1
|
Conti E, Pavone FS, Allegra Mascaro AL. In Vivo Imaging of the Structural Plasticity of Cortical Neurons After Stroke. Methods Mol Biol 2023; 2616:69-81. [PMID: 36715929 DOI: 10.1007/978-1-0716-2926-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The comprehension of the finest mechanisms underlying experience-dependent plasticity requires the investigation of neurons and synaptic terminals in the intact brain over prolonged periods of time. Longitudinal two-photon imaging together with the expression of fluorescent proteins enables high-resolution imaging of dendritic spines and axonal varicosities of cortical neurons in vivo. Importantly, the study of the mechanisms of structural reorganization is relevant for a deeper understanding of the pathophysiological mechanisms of neurological diseases such as stroke and for the development of new therapeutic approaches. This protocol describes the principal steps for in vivo investigation of neuronal plasticity both in healthy conditions and after an ischemic lesion. First, we give a description of the surgery to perform a stable cranial window that allows optical access to the mouse brain cortex. Then we explain how to perform longitudinal two-photon imaging of dendrites, axonal branches, and synaptic terminals in the mouse brain cortex in vivo, in order to investigate the plasticity of synaptic terminals and orientation of neuronal processes. Finally, we describe how to induce an ischemic lesion in a target region of the mouse brain cortex through a cranial window by applying the photothrombotic stroke model.
Collapse
Affiliation(s)
- Emilia Conti
- Neuroscience Institute, National Research Council, Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Pisa, Italy.
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.
| |
Collapse
|
2
|
Amer A, Martin JH. Repeated motor cortex theta-burst stimulation produces persistent strengthening of corticospinal motor output and durable spinal cord structural changes in the rat. Brain Stimul 2022; 15:1013-1022. [PMID: 35850438 PMCID: PMC10164459 DOI: 10.1016/j.brs.2022.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The strength of connections between motor cortex (MCX) and muscle can be augmented with a variety of stimulation protocols. Augmenting MCX-to-muscle connection strength by neuromodulation may be a way to enhance the intact motor system's capacity for acquiring motor skills and promote function after injury to strengthen spared connections. But this enhancement must be maintained for functional improvements. OBJECTIVE We determined if brief MCX muscle evoked potential (MEP) enhancement produced by intermittent theta burst stimulation (iTBS) can be converted into a longer and structurally durable form of response enhancement with repeated daily and longer-term application. METHODS Electrical iTBS was delivered through an implanted MCX epidural electrode and MEPs were recorded using implanted EMG electrodes in awake naïve rats. MCX activity was modulated further using chemogenetic (DREADDs) excitation and inhibition. Corticospinal tract (CST) axons were traced and immunochemistry used to measure CST synapses. RESULTS A single MCX iTBS block (600 pulses) produced MEP LTP lasting ∼30-45 min. Concatenating five iTBS blocks within a 30-min session produced MEP LTP lasting 24-48 h, which could be strengthened or weakened by bidirectional MCX activity modulation. Effect duration was not changed. Finally, daily induction of this persistent MEP LTP with daily iTBS for 10-days produced MEP enhancement outlasting the stimulation period by at least 10 days, and accompanied by CST axonal outgrowth and structural changes at the CST-spinal interneuron synapse. CONCLUSION Our findings inform the mechanisms of iTBS and provide a framework for designing neuromodulatory strategies to promote durable enhancement of cortical motor actions.
Collapse
Affiliation(s)
- Alzahraa Amer
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA
| | - John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
3
|
Jahangiri FR, Liang M, Kabir SS, Khowash O. Motor Mapping of the Brain: Taniguchi Versus Penfield Method. Cureus 2022; 14:e24901. [PMID: 35706721 PMCID: PMC9187213 DOI: 10.7759/cureus.24901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Intraoperative neurophysiological monitoring (IONM) techniques continue to prove useful as an adjunct in select surgeries for reducing the incidence of various postoperative deficits in motor function through the monitoring of motor evoked potentials (MEPs). The Penfield and Taniguchi methods of direct electrical cortical stimulation (DECS) stand in contrast to each other. Penfield’s method uses lower-frequency stimulation over a longer duration, while Taniguchi’s method uses a relatively higher frequency over a short duration. DECS motor mapping is considered suitable for tumor resections, aneurysm surgeries, arteriovenous malformation, and epilepsy surgeries. While subcortical motor mapping works efficiently with both methods, it aligns with Taniguchi’s method more effectively. Taniguchi’s method has a lower risk of seizures relative to Penfield’s method. While only cortical neurons are excited in Penfield’s stimulation technique, Taniguchi’s technique excites the whole corticospinal tract (CST), so it can be used for mapping in a stand-alone fashion. The Penfield technique remains the method of choice for language mapping. In all motor mapping, Train-of-Four (TOF) stimulation during the surgical procedure ensures that the patient’s muscles are not unduly relaxed.
Collapse
|
4
|
Sharif H, Alexander H, Azam A, Martin JH. Dual motor cortex and spinal cord neuromodulation improves rehabilitation efficacy and restores skilled locomotor function in a rat cervical contusion injury model. Exp Neurol 2021; 341:113715. [PMID: 33819448 PMCID: PMC10150584 DOI: 10.1016/j.expneurol.2021.113715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/14/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023]
Abstract
Motor recovery after spinal cord injury is limited due to sparse descending pathway axons caudal to the injury. Rehabilitation is the primary treatment for paralysis in humans with SCI, but only produces modest functional recovery. Here, we determined if dual epidural motor cortex (M1) intermittent theta burst stimulation (iTBS) and cathodal transcutaneous spinal direct stimulation (tsDCS) enhances the efficacy of rehabilitation in improving motor function after cervical SCI. iTBS produces CST axon sprouting and tsDCS enhances M1-evoked spinal activity and muscle contractions after SCI. Rats were trained to perform the horizontal ladder task. Animals received a moderate midline C4 contusion, producing bilateral forelimb impairments. After 2 weeks, animals either received 10 days of iTBS+tsDCS or no stimulation; subsequently, all animals received 6 weeks of daily rehabilitation on the horizontal ladder task. Lesion size was not different in the two animal groups. Rehabilitation alone improved performance by a 22% reduction in skilled locomotion error rate, whereas stimulation+rehabilitation was markedly more effective (52%), and restored error rate to pre-injury levels. Stimulation+rehabilitation significantly increased CST axon length caudal to the injury and the amount of ventral horn label was positively correlated with functional improvement. The stimulation+rehabilitation group had significantly less proprioceptive afferent terminal labelling in the intermediate zone and fewer synapses on motoneurons . Afferent fiber terminal labeling was negatively correlated with motor recovery. Thus, the dual neuromodulation protocol promotes adaptive plasticity in corticospinal and proprioceptive afferents networks after contusion SCI, leading to enhanced rehabilitation efficacy and recovery of skilled locomotion.
Collapse
Affiliation(s)
- Hisham Sharif
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Heather Alexander
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Anika Azam
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
5
|
Jack AS, Hurd C, Martin J, Fouad K. Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord. J Neurotrauma 2020; 37:1933-1953. [PMID: 32438858 DOI: 10.1089/neu.2020.7033] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unlike their peripheral nervous system counterparts, the capacity of central nervous system neurons and axons for regeneration after injury is minimal. Although a myriad of therapies (and different combinations thereof) to help promote repair and recovery after spinal cord injury (SCI) have been trialed, few have progressed from bench-top to bedside. One of the few such therapies that has been successfully translated from basic science to clinical applications is electrical stimulation (ES). Although the use and study of ES in peripheral nerve growth dates back nearly a century, only recently has it started to be used in a clinical setting. Since those initial experiments and seminal publications, the application of ES to restore function and promote healing have greatly expanded. In this review, we discuss the progression and use of ES over time as it pertains to promoting axonal outgrowth and functional recovery post-SCI. In doing so, we consider four major uses for the study of ES based on the proposed or documented underlying mechanism: (1) using ES to introduce an electric field at the site of injury to promote axonal outgrowth and plasticity; (2) using spinal cord ES to activate or to increase the excitability of neuronal networks below the injury; (3) using motor cortex ES to promote corticospinal tract axonal outgrowth and plasticity; and (4) leveraging the timing of paired stimuli to produce plasticity. Finally, the use of ES in its current state in the context of human SCI studies is discussed, in addition to ongoing research and current knowledge gaps, to highlight the direction of future studies for this therapeutic modality.
Collapse
Affiliation(s)
- Andrew S Jack
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Caitlin Hurd
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - John Martin
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, and City University of New York Graduate Center, New York, New York, USA
| | - Karim Fouad
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Mohammed H, Hollis ER. Cortical Reorganization of Sensorimotor Systems and the Role of Intracortical Circuits After Spinal Cord Injury. Neurotherapeutics 2018; 15:588-603. [PMID: 29882081 PMCID: PMC6095783 DOI: 10.1007/s13311-018-0638-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The plasticity of sensorimotor systems in mammals underlies the capacity for motor learning as well as the ability to relearn following injury. Spinal cord injury, which both deprives afferent input and interrupts efferent output, results in a disruption of cortical somatotopy. While changes in corticospinal axons proximal to the lesion are proposed to support the reorganization of cortical motor maps after spinal cord injury, intracortical horizontal connections are also likely to be critical substrates for rehabilitation-mediated recovery. Intrinsic connections have been shown to dictate the reorganization of cortical maps that occurs in response to skilled motor learning as well as after peripheral injury. Cortical networks incorporate changes in motor and sensory circuits at subcortical or spinal levels to induce map remodeling in the neocortex. This review focuses on the reorganization of cortical networks observed after injury and posits a role of intracortical circuits in recovery.
Collapse
Affiliation(s)
- Hisham Mohammed
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA
| | - Edmund R Hollis
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA.
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Zareen N, Dodson S, Armada K, Awad R, Sultana N, Hara E, Alexander H, Martin JH. Stimulation-dependent remodeling of the corticospinal tract requires reactivation of growth-promoting developmental signaling pathways. Exp Neurol 2018; 307:133-144. [PMID: 29729248 DOI: 10.1016/j.expneurol.2018.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/18/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022]
Abstract
The corticospinal tract (CST) can become damaged after spinal cord injury or stroke, resulting in weakness or paralysis. Repair of the damaged CST is limited because mature CST axons fail to regenerate, which is partly because the intrinsic axon growth capacity is downregulated in maturity. Whereas CST axons sprout after injury, this is insufficient to recover lost functions. Chronic motor cortex (MCX) electrical stimulation is a neuromodulatory strategy to promote CST axon sprouting, leading to functional recovery after CST lesion. Here we examine the molecular mechanisms of stimulation-dependent CST axonal sprouting and synapse formation. MCX stimulation rapidly upregulates mTOR and Jak/Stat signaling in the corticospinal system. Chronic stimulation, which leads to CST sprouting and increased CST presynaptic sites, further enhances mTOR and Jak/Stat activity. Importantly, chronic stimulation shifts the equilibrium of the mTOR repressor PTEN to the inactive phosphorylated form suggesting a molecular transition to an axon growth state. We blocked each signaling pathway selectively to determine potential differential contributions to axonal outgrowth and synapse formation. mTOR blockade prevented stimulation-dependent axon sprouting. Surprisingly, Jak/Stat blockade did not abrogate sprouting, but instead prevented the increase in CST presynaptic sites produced by chronic MCX stimulation. Chronic stimulation increased the number of spinal neurons expressing the neural activity marker cFos. Jak/Stat blockade prevented the increase in cFos-expressing neurons after chronic stimulation, confirming an important role for Jak/Stat signaling in activity-dependent CST synapse formation. MCX stimulation is a neuromodulatory repair strategy that reactivates distinct developmentally-regulated signaling pathways for axonal outgrowth and synapse formation.
Collapse
Affiliation(s)
- Neela Zareen
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Shahid Dodson
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Kristine Armada
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Rahma Awad
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Nadia Sultana
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Erina Hara
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Heather Alexander
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - John H Martin
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
8
|
Musselman KE, Manns P, Dawe J, Delgado R, Yang JF. The Feasibility of Functional Electrical Stimulation to Improve Upper Extremity Function in a Two-year-old Child with Perinatal Stroke: A Case Report. Phys Occup Ther Pediatr 2018; 38:97-112. [PMID: 28071962 DOI: 10.1080/01942638.2016.1255291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIMS To evaluate the effectiveness and feasibility (i.e. tolerability, adherence) of functional electrical stimulation (FES) for the upper extremity (UE) in a two-year-old child with perinatal stroke. METHODS Forty hours of FES over eight weeks was prescribed. FES to the hemiplegic triceps, extensor carpi radialis longus and brevis, extensor carpi ulnaris and extensor digitorum was timed with reaching during play. Assessments were performed before, during, and two months post-intervention. UE function (Melbourne Assessment 2 (MA2), Assisting Hand Assessment (AHA)) and spasticity (Modified Tardieu with electrogoniometry and electromyography) were measured. The mother completed a semi-structured interview post-intervention. Descriptive statistics were used for adherence and UE measures. A repeated-measures ANOVA compared Modified Tardieu parameters (e.g. catch angle) over time. Conventional content analysis was used for the interview data. RESULTS The child completed 39.2/40 hours. Immediately post-intervention, improvements were observed on MA2's Range of Motion subscale and catch angle (Modified Tardieu, p < 0.001). Two months post-intervention, improvements were observed on MA2's Accuracy and Fluency subscales. No change in AHA score occurred. Three themes emerged from the interview: (1) Ingredients for program success; (2) Information about the FES device; and (3) The child's response. CONCLUSIONS UE FES was feasible in a two-year-old child with hemiplegia.
Collapse
Affiliation(s)
- Kristin E Musselman
- a Toronto Rehabilitation Institute-University Health Network , Toronto , ON , Canada.,b Department of Physical Therapy , Faculty of Medicine, University of Toronto , Toronto , ON , Canada.,c School of Physical Therapy, College of Medicine, University of Saskatchewan , Saskatoon , SK , Canada.,d Rehabilitation Sciences Institute, University of Toronto , Toronto , ON , Canada
| | - Patricia Manns
- e Department of Physical Therapy , Faculty of Rehabilitation Medicine, University of Alberta , Edmonton , AB , Canada
| | - Jaclyn Dawe
- d Rehabilitation Sciences Institute, University of Toronto , Toronto , ON , Canada
| | - Rhina Delgado
- f University of Alberta Hospital , Edmonton , AB , Canada
| | - Jaynie F Yang
- e Department of Physical Therapy , Faculty of Rehabilitation Medicine, University of Alberta , Edmonton , AB , Canada.,g Neuroscience & Mental Health Institute, University of Alberta , Edmonton , AB , Canada
| |
Collapse
|
9
|
Williams PTJA, Jiang YQ, Martin JH. Motor system plasticity after unilateral injury in the developing brain. Dev Med Child Neurol 2017; 59:1224-1229. [PMID: 28972274 PMCID: PMC5773112 DOI: 10.1111/dmcn.13581] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2017] [Indexed: 11/30/2022]
Abstract
UNLABELLED In maturity, motor skills depend on the corticospinal tract (CST) and brainstem pathways that together synapse on interneurons and motoneurons in the spinal cord. Descending signals to spinal neurons that mediate voluntary control can be distinguished from peripheral sensory signals, primarily for feedback control. These motor system circuits depend initially on developmental genetic mechanisms to establish their connections and neural activity- and use-dependent synaptic refinement during the early postnatal period to enable motor skills to develop. In this review we consider four key activity-dependent developmental mechanisms that provide insights into how the motor systems establish the proper connections for skilled movement control and how the same mechanisms also inform the mechanisms of motor impairments and developmental plasticity after corticospinal system injury: (1) synaptic competition between the CSTs from each hemisphere; (2) interactions between the CST and spinal cord neurons; (3) synaptic competition between the CST and proprioceptive sensory fibres; and (4) interactions between the developing corticospinal motor system and the rubrospinal tract. Our findings suggest that the corticospinal motor system effectively 'oversees' development of its subcortical targets through synaptic competition and trophic-like interactions and this has important implications for motor impairments after perinatal cortical stroke. WHAT THIS PAPER ADDS Neural activity-dependent processes inform the brain and spinal cord response to injury. The corticospinal motor system may 'oversee' development of its downstream subcortical targets through activity, trophic-like interactions, and synaptic competition.
Collapse
Affiliation(s)
- Preston TJA Williams
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine at City College, New York, NY, USA
| | - Yu-Qiu Jiang
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine at City College, New York, NY, USA
| | - John H Martin
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine at City College, New York, NY, USA,City University of New York Graduate Center, New York, NY, USA
| |
Collapse
|
10
|
Gordon AM. Impaired Voluntary Movement Control and Its Rehabilitation in Cerebral Palsy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 957:291-311. [PMID: 28035572 DOI: 10.1007/978-3-319-47313-0_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Cerebral palsy is caused by early damage to the developing brain, as the most common pediatric neurological disorder. Hemiplegia (unilateral spastic cerebral palsy) is the most common subtype, and the resulting impairments, lateralized to one body side, especially affect the upper extremity, limiting daily function. This chapter first describes the pathophysiology and mechanisms underlying impaired upper extremity control of cerebral palsy. It will be shown that the severity of impaired hand function closely relates to the integrity of the corticospinal tract innervating the affected hand. It will also shown that the developing corticospinal tract can reorganize its connectivity depending on the timing and location of CNS injury, which also has implications for the severity of hand impairments and rehabilitation. The mechanisms underlying impaired motor function will be highlighted, including deficits in movement execution and planning and sensorimotor integration. It will be shown that despite having unimanual hand impairments, bimanual movement control deficits and mirror movements also impact function. Evidence for motor learning-based therapies including Constraint-Induced Movement Therapy and Bimanual Training, and the possible pathophysiological predictors of treatment outcome and plasticity will be described. Finally, future directions for rehabilitations will be presented.
Collapse
Affiliation(s)
- Andrew M Gordon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, 525 West 120th Street, New York, New York, Box 93, 10027, USA.
| |
Collapse
|
11
|
Zareen N, Shinozaki M, Ryan D, Alexander H, Amer A, Truong DQ, Khadka N, Sarkar A, Naeem S, Bikson M, Martin JH. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury. Exp Neurol 2017; 297:179-189. [PMID: 28803750 DOI: 10.1016/j.expneurol.2017.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 01/15/2023]
Abstract
Cervical injuries are the most common form of SCI. In this study, we used a neuromodulatory approach to promote skilled movement recovery and repair of the corticospinal tract (CST) after a moderately severe C4 midline contusion in adult rats. We used bilateral epidural intermittent theta burst (iTBS) electrical stimulation of motor cortex to promote CST axonal sprouting and cathodal trans-spinal direct current stimulation (tsDCS) to enhance spinal cord activation to motor cortex stimulation after injury. We used Finite Element Method (FEM) modeling to direct tsDCS to the cervical enlargement. Combined iTBS-tsDCS was delivered for 30min daily for 10days. We compared the effect of stimulation on performance in the horizontal ladder and the Irvine Beattie and Bresnahan forepaw manipulation tasks and CST axonal sprouting in injury-only and injury+stimulation animals. The contusion eliminated the dorsal CST in all animals. tsDCS significantly enhanced motor cortex evoked responses after C4 injury. Using this combined spinal-M1 neuromodulatory approach, we found significant recovery of skilled locomotion and forepaw manipulation skills compared with injury-only controls. The spared CST axons caudal to the lesion in both animal groups derived mostly from lateral CST axons that populated the contralateral intermediate zone. Stimulation enhanced injury-dependent CST axonal outgrowth below and above the level of the injury. This dual neuromodulatory approach produced partial recovery of skilled motor behaviors that normally require integration of posture, upper limb sensory information, and intent for performance. We propose that the motor systems use these new CST projections to control movements better after injury.
Collapse
Affiliation(s)
- N Zareen
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA
| | - M Shinozaki
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA
| | - D Ryan
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA
| | - H Alexander
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA
| | - A Amer
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA; CUNY Graduate Center, New York, NY 10031, USA
| | - D Q Truong
- Department of Biomedical Engineering, City College of NY, 10031, USA
| | - N Khadka
- Department of Biomedical Engineering, City College of NY, 10031, USA
| | - A Sarkar
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA
| | - S Naeem
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA
| | - M Bikson
- Department of Biomedical Engineering, City College of NY, 10031, USA
| | - J H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA; CUNY Graduate Center, New York, NY 10031, USA.
| |
Collapse
|
12
|
Hurd C, Livingstone D, Brunton K, Teves M, Zewdie E, Smith A, Ciechanski P, Gorassini MA, Kirton A, Watt MJ, Andersen J, Yager J, Yang JF. Early Intensive Leg Training to Enhance Walking in Children With Perinatal Stroke: Protocol for a Randomized Controlled Trial. Phys Ther 2017; 97:818-825. [PMID: 28789469 DOI: 10.1093/ptj/pzx045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/05/2017] [Indexed: 02/09/2023]
Abstract
BACKGROUND Development of motor pathways is modulated by activity in these pathways, when they are maturing (ie, critical period). Perinatal stroke injures motor pathways, including the corticospinal tracts, reducing their activity and impairing motor function. Current intervention for the lower limb emphasizes passive approaches (stretching, braces, botulinum toxin injections). The study hypothesis was that intensive, early, child-initiated activity during the critical period will enhance connectivity of motor pathways to the legs and improve motor function. OBJECTIVE The study objective was to determine whether early intervention with intensive activity is better than standard care, intervention delivered during the proposed critical period is better than after, and the outcomes are different when the intervention is delivered by a physical therapist in an institution vs. a parent at home. DESIGN A prospective, delay-group, single-blind, randomized controlled trial (RCT) and a parallel, cohort study of children living beyond commuting distance and receiving an intervention delivered by their parent. SETTING The RCT intervention was provided in university laboratories, and parent training was provided in the childs home. PARTICIPANTS Children 8 months to 3 years old with MRI-confirmed perinatal ischemic stroke and early signs of hemiparesis. INTERVENTION Intensive, play-based leg activity with weights for the affected leg and foot, 1 hour/day, 4 days/week for 12 weeks. MEASUREMENTS The primary outcome was the Gross Motor Function Measure-66 score. Secondary outcomes were motion analysis of walking, full-day step counts, motor evoked potentials from transcranial magnetic stimulation, and patellar tendon reflexes. LIMITATIONS Inter-individual heterogeneity in the severity of the stroke and behavioral differences are substantial but measurable. Differences in intervention delivery and assessment scoring are minimized by standardization and training. CONCLUSIONS The intervention, contrary to current practice, could change physical therapy interventions for children with perinatal stroke.
Collapse
Affiliation(s)
- Caitlin Hurd
- Department of Physical Therapy, University of Alberta
| | | | - Kelly Brunton
- Department of Physical Therapy, University of Alberta
| | | | - Ephrem Zewdie
- Department of Pediatric Neurology, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Department of Pediatrics, University of Alberta; and Department of Clinical Neurosciences, University of Calgary
| | - Allison Smith
- Neuroscience and Mental Health Institute, University of Alberta
| | - Patrick Ciechanski
- Alberta Children's Hospital Research Institute and Department of Neurosciences, University of Calgary
| | - Monica A Gorassini
- Department of Biomedical Engineering, University of Alberta; Neuroscience and Mental Health Institute; and Women & Children's Health Research Institute, University of Alberta
| | - Adam Kirton
- Alberta Children's Hospital Research Institute; Department of Pediatrics, University of Calgary; Department of Clinical Neurosciences, University of Calgary; and Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Man-Joe Watt
- Department of Pediatrics, University of Alberta, and Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
| | - John Andersen
- Department of Pediatrics, University of Alberta, and Glenrose Rehabilitation Hospital
| | - Jerome Yager
- Department of Pediatrics, University of Alberta; Neuroscience and Mental Health Institute; and Women & Children's Health Research Institute
| | - Jaynie F Yang
- Department of Physical Therapy, University of Alberta, 2-50 Corbett Hall, Edmonton, Alberta, Canada T6G 2G4; Neuroscience and Mental Health Institute; and Women & Children's Health Research Institute
| |
Collapse
|
13
|
Skilled Movements Require Non-apoptotic Bax/Bak Pathway-Mediated Corticospinal Circuit Reorganization. Neuron 2017; 94:626-641.e4. [PMID: 28472660 DOI: 10.1016/j.neuron.2017.04.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/04/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022]
Abstract
Early postnatal mammals, including human babies, can perform only basic motor tasks. The acquisition of skilled behaviors occurs later, requiring anatomical changes in neural circuitry to support the development of coordinated activation or suppression of functionally related muscle groups. How this circuit reorganization occurs during postnatal development remains poorly understood. Here we explore the connectivity between corticospinal (CS) neurons in the motor cortex and muscles in mice. Using trans-synaptic viral and electrophysiological assays, we identify the early postnatal reorganization of CS circuitry for antagonistic muscle pairs. We further show that this synaptic rearrangement requires the activity-dependent, non-apoptotic Bax/Bak-caspase signaling cascade. Adult Bax/Bak mutant mice exhibit aberrant co-activation of antagonistic muscle pairs and skilled grasping deficits but normal reaching and retrieval behaviors. Our findings reveal key cellular and molecular mechanisms driving postnatal motor circuit reorganization and the resulting impacts on muscle activation patterns and the execution of skilled movements.
Collapse
|
14
|
Basu AP, Pearse JE, Baggaley J, Watson RM, Rapley T. Participatory design in the development of an early therapy intervention for perinatal stroke. BMC Pediatr 2017; 17:33. [PMID: 28114899 PMCID: PMC5259952 DOI: 10.1186/s12887-017-0797-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Perinatal stroke is the leading cause of unilateral (hemiparetic) cerebral palsy, with life-long personal, social and financial consequences. Translational research findings indicate that early therapy intervention has the potential for significant improvements in long-term outcome in terms of motor function. By involving families and health professionals in the development and design stage, we aimed to produce a therapy intervention which they would engage with. METHODS Nine parents of children with hemiparesis and fourteen health professionals involved in the care of infants with perinatal stroke took part in peer review and focus groups to discuss evolving therapy materials, with revisions made iteratively. The materials and approach were also discussed at a meeting of the London Child Stroke Research Reference Group. Focus group data were coded using Normalisation Process Theory constructs to explore potential barriers and facilitators to routine uptake of the intervention. RESULTS We developed the Early Therapy in Perinatal Stroke (eTIPS) program - a parent-delivered, home-based complex intervention addressing a current gap in practice for infants in the first 6 months of life after unilateral perinatal stroke and with the aim of improving motor outcome. Parents and health professionals saw the intervention as different from usual practice, and valuable (high coherence). They were keen to engage (high cognitive participation). They considered the tasks for parents to be achievable (high collective action). They demonstrated trust in the approach and felt that parents would undertake the recommended activities (high collective action). They saw the approach as flexible and adaptable (high reflexive monitoring). Following suggestions made, we added a section on involving the extended family, and obtained funding for a website and videos to supplement written materials. CONCLUSIONS Focus groups with parents and health professionals provided meaningful feedback to iteratively improve the intervention materials prior to embarking on a pilot study. The intervention has a high potential to normalize and become a routine part of parents' interactions with their child following unilateral perinatal stroke.
Collapse
Affiliation(s)
- Anna Purna Basu
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
- Department of Paediatric Neurology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN UK
| | - Janice Elizabeth Pearse
- Therapy Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN UK
| | - Jessica Baggaley
- Medical Sciences Graduate School, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| | - Rose Mary Watson
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne, NE2 4AX UK
| | - Tim Rapley
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne, NE2 4AX UK
| |
Collapse
|
15
|
Cappellini G, Ivanenko YP, Martino G, MacLellan MJ, Sacco A, Morelli D, Lacquaniti F. Immature Spinal Locomotor Output in Children with Cerebral Palsy. Front Physiol 2016; 7:478. [PMID: 27826251 PMCID: PMC5078720 DOI: 10.3389/fphys.2016.00478] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/05/2016] [Indexed: 12/29/2022] Open
Abstract
Detailed descriptions of gait impairments have been reported in cerebral palsy (CP), but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analyzed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2-12 years) and 33 typically developing (TD) children (1-12 years). TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children). Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behavior.
Collapse
Affiliation(s)
- Germana Cappellini
- Centre of Space Bio-medicine, University of Rome Tor Vergata Rome, Italy
| | - Yury P Ivanenko
- Laboratory of Neuromotor Physiology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation Rome, Italy
| | - Giovanni Martino
- Centre of Space Bio-medicine, University of Rome Tor Vergata Rome, Italy
| | | | - Annalisa Sacco
- Department of Pediatric Neurorehabilitation, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation Rome, Italy
| | - Daniela Morelli
- Department of Pediatric Neurorehabilitation, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation Rome, Italy
| | - Francesco Lacquaniti
- Centre of Space Bio-medicine, University of Rome Tor VergataRome, Italy; Laboratory of Neuromotor Physiology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia FoundationRome, Italy; Department of Systems Medicine, University of Rome Tor VergataRome, Italy
| |
Collapse
|
16
|
Serradj N, Martin JH. Motor Experience Reprograms Development of a Genetically-Altered Bilateral Corticospinal Motor Circuit. PLoS One 2016; 11:e0163775. [PMID: 27673329 PMCID: PMC5038944 DOI: 10.1371/journal.pone.0163775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022] Open
Abstract
Evidence suggests that motor experience plays a role in shaping development of the corticospinal system and voluntary motor control, which is a key motor function of the system. Here we used a mouse model with conditional forebrain deletion of the gene for EphA4 (Emx1-Cre:EphA4tm2Kldr), which regulates development of the laterality of corticospinal tract (CST). We combined study of Emx1-Cre:EphA4tm2Kldr with unilateral forelimb constraint during development to expand our understanding of experience-dependent CST development from both basic and translational perspectives. This mouse develops dense ipsilateral CST projections, a bilateral motor cortex motor representation, and bilateral motor phenotypes. Together these phenotypes can be used as readouts of corticospinal system organization and function and the changes brought about by experience. The Emx1-Cre:EphA4tm2Kldr mouse shares features with the common developmental disorder cerebral palsy: bilateral voluntary motor impairments and bilateral CST miswiring. Emx1-Cre:EphA4tm2Kldr mice with typical motor experiences during development display the bilateral phenotype of “mirror” reaching, because of a strongly bilateral motor cortex motor representation and a bilateral CST. By contrast, Emx1-Cre:EphA4tm2Kldr mice that experienced unilateral forelimb constraint from P1 to P30 and tested at maturity had a more contralateral motor cortex motor representation in each hemisphere; more lateralized CST projections; and substantially more lateralized/independent reaching movements. Changes in CST organization and function in this model can be explained by reduced synaptic competition of the CST from the side without developmental forelimb motor experiences. Using this model we show that unilateral constraint largely abrogated the effects of the genetic mutation on CST projections and thus demonstrates how robust and persistent experience-dependent development can be for the establishment of corticospinal system connections and voluntary control. Further, our findings inform the mechanisms of and strategies for developing behavioral therapies to treat bilateral movement impairments and CST miswiring in cerebral palsy.
Collapse
Affiliation(s)
- Najet Serradj
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine, New York, NY, United States of America
| | - John H. Martin
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine, New York, NY, United States of America
- Neuroscience Program, Graduate Center of the City University of New York, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. Significance statement: Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to coordinate their emerging functions and, if so, the mechanisms underlying this process. This study examined activity-dependent interactions between the developing corticospinal and rubrospinal systems, two key systems for skilled limb movements. We show that the developing rubrospinal system competes with the corticospinal system in establishing the red nucleus motor map and rubrospinal tract connections. This is the first demonstration of one motor system steering development, and ultimately function, of another. Knowledge of activity-dependent competition between these two systems helps predict the response of the rubrospinal system following corticospinal system developmental injury.
Collapse
|
18
|
Jones TA, Adkins DL. Motor System Reorganization After Stroke: Stimulating and Training Toward Perfection. Physiology (Bethesda) 2015; 30:358-70. [PMID: 26328881 PMCID: PMC4556825 DOI: 10.1152/physiol.00014.2015] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stroke instigates regenerative responses that reorganize connectivity patterns among surviving neurons. The new connectivity patterns can be suboptimal for behavioral function. This review summarizes current knowledge on post-stroke motor system reorganization and emerging strategies for shaping it with manipulations of behavior and cortical activity to improve functional outcome.
Collapse
Affiliation(s)
- Theresa A Jones
- Psychology Department, Neuroscience Institute, University of Texas at Austin, Austin, Texas; and
| | - DeAnna L Adkins
- Neurosciences Department, and Health Sciences & Research Department, Colleges of Medicine & Health Professions, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
19
|
Berardi N, Sale A, Maffei L. Brain structural and functional development: genetics and experience. Dev Med Child Neurol 2015; 57 Suppl 2:4-9. [PMID: 25690109 DOI: 10.1111/dmcn.12691] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2014] [Indexed: 11/28/2022]
Abstract
Brain development is the result of the combined work of genes and environment. In this paper we first briefly discuss how, in terms of cellular and molecular plasticity mechanisms, the richness of early environment can control developmental trajectories and can induce long-term changes in neural circuits that underlie enduring changes in brain structure and function. We then see that experience most effectively moulds neural circuit development during specific time windows called critical periods. After the closure of these privileged windows for plasticity, it is very difficult to promote repair from 'errors' in brain development. As an example, congenital cataracts, refractive defects, or strabismus, if not precociously corrected during development, cause permanent deficit in visual acuity of the affected eye, a condition known as amblyopia. Little or no recovery from amblyopia is possible in the adult. However, recent results show that by using protocols of enriched environment it is possible to design interventions, which, by acting on specific plasticity factors, enhance adult cortical plasticity and allow recovery from amblyopia. This suggests that a better knowledge of how experience and environment engage endogenous plasticity factors could help to design interventions aimed at promoting recovery from neurodevelopmental defects, even after the end of critical periods.
Collapse
Affiliation(s)
- Nicoletta Berardi
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy; Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | | | | |
Collapse
|
20
|
Clowry GJ, Basuodan R, Chan F. What are the Best Animal Models for Testing Early Intervention in Cerebral Palsy? Front Neurol 2014; 5:258. [PMID: 25538677 PMCID: PMC4255621 DOI: 10.3389/fneur.2014.00258] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/21/2014] [Indexed: 11/13/2022] Open
Abstract
Interventions to treat cerebral palsy should be initiated as soon as possible in order to restore the nervous system to the correct developmental trajectory. One drawback to this approach is that interventions have to undergo exceptionally rigorous assessment for both safety and efficacy prior to use in infants. Part of this process should involve research using animals but how good are our animal models? Part of the problem is that cerebral palsy is an umbrella term that covers a number of conditions. There are also many causal pathways to cerebral palsy, such as periventricular white matter injury in premature babies, perinatal infarcts of the middle cerebral artery, or generalized anoxia at the time of birth, indeed multiple causes, including intra-uterine infection or a genetic predisposition to infarction, may need to interact to produce a clinically significant injury. In this review, we consider which animal models best reproduce certain aspects of the condition, and the extent to which the multifactorial nature of cerebral palsy has been modeled. The degree to which the corticospinal system of various animal models human corticospinal system function and development is also explored. Where attempts have already been made to test early intervention in animal models, the outcomes are evaluated in light of the suitability of the model.
Collapse
Affiliation(s)
- Gavin John Clowry
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , UK
| | - Reem Basuodan
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , UK
| | - Felix Chan
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
21
|
Friel KM, Williams PTJA, Serradj N, Chakrabarty S, Martin JH. Activity-Based Therapies for Repair of the Corticospinal System Injured during Development. Front Neurol 2014; 5:229. [PMID: 25505443 PMCID: PMC4241838 DOI: 10.3389/fneur.2014.00229] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/22/2014] [Indexed: 01/29/2023] Open
Abstract
This review presents the mechanistic underpinnings of corticospinal tract (CST) development, derived from animal models, and applies what has been learned to inform neural activity-based strategies for CST repair. We first discuss that, in normal development, early bilateral CST projections are later refined into a dense crossed CST projection, with maintenance of sparse ipsilateral projections. Using a novel mouse genetic model, we show that promoting the ipsilateral CST projection produces mirror movements, common in hemiplegic cerebral palsy (CP), suggesting that ipsilateral CST projections become maladaptive when they become abnormally dense and strong. We next discuss how animal studies support a developmental “competition rule” whereby more active/used connections are more competitive and overtake less active/used connections. Based on this rule, after unilateral injury the damaged CST is less able to compete for spinal synaptic connections than the uninjured CST. This can lead to a progressive loss of the injured hemisphere’s contralateral projection and a reactive gain of the undamaged hemisphere’s ipsilateral CST. Knowledge of the pathophysiology of the developing CST after injury informs interventional strategies. In an animal model of hemiplegic CP, promoting injured system activity or decreasing the uninjured system’s activity immediately after the period of a developmental injury both increase the synaptic competitiveness of the damaged system, contributing to significant CST repair and motor recovery. However, delayed intervention, despite significant CST repair, fails to restore skilled movements, stressing the need to consider repair strategies for other neural systems, including the rubrospinal and spinal interneuronal systems. Our interventional approaches harness neural activity-dependent processes and are highly effective in restoring function. These approaches are minimally invasive and are poised for translation to the human.
Collapse
Affiliation(s)
- Kathleen M Friel
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medical College , New York, NY , USA ; Burke Medical Research Institute , White Plains, NY , USA
| | - Preston T J A Williams
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York , New York, NY , USA
| | - Najet Serradj
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York , New York, NY , USA
| | - Samit Chakrabarty
- School of Biomedical Sciences, Faculty of Biology, University of Leeds , Leeds , UK
| | - John H Martin
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York , New York, NY , USA ; The Graduate Center of the City University of New York , New York, NY , USA
| |
Collapse
|
22
|
Chédotal A. Development and plasticity of commissural circuits: from locomotion to brain repair. Trends Neurosci 2014; 37:551-62. [DOI: 10.1016/j.tins.2014.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/01/2023]
|
23
|
Carmel JB, Martin JH. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function. Front Integr Neurosci 2014; 8:51. [PMID: 24994971 PMCID: PMC4061747 DOI: 10.3389/fnint.2014.00051] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/28/2014] [Indexed: 12/11/2022] Open
Abstract
The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay.
Collapse
Affiliation(s)
- Jason B Carmel
- Department of Neurology, Weill Cornell Medical College New York, NY, USA ; Department of Pediatrics, Weill Cornell Medical College New York, NY, USA ; Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA ; Burke Medical Research Institute White Plains, NY, USA
| | - John H Martin
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York New York, NY, USA
| |
Collapse
|
24
|
Basu AP. Early intervention after perinatal stroke: opportunities and challenges. Dev Med Child Neurol 2014; 56:516-21. [PMID: 24528276 PMCID: PMC4020312 DOI: 10.1111/dmcn.12407] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2014] [Indexed: 12/16/2022]
Abstract
Perinatal stroke is the most common cause of hemiplegic cerebral palsy. No standardized early intervention exists despite evidence for a critical time window for activity-dependent plasticity to mould corticospinal tract development in the first few years of life. Intervention during this unique period of plasticity could mitigate the consequences of perinatal stroke to an extent not possible with later intervention, by preserving the normal pattern of development of descending motor pathways. This article outlines the broad range of approaches currently under investigation. Despite significant progress in this area, improved early detection and outcome prediction remain important goals.
Collapse
Affiliation(s)
- Anna P Basu
- NIHR Clinical Trials Fellow, Newcastle upon Tyne Hospitals NHS Foundation Trust. Level 3, Sir James Spence Institute, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| |
Collapse
|
25
|
Orlando C, Raineteau O. Integrity of cortical perineuronal nets influences corticospinal tract plasticity after spinal cord injury. Brain Struct Funct 2014; 220:1077-91. [PMID: 24481829 PMCID: PMC4341008 DOI: 10.1007/s00429-013-0701-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/26/2013] [Indexed: 11/28/2022]
Abstract
The rapid decline of injury-induced neuronal circuit remodelling after birth is paralleled by the accumulation of chondroitin sulphate proteoglycans (CSPGs) in the extracellular matrix, culminating with the appearance of perineuronal nets (PNNs) around parvalbumin-expressing GABAergic interneurons. We used a spinal cord injury (SCI) model to study the interplay between integrity of PNN CSPGs in the sensorimotor cortex, anatomical remodelling of the corticospinal tract (CST) and motor recovery in adult mice. We showed that thoracic SCI resulted in an atrophy of GABAergic interneurons in the axotomized hindlimb cortex, as well as in a more widespread downregulation of parvalbumin expression. In parallel, spontaneous changes in the integrity of CSPG glycosaminoglycan (GAG) chains associated with PNNs occurred at the boundary between motor forelimb and sensorimotor hindlimb cortex, a region previously showed to undergo reorganization after thoracic SCI. Surprisingly, full digestion of CSPG GAG chains by intracortical chondroitinase ABC injection resulted in an aggravation of motor deficits and reduced sprouting of the axotomized CST above the lesion. Altogether, our data show that changes in the expression pattern of GABAergic markers and PNNs occur in regions of the sensorimotor cortex undergoing spontaneous reorganization after SCI, but suggest that these changes have to be tightly controlled to be of functional benefit.
Collapse
Affiliation(s)
- C. Orlando
- Brain Research Institute, University of Zurich/ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - O. Raineteau
- Brain Research Institute, University of Zurich/ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
26
|
Umeda T, Funakoshi K. Reorganization of motor circuits after neonatal hemidecortication. Neurosci Res 2014; 78:30-7. [DOI: 10.1016/j.neures.2013.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 11/15/2022]
|
27
|
Jahanshahi A, Schönfeld LM, Lemmens E, Hendrix S, Temel Y. In vitro and in vivo neuronal electrotaxis: a potential mechanism for restoration? Mol Neurobiol 2013; 49:1005-16. [PMID: 24243342 DOI: 10.1007/s12035-013-8575-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/21/2013] [Indexed: 01/19/2023]
Abstract
Electrical brain stimulation used to treat a variety of neurological and psychiatric diseases is entering a new period. The technique is well established and the potential complications are well known and generally manageable. Recent studies demonstrated that electrical fields (EFs) can enhance neuroplasticity-related processes. EFs applied in the physiological range induce migration of different neural cell types from different species in vitro. There are some evidences that also the speed and directedness of cell migration are enhanced by EFs. However, it is still unclear how electrical signals from the extracellular space are translated into intracellular actions resulting in the so-called electrotaxis phenomenon. Here, we aim to provide a comprehensive review of the data on responses of cells to electrical stimulation and the relation to functional recovery.
Collapse
Affiliation(s)
- Ali Jahanshahi
- Department of Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands,
| | | | | | | | | |
Collapse
|
28
|
Friel KM, Chakrabarty S, Martin JH. Pathophysiological mechanisms of impaired limb use and repair strategies for motor systems after unilateral injury of the developing brain. Dev Med Child Neurol 2013; 55 Suppl 4:27-31. [PMID: 24237276 DOI: 10.1111/dmcn.12303] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 01/02/2023]
Abstract
The corticospinal tract (CST) is important for limb control. In humans, it begins developing prenatally but CST connections do not have a mature pattern until about 6 months of age and its capacity to evoke muscle contraction does not mature until mid-adolescence. An initially bilateral projection is subsequently refined, so that most ipsilateral CST connections are eliminated. Unilateral brain damage during refinement leads to bilateral developmental impairments. The damaged side develops sparse and weak contralateral spinal connections and the non-involved hemisphere maintains its ipsilateral projection to develop an aberrant bilateral spinal projection. In a kitten model of unilateral spastic cerebral palsy, we replicate key features of the CST circuit changes: robust bilateral CST projections from the non-involved hemisphere, sparse contralateral connections from the affected hemisphere, and motor impairments. We discuss the role of activity-dependent synaptic competition in development of bilateral CSTs and consider several experimental strategies for restoring a more normal pattern of CST connections from the damaged and non-involved sides. We highlight recent results stressing the importance of combined repair of CST axons, restoration of a more normal motor cortex motor representation, and key involvement of spinal cholinergic interneurons in restoring skilled motor function.
Collapse
Affiliation(s)
- Kathleen M Friel
- Burke-Cornell Medical Research Institute, White Plains, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA; Department of Physiology, Pharmacology, and Neuroscience, City College of the City University of New York, New York, NY, USA
| | | | | |
Collapse
|
29
|
Jahanshahi A, Schonfeld L, Janssen MLF, Hescham S, Kocabicak E, Steinbusch HWM, van Overbeeke JJ, Temel Y. Electrical stimulation of the motor cortex enhances progenitor cell migration in the adult rat brain. Exp Brain Res 2013; 231:165-77. [DOI: 10.1007/s00221-013-3680-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/07/2013] [Indexed: 02/07/2023]
|
30
|
Yang JF, Livingstone D, Brunton K, Kim D, Lopetinsky B, Roy F, Zewdie E, Patrick SK, Andersen J, Kirton A, Watt JM, Yager J, Gorassini M. Training to enhance walking in children with cerebral palsy: are we missing the window of opportunity? Semin Pediatr Neurol 2013; 20:106-15. [PMID: 23948685 DOI: 10.1016/j.spen.2013.06.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The objective of this paper is to (1) identify from the literature a potential critical period for the maturation of the corticospinal tract (CST) and (2) report pilot data on an intensive, activity-based therapy applied during this period, in children with lesions to the CST. The best estimate of the CST critical period for the legs is when the child is younger than 2 years of age. Previous interventions for walking in children with CST damage were mainly applied after this age. Our preliminary results with training children younger than 2 years showed improvements in walking that exceeded all previous reports. Further, we refined techniques for measuring motor and sensory pathways to and from the legs, so that changes can be measured at this young age. Previous activity-based therapies may have been applied too late in development. A randomized controlled trial is now underway to determine if intensive leg therapy improves the outcome of children with early stroke.
Collapse
Affiliation(s)
- Jaynie F Yang
- Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Using motor behavior during an early critical period to restore skilled limb movement after damage to the corticospinal system during development. J Neurosci 2012; 32:9265-76. [PMID: 22764234 DOI: 10.1523/jneurosci.1198-12.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This study investigated the requirements for restoring motor function after corticospinal (CS) system damage during early postnatal development. Activity-dependent competition between the CS tracts (CSTs) of the two hemispheres is imperative for normal development. Blocking primary motor cortex (M1) activity unilaterally during a critical period [postnatal week 5 (PW5) to PW7] produces permanent contralateral motor skill impairments, loss of M1 motor map, aberrant CS terminations, and decreases in CST presynaptic sites and spinal cholinergic interneuron numbers. To repair these motor systems impairments and restore function, we manipulated motor experience in three groups of cats after this CST injury produced by inactivation. One group wore a jacket restraining the limb ipsilateral to inactivation, forcing use of the contralateral, impaired limb, for the month after M1 inactivation (PW8-PW13; "restraint alone"). A second group wore the restraint during PW8-PW13 and was also trained for 1 h/d in a reaching task with the contralateral forelimb ("early training"). To test the efficacy of intervention during adolescence, a third group wore the restraint and received reach training during PW20-PW24 ("delayed training"). Early training restored CST connections and the M1 motor map, increased cholinergic spinal interneurons numbers on the contralateral, relative to ipsilateral, side, and abrogated limb control impairments. Delayed training restored CST connectivity and the M1 motor map but not contralateral spinal cholinergic cell counts or motor performance. Restraint alone only restored CST connectivity. Our findings stress the need to reestablish the integrated functions of the CS system at multiple hierarchical levels in restoring skilled motor function after developmental injury.
Collapse
|
32
|
Tan AM, Chakrabarty S, Kimura H, Martin JH. Selective corticospinal tract injury in the rat induces primary afferent fiber sprouting in the spinal cord and hyperreflexia. J Neurosci 2012; 32:12896-908. [PMID: 22973013 PMCID: PMC3499628 DOI: 10.1523/jneurosci.6451-11.2012] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 06/19/2012] [Accepted: 07/15/2012] [Indexed: 12/28/2022] Open
Abstract
The corticospinal tract (CST) has dense contralateral and sparse ipsilateral spinal cord projections that converge with proprioceptive afferents on common spinal targets. Previous studies in adult rats indicate that the loss of dense contralateral spinal CST connections after unilateral pyramidal tract section (PTx), which models CST loss after stroke or spinal cord injury, leads to outgrowth from the spared side into the affected, ipsilateral, spinal cord. The reaction of proprioceptive afferents after this CST injury, however, is not known. Knowledge of proprioceptive afferent responses after loss of the CST could inform mechanisms of maladaptive plasticity in spinal sensorimotor circuits after injury. Here, we hypothesize that the loss of the contralateral CST results in a reactive increase in muscle afferents from the impaired limb and enhancement of their physiological actions within the cervical spinal cord. We found that 10 d after PTx, proprioceptive afferents sprout into cervical gray matter regions denervated by the loss of CST terminations. Furthermore, VGlut1-positive boutons, indicative of group 1A afferent terminals, increased on motoneurons. PTx also produced an increase in microglial density within the gray matter regions where CST terminations were lost. These anatomical changes were paralleled by reduction in frequency-dependent depression of the H-reflex, suggesting hyperreflexia. Our data demonstrate for the first time that selective CST injury induces maladaptive afferent fiber plasticity remote from the lesion. Our findings suggest a novel structural reaction of proprioceptive afferents to the loss of CST terminations and provide insight into mechanisms underlying spasticity.
Collapse
Affiliation(s)
- Andrew M. Tan
- Department of Physiology, Pharmacology, and Neuroscience, The City College of the City University of New York, New York, New York 10031, and
| | - Samit Chakrabarty
- Department of Physiology, Pharmacology, and Neuroscience, The City College of the City University of New York, New York, New York 10031, and
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS29JT, United Kingdom
| | - Hiroki Kimura
- Department of Physiology, Pharmacology, and Neuroscience, The City College of the City University of New York, New York, New York 10031, and
| | - John H. Martin
- Department of Physiology, Pharmacology, and Neuroscience, The City College of the City University of New York, New York, New York 10031, and
| |
Collapse
|
33
|
Martin JH. Systems neurobiology of restorative neurology and future directions for repair of the damaged motor systems. Clin Neurol Neurosurg 2012; 114:515-23. [PMID: 22316612 DOI: 10.1016/j.clineuro.2012.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 01/09/2012] [Indexed: 12/15/2022]
Abstract
Restoring movement control after central nervous system injury requires reconnecting the brain and spinal motoneurons, and doing so with sufficient precision and strength to enable robust voluntary muscle recruitment. Whereas the connection between the upper motoneuron in motor cortex and alpha-motoneurons was thought to be the only important connection for normal motor function in humans, we know that a multiplicity of motor circuits are recruited during normal motor control. Multiplicity of functionally important motor circuits points to the myriad possibilities of intervention that restorative neurology can turn to for repairing motor systems connections to recover movement control after injury. New motor systems repair strategies in animal models and humans are tapping into distributed motor control functions of the spinal cord; neural activity-based approaches, especially for corticospinal tract repair; and circuit-selective activation approaches. I focus on studies harnessing activity-based therapeutic approaches to promote sprouting of spared corticospinal tract axons after injury and redirecting potentially maladaptive plasticity. I discuss that we can see on the near horizon, many different strategies for repairing motor systems connections after injury.
Collapse
Affiliation(s)
- John H Martin
- Department of Physiology, Pharmacology, and Neuroscience, City College of the City University of New York, NY 10031, USA.
| |
Collapse
|
34
|
MARTIN JH, CHAKRABARTY S, FRIEL KM. Harnessing activity-dependent plasticity to repair the damaged corticospinal tract in an animal model of cerebral palsy. Dev Med Child Neurol 2011; 53 Suppl 4:9-13. [PMID: 21950387 PMCID: PMC3187875 DOI: 10.1111/j.1469-8749.2011.04055.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The corticospinal tract (CST) is the principal motor control pathway for skilled movements. It has a protracted postnatal development, creating a protracted period of vulnerability to perinatal brain and spinal cord injury. Research has shown that the motor signs in cerebral palsy (CP) reflect the loss of CST connections as well as development of abnormal motor systems connections, especially between the developing CST and spinal motor circuits. In this paper, we discuss a feline model of CP that we have developed. The animals develop a pattern of abnormal CST connections that is remarkably similar to that seen in hemiplegic CP and visuomotor impairments. Using this model we devised neural activity-based therapeutic approaches to repair the abnormal CST connections and restore normal skilled movement control. Our studies stress that more active CST connections are better able to maintain strong synaptic connections with spinal motor circuits. We propose that perinatal trauma initiates a vicious cycle in which CST axons that are spared after an injury are at a disadvantage for maintaining spinal connections, leading to further reductions in connections and motor signs. If this is so, targeted activation of the spared CST might interrupt this process and lead to functional improvement.
Collapse
Affiliation(s)
- J H MARTIN
- Department of Physiology, Pharmacology, and Neuroscience, City College of the City University of New York, NY, USA
| | - S CHAKRABARTY
- Department of Physiology, Pharmacology, and Neuroscience, City College of the City University of New York, NY, USA
| | - K M FRIEL
- Department of Psychiatry, Columbia University, NY, USA
| |
Collapse
|
35
|
Fehlings D, Novak I, Berweck S, Hoare B, Stott NS, Russo RN. Botulinum toxin assessment, intervention and follow-up for paediatric upper limb hypertonicity: international consensus statement. Eur J Neurol 2011; 17 Suppl 2:38-56. [PMID: 20633178 DOI: 10.1111/j.1468-1331.2010.03127.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The primary objective of this paper was to evaluate the published evidence of efficacy and safety of botulinum neurotoxin (BoNT) injections in paediatric upper limb hypertonia (PULH). Secondary objectives included the provision of clinical context, based on evidence and expert opinion, in the areas of assessment, child and muscle selection, dosing, and adjunctive treatment. A multidisciplinary panel of authors systematically reviewed, abstracted, and classified relevant literature. Recommendations were based on the American Academy of Neurology (AAN) evidence classification. Following a literature search, 186 potential articles were screened for inclusion, and 15 of these met the criteria and were reviewed. Grade A evidence was found to support the use of BoNT to reach individualized therapeutic goals for PULH. There is grade B evidence (probably effective) for tone reduction following BoNT injections and grade U evidence (inconclusive) for improvement in upper limb (UL) activity and function. BoNT injections were generally found to be safe and well tolerated with the most common side effect identified as a transient decrease in grip strength.
Collapse
Affiliation(s)
- D Fehlings
- Bloorview Research Institute, Bloorview Kids Rehab, Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
36
|
Asante CO, Chu A, Fisher M, Benson L, Beg A, Scheiffele P, Martin J. Cortical control of adaptive locomotion in wild-type mice and mutant mice lacking the ephrin-Eph effector protein alpha2-chimaerin. J Neurophysiol 2010; 104:3189-202. [PMID: 20881205 DOI: 10.1152/jn.00671.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In voluntary control, supraspinal motor systems select the appropriate response and plan movement mechanics to match task constraints. Spinal circuits translate supraspinal drive into action. We studied the interplay between motor cortex (M1) and spinal circuits during voluntary movements in wild-type (WT) mice and mice lacking the α2-chimaerin gene (Chn1(-/-)), necessary for ephrinB3-EphA4 signaling. Chn1(-/-) mice have aberrant bilateral corticospinal systems, aberrant bilateral-projecting spinal interneurons, and disordered voluntary control because they express a hopping gait, which may be akin to mirror movements. We addressed three issues. First, we determined the role of the corticospinal system in adaptive control. We trained mice to step over obstacles during treadmill locomotion. We compared performance before and after bilateral M1 ablation. WT mice adaptively modified their trajectory to step over obstacles, and M1 ablation increased substantially the incidence of errant steps over the obstacle. Chn1(-/-) mice randomly stepped or hopped during unobstructed locomotion but hopped over the obstacle. Bilateral M1 ablation eliminated this obstacle-dependent hop selection and increased forelimb obstacle contact errors. Second, we characterized the laterality of corticospinal action in Chn1(-/-) mice using pseudorabies virus retrograde transneuronal transport and intracortical microstimulation. We showed bilateral connections between M1 and forelimb muscles in Chn1(-/-) and unilateral connections in WT mice. Third, in Chn1(-/-) mice, we studied adaptive responses before and after unilateral M1 ablation. We identified a more important role for contralateral than ipsilateral M1 in hopping over the obstacle. Our findings suggest an important role for M1 in the mouse in moment-to-moment adaptive control, and further, using Chn1(-/-) mice, a role in mediating task-dependent selection of mirror-like hopping movements over the obstacle. Our findings also stress the importance of subcortical control during adaptive locomotion because key features of the trajectory remained largely intact after M1 ablation.
Collapse
|
37
|
Berthier NE, Carrico RL. Visual information and object size in infant reaching. Infant Behav Dev 2010; 33:555-66. [PMID: 20708270 DOI: 10.1016/j.infbeh.2010.07.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 02/10/2010] [Accepted: 07/16/2010] [Indexed: 11/30/2022]
Abstract
It has been suggested that the onset of successful reaching in infants is mediated by the onset of an ability to use sight of the hand to make corrective reaches. However, removing vision of the hand in infants younger than 6 months has not been shown to have an effect on reaching onset or kinematics. We investigated the use of vision of the hand by testing 6-, 9-, and 12-month-old infants reaching for objects in the light and in the dark. We found that infants reached faster in the dark at 6 months, and faster in the light at 1 year. Parallel effects were observed in the movement times. Consistent effects of altering target object size on average speed were seen at 12 months. The data support the hypothesis that vision is used by older infants around 6 months-of-age, and that reach and grasp planning differentiate with object size at about 9 and 12 months-of-age. At younger ages reaches are corrected on the basis of proprioceptive information and sight of the target object.
Collapse
Affiliation(s)
- Neil E Berthier
- University of Massachusetts Amherst, Saint Michael's College, MA, USA.
| | | |
Collapse
|
38
|
Umeda T, Takahashi M, Isa K, Isa T. Formation of descending pathways mediating cortical command to forelimb motoneurons in neonatally hemidecorticated rats. J Neurophysiol 2010; 104:1707-16. [PMID: 20660415 DOI: 10.1152/jn.00968.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neonatally hemidecorticated rats show fairly normal reaching and grasping behaviors of the forelimb contralateral to the lesion at the adult stage. Previous experiments using an anterograde tracer showed that the corticospinal fibers originating from the sensorimotor cortex of the intact side projected aberrant collaterals to the spinal gray matter on the ipsilateral side. The present study used electrophysiological methods to investigate whether the aberrant projections of the corticospinal tract mediated the pyramidal excitation to the ipsilateral forelimb motoneurons and, if so, which pathways mediate the effect in the hemidecorticated rats. Electrical stimulation to the intact medullary pyramid elicited bilateral negative field potentials in the dorsal horn of the spinal cord. In intracellular recordings of forelimb motoneurons, oligosynaptic pyramidal excitation was detected on both sides of the spinal cord in the hemidecorticated rats, whereas pyramidal excitation of motoneurons on the side ipsilateral to the stimulation was much smaller in normal rats. By lesioning the dorsal funiculus at the upper cervical level, we clarified that the excitation was transmitted to the ipsilateral motoneurons by at least two pathways: one via the corticospinal tract and spinal interneurons and the other via the cortico-reticulo-spinal pathways. These results suggested that in the neonatally hemidecorticated rats, the forelimb movements on the side contralateral to the lesion were modulated by motor commands through the indirect ipsilateral descending pathways from the sensorimotor cortex of the intact side either via the spinal interneurons or reticulospinal neurons.
Collapse
Affiliation(s)
- Tatsuya Umeda
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Department of Developmental Physiology, Myodaiji, Okazaki 444-8585, Japan.
| | | | | | | |
Collapse
|
39
|
Postnatal development of a segmental switch enables corticospinal tract transmission to spinal forelimb motor circuits. J Neurosci 2010; 30:2277-88. [PMID: 20147554 DOI: 10.1523/jneurosci.5286-09.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of skilled movements and the corticospinal tract (CST) begin prenatally and continue postnatally. Because the CST is required for skilled movements in maturity, it is accepted that motor skills cannot occur until the CST develops a mature organization. We recently showed that the CST plays an essential role in postnatal development of interneurons comprising the spinal circuits it engages. We proposed that CST signals are more effectively transmitted to ventral motor circuits after interneuron maturation, thereby enabling expression of CST motor functions, suggesting development of a segmental switch promoting transmission. We tested this by recording CST-evoked focal synaptic potentials, extracellularly, in the cervical enlargement of cats before and after interneuron maturation [postnatal week 5 (PW5) to PW7]. We compared monosynaptic CST amplitude input to segmental circuits with oligosynaptic ventral horn responses, as a measure of CST-evoked segmental response transmission from input to output. The M1 primary motor cortex was unilaterally inactivated between PW5 and PW7 to determine activity dependence. CST interneuron contacts were identified using confocal microscopy. CST terminals contact diverse interneuron classes. CST stimulation strongly activated ventral motor circuits at the ages when both interneurons and CST spinal terminations have developed a mature phenotype, supporting development of segmental transmission of CST signals. CST activity blockade impeded development of effective segmental transmission by the inactivated CST and created a novel path for transmission from the ipsilateral, unaffected, CST. Our findings show that development of segmental CST signal transmission regulates nascent CST motor control functions and provide insight into systems-level mechanisms for protracted motor skill development.
Collapse
|
40
|
Kuluz J, Samdani A, Benglis D, Gonzalez-Brito M, Solano JP, Ramirez MA, Luqman A, De Los Santos R, Hutchinson D, Nares M, Padgett K, He D, Huang T, Levi A, Betz R, Dietrich D. Pediatric spinal cord injury in infant piglets: description of a new large animal model and review of the literature. J Spinal Cord Med 2010; 33:43-57. [PMID: 20397443 PMCID: PMC2853328 DOI: 10.1080/10790268.2010.11689673] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To develop a new, clinically relevant large animal model of pediatric spinal cord injury (SCI) and compare the clinical and experimental features of pediatric SCI. METHODS Infant piglets (3-5 weeks old) underwent contusive SCI by controlled cortical impactor at T7. Severe complete SCI was induced in 6 piglets, defined as SCI with no spontaneous return of sensorimotor function. Eight piglets received incomplete SCI, which was followed by partial recovery. Somatosensory evoked potentials, magnetic resonance imaging, neurobehavioral function, and histopathology were measured during a 28-day survival period. RESULTS Mean SCI volume (defined as volume of necrotic tissue) was larger after complete compared with incomplete SCI (387 +/- 29 vs 77 +/- 38 mm3, respectively, P < 0.001). No functional recovery occurred after complete SCI. After incomplete SCI, piglets initially had an absence of lower extremity sensorimotor function, urinary and stool retention, and little to no rectal tone. Sensory responses recovered first (1-2 days after injury), followed by spontaneous voiding, lower extremity motor responses, regular bowel movements, and repetitive flexion-extension of the lower extremities when crawling. No piglet recovered spontaneous walking, although 4 of 8 animals with incomplete injuries were able to bear weight by 28 days. In vivo magnetic resonance imaging was performed safely, yielded high-resolution images of tissue injury, and correlated closely with injury volume seen on histopathology, which included intramedullary hemorrhage, cellular inflammation, necrosis, and apoptosis. CONCLUSION Piglets performed well as a reproducible model of traumatic pediatric SCI in a large animal with chronic survival and utilizing multiple outcome measures, including evoked potentials, magnetic resonance imaging, functional outcome scores, and histopathology.
Collapse
Affiliation(s)
- John Kuluz
- Pediatric Critical Care (R-131), University of Miami School of Medicine, 1611 NW 12th Avenue, Miami, FL 33136, USA.
| | - Amer Samdani
- Shriners Hospitals for Children, Philadelphia, Pennsylvania
| | - David Benglis
- University of Miami School of Medicine, Miami, Florida
| | | | - Juan P Solano
- University of Miami School of Medicine, Miami, Florida
| | | | - Ali Luqman
- University of Miami School of Medicine, Miami, Florida
| | | | | | - Mike Nares
- University of Miami School of Medicine, Miami, Florida
| | - Kyle Padgett
- University of Miami School of Medicine, Miami, Florida
| | - Dansha He
- University of Miami School of Medicine, Miami, Florida
| | | | - Allan Levi
- University of Miami School of Medicine, Miami, Florida
| | - Randal Betz
- Shriners Hospitals for Children, Philadelphia, Pennsylvania
| | | |
Collapse
|
41
|
Dai H, MacArthur L, McAtee M, Hockenbury N, Tidwell JL, McHugh B, Mansfield K, Finn T, Hamers FPT, Bregman BS. Activity-based therapies to promote forelimb use after a cervical spinal cord injury. J Neurotrauma 2010; 26:1719-32. [PMID: 19317604 DOI: 10.1089/neu.2008-0592] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Significant interest exists in strategies for improving forelimb function following spinal cord injury. We investigated the effect of enriched housing combined with skilled training on the recovery of skilled and automatic forelimb function after a cervical spinal cord injury in adult rats. All animals were pretrained in skilled reaching, gridwalk crossing, and overground locomotion. Some received a cervical over-hemisection lesion at C4-5, interrupting the right side of the spinal cord and dorsal columns bilaterally, and were housed in standard housing alone or enriched environments with daily training. A subset of animals received rolipram to promote neuronal plasticity. Animals were tested weekly for 4 weeks to measure reaching, errors on the gridwalk, locomotion, and vertical exploration. Biotinylated dextran amine was injected into the cortex to label the corticospinal tract. Enriched environments/daily training significantly increased the number and success of left reaches compared to standard housing. Animals also made fewer errors on the gridwalk, a measure of coordinated forelimb function. However, there were no significant improvements in forelimb use during vertical exploration or locomotion. Likewise, rolipram did not improve any of the behaviors tested. Both enriched housing and rolipram increased plasticity of the corticospinal tract rostral to the lesion. These studies indicate that skilled training after a cervical spinal cord injury improves recovery of skilled forelimb use (reaching) and coordinated limb function (gridwalk) but does not improve automatic forelimb function (locomotion and vertical exploration). These studies suggest that rehabilitating forelimb function after spinal cord injury will require separate strategies for descending and segmental pathways.
Collapse
Affiliation(s)
- Haining Dai
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
AbstractA CST-YFP transgenic mouse has been developed for the study of the corticospinal tract in which yellow fluorescent protein is expressed under the control of thy1 and emx1 promoters in order to restrict expression to forebrain neurones. We explored plasticity of the developing corticospinal tract of these mice following a unilateral lesion to the sensorimotor cortex at postnatal day 7. The extent of innervation of the cervical spinal cord at time points post-lesion was assessed by measuring density of immunoperoxidase reactivity for yellow fluorescent protein in the dorsal funiculi and a defined region of each dorsal horn, and by counting immunoreactive axonal varicosities in the ventral horns. Two/three days post-lesion, the density of immunoreactivity in the dorsal horn contralateral to the lesion was reduced proportional to the decrease in positive fibres in the dorsal funiculus, however density of immunoreactive varicosities in the ventral horn was more resistant to loss. Over a three week period, immunoreactive axonal processes in the grey matter increased on the contralateral side, particularly in the ventral horn, but without an increase in immunopositive fibres in the contralateral dorsal funiculus, demonstrating sprouting of surviving immunoreactive fibres to replace lesioned corticospinal axons. However, the origin of sprouting fibres could not be identified with confidence as parallel observations revealed strongly immunoreactive neuronal cell bodies in the spinal cord, medulla and red nucleus. We have demonstrated plasticity in response to a developmental lesion but discovered a drawback to using these mice if visualisation of individual axons is enhanced by immunohistochemistry.
Collapse
|
43
|
Rewiring of hindlimb corticospinal neurons after spinal cord injury. Nat Neurosci 2009; 13:97-104. [PMID: 20010824 DOI: 10.1038/nn.2448] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 10/15/2009] [Indexed: 11/08/2022]
Abstract
Little is known about the functional role of axotomized cortical neurons that survive spinal cord injury. Large thoracic spinal cord injuries in adult rats result in impairments of hindlimb function. Using retrograde tracers, we found that axotomized corticospinal axons from the hindlimb sensorimotor cortex sprouted in the cervical spinal cord. Mapping of these neurons revealed the emergence of a new forelimb corticospinal projection from the rostral part of the former hindlimb cortex. Voltage-sensitive dye (VSD) imaging and blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI) revealed a stable expansion of the forelimb sensory map, covering in particular the former hindlimb cortex containing the rewired neurons. Therefore, axotomized hindlimb corticospinal neurons can be incorporated into the sensorimotor circuits of the unaffected forelimb.
Collapse
|
44
|
Dai H, MacArthur L, McAtee M, Hockenbury N, Tidwell JL, McHugh B, Mansfield K, Finn T, Hamers FP, Bregman BS. Activity-Based Therapies To Promote Forelimb Use after a Cervical Spinal Cord Injury. J Neurotrauma 2009. [DOI: 10.1089/neu.2008.0592] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Haining Dai
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Linda MacArthur
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Marietta McAtee
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Nicole Hockenbury
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - J. Lille Tidwell
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Brian McHugh
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Kevin Mansfield
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Tom Finn
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Frank P.T. Hamers
- Rudolf Magnus Institute of Neuroscience, Department of Physical Medicine and Rehabilitation, Ultrecht, The Netherlands
| | - Barbara S. Bregman
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
45
|
Corredor RG, Goldberg JL. Electrical activity enhances neuronal survival and regeneration. J Neural Eng 2009; 6:055001. [DOI: 10.1088/1741-2560/6/5/055001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Activity-dependent codevelopment of the corticospinal system and target interneurons in the cervical spinal cord. J Neurosci 2009; 29:8816-27. [PMID: 19587289 DOI: 10.1523/jneurosci.0735-09.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Corticospinal tract (CST) connections to spinal interneurons are conserved across species. We identified spinal interneuronal populations targeted by the CST in the cervical enlargement of the cat during development. We focused on the periods before and after laminar refinement of the CST terminations, between weeks 5 and 7. We used immunohistochemistry of choline acetyltransferase (ChAT), calbindin, calretinin, and parvalbumin to mark interneurons. We first compared interneuron marker distribution before and after CST refinement. ChAT interneurons increased, while calbindin interneurons decreased during this period. No significant changes were noted in parvalbumin and calretinin. We next used anterograde labeling to determine whether the CST targets different interneuron populations before and after the refinement period. Before refinement, the CST terminated sparsely where calbindin interneurons were located and spared ChAT interneurons. After refinement, the CST no longer terminated in calbindin-expressing areas but did so where ChAT interneurons were located. Remarkably, early CST terminations were dense where ChAT interneurons later increased in numbers. Finally, we determined whether corticospinal system activity was necessary for the ChAT and calbindin changes. We unilaterally inactivated M1 between weeks 5 and 7 by muscimol infusion. Inactivation resulted in a distribution of calbindin and ChAT in spinal gray matter regions where the CST terminates that resembled the immature more than mature pattern. Our results show that the CST plays a crucial role in restructuring spinal motor circuits during development, possibly through trophic support, and provide strong evidence for the importance of connections with key spinal interneuron populations in development of motor control functions.
Collapse
|
47
|
Brus-Ramer M, Carmel JB, Martin JH. Motor cortex bilateral motor representation depends on subcortical and interhemispheric interactions. J Neurosci 2009; 29:6196-206. [PMID: 19439597 PMCID: PMC2715912 DOI: 10.1523/jneurosci.5852-08.2009] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 01/16/2023] Open
Abstract
The corticospinal tract is a predominantly crossed pathway. Nevertheless, the primary motor cortex (M1) is activated bilaterally during unilateral movements and several animal studies showed that M1 has a bilateral motor representation. A better understanding of the uncrossed corticospinal system is especially important for elucidating its role in recovery of limb control after unilateral injury. We used intracortical microstimulation (ICMS) to determine the representation of contralateral and ipsilateral forelimb joints at single M1 sites in the rat. Most sites representing an ipsilateral joint corepresented the same joint contralaterally. We next determined whether ipsilateral responses evoked in one hemisphere depended on the function of M1 in the opposite hemisphere using reversible inactivation and pyramidal tract lesion. Ipsilateral responses were eliminated when the homotopic forelimb area of M1 in the opposite hemisphere was inactivated or when the pyramidal tract on the nonstimulated side was sectioned. To determine the role of transfer between M1 in each hemisphere we sectioned the corpus callosum, which produced a 33% increase in ipsilateral ICMS thresholds. Neither M1 inactivation nor callosal section changed contralateral response thresholds, indicating the absence of tonic excitatory or inhibitory drive to the opposite M1. Finally, ipsilateral responses following M1 inactivation and pyramidal tract lesion could be evoked after systemic administration of the K(+) channel blocker 4-aminopyridine, suggesting the presence of latent connections. Our findings show important interactions between the corticospinal systems from each side, especially at the spinal level. This has important implications for recruiting the ipsilateral corticospinal system after injury.
Collapse
Affiliation(s)
| | | | - John H. Martin
- Departments of Neuroscience
- Neurological Surgery and Psychiatry, Columbia University, and
- New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
48
|
Abstract
Recent experimental evidence suggests that rapid advancement of virtual reality (VR) technologies has great potential for the development of novel strategies for sensorimotor training in neurorehabilitation. We discuss what the adaptive and engaging virtual environments can provide for massive and intensive sensorimotor stimulation needed to induce brain reorganization.Second, discrepancies between the veridical and virtual feedback can be introduced in VR to facilitate activation of targeted brain networks, which in turn can potentially speed up the recovery process. Here we review the existing experimental evidence regarding the beneficial effects of training in virtual environments on the recovery of function in the areas of gait,upper extremity function and balance, in various patient populations. We also discuss possible mechanisms underlying these effects. We feel that future research in the area of virtual rehabilitation should follow several important paths. Imaging studies to evaluate the effects of sensory manipulation on brain activation patterns and the effect of various training parameters on long term changes in brain function are needed to guide future clinical inquiry. Larger clinical studies are also needed to establish the efficacy of sensorimotor rehabilitation using VR in various clinical populations and most importantly, to identify VR training parameters that are associated with optimal transfer to real-world functional improvements.
Collapse
Affiliation(s)
- Sergei V Adamovich
- New Jersey Institute of Technology, Department of Biomedical Engineering, University Heights, Newark, NJ 07102, USA.
| | | | | | | |
Collapse
|