingly, we hypothesized that sAPPα may enhance synaptic plasticity, in part, by the de novo synthesis of Arc. Using primary cortical and hippocampal neuronal cultures we found that sAPPα (1 nM, 2 h) enhances levels of Arc mRNA and protein. Arc protein levels were increased in both the neuronal somata and dendrites in a Ca2+/calmodulin-dependent protein kinase II-dependent manner. Additionally, dendritic Arc expression was dependent upon activation of mitogen-activated protein kinase and protein kinase G. The enhancement of dendritic Arc protein was significantly reduced by antagonism of N-methyl-D-aspartate (NMDA) and nicotinic acetylcholine (α7nACh) receptors, and fully eliminated by dual application of these antagonists. This effect was further corroborated in area CA1 of acute hippocampal slices. These data suggest sAPPα-regulated plasticity within hippocampal neurons is mediated by cooperation of NMDA and α7nACh receptors to engage a cascade of signal transduction molecules to enhance the transcription and translation of Arc.
Collapse
Affiliation(s)
- Rhys W Livingstone
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Megan K Elder
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Maya C Barrett
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Courteney M Westlake
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Katie Peppercorn
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Warren P Tate
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
39
|
Disruption of NMDAR Function Prevents Normal Experience-Dependent Homeostatic Synaptic Plasticity in Mouse Primary Visual Cortex. J Neurosci 2019; 39:7664-7673. [PMID: 31413075 DOI: 10.1523/jneurosci.2117-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
Homeostatic regulation of synaptic strength allows for maintenance of neural activity within a dynamic range for proper circuit function. There are largely two distinct modes of synaptic plasticity that allow for homeostatic adaptation of cortical circuits: synaptic scaling and sliding threshold (BCM theory). Previous findings suggest that the induction of synaptic scaling is not prevented by blocking NMDARs, whereas the sliding threshold model posits that the synaptic modification threshold of LTP and LTD readjusts with activity and thus the outcome of synaptic plasticity is NMDAR dependent. Although synaptic scaling and sliding threshold have been considered two distinct mechanisms, there are indications from recent studies that these two modes of homeostatic plasticity may interact or that they may operate under two distinct activity regimes. Here, we report using both sexes of mouse that acute genetic knock-out of the obligatory subunit of NMDAR or acute pharmacological block of NMDAR prevents experience-dependent homeostatic regulation of AMPAR-mediated miniature EPSCs in layer 2/3 of visual cortex. This was not due to gross changes in postsynaptic neuronal activity with inhibiting NMDAR function as determine by c-Fos expression and two-photon Ca2+ imaging in awake mice. Our results suggest that experience-dependent homeostatic regulation of intact cortical circuits is mediated by NMDAR-dependent plasticity mechanisms, which supports a sliding threshold model of homeostatic adaptation.SIGNIFICANCE STATEMENT Prolonged changes in sensory experience lead to homeostatic adaptation of excitatory synaptic strength in sensory cortices. Both sliding threshold and synaptic scaling models can account for the observed homeostatic synaptic plasticity. Here we report that visual experience-dependent homeostatic plasticity of excitatory synapses observed in superficial layers of visual cortex is dependent on NMDAR function. In particular, both strengthening of synapses induced by visual deprivation and the subsequent weakening by reinstatement of visual experience were prevented in the absence of functional NMDARs. Our results suggest that sensory experience-dependent homeostatic adaptation depends on NMDARs, which supports the sliding threshold model of plasticity and input-specific homeostatic control observed in vivo.
Collapse
|
40
|
Li J, Park E, Zhong LR, Chen L. Homeostatic synaptic plasticity as a metaplasticity mechanism - a molecular and cellular perspective. Curr Opin Neurobiol 2019; 54:44-53. [PMID: 30212714 PMCID: PMC6361678 DOI: 10.1016/j.conb.2018.08.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023]
Abstract
The molecular mechanisms underlying various types of synaptic plasticity are historically regarded as separate processes involved in independent cellular events. However, recent progress in our molecular understanding of Hebbian and homeostatic synaptic plasticity supports the observation that these two types of plasticity share common cellular events, and are often altered together in neurological diseases. Here, we discuss the emerging concept of homeostatic synaptic plasticity as a metaplasticity mechanism with a focus on cellular signaling processes that enable a direct interaction between Hebbian and homeostatic plasticity. We also identify distinct and shared molecular players involved in these cellular processes that may be explored experimentally in future studies to test the hypothesis that homeostatic synaptic plasticity serves as a metaplasticity mechanism to integrate changes in neuronal activity and support optimal Hebbian learning.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Esther Park
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Lei R Zhong
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Lu Chen
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA.
| |
Collapse
|
41
|
Retinoic Acid Receptor RARα-Dependent Synaptic Signaling Mediates Homeostatic Synaptic Plasticity at the Inhibitory Synapses of Mouse Visual Cortex. J Neurosci 2018; 38:10454-10466. [PMID: 30355624 DOI: 10.1523/jneurosci.1133-18.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/17/2018] [Accepted: 10/10/2018] [Indexed: 11/21/2022] Open
Abstract
Homeostatic synaptic plasticity is a synaptic mechanism through which the nervous system adjusts synaptic excitation and inhibition to maintain network stability. Retinoic acid (RA) and its receptor RARα have been established as critical mediators of homeostatic synaptic plasticity. In vitro studies reveal that RA signaling enhances excitatory synaptic strength and decreases inhibitory synaptic strength. However, it is unclear whether RA-mediated homeostatic synaptic plasticity occurs in vivo, and if so, whether it operates at specific types of synapses. Here, we examine the impact of RA/RARα signaling in the monocular zone of primary visual cortex (V1m) in mice of either sex. Exogenous RA treatment in acute cortical slices resulted in a reduction in mIPSCs of layer 2/3 pyramidal neurons, an effect mimicked by visual deprivation induced by binocular enucleation in postcritical period animals. Postnatal deletion of RARα blocked RA's effect on mIPSCs. Cell type-specific deletion of RARα revealed that RA acted specifically on parvalbumin (PV)-expressing interneurons. RARα deletion in PV+ interneurons blocked visual deprivation-induced changes in mIPSCs, demonstrating the critical involvement of RA signaling in PV+ interneurons in vivo Moreover, visual deprivation- or RA-induced downregulation of synaptic inhibition was absent in the visual cortical circuit of constitutive and PV-specific Fmr1 KO mice, strongly suggesting a functional interaction between fragile X mental retardation protein and RA signaling pathways. Together, our results demonstrate that RA/RARα signaling acts as a key component for homeostatic regulation of synaptic transmission at the inhibitory synapses of the visual cortex.SIGNIFICANCE STATEMENT In vitro studies established that retinoic acid (RA) and its receptor RARα play key roles in homeostatic synaptic plasticity, a mechanism by which synaptic excitation/inhibition balance and network stability are maintained. However, whether synaptic RA signaling operates in vivo remains undetermined. Here, using a conditional RARα KO mouse and cell type-specific Cre-driver lines, we showed that RARα signaling in parvalbumin-expressing interneurons is crucial for visual deprivation-induced homeostatic synaptic plasticity at inhibitory synapses in visual cortical circuits. Importantly, this form of synaptic plasticity is absent when fragile X mental retardation protein is selectively deleted in parvalbumin-expressing interneurons, suggesting a functional connection between RARα and fragile X mental retardation protein signaling pathways in vivo Thus, dysfunction of RA-dependent homeostatic plasticity may contribute to cortical circuit abnormalities in fragile X syndrome.
Collapse
|
42
|
Nishiguchi KM, Fujita K, Tokashiki N, Komamura H, Takemoto-Kimura S, Okuno H, Bito H, Nakazawa T. Retained Plasticity and Substantial Recovery of Rod-Mediated Visual Acuity at the Visual Cortex in Blind Adult Mice with Retinal Dystrophy. Mol Ther 2018; 26:2397-2406. [PMID: 30064895 DOI: 10.1016/j.ymthe.2018.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 12/01/2022] Open
Abstract
In patients born blind with retinal dystrophies, understanding the critical periods of cortical plasticity is important for successful visual restoration. In this study, we sought to model childhood blindness and investigate the plasticity of visual pathways. To this end, we generated double-mutant (Pde6ccpfl1/cpfl1Gnat1IRD2/IRD2) mice with absent rod and cone photoreceptor function, and we evaluated their response for restoring rod (GNAT1) function through gene therapy. Despite the limited effectiveness of gene therapy in restoring visual acuity in patients with retinal dystrophy, visual acuity was, unexpectedly, successfully restored in the mice at the level of the primary visual cortex in this study. This success in visual restoration, defined by changes in the quantified optokinetic response and pattern visually evoked potential, was achieved regardless of the age at treatment (up to 16 months). In the contralateral visual cortex, cortical plasticity, tagged with light-triggered transcription of Arc, was also restored after the treatment in blind mice carrying an Arc promoter-driven reporter gene, dVenus. Our results demonstrate the remarkable plasticity of visual circuits for one of the two photoreceptor mechanisms in older as well as younger mice with congenital blindness due to retinal dystrophies.
Collapse
Affiliation(s)
- Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Kosuke Fujita
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Naoyuki Tokashiki
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Hiroshi Komamura
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Sayaka Takemoto-Kimura
- Department of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan; PRESTO-Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Hiroyuki Okuno
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Toru Nakazawa
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
43
|
Fernández E, Collins MO, Frank RAW, Zhu F, Kopanitsa MV, Nithianantharajah J, Lemprière SA, Fricker D, Elsegood KA, McLaughlin CL, Croning MDR, Mclean C, Armstrong JD, Hill WD, Deary IJ, Cencelli G, Bagni C, Fromer M, Purcell SM, Pocklington AJ, Choudhary JS, Komiyama NH, Grant SGN. Arc Requires PSD95 for Assembly into Postsynaptic Complexes Involved with Neural Dysfunction and Intelligence. Cell Rep 2018; 21:679-691. [PMID: 29045836 PMCID: PMC5656750 DOI: 10.1016/j.celrep.2017.09.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 08/03/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022] Open
Abstract
Arc is an activity-regulated neuronal protein, but little is known about its interactions, assembly into multiprotein complexes, and role in human disease and cognition. We applied an integrated proteomic and genetic strategy by targeting a tandem affinity purification (TAP) tag and Venus fluorescent protein into the endogenous Arc gene in mice. This allowed biochemical and proteomic characterization of native complexes in wild-type and knockout mice. We identified many Arc-interacting proteins, of which PSD95 was the most abundant. PSD95 was essential for Arc assembly into 1.5-MDa complexes and activity-dependent recruitment to excitatory synapses. Integrating human genetic data with proteomic data showed that Arc-PSD95 complexes are enriched in schizophrenia, intellectual disability, autism, and epilepsy mutations and normal variants in intelligence. We propose that Arc-PSD95 postsynaptic complexes potentially affect human cognitive function. TAP tag and purification of endogenous Arc protein complexes from the mouse brain PSD95 is the major Arc binding protein, and both assemble into 1.5-MDa supercomplexes PSD95 is essential for recruitment of Arc to synapses Mutations and genetic variants in Arc-PSD95 are linked to cognition
Collapse
Affiliation(s)
- Esperanza Fernández
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), and VIB Center for the Biology of Disease, Leuven, Belgium
| | - Mark O Collins
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - René A W Frank
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Fei Zhu
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Maksym V Kopanitsa
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Synome Ltd., Moneta Building, Babraham Research Campus, Cambridge, UK
| | - Jess Nithianantharajah
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Sarah A Lemprière
- Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - David Fricker
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Synome Ltd., Moneta Building, Babraham Research Campus, Cambridge, UK
| | - Kathryn A Elsegood
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Catherine L McLaughlin
- Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Mike D R Croning
- Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Colin Mclean
- School of Informatics, Institute for Adaptive and Neural Computation, University of Edinburgh, UK
| | - J Douglas Armstrong
- School of Informatics, Institute for Adaptive and Neural Computation, University of Edinburgh, UK
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, UK
| | - Giulia Cencelli
- KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), and VIB Center for the Biology of Disease, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Bagni
- KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), and VIB Center for the Biology of Disease, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Menachem Fromer
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shaun M Purcell
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew J Pocklington
- Institute of Psychological Medicine & Clinical Neurosciences, University of Cardiff, Cardiff, Wales, UK
| | - Jyoti S Choudhary
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Noboru H Komiyama
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Seth G N Grant
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
44
|
Jewett KA, Lee KY, Eagleman DE, Soriano S, Tsai NP. Dysregulation and restoration of homeostatic network plasticity in fragile X syndrome mice. Neuropharmacology 2018; 138:182-192. [PMID: 29890190 DOI: 10.1016/j.neuropharm.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/01/2018] [Accepted: 06/06/2018] [Indexed: 01/06/2023]
Abstract
Chronic activity perturbations in neurons induce homeostatic plasticity through modulation of synaptic strength or other intrinsic properties to maintain the correct physiological range of excitability. Although similar plasticity can also occur at the population level, what molecular mechanisms are involved remain unclear. In the current study, we utilized a multielectrode array (MEA) recording system to evaluate homeostatic neural network activity of primary mouse cortical neuron cultures. We demonstrated that chronic elevation of neuronal activity through the inhibition of GABA(A) receptors elicits synchronization of neural network activity and homeostatic reduction of the amplitude of spontaneous neural network spikes. We subsequently showed that this phenomenon is mediated by the ubiquitination of tumor suppressor p53, which is triggered by murine double minute-2 (Mdm2). Using a mouse model of fragile X syndrome, in which fragile X mental retardation protein (FMRP) is absent (Fmr1 knockout), we found that Mdm2-p53 signaling, network synchronization, and the reduction of network spike amplitude upon chronic activity stimulation were all impaired. Pharmacologically inhibiting p53 with Pifithrin-α or genetically employing p53 heterozygous mice to enforce the inactivation of p53 in Fmr1 knockout cultures restored the synchronization of neural network activity after chronic activity stimulation and partially corrects the homeostatic reduction of neural network spike amplitude. Together, our findings reveal the roles of both Fmr1 and Mdm2-p53 signaling in the homeostatic regulation of neural network activity and provide insight into the deficits of excitability homeostasis seen when Fmr1 is compromised, such as occurs with fragile X syndrome.
Collapse
Affiliation(s)
- Kathryn A Jewett
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daphne E Eagleman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephanie Soriano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
45
|
Moore AR, Richards SE, Kenny K, Royer L, Chan U, Flavahan K, Van Hooser SD, Paradis S. Rem2 stabilizes intrinsic excitability and spontaneous firing in visual circuits. eLife 2018; 7:e33092. [PMID: 29809135 PMCID: PMC6010341 DOI: 10.7554/elife.33092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory experience plays an important role in shaping neural circuitry by affecting the synaptic connectivity and intrinsic properties of individual neurons. Identifying the molecular players responsible for converting external stimuli into altered neuronal output remains a crucial step in understanding experience-dependent plasticity and circuit function. Here, we investigate the role of the activity-regulated, non-canonical Ras-like GTPase Rem2 in visual circuit plasticity. We demonstrate that Rem2-/- mice fail to exhibit normal ocular dominance plasticity during the critical period. At the cellular level, our data establish a cell-autonomous role for Rem2 in regulating intrinsic excitability of layer 2/3 pyramidal neurons, prior to changes in synaptic function. Consistent with these findings, both in vitro and in vivo recordings reveal increased spontaneous firing rates in the absence of Rem2. Taken together, our data demonstrate that Rem2 is a key molecule that regulates neuronal excitability and circuit function in the context of changing sensory experience.
Collapse
Affiliation(s)
- Anna R Moore
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Sarah E Richards
- Department of BiologyBrandeis UniversityWalthamUnited States
- Volen Center for Complex SystemsBrandeis UniversityWalthamUnited States
| | - Katelyn Kenny
- National Center for Behavioral GenomicsBrandeis UniversityWalthamUnited States
| | - Leandro Royer
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Urann Chan
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Kelly Flavahan
- Department of BiologyBrandeis UniversityWalthamUnited States
| | - Stephen D Van Hooser
- Department of BiologyBrandeis UniversityWalthamUnited States
- Volen Center for Complex SystemsBrandeis UniversityWalthamUnited States
| | - Suzanne Paradis
- Department of BiologyBrandeis UniversityWalthamUnited States
- Volen Center for Complex SystemsBrandeis UniversityWalthamUnited States
- National Center for Behavioral GenomicsBrandeis UniversityWalthamUnited States
| |
Collapse
|
46
|
Two distinct mechanisms for experience-dependent homeostasis. Nat Neurosci 2018; 21:843-850. [PMID: 29760525 PMCID: PMC6019646 DOI: 10.1038/s41593-018-0150-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/03/2018] [Indexed: 11/13/2022]
Abstract
Models of firing rate homeostasis such as synaptic scaling and the sliding synaptic plasticity modification threshold predict that decreasing neuronal activity (e.g. by sensory deprivation) will enhance synaptic function. Manipulations of cortical activity during two forms of visual deprivation (dark exposure (DE) and binocular lid suture (BS)) revealed that, contrary to expectations, spontaneous firing in conjunction with loss of visual input is necessary to lower the threshold for Hebbian plasticity and increases mEPSC amplitude. Blocking activation of GluN2B receptors, which are up-regulated by DE, also prevents the increase in mEPSC amplitude, suggesting that DE potentiates mEPSCs primarily through a Hebbian mechanism, not through synaptic scaling. Nevertheless, NMDAR-independent changes in mEPSC amplitude consistent with synaptic scaling could be induced by extreme reductions of activity. Therefore, two distinct mechanisms operate within different ranges of neuronal activity to homeostatically regulate synaptic strength.
Collapse
|
47
|
Newpher TM, Harris S, Pringle J, Hamilton C, Soderling S. Regulation of spine structural plasticity by Arc/Arg3.1. Semin Cell Dev Biol 2018; 77:25-32. [DOI: 10.1016/j.semcdb.2017.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
|
48
|
Synapse development organized by neuronal activity-regulated immediate-early genes. Exp Mol Med 2018; 50:1-7. [PMID: 29628504 PMCID: PMC5938016 DOI: 10.1038/s12276-018-0025-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
Classical studies have shown that neuronal immediate-early genes (IEGs) play important roles in synaptic processes critical for key brain functions. IEGs are transiently activated and rapidly upregulated in discrete neurons in response to a wide variety of cellular stimuli, and they are uniquely involved in various aspects of synapse development. In this review, we summarize recent studies of a subset of neuronal IEGs in regulating synapse formation, transmission, and plasticity. We also discuss how the dysregulation of neuronal IEGs is associated with the onset of various brain disorders and pinpoint key outstanding questions that should be addressed in this field. Immediate-early genes (IEGs), genes that are rapidly and transiently activated by cellular stimuli, regulate the interactions between neurons and key brain functions. Ji Won Um and colleagues at Daegu Gyeongbuk Institute of Science and Technology in South Korea review recent studies on three IEGs that are activated by neuronal activity and highlight their contribution to neuronal excitability and cognitive behaviors. These genes rely on different molecular mechanisms to regulate neuronal receptors and the structure of synapses. Research in mice lacking any one of these IEGs reveals their contribution to learning and memory as well as to some behavioral abnormalities associated with neuropsychiatric disorders. Further research into the activity of IEGs will advance our understanding of how a neuron’s environment influences brain development and disease.
Collapse
|
49
|
Delorme JE, Kodoth V, Aton SJ. Sleep loss disrupts Arc expression in dentate gyrus neurons. Neurobiol Learn Mem 2018; 160:73-82. [PMID: 29635031 DOI: 10.1016/j.nlm.2018.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/24/2023]
Abstract
Sleep loss affects many aspects of cognition, and memory consolidation processes occurring in the hippocampus seem particularly vulnerable to sleep loss. The immediate-early gene Arc plays an essential role in both synaptic plasticity and memory formation, and its expression is altered by sleep. Here, using a variety of techniques, we have characterized the effects of brief (3-h) periods of sleep vs. sleep deprivation (SD) on the expression of Arc mRNA and Arc protein in the mouse hippocampus and cortex. By comparing the relative abundance of mature Arc mRNA with unspliced pre-mRNA, we see evidence that during SD, increases in Arc across the cortex, but not hippocampus, reflect de novo transcription. Arc increases in the hippocampus during SD are not accompanied by changes in pre-mRNA levels, suggesting that increases in mRNA stability, not transcription, drives this change. Using in situ hybridization (together with behavioral observation to quantify sleep amounts), we find that in the dorsal hippocampus, SD minimally affects Arc mRNA expression, and decreases the number of dentate gyrus (DG) granule cells expressing Arc. This is in contrast to neighboring cortical areas, which show large increases in neuronal Arc expression after SD. Using immunohistochemistry, we find that Arc protein expression is also differentially affected in the cortex and DG with SD - while larger numbers of cortical neurons are Arc+, fewer DG granule cells are Arc+, relative to the same regions in sleeping mice. These data suggest that with regard to expression of plasticity-regulating genes, sleep (and SD) can have differential effects in hippocampal and cortical areas. This may provide a clue regarding the susceptibility of performance on hippocampus-dependent tasks to deficits following even brief periods of sleep loss.
Collapse
Affiliation(s)
- James E Delorme
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States
| | - Varna Kodoth
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
50
|
Caverzasio S, Amato N, Manconi M, Prosperetti C, Kaelin-Lang A, Hutchison WD, Galati S. Brain plasticity and sleep: Implication for movement disorders. Neurosci Biobehav Rev 2018; 86:21-35. [DOI: 10.1016/j.neubiorev.2017.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
|