1
|
Tiwari A, Hashemiaghdam A, Laramie MA, Maschi D, Haddad T, Stunault MI, Bergom C, Javaheri A, Klyachko V, Ashrafi G. Sirtuin3 ensures the metabolic plasticity of neurotransmission during glucose deprivation. J Cell Biol 2024; 223:e202305048. [PMID: 37988067 PMCID: PMC10660140 DOI: 10.1083/jcb.202305048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Neurotransmission is an energetically expensive process that underlies cognition. During intense electrical activity or dietary restrictions, the glucose level in the brain plummets, forcing neurons to utilize alternative fuels. However, the molecular mechanisms of neuronal metabolic plasticity remain poorly understood. Here, we demonstrate that glucose-deprived neurons activate the CREB and PGC1α transcriptional program, which induces expression of the mitochondrial deacetylase Sirtuin 3 (Sirt3) both in vitro and in vivo. We show that Sirt3 localizes to axonal mitochondria and stimulates mitochondrial oxidative capacity in hippocampal nerve terminals. Sirt3 plays an essential role in sustaining synaptic transmission in the absence of glucose by providing metabolic support for the retrieval of synaptic vesicles after release. These results demonstrate that the transcriptional induction of Sirt3 facilitates the metabolic plasticity of synaptic transmission.
Collapse
Affiliation(s)
- Anupama Tiwari
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marissa A. Laramie
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dario Maschi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tristaan Haddad
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marion I. Stunault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ali Javaheri
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- John Cochran VA Hospital, St. Louis, MO, USA
| | - Vitaly Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Ogunmowo TH, Jing H, Raychaudhuri S, Kusick GF, Imoto Y, Li S, Itoh K, Ma Y, Jafri H, Dalva MB, Chapman ER, Ha T, Watanabe S, Liu J. Membrane compression by synaptic vesicle exocytosis triggers ultrafast endocytosis. Nat Commun 2023; 14:2888. [PMID: 37210439 PMCID: PMC10199930 DOI: 10.1038/s41467-023-38595-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
Compensatory endocytosis keeps the membrane surface area of secretory cells constant following exocytosis. At chemical synapses, clathrin-independent ultrafast endocytosis maintains such homeostasis. This endocytic pathway is temporally and spatially coupled to exocytosis; it initiates within 50 ms at the region immediately next to the active zone where vesicles fuse. However, the coupling mechanism is unknown. Here, we demonstrate that filamentous actin is organized as a ring, surrounding the active zone at mouse hippocampal synapses. Assuming the membrane area conservation is due to this actin ring, our theoretical model suggests that flattening of fused vesicles exerts lateral compression in the plasma membrane, resulting in rapid formation of endocytic pits at the border between the active zone and the surrounding actin-enriched region. Consistent with model predictions, our data show that ultrafast endocytosis requires sufficient compression by exocytosis of multiple vesicles and does not initiate when actin organization is disrupted, either pharmacologically or by ablation of the actin-binding protein Epsin1. Our work suggests that membrane mechanics underlie the rapid coupling of exocytosis to endocytosis at synapses.
Collapse
Affiliation(s)
- Tyler H Ogunmowo
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Biochemistry, Cellular and Molecular Biology graduate program, Johns Hopkins University, Baltimore, MD, US
| | - Haoyuan Jing
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Sumana Raychaudhuri
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Grant F Kusick
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Biochemistry, Cellular and Molecular Biology graduate program, Johns Hopkins University, Baltimore, MD, US
| | - Yuuta Imoto
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Shuo Li
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Ophthalmology, School of Medicine, Stanford University, Palo Alto, CA, US
| | - Kie Itoh
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Ye Ma
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Haani Jafri
- Department of Neuroscience and Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, US
| | - Matthew B Dalva
- Department of Neuroscience and Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, US
- Department of Cell and Molecular Biology and the Tulane Brain Institute, Tulane University, New Orleans, LA, US
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, US
- Howard Hughes Medical Institute, Madison, WI, US
| | - Taekjip Ha
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, US
- Howard Hughes Medical Institute, Baltimore, MD, US
| | - Shigeki Watanabe
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
| | - Jian Liu
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
| |
Collapse
|
3
|
Malagon G, Myeong J, Klyachko VA. Two forms of asynchronous release with distinctive spatiotemporal dynamics in central synapses. eLife 2023; 12:e84041. [PMID: 37166282 PMCID: PMC10174687 DOI: 10.7554/elife.84041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Asynchronous release is a ubiquitous form of neurotransmitter release that persists for tens to hundreds of milliseconds after an action potential. How asynchronous release is organized and regulated at the synaptic active zone (AZ) remains debatable. Using nanoscale-precision imaging of individual release events in rat hippocampal synapses, we observed two spatially distinct subpopulations of asynchronous events, ~75% of which occurred inside the AZ and with a bias towards the AZ center, while ~25% occurred outside of the functionally defined AZ, that is, ectopically. The two asynchronous event subpopulations also differed from each other in temporal properties, with ectopic events occurring at significantly longer time intervals from synchronous events than the asynchronous events inside the AZ. Both forms of asynchronous release did not, to a large extent, utilize the same release sites as synchronous events. The two asynchronous event subpopulations also differ from synchronous events in some aspects of exo-endocytosis coupling, particularly in the contribution from the fast calcium-dependent endocytosis. These results identify two subpopulations of asynchronous release events with distinctive organization and spatiotemporal dynamics.
Collapse
Affiliation(s)
- Gerardo Malagon
- Department of Cell Biology and Physiology, Washington University School of MedicineSt LouisUnited States
| | - Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University School of MedicineSt LouisUnited States
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
4
|
Tiwari A, Hashemiaghdam A, Laramie MA, Maschi D, Haddad T, Stunault MI, Bergom C, Javaheri A, Klyachko V, Ashrafi G. Sirtuin3 ensures the metabolic plasticity of neurotransmission during glucose deprivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531724. [PMID: 36945567 PMCID: PMC10028948 DOI: 10.1101/2023.03.08.531724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Neurotransmission is an energetically expensive process that underlies cognition. During intense electrical activity or dietary restrictions, glucose levels in the brain plummet, forcing neurons to utilize alternative fuels. However, the molecular mechanisms of neuronal metabolic plasticity remain poorly understood. Here, we demonstrate that glucose-deprived neurons activate the CREB and PGC1α transcriptional program that induces the expression of the mitochondrial deacetylase Sirtuin 3 (Sirt3) both in vitro and in vivo . We show that Sirt3 localizes to axonal mitochondria and stimulates mitochondrial oxidative capacity in hippocampal nerve terminals. Sirt3 plays an essential role in sustaining synaptic transmission in the absence of glucose by powering the retrieval of synaptic vesicles after release. These results demonstrate that the transcriptional induction of Sirt3 ensures the metabolic plasticity of synaptic transmission. Highlights Glucose deprivation drives transcriptional reprogramming of neuronal metabolism via CREB and PGC1α. Glucose or food deprivation trigger the neuronal expression of mitochondrial deacetylase sirtuin 3 (Sirt3) both in vitro and in vivo . Sirt3 stimulates oxidative ATP synthesis in nerve terminals.Sirt3 sustains the synaptic vesicle cycle in the absence of glucose.
Collapse
|
5
|
Tang W, Cory B, Lim KL, Fivaz M. The Mood Stabilizer Lithium Slows Down Synaptic Vesicle Cycling at Glutamatergic Synapses. Neuromolecular Med 2023; 25:125-135. [PMID: 36436129 DOI: 10.1007/s12017-022-08729-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 11/28/2022]
Abstract
Lithium is a mood stabilizer broadly used to prevent and treat symptoms of mania and depression in people with bipolar disorder (BD). Little is known, however, about its mode of action. Here, we analyzed the impact of lithium on synaptic vesicle (SV) cycling at presynaptic terminals releasing glutamate, a neurotransmitter previously implicated in BD and other neuropsychiatric conditions. We used the pHluorin-based synaptic tracer vGpH and a fully automated image processing pipeline to quantify the effect of lithium on both SV exocytosis and endocytosis in hippocampal neurons. We found that lithium selectively reduces SV exocytic rates during electrical stimulation, and markedly slows down SV recycling post-stimulation. Analysis of single-bouton responses revealed the existence of functionally distinct excitatory synapses with varying sensitivity to lithium-some terminals show responses similar to untreated cells, while others are markedly impaired in their ability to recycle SVs. While the cause of this heterogeneity is unclear, these data indicate that lithium interacts with the SV machinery and influences glutamate release in a large fraction of excitatory synapses. Together, our findings show that lithium down modulates SV cycling, an effect consistent with clinical reports indicating hyperactivation of glutamate neurotransmission in BD.
Collapse
Affiliation(s)
- Willcyn Tang
- Department of Research, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
- Department of Research, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Bradley Cory
- Stem Cell & Gene Editing Laboratory, Faculty of Science and Engineering, University of Greenwich, Kent, ME4 4TB, UK
| | - Kah-Leong Lim
- Department of Research, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.
- Department of Research, National Neuroscience Institute, Singapore, 308433, Singapore.
- Department of Brain Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Marc Fivaz
- Stem Cell & Gene Editing Laboratory, Faculty of Science and Engineering, University of Greenwich, Kent, ME4 4TB, UK.
- reMYND NV, Bio-Incubator, Gaston Geenslaan 1, Heverlee, 3001, Leuven, Belgium.
| |
Collapse
|
6
|
Gundu C, Arruri VK, Yadav P, Navik U, Kumar A, Amalkar VS, Vikram A, Gaddam RR. Dynamin-Independent Mechanisms of Endocytosis and Receptor Trafficking. Cells 2022; 11:cells11162557. [PMID: 36010634 PMCID: PMC9406725 DOI: 10.3390/cells11162557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Endocytosis is a fundamental mechanism by which cells perform housekeeping functions. It occurs via a variety of mechanisms and involves many regulatory proteins. The GTPase dynamin acts as a “molecular scissor” to form endocytic vesicles and is a critical regulator among the proteins involved in endocytosis. Some GTPases (e.g., Cdc42, arf6, RhoA), membrane proteins (e.g., flotillins, tetraspanins), and secondary messengers (e.g., calcium) mediate dynamin-independent endocytosis. These pathways may be convergent, as multiple pathways exist in a single cell. However, what determines the specific path of endocytosis is complex and challenging to comprehend. This review summarizes the mechanisms of dynamin-independent endocytosis, the involvement of microRNAs, and factors that contribute to the cellular decision about the specific route of endocytosis.
Collapse
Affiliation(s)
- Chayanika Gundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vijay Kumar Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53792, USA
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata 700054, West Bengal, India
| | - Veda Sudhir Amalkar
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ajit Vikram
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
7
|
Li H, Datunashvili M, Reyes RC, Voglmaier SM. Inositol hexakisphosphate kinases differentially regulate trafficking of vesicular glutamate transporters 1 and 2. Front Cell Neurosci 2022; 16:926794. [PMID: 35936490 PMCID: PMC9355605 DOI: 10.3389/fncel.2022.926794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Inositol pyrophosphates have been implicated in cellular signaling and membrane trafficking, including synaptic vesicle (SV) recycling. Inositol hexakisphosphate kinases (IP6Ks) and their product, diphosphoinositol pentakisphosphate (PP-IP5 or IP7), directly and indirectly regulate proteins important in vesicle recycling by the activity-dependent bulk endocytosis pathway (ADBE). In the present study, we show that two isoforms, IP6K1 and IP6K3, are expressed in axons. The role of the kinases in SV recycling are investigated using pharmacologic inhibition, shRNA knockdown, and IP6K1 and IP6K3 knockout mice. Live-cell imaging experiments use optical reporters of SV recycling based on vesicular glutamate transporter isoforms, VGLUT1- and VGLUT2-pHluorins (pH), which recycle differently. VGLUT1-pH recycles by classical AP-2 dependent endocytosis under moderate stimulation conditions, while VGLUT2-pH recycles using AP-1 and AP-3 adaptor proteins as well. Using a short stimulus to release the readily releasable pool (RRP), we show that IP6K1 KO increases exocytosis of both VGLUT1-and VGLUT2-pH, while IP6K3 KO decreases the amount of both transporters in the RRP. In electrophysiological experiments we measure glutamate signaling with short stimuli and under the intense stimulation conditions that trigger bulk endocytosis. IP6K1 KO increases synaptic facilitation and IP6K3 KO decreases facilitation compared to wild type in CA1 hippocampal Schaffer collateral synapses. After intense stimulation, the rate of endocytosis of VGLUT2-pH, but not VGLUT1-pH, is increased by knockout, knockdown, and pharmacologic inhibition of IP6Ks. Thus IP6Ks differentially affect the endocytosis of two SV protein cargos that use different endocytic pathways. However, while IP6K1 KO and IP6K3 KO exert similar effects on endocytosis after stimulation, the isoforms exert different effects on exocytosis earlier in the stimulus and on the early phase of glutamate release. Taken together, the data indicate a role for IP6Ks both in exocytosis early in the stimulation period and in endocytosis, particularly under conditions that may utilize AP-1/3 adaptors.
Collapse
|
8
|
Activity and Cytosolic Na + Regulate Synaptic Vesicle Endocytosis. J Neurosci 2020; 40:6112-6120. [PMID: 32605936 DOI: 10.1523/jneurosci.0119-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022] Open
Abstract
Retrieval of synaptic vesicles via endocytosis is essential for maintaining sustained synaptic transmission, especially for neurons that fire action potentials at high frequencies. However, how neuronal activity regulates synaptic vesicle recycling is largely unknown. Here we report that Na+ substantially accumulated in the mouse calyx of Held terminals of either sex during repetitive high-frequency spiking. Elevated presynaptic Na+ accelerated both slow and rapid forms of endocytosis and facilitated endocytosis overshoot, but did not affect the readily releasable pool size, Ca2+ influx, or exocytosis. To examine whether this facilitation of endocytosis is related to the Na+-dependent vesicular content change, we dialyzed glutamate into the presynaptic cytosol or blocked the vesicular glutamate uptake with bafilomycin and found that the rate of endocytosis was not affected by regulating the vesicular glutamate content. Endocytosis is critically dependent on intracellular Ca2+, and the activity of Na+/Ca2+ exchanger (NCX) may be altered when the Na+ gradient is changed. However, neither NCX inhibitor nor change of extracellular Na+ concentration affected the endocytosis rate. Moreover, two-photon Ca2+ imaging showed that presynaptic Na+ did not affect the action potential-evoked intracellular Ca2+ transient and decay. Therefore, we revealed a novel mechanism of cytosolic Na+ in accelerating vesicle endocytosis. During high-frequency synaptic transmission, when large numbers of synaptic vesicles were fused, the rapid buildup of presynaptic cytosolic Na+ promoted vesicle recycling and sustained synaptic transmission.SIGNIFICANCE STATEMENT High-frequency firing neurons are widely distributed in the CNS. A large number of synaptic vesicles are released during high-frequency synaptic transmission; accordingly, synaptic vesicles need to be recycled rapidly to replenish the vesicle pool. Synaptic vesicle exocytosis and endocytosis are tightly coupled, and their coupling is essential for synaptic function and structural stability. We showed here that intracellular Na+ concentration at the calyx of Held terminal increased rapidly during spike activity and the increased Na+ accelerated endocytosis. Thus, when large numbers of synaptic vesicles are released during high-frequency synaptic transmission, Na+ accumulated in terminals and facilitated vesicle recycling. These findings represent a novel cellular mechanism that supports reliable synaptic transmission at high frequency in the CNS.
Collapse
|
9
|
Protein Kinase C and Calmodulin Serve As Calcium Sensors for Calcium-Stimulated Endocytosis at Synapses. J Neurosci 2019; 39:9478-9490. [PMID: 31628181 DOI: 10.1523/jneurosci.0182-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/27/2019] [Accepted: 10/07/2019] [Indexed: 02/04/2023] Open
Abstract
Calcium influx triggers and facilitates endocytosis, which recycles vesicles and thus sustains synaptic transmission. Despite decades of studies, the underlying calcium sensor remained not well understood. Here, we examined two calcium binding proteins, protein kinase C (PKC) and calmodulin. Whether PKC is involved in endocytosis was unclear; whether calmodulin acts as a calcium sensor for endocytosis was neither clear, although calmodulin involvement in endocytosis had been suggested. We generated PKC (α or β-isoform) and calmodulin (calmodulin 2 gene) knock-out mice of either sex and measured endocytosis with capacitance measurements, pHluorin imaging and electron microscopy. We found that these knock-outs inhibited slow (∼10-30 s) and rapid (<∼3 s) endocytosis at large calyx-type calyces, and inhibited slow endocytosis and bulk endocytosis (forming large endosome-like structures) at small conventional hippocampal synapses, suggesting the involvement of PKC and calmodulin in three most common forms of endocytosis-the slow, rapid and bulk endocytosis. Inhibition of slow endocytosis in PKC or calmodulin 2 knock-out hippocampal synapses was rescued by overexpressing wild-type PKC or calmodulin, but not calcium-binding-deficient PKC or calmodulin mutant, respectively, suggesting that calcium stimulates endocytosis by binding with its calcium sensor PKC and calmodulin. PKC and calmodulin 2 knock-out inhibited calcium-dependent vesicle mobilization to the readily releasable pool, suggesting that PKC and calmodulin may mediate calcium-dependent facilitation of vesicle mobilization. These findings shed light on the molecular signaling link among calcium, endocytosis and vesicle mobilization that are crucial in maintaining synaptic transmission and neuronal network activity.SIGNIFICANCE STATEMENT Vesicle fusion releases neurotransmitters to mediate synaptic transmission. To sustain synaptic transmission, fused vesicles must be retrieved via endocytosis. Accumulating evidence suggests that calcium influx triggers synaptic vesicle endocytosis. However, how calcium triggers endocytosis is not well understood. Using genetic tools together with capacitance measurements, optical imaging and electron microscopy, we identified two calcium sensors, including protein kinase C (α and β isoforms) and calmodulin, for the most commonly observed forms of endocytosis: slow, rapid, and bulk. We also found that these two proteins are involved in calcium-dependent vesicle mobilization to the readily releasable pool. These results provide the molecular signaling link among calcium, endocytosis, and vesicle mobilization that are essential in sustaining synaptic transmission and neuronal network activity.
Collapse
|
10
|
Watanabe S, Mamer LE, Raychaudhuri S, Luvsanjav D, Eisen J, Trimbuch T, Söhl-Kielczynski B, Fenske P, Milosevic I, Rosenmund C, Jorgensen EM. Synaptojanin and Endophilin Mediate Neck Formation during Ultrafast Endocytosis. Neuron 2019; 98:1184-1197.e6. [PMID: 29953872 DOI: 10.1016/j.neuron.2018.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/12/2018] [Accepted: 06/04/2018] [Indexed: 11/19/2022]
Abstract
Ultrafast endocytosis generates vesicles from the plasma membrane as quickly as 50 ms in hippocampal neurons following synaptic vesicle fusion. The molecular mechanism underlying the rapid maturation of these endocytic pits is not known. Here we demonstrate that synaptojanin-1, and its partner endophilin-A, function in ultrafast endocytosis. In the absence of synaptojanin or endophilin, the membrane is rapidly invaginated, but pits do not become constricted at the base. The 5-phosphatase activity of synaptojanin is involved in formation of the neck, but 4-phosphatase is not required. Nevertheless, these pits are eventually cleaved into vesicles; within a 30-s interval, synaptic endosomes form and are resolved by clathrin-mediated budding. Then synaptojanin and endophilin function at a second step to aid with the removal of clathrin coats from the regenerated vesicles. These data together suggest that synaptojanin and endophilin can mediate membrane remodeling on a millisecond timescale during ultrafast endocytosis.
Collapse
Affiliation(s)
- Shigeki Watanabe
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Lauren Elizabeth Mamer
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany; The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Delgermaa Luvsanjav
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Julia Eisen
- Barnard College of Columbia University, New York, NY, USA
| | - Thorsten Trimbuch
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Berit Söhl-Kielczynski
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pascal Fenske
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ira Milosevic
- Synaptic Vesicle Dynamics, European Neuroscience Institute, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Christian Rosenmund
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Erik M Jorgensen
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840, USA.
| |
Collapse
|
11
|
Krisztin-Péva B, Mihály A, Tóth Z. Differential expression of the c-fos protein and synaptophysin in zebrin II positive and zebrin II negative cerebellar cortical areas in 4-aminopyridine seizures. Acta Neurobiol Exp (Wars) 2019. [DOI: 10.21307/ane-2019-022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Gan Q, Watanabe S. Synaptic Vesicle Endocytosis in Different Model Systems. Front Cell Neurosci 2018; 12:171. [PMID: 30002619 PMCID: PMC6031744 DOI: 10.3389/fncel.2018.00171] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/01/2018] [Indexed: 11/13/2022] Open
Abstract
Neurotransmission in complex animals depends on a choir of functionally distinct synapses releasing neurotransmitters in a highly coordinated manner. During synaptic signaling, vesicles fuse with the plasma membrane to release their contents. The rate of vesicle fusion is high and can exceed the rate at which synaptic vesicles can be re-supplied by distant sources. Thus, local compensatory endocytosis is needed to replenish the synaptic vesicle pools. Over the last four decades, various experimental methods and model systems have been used to study the cellular and molecular mechanisms underlying synaptic vesicle cycle. Clathrin-mediated endocytosis is thought to be the predominant mechanism for synaptic vesicle recycling. However, recent studies suggest significant contribution from other modes of endocytosis, including fast compensatory endocytosis, activity-dependent bulk endocytosis, ultrafast endocytosis, as well as kiss-and-run. Currently, it is not clear whether a universal model of vesicle recycling exist for all types of synapses. It is possible that each synapse type employs a particular mode of endocytosis. Alternatively, multiple modes of endocytosis operate at the same synapse, and the synapse toggles between different modes depending on its activity level. Here we compile review and research articles based on well-characterized model systems: frog neuromuscular junctions, C. elegans neuromuscular junctions, Drosophila neuromuscular junctions, lamprey reticulospinal giant axons, goldfish retinal ribbon synapses, the calyx of Held, and rodent hippocampal synapses. We will compare these systems in terms of their known modes and kinetics of synaptic vesicle endocytosis, as well as the underlying molecular machineries. We will also provide the future development of this field.
Collapse
Affiliation(s)
- Quan Gan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Li H, Santos MS, Park CK, Dobry Y, Voglmaier SM. VGLUT2 Trafficking Is Differentially Regulated by Adaptor Proteins AP-1 and AP-3. Front Cell Neurosci 2017; 11:324. [PMID: 29123471 PMCID: PMC5662623 DOI: 10.3389/fncel.2017.00324] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/28/2017] [Indexed: 01/25/2023] Open
Abstract
Release of the major excitatory neurotransmitter glutamate by synaptic vesicle exocytosis depends on glutamate loading into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The two principal isoforms, VGLUT1 and 2, exhibit a complementary pattern of expression in adult brain that broadly distinguishes cortical (VGLUT1) and subcortical (VGLUT2) systems, and correlates with distinct physiological properties in synapses expressing these isoforms. Differential trafficking of VGLUT1 and 2 has been suggested to underlie their functional diversity. Increasing evidence suggests individual synaptic vesicle proteins use specific sorting signals to engage specialized biochemical mechanisms to regulate their recycling. We observed that VGLUT2 recycles differently in response to high frequency stimulation than VGLUT1. Here we further explore the trafficking of VGLUT2 using a pHluorin-based reporter, VGLUT2-pH. VGLUT2-pH exhibits slower rates of both exocytosis and endocytosis than VGLUT1-pH. VGLUT2-pH recycling is slower than VGLUT1-pH in both hippocampal neurons, which endogenously express mostly VGLUT1, and thalamic neurons, which endogenously express mostly VGLUT2, indicating that protein identity, not synaptic vesicle membrane or neuronal cell type, controls sorting. We characterize sorting signals in the C-terminal dileucine-like motif, which plays a crucial role in VGLUT2 trafficking. Disruption of this motif abolishes synaptic targeting of VGLUT2 and essentially eliminates endocytosis of the transporter. Mutational and biochemical analysis demonstrates that clathrin adaptor proteins (APs) interact with VGLUT2 at the dileucine-like motif. VGLUT2 interacts with AP-2, a well-studied adaptor protein for clathrin mediated endocytosis. In addition, VGLUT2 also interacts with the alternate adaptors, AP-1 and AP-3. VGLUT2 relies on distinct recycling mechanisms from VGLUT1. Abrogation of these differences by pharmacological and molecular inhibition reveals that these mechanisms are dependent on the adaptor proteins AP-1 and AP-3. Further, shRNA-mediated knockdown reveals differential roles for AP-1 and AP-3 in VGLUT2 recycling.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Magda S Santos
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Chihyung K Park
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Yuriy Dobry
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Susan M Voglmaier
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
14
|
Villarreal S, Lee SH, Wu LG. Measuring Synaptic Vesicle Endocytosis in Cultured Hippocampal Neurons. J Vis Exp 2017. [PMID: 28892038 DOI: 10.3791/55862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During endocytosis, fused synaptic vesicles are retrieved at nerve terminals, allowing for vesicle recycling and thus the maintenance of synaptic transmission during repetitive nerve firing. Impaired endocytosis in pathological conditions leads to decreases in synaptic strength and brain functions. Here, we describe methods used to measure synaptic vesicle endocytosis at the mammalian hippocampal synapse in neuronal culture. We monitored synaptic vesicle protein endocytosis by fusing a synaptic vesicular membrane protein, including synaptophysin and VAMP2/synaptobrevin, at the vesicular lumenal side, with pHluorin, a pH-sensitive green fluorescent protein that increases its fluorescence intensity as the pH increases. During exocytosis, vesicular lumen pH increases, whereas during endocytosis vesicular lumen pH is re-acidified. Thus, an increase of pHluorin fluorescence intensity indicates fusion, whereas a decrease indicates endocytosis of the labelled synaptic vesicle protein. In addition to using the pHluorin imaging method to record endocytosis, we monitored vesicular membrane endocytosis by electron microscopy (EM) measurements of Horseradish peroxidase (HRP) uptake by vesicles. Finally, we monitored the formation of nerve terminal membrane pits at various times after high potassium-induced depolarization. The time course of HRP uptake and membrane pit formation indicates the time course of endocytosis.
Collapse
Affiliation(s)
| | - Sung Hoon Lee
- National Institute of Neurological Disorders and Stroke; College of Pharmacy, Chung-ang University;
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke
| |
Collapse
|
15
|
Xie Z, Long J, Liu J, Chai Z, Kang X, Wang C. Molecular Mechanisms for the Coupling of Endocytosis to Exocytosis in Neurons. Front Mol Neurosci 2017; 10:47. [PMID: 28348516 PMCID: PMC5346583 DOI: 10.3389/fnmol.2017.00047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/10/2017] [Indexed: 11/13/2022] Open
Abstract
Neuronal communication and brain function mainly depend on the fundamental biological events of neurotransmission, including the exocytosis of presynaptic vesicles (SVs) for neurotransmitter release and the subsequent endocytosis for SV retrieval. Neurotransmitters are released through the Ca2+- and SNARE-dependent fusion of SVs with the presynaptic plasma membrane. Following exocytosis, endocytosis occurs immediately to retrieve SV membrane and fusion machinery for local recycling and thus maintain the homeostasis of synaptic structure and sustained neurotransmission. Apart from the general endocytic machinery, recent studies have also revealed the involvement of SNARE proteins (synaptobrevin, SNAP25 and syntaxin), synaptophysin, Ca2+/calmodulin, and members of the synaptotagmin protein family (Syt1, Syt4, Syt7 and Syt11) in the balance and tight coupling of exo-endocytosis in neurons. Here, we provide an overview of recent progress in understanding how these neuron-specific adaptors coordinate to ensure precise and efficient endocytosis during neurotransmission.
Collapse
Affiliation(s)
- Zhenli Xie
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China; State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Zuying Chai
- State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| | - Xinjiang Kang
- State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China; College of Life Sciences, Liaocheng UniversityLiaocheng, China; Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical UniversityLuzhou, China
| | - Changhe Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China; Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China; State Key Laboratory of Membrane Biology, Peking UniversityBeijing, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| |
Collapse
|
16
|
GLUT4 Mobilization Supports Energetic Demands of Active Synapses. Neuron 2017; 93:606-615.e3. [PMID: 28111082 DOI: 10.1016/j.neuron.2016.12.020] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/08/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022]
Abstract
The brain is highly sensitive to proper fuel availability as evidenced by the rapid decline in neuronal function during ischemic attacks and acute severe hypoglycemia. We previously showed that sustained presynaptic function requires activity-driven glycolysis. Here, we provide strong evidence that during action potential (AP) firing, nerve terminals rely on the glucose transporter GLUT4 as a glycolytic regulatory system to meet the activity-driven increase in energy demands. Activity at synapses triggers insertion of GLUT4 into the axonal plasma membrane driven by activation of the metabolic sensor AMP kinase. Furthermore, we show that genetic ablation of GLUT4 leads to an arrest of synaptic vesicle recycling during sustained AP firing, similar to what is observed during acute glucose deprivation. The reliance on this biochemical regulatory system for "exercising" synapses is reminiscent of that occurring in exercising muscle to sustain cellular function and identifies nerve terminals as critical sites of proper metabolic control.
Collapse
|
17
|
Epsin1 modulates synaptic vesicle retrieval capacity at CNS synapses. Sci Rep 2016; 6:31997. [PMID: 27557559 PMCID: PMC4997357 DOI: 10.1038/srep31997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/01/2016] [Indexed: 11/08/2022] Open
Abstract
Synaptic vesicle retrieval is an essential process for continuous maintenance of neural information flow after synaptic transmission. Epsin1, originally identified as an EPS15-interacting protein, is a major component of clathrin-mediated endocytosis. However, the role of Epsin1 in synaptic vesicle endocytosis at CNS synapses remains elusive. Here, we showed significantly altered synaptic vesicle endocytosis in neurons transfected with shRNA targeting Epsin1 during/after neural activity. Endocytosis was effectively restored by introducing shRNA-insensitive Epsin1 into Epsin1-depleted neurons. Domain studies performed on neurons in which domain deletion mutants of Epsin1 were introduced after Epsin1 knockdown revealed that ENTH, CLAP, and NPFs are essential for synaptic vesicle endocytosis, whereas UIMs are not. Strikingly, the efficacy of the rate of synaptic vesicle retrieval (the "endocytic capacity") was significantly decreased in the absence of Epsin1. Thus, Epsin1 is required for proper synaptic vesicle retrieval and modulates the endocytic capacity of synaptic vesicles.
Collapse
|
18
|
Cano R, Tabares L. The Active and Periactive Zone Organization and the Functional Properties of Small and Large Synapses. Front Synaptic Neurosci 2016; 8:12. [PMID: 27252645 PMCID: PMC4877509 DOI: 10.3389/fnsyn.2016.00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/09/2016] [Indexed: 12/29/2022] Open
Abstract
The arrival of an action potential (AP) at a synaptic terminal elicits highly synchronized quanta release. Repetitive APs produce successive synaptic vesicle (SV) fusions that require management of spent SV components in the presynaptic membrane with minimum disturbance of the secretory apparatus. To this end, the synaptic machinery is structured accordingly to the strength and the range of frequencies at which each particular synapse operates. This results in variations in the number and dimension of Active Zones (AZs), amount and distribution of SVs, and probably, in the primary endocytic mechanisms they use. Understanding better how these structural differences determine the functional response in each case has been a matter of long-term interest. Here we review the structural and functional properties of three distinct types of synapses: the neuromuscular junction (NMJ; a giant, highly reliable synapse that must exocytose a large number of quanta with each stimulus to guarantee excitation of the postsynaptic cell), the hippocampal excitatory small synapse (which most often has a single release site and a relatively small pool of vesicles), and the cerebellar mossy fiber-granule cell synapse (which possesses hundreds of release sites and is able to translocate, dock and prime vesicles at high speed). We will focus on how the release apparatus is organized in each case, the relative amount of vesicular membrane that needs to be accommodated within the periAZ upon stimulation, the different mechanisms for retrieving the excess of membrane and finally, how these factors may influence the functioning of the release sites.
Collapse
Affiliation(s)
- Raquel Cano
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville Seville, Spain
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville Seville, Spain
| |
Collapse
|
19
|
Li L, Wu X, Yue HY, Zhu YC, Xu J. Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons. J Neurochem 2016; 138:60-73. [PMID: 27062289 DOI: 10.1111/jnc.13635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/27/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
At nerve terminals, endocytosis efficiently recycles vesicle membrane to maintain synaptic transmission under different levels of neuronal activity. Ca(2+) and its downstream signal pathways are critical for the activity-dependent regulation of endocytosis. An activity- and Ca(2+) -dependent kinase, myosin light chain kinase (MLCK) has been reported to regulate vesicle mobilization, vesicle cycling, and motility in different synapses, but whether it has a general contribution to regulation of endocytosis at nerve terminals remains unknown. We investigated this issue at rat hippocampal boutons by imaging vesicle endocytosis as the real-time retrieval of vesicular synaptophysin tagged with a pH-sensitive green fluorescence protein. We found that endocytosis induced by 200 action potentials (5-40 Hz) was slowed by acute inhibition of MLCK and down-regulation of MLCK with RNA interference, while the total amount of vesicle exocytosis and somatic Ca(2+) channel current did not change with MLCK down-regulation. Acute inhibition of myosin II similarly impaired endocytosis. Furthermore, down-regulation of MLCK prevented depolarization-induced phosphorylation of myosin light chain, an effect shared by blockers of Ca(2+) channels and calmodulin. These results suggest that MLCK facilitates vesicle endocytosis through activity-dependent phosphorylation of myosin downstream of Ca(2+) /calmodulin, probably as a widely existing mechanism among synapses. Our study suggests that MLCK is an important activity-dependent regulator of vesicle recycling in hippocampal neurons, which are critical for learning and memory. The kinetics of vesicle membrane endocytosis at nerve terminals has long been known to depend on activity and Ca(2+) . This study provides evidence suggesting that myosin light chain kinase increases endocytosis efficiency at hippocampal neurons by mediating Ca(2+) /calmodulin-dependent phosphorylation of myosin. The authors propose that this signal cascade may serve as a common pathway contributing to the activity-dependent regulation of vesicle endocytosis at synapses.
Collapse
Affiliation(s)
- Lin Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | - Xiaomei Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA.,Department of Neurochemistry, Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu, China
| | - Hai-Yuan Yue
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | - Yong-Chuan Zhu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | - Jianhua Xu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA.,Department of Neurology, Medical College of Georgia, Augusta, Georgia, USA
| |
Collapse
|
20
|
Fast, Temperature-Sensitive and Clathrin-Independent Endocytosis at Central Synapses. Neuron 2016; 90:492-8. [PMID: 27146271 DOI: 10.1016/j.neuron.2016.03.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/29/2016] [Accepted: 03/15/2016] [Indexed: 11/24/2022]
Abstract
The fusion of neurotransmitter-filled vesicles during synaptic transmission is balanced by endocytotic membrane retrieval. Despite extensive research, the speed and mechanisms of synaptic vesicle endocytosis have remained controversial. Here, we establish low-noise time-resolved membrane capacitance measurements that allow monitoring changes in surface membrane area elicited by single action potentials and stronger stimuli with high-temporal resolution at physiological temperature in individual bona-fide mature central synapses. We show that single action potentials trigger very rapid endocytosis, retrieving presynaptic membrane with a time constant of 470 ms. This fast endocytosis is independent of clathrin but mediated by dynamin and actin. In contrast, stronger stimuli evoke a slower mode of endocytosis that is clathrin, dynamin, and actin dependent. Furthermore, the speed of endocytosis is highly temperature dependent with a Q10 of ∼3.5. These results demonstrate that distinct molecular modes of endocytosis with markedly different kinetics operate at central synapses.
Collapse
|
21
|
Ackermann F, Waites CL, Garner CC. Presynaptic active zones in invertebrates and vertebrates. EMBO Rep 2015; 16:923-38. [PMID: 26160654 DOI: 10.15252/embr.201540434] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/19/2015] [Indexed: 11/09/2022] Open
Abstract
The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage-gated Ca(2+) channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses.
Collapse
Affiliation(s)
- Frauke Ackermann
- German Center for Neurodegenerative Disease, Charité Medical University, Berlin, Germany
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Craig C Garner
- German Center for Neurodegenerative Disease, Charité Medical University, Berlin, Germany
| |
Collapse
|
22
|
Linares-Clemente P, Rozas JL, Mircheski J, García-Junco-Clemente P, Martínez-López JA, Nieto-González JL, Vázquez ME, Pintado CO, Fernández-Chacón R. Different dynamin blockers interfere with distinct phases of synaptic endocytosis during stimulation in motoneurones. J Physiol 2015; 593:2867-88. [PMID: 25981717 DOI: 10.1113/jp270112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 04/29/2015] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS Neurotransmitter release requires a tight coupling between synaptic vesicle exocytosis and endocytosis with dynamin being a key protein in that process. We used imaging techniques to examine the time course of endocytosis at mouse motor nerve terminals expressing synaptopHluorin, a genetically encoded reporter of the synaptic vesicle cycle. We separated two sequential phases of endocytosis taking place during the stimulation train: early and late endocytosis. Freshly released synaptic vesicle proteins are preferentially retrieved during the early phase, which is very sensitive to dynasore, an inhibitor of dynamin GTPase activity. Synaptic vesicle proteins pre-existing at the plasma membrane before the stimulation are preferentially retrieved during the late phase, which is very sensitive to myristyl trimethyl ammonium bromide (MitMAB), an inhibitor of the dynamin-phospholipid interaction. ABSTRACT Synaptic endocytosis is essential at nerve terminals to maintain neurotransmitter release by exocytosis. Here, at the neuromuscular junction of synaptopHluorin (spH) transgenic mice, we have used imaging to study exo- and endocytosis occurring simultaneously during nerve stimulation. We observed two endocytosis components, which occur sequentially during stimulation. The early component of endocytosis apparently internalizes spH molecules freshly exocytosed. This component was sensitive to dynasore, a blocker of dynamin 1 GTPase activity. In contrast, this early component was resistant to myristyl trimethyl ammonium bromide (MiTMAB), a competitive agent that blocks dynamin binding to phospholipid membranes. The late component of endocytosis is likely to internalize spH molecules that pre-exist at the plasma membrane before stimulation starts. This component was blocked by MiTMAB, perhaps by impairing the binding of dynamin or other key endocytic proteins to phospholipid membranes. Our study suggests the co-existence of two sequential synaptic endocytosis steps taking place during stimulation that are susceptible to pharmacological dissection: an initial step, preferentially sensitive to dynasore, that internalizes vesicular components immediately after they are released, and a MiTMAB-sensitive step that internalizes vesicular components pre-existing at the plasma membrane surface. In addition, we report that post-stimulus endocytosis also has several components with different sensitivities to dynasore and MiTMAB.
Collapse
Affiliation(s)
- Pedro Linares-Clemente
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| | - José L Rozas
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| | - Josif Mircheski
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| | - Pablo García-Junco-Clemente
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| | - José A Martínez-López
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| | | | - M Eugenio Vázquez
- Departamento Química Orgánica y Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - C Oscar Pintado
- Centro Producción y Experimentación Animal, Universidad de Sevilla, Seville, Spain
| | - Rafael Fernández-Chacón
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| |
Collapse
|
23
|
Abstract
Ca(2+)-dependent synaptic vesicle recycling is essential for structural homeostasis of synapses and maintenance of neurotransmission. Although, the executive role of intrasynaptic Ca(2+) transients in synaptic vesicle exocytosis is well established, identifying the exact role of Ca(2+) in endocytosis has been difficult. In some studies, Ca(2+) has been suggested as an essential trigger required to initiate synaptic vesicle retrieval, whereas others manipulating synaptic Ca(2+) concentrations reported a modulatory role for Ca(2+) leading to inhibition or acceleration of endocytosis. Molecular studies of synaptic vesicle endocytosis, on the other hand, have consistently focused on the roles of Ca(2+)-calmodulin dependent phosphatase calcineurin and synaptic vesicle protein synaptotagmin as potential Ca(2+) sensors for endocytosis. Most studies probing the role of Ca(2+) in endocytosis have relied on measurements of synaptic vesicle retrieval after strong stimulation. Strong stimulation paradigms elicit fusion and retrieval of multiple synaptic vesicles and therefore can be affected by several factors besides the kinetics and duration of Ca(2+) signals that include the number of exocytosed vesicles and accumulation of released neurotransmitters thus altering fusion and retrieval processes indirectly via retrograde signaling. Studies monitoring single synaptic vesicle endocytosis may help resolve this conundrum as in these settings the impact of Ca(2+) on synaptic fusion probability can be uncoupled from its putative role on synaptic vesicle retrieval. Future experiments using these single vesicle approaches will help dissect the specific role(s) of Ca(2+) and its sensors in synaptic vesicle endocytosis.
Collapse
Affiliation(s)
- Jeremy Leitz
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ege T Kavalali
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
24
|
Morton A, Marland JRK, Cousin MA. Synaptic vesicle exocytosis and increased cytosolic calcium are both necessary but not sufficient for activity-dependent bulk endocytosis. J Neurochem 2015; 134:405-15. [PMID: 25913068 PMCID: PMC4950031 DOI: 10.1111/jnc.13132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 01/22/2023]
Abstract
Activity‐dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) endocytosis mode in central nerve terminals during intense neuronal activity. By definition this mode is triggered by neuronal activity; however, key questions regarding its mechanism of activation remain unaddressed. To determine the basic requirements for ADBE triggering in central nerve terminals, we decoupled SV fusion events from activity‐dependent calcium influx using either clostridial neurotoxins or buffering of intracellular calcium. ADBE was monitored both optically and morphologically by observing uptake of the fluid phase markers tetramethylrhodamine‐dextran and horse radish peroxidase respectively. Ablation of SV fusion with tetanus toxin resulted in the arrest of ADBE, but had no effect on other calcium‐dependent events such as activity‐dependent dynamin I dephosphorylation, indicating that SV exocytosis is necessary for triggering. Furthermore, the calcium chelator EGTA abolished ADBE while leaving SV exocytosis intact, demonstrating that ADBE is triggered by intracellular free calcium increases outside the active zone. Activity‐dependent dynamin I dephosphorylation was also arrested in EGTA‐treated neurons, consistent with its proposed role in triggering ADBE. Thus, SV fusion and increased cytoplasmic free calcium are both necessary but not sufficient individually to trigger ADBE.![]() Activity‐dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) endocytosis mode in central nerve terminals during intense neuronal activity. To determine the minimal requirements for ADBE triggering, we decoupled SV fusion events from activity‐dependent calcium influx using either clostridial neurotoxins or buffering of intracellular calcium. We found that SV fusion and increased cytoplasmic free calcium are both necessary but not sufficient to trigger ADBE.
Collapse
Affiliation(s)
- Andrew Morton
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland
| | - Jamie R K Marland
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland
| | - Michael A Cousin
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland
| |
Collapse
|
25
|
Midorikawa M, Okamoto Y, Sakaba T. Developmental changes in Ca2+ channel subtypes regulating endocytosis at the calyx of Held. J Physiol 2014; 592:3495-510. [PMID: 24907302 DOI: 10.1113/jphysiol.2014.273243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
At the mammalian central synapse, Ca(2+) influx through Ca(2+) channels triggers neurotransmitter release by exocytosis of synaptic vesicles, which fuse with the presynaptic membrane and are subsequently retrieved by endocytosis. At the calyx of Held terminal, P/Q-type Ca(2+) channels mainly mediate exocytosis, while N- and R-type channels have a minor role in young terminals (postnatal days 8-11). The role of each Ca(2+) channel subtype in endocytosis remains to be elucidated; therefore, we examined the role of each type of Ca(2+) channel in endocytosis, by using whole-cell patch-clamp recordings in conjunction with capacitance measurement techniques. We found that at the young calyx terminal, when R-type Ca(2+) channels were blocked, the slow mode of endocytosis was further slowed, while blocking of either P/Q- or N-type Ca(2+) channels had no major effect. In more mature terminals (postnatal days 14-17), the slow mode of endocytosis was mainly triggered by P/Q-type Ca(2+) channels, suggesting developmental changes in the regulation of the slow mode of endocytosis by different Ca(2+) channel subtypes. In contrast, a fast mode of endocytosis was observed after strong stimulation in young terminals that was mediated mainly by P/Q-type, but not R- or N-type Ca(2+) channels. These results suggest that different types of Ca(2+) channels regulate the two different modes of endocytosis. The results may also suggest that exo- and endocytosis are regulated independently at different sites in young animals but are more tightly coupled in older animals, allowing more efficient synaptic vesicle cycling adapted for fast signalling.
Collapse
Affiliation(s)
| | - Yuji Okamoto
- Graduate School of Brain Science, Doshisha University, Kyoto, 6190225, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyoto, 6190225, Japan
| |
Collapse
|
26
|
Rangaraju V, Calloway N, Ryan TA. Activity-driven local ATP synthesis is required for synaptic function. Cell 2014; 156:825-35. [PMID: 24529383 DOI: 10.1016/j.cell.2013.12.042] [Citation(s) in RCA: 528] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/01/2013] [Accepted: 12/31/2013] [Indexed: 01/20/2023]
Abstract
Cognitive function is tightly related to metabolic state, but the locus of this control is not well understood. Synapses are thought to present large ATP demands; however, it is unclear how fuel availability and electrical activity impact synaptic ATP levels and how ATP availability controls synaptic function. We developed a quantitative genetically encoded optical reporter of presynaptic ATP, Syn-ATP, and find that electrical activity imposes large metabolic demands that are met via activity-driven control of both glycolysis and mitochondrial function. We discovered that the primary source of activity-driven metabolic demand is the synaptic vesicle cycle. In metabolically intact synapses, activity-driven ATP synthesis is well matched to the energetic needs of synaptic function, which, at steady state, results in ∼10(6) free ATPs per nerve terminal. Despite this large reservoir of ATP, we find that several key aspects of presynaptic function are severely impaired following even brief interruptions in activity-stimulated ATP synthesis.
Collapse
Affiliation(s)
- Vidhya Rangaraju
- Rockefeller/Sloan-Kettering/Weill Cornell Tri-Institutional Training Program in Chemical Biology, New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nathaniel Calloway
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
27
|
Abstract
A large number of studies suggest that calcium triggers and accelerates vesicle endocytosis at many synapses and non-neuronal secretory cells. However, many studies show that prolonging the duration of the stimulation train, which induces more calcium influx, slows down endocytosis; and several studies suggest that instead of triggering endocytosis, calcium actually inhibits endocytosis. Here we addressed this apparent conflict at a large nerve terminal, the calyx of Held in rat brainstem, in which recent studies suggest that transient calcium increase up to tens of micromolar concentration at the micro/nano domain triggers endocytosis. By dialyzing 0-1 μM calcium into the calyx via a whole-cell pipette, we found that slow endocytosis was inhibited by calcium dialysis in a concentration-dependent manner. Thus, prolonged, small, and global calcium increase inhibits endocytosis, whereas transient and large calcium increase at the micro/nano domain triggers endocytosis and facilitates endocytosis. This yin and yang effect of calcium may reconcile apparent conflicts regarding whether calcium accelerates or inhibits endocytosis. Whether endocytosis is fast or slow depends on the net outcome between the yin and yang effect of calcium.
Collapse
|
28
|
Wang XS, Peng CZ, Cai WJ, Xia J, Jin D, Dai Y, Luo XG, Klyachko VA, Deng PY. Activity-dependent regulation of release probability at excitatory hippocampal synapses: a crucial role of fragile X mental retardation protein in neurotransmission. Eur J Neurosci 2014; 39:1602-12. [PMID: 24646437 DOI: 10.1111/ejn.12546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/21/2014] [Accepted: 02/03/2014] [Indexed: 01/23/2023]
Abstract
Transcriptional silencing of the Fmr1 gene encoding fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), the most common form of inherited intellectual disability and the leading genetic cause of autism. FMRP has been suggested to play important roles in regulating neurotransmission and short-term synaptic plasticity at excitatory hippocampal and cortical synapses. However, the origins and mechanisms of these FMRP actions remain incompletely understood, and the role of FMRP in regulating synaptic release probability and presynaptic function remains debated. Here we used variance-mean analysis and peak-scaled nonstationary variance analysis to examine changes in both presynaptic and postsynaptic parameters during repetitive activity at excitatory CA3-CA1 hippocampal synapses in a mouse model of FXS. Our analyses revealed that loss of FMRP did not affect the basal release probability or basal synaptic transmission, but caused an abnormally elevated release probability specifically during repetitive activity. These abnormalities were not accompanied by changes in excitatory postsynaptic current kinetics, quantal size or postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor conductance. Our results thus indicate that FMRP regulates neurotransmission at excitatory hippocampal synapses specifically during repetitive activity via modulation of release probability in a presynaptic manner. Our study suggests that FMRP function in regulating neurotransmitter release is an activity-dependent phenomenon that may contribute to the pathophysiology of FXS.
Collapse
Affiliation(s)
- Xiao-Sheng Wang
- Department of Histology and Embryology, Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dopamine transporter endocytic trafficking in striatal dopaminergic neurons: differential dependence on dynamin and the actin cytoskeleton. J Neurosci 2013; 33:17836-46. [PMID: 24198373 DOI: 10.1523/jneurosci.3284-13.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dopaminergic signaling profoundly impacts rewarding behaviors, movement, and executive function. The presynaptic dopamine (DA) transporter (DAT) recaptures released DA, thereby limiting synaptic DA availability and maintaining dopaminergic tone. DAT constitutively internalizes and PKC activation rapidly accelerates DAT endocytosis, resulting in DAT surface loss. Longstanding evidence supports PKC-stimulated DAT trafficking in heterologous expression studies. However, PKC-stimulated DAT internalization is not readily observed in cultured dopaminergic neurons. Moreover, conflicting reports implicate both classic and nonclassic endocytic mechanisms mediating DAT trafficking. Prior DAT trafficking studies relied primarily upon chronic gene disruption and dominant-negative protein expression, or were performed in cell lines and cultured neurons, yielding results difficult to translate to adult dopaminergic neurons. Here, we use newly described dynamin inhibitors to test whether constitutive and PKC-stimulated DAT internalization are dynamin-dependent in adult dopaminergic neurons. Ex vivo biotinylation studies in mouse striatal slices demonstrate that acute PKC activation drives native DAT surface loss, and that surface DAT surprisingly partitions between endocytic-willing and endocytic-resistant populations. Acute dynamin inhibition reveals that constitutive DAT internalization is dynamin-independent, whereas PKC-stimulated DAT internalization is dynamin-dependent. Moreover, total internal reflection fluorescence microscopy experiments demonstrate that constitutive DAT internalization occurs equivalently from lipid raft and nonraft microdomains, whereas PKC-stimulated DAT internalization arises exclusively from lipid rafts. Finally, DAT endocytic recycling relies on a dynamin-dependent mechanism that acts in concert with the actin cytoskeleton. These studies are the first comprehensive investigation of native DAT trafficking in ex vivo adult neurons, and reveal that DAT surface dynamics are governed by complex multimodal mechanisms.
Collapse
|
30
|
Wu LG, Hamid E, Shin W, Chiang HC. Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 2013; 76:301-31. [PMID: 24274740 DOI: 10.1146/annurev-physiol-021113-170305] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vesicle exocytosis releases content to mediate many biological events, including synaptic transmission essential for brain functions. Following exocytosis, endocytosis is initiated to retrieve exocytosed vesicles within seconds to minutes. Decades of studies in secretory cells reveal three exocytosis modes coupled to three endocytosis modes: (a) full-collapse fusion, in which vesicles collapse into the plasma membrane, followed by classical endocytosis involving membrane invagination and vesicle reformation; (b) kiss-and-run, in which the fusion pore opens and closes; and (c) compound exocytosis, which involves exocytosis of giant vesicles formed via vesicle-vesicle fusion, followed by bulk endocytosis that retrieves giant vesicles. Here we review these exo- and endocytosis modes and their roles in regulating quantal size and synaptic strength, generating synaptic plasticity, maintaining exocytosis, and clearing release sites for vesicle replenishment. Furthermore, we highlight recent progress in understanding how vesicle endocytosis is initiated and is thus coupled to exocytosis. The emerging model is that calcium influx via voltage-dependent calcium channels at the calcium microdomain triggers endocytosis and controls endocytosis rate; calmodulin and synaptotagmin are the calcium sensors; and the exocytosis machinery, including SNARE proteins (synaptobrevin, SNAP25, and syntaxin), is needed to coinitiate endocytosis, likely to control the amount of endocytosis.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892; ,
| | | | | | | |
Collapse
|
31
|
Morgan JR, Comstra HS, Cohen M, Faundez V. Presynaptic membrane retrieval and endosome biology: defining molecularly heterogeneous synaptic vesicles. Cold Spring Harb Perspect Biol 2013; 5:a016915. [PMID: 24086045 DOI: 10.1101/cshperspect.a016915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The release and uptake of neurotransmitters by synaptic vesicles is a tightly controlled process that occurs in response to diverse stimuli at morphologically disparate synapses. To meet these architectural and functional synaptic demands, it follows that there should be diversity in the mechanisms that control their secretion and retrieval and possibly in the composition of synaptic vesicles within the same terminal. Here we pay particular attention to areas where such diversity is generated, such as the variance in exocytosis/endocytosis coupling, SNAREs defining functionally diverse synaptic vesicle populations and the adaptor-dependent sorting machineries capable of generating vesicle diversity. We argue that there are various synaptic vesicle recycling pathways at any given synapse and discuss several lines of evidence that support the role of the endosome in synaptic vesicle recycling.
Collapse
Affiliation(s)
- Jennifer R Morgan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | | | | | | |
Collapse
|
32
|
Abdrakhmanov M, Petrov A, Grigoryev P, Zefirov A. Depolarization-induced calcium-independent synaptic vesicle exo- and endocytosis at frog motor nerve terminals. Acta Naturae 2013; 5:77-82. [PMID: 24455186 PMCID: PMC3890992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The transmitter release and synaptic vesicle exo- and endocytosis induced by constant current depolarization of nerve terminals were studied by microelectode extracellular recording of miniature endplate currents and fluorescent microscopy (FM 1-43 styryl dye). Depolarization of the plasma membrane of nerve terminals in the control specimen was shown to significantly increase the MEPC frequency (quantal transmitter release) and exocytotic rate (FM 1-43 unloading from the synaptic vesicles preliminarily stained with the dye), which was caused by a rise in the intracellular Ca(2+) concentration due to opening of voltage-gated Ca channels. A slight increase in the MEPC frequency and in the rate of synaptic vesicle exocytosis was observed under depolarization in case of blockade of Ca channels and chelating of intracellular Ca(2+) ions (cooperative action of Cd(2+) and EGTA-AM). The processes of synaptic vesicle endocytosis (FM 1-43 loading) were proportional to the number of synaptic vesicles that had undergone exocytosis both in the control and in case of cooperative action of Cd(2+) and EGTA-AM. A hypothesis has been put forward that Ca-independent synaptic vesicle exo- and endocytosis that can be induced directly by depolarization of the membrane exists in the frog motor terminal in addition to the conventional Ca-dependent process.
Collapse
Affiliation(s)
- M.M. Abdrakhmanov
- Kazan State Medical University, Butlerov str., 49, Kazan, Russia, 420012
| | - A.M. Petrov
- Kazan State Medical University, Butlerov str., 49, Kazan, Russia, 420012
| | - P.N. Grigoryev
- Kazan State Medical University, Butlerov str., 49, Kazan, Russia, 420012
| | - A.L. Zefirov
- Kazan State Medical University, Butlerov str., 49, Kazan, Russia, 420012
| |
Collapse
|
33
|
Sorting of the vesicular GABA transporter to functional vesicle pools by an atypical dileucine-like motif. J Neurosci 2013; 33:10634-46. [PMID: 23804087 DOI: 10.1523/jneurosci.0329-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence indicates that individual synaptic vesicle proteins may use different signals, endocytic adaptors, and trafficking pathways for sorting to distinct pools of synaptic vesicles. Here, we report the identification of a unique amino acid motif in the vesicular GABA transporter (VGAT) that controls its synaptic localization and activity-dependent recycling. Mutational analysis of this atypical dileucine-like motif in rat VGAT indicates that the transporter recycles by interacting with the clathrin adaptor protein AP-2. However, mutation of a single acidic residue upstream of the dileucine-like motif leads to a shift to an AP-3-dependent trafficking pathway that preferentially targets the transporter to the readily releasable and recycling pool of vesicles. Real-time imaging with a VGAT-pHluorin fusion provides a useful approach to explore how unique sorting sequences target individual proteins to synaptic vesicles with distinct functional properties.
Collapse
|
34
|
Abstract
Neurons use a calcium-dependent mechanism to optimize the rate at which synaptic vesicles are recycled.
Collapse
Affiliation(s)
- Melissa A Herman
- is at Neurocure NWFZ , Charité Universitätsmedizin Berlin , Berlin , Germany
| | | |
Collapse
|
35
|
The SNARE proteins SNAP25 and synaptobrevin are involved in endocytosis at hippocampal synapses. J Neurosci 2013; 33:9169-75. [PMID: 23699527 DOI: 10.1523/jneurosci.0301-13.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SNAP25, an essential component of the soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor (SNARE) complex that mediates exocytosis, is not considered to play a role in endocytosis, which couples to exocytosis by retrieving a similar amount of exocytosed vesicles. By knocking down SNAP25 and imaging slow endocytosis at a conventional synapse, the rat cultured hippocampal synapse, we found that SNAP25 is involved in slow, clathrin-dependent endocytosis. With similar techniques, we found that not only SNAP25, but also synaptobrevin is involved in slow endocytosis. These results provide the first evidence showing the dual role of SNAP25 and synaptobrevin in both exocytosis and slow endocytosis at conventional synapses. Such a dual role may contribute to mediate the coupling between exocytosis and clathrin-dependent endocytosis at conventional synapses, a mechanism critical for the maintenance of synaptic transmission and the normal structure of nerve terminals.
Collapse
|
36
|
Armbruster M, Messa M, Ferguson SM, De Camilli P, Ryan TA. Dynamin phosphorylation controls optimization of endocytosis for brief action potential bursts. eLife 2013; 2:e00845. [PMID: 23908769 PMCID: PMC3728620 DOI: 10.7554/elife.00845] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/24/2013] [Indexed: 12/13/2022] Open
Abstract
Modulation of synaptic vesicle retrieval is considered to be potentially important in steady-state synaptic performance. Here we show that at physiological temperature endocytosis kinetics at hippocampal and cortical nerve terminals show a bi-phasic dependence on electrical activity. Endocytosis accelerates for the first 15–25 APs during bursts of action potential firing, after which it slows with increasing burst length creating an optimum stimulus for this kinetic parameter. We show that activity-dependent acceleration is only prominent at physiological temperature and that the mechanism of this modulation is based on the dephosphorylation of dynamin 1. Nerve terminals in which dynamin 1 and 3 have been replaced with dynamin 1 harboring dephospho- or phospho-mimetic mutations in the proline-rich domain eliminate the acceleration phase by either setting endocytosis at an accelerated state or a decelerated state, respectively. DOI:http://dx.doi.org/10.7554/eLife.00845.001 Neurons communicate with each other at specialized junctions called synapses. When signals travelling along a neuron reach the presynaptic cell, this triggers small packages (vesicles) containing neurotransmitter molecules to release their contents into the synapse, and these molecules then cross the gap and bind to receptors on the postsynaptic neuron. To release their cargo, individual vesicles fuse with the plasma membrane of the presynaptic neuron and form a ‘pore’ through which neurotransmitter molecules can leave the cell. However, to avoid running out of vesicles, the neuron must recycle and rebuild them through a process known as endocytosis. This involves recapturing the proteins that make up the synaptic vesicle and internalizing them back into the presynaptic terminal. Exactly how endocytosis is regulated has been the subject of much debate in recent years. Now, Armbruster et al. have used fluorescent markers to study the timing of endocytosis in unprecedented detail. Observations of individual synapses reveal that when a series of action potentials (spikes of electrical activity) occurs in a neuron, endocytosis accelerates during the first few action potentials, and then slows. However, this acceleration was only detectable at a physiological temperature of 37°C—markedly higher than the 30°C at which synaptic endocytosis is typically studied. The new study showed that acceleration of endocytosis depends on the phosphorylation status of dynamin, a mechano-chemical enzyme long known to be crucial for endocytosis, which helps to sever the connection between the endocytosing membrane and the surface of the cell. Phosphorylation is a common mechanism for controlling enzyme activity, and involves the addition of phosphate groups to specific amino acids by enzymes called kinases. Phosphatase enzymes reverse the process by removing the phosphate groups. Dynamin is usually phosphorylated at two specific amino acids, but when levels of calcium in the cell increase (as occurs during action potentials), a phosphatase called calcineurin dephosphorylates these sites. Using versions of dynamin that were either permanently phosphorylated or never phosphorylated, Armbruster et al. showed that a decrease in dynamin phosphorylation was required for the initial acceleration of endocytosis. This type of regulation seems to optimize the recycling of vesicles to enable neurons to respond effectively to brief bursts of stimulation. Given that dynamin phosphorylation is conserved in evolution, it is likely that regulation of synaptic endocytosis is a key mechanism for ensuring the efficient functioning of the nervous system. Future research will investigate how calcium influx mediates the later slowing of endocytosis, and help to further unravel this previously unknown regulatory process. DOI:http://dx.doi.org/10.7554/eLife.00845.002
Collapse
Affiliation(s)
- Moritz Armbruster
- Department of Biochemistry , Weill Cornell Medical College , New York , United States ; The David Rockefeller Graduate Program , Rockefeller University , New York , United States
| | | | | | | | | |
Collapse
|
37
|
SNARE proteins synaptobrevin, SNAP-25, and syntaxin are involved in rapid and slow endocytosis at synapses. Cell Rep 2013; 3:1414-21. [PMID: 23643538 DOI: 10.1016/j.celrep.2013.03.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/12/2012] [Accepted: 03/08/2013] [Indexed: 11/27/2022] Open
Abstract
Rapid endocytosis, which takes only a few seconds, is widely observed in secretory cells. Although it is more efficient in recycling vesicles than in slow clathrin-mediated endocytosis, its underlying mechanism, thought to be clathrin independent, is largely unclear. Here, we report that cleavage of three SNARE proteins essential for exocytosis, including synaptobrevin, SNAP-25, and syntaxin, inhibited rapid endocytosis at the calyx of Held nerve terminal, suggesting the involvement of the three SNARE proteins in rapid endocytosis. These SNARE proteins were also involved in slow endocytosis. In addition, SNAP-25 and syntaxin facilitated vesicle mobilization to the readily releasable pool, most likely via their roles in endocytosis and/or exocytosis. We conclude that both rapid and slow endocytosis share the involvement of SNARE proteins. The dual role of three SNARE proteins in exo- and endocytosis suggests that SNARE proteins may be molecular substrates contributing to the exocytosis-endocytosis coupling, which maintains exocytosis in secretory cells.
Collapse
|
38
|
Siksou L, Silm K, Biesemann C, Nehring RB, Wojcik SM, Triller A, El Mestikawy S, Marty S, Herzog E. A role for vesicular glutamate transporter 1 in synaptic vesicle clustering and mobility. Eur J Neurosci 2013; 37:1631-42. [DOI: 10.1111/ejn.12199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Christoph Biesemann
- Department of Molecular Neurobiology; Max Planck Institute of Experimental Medicine; Goettingen; Germany
| | - Ralf B. Nehring
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston; TX; USA
| | - Sonja M. Wojcik
- Department of Molecular Neurobiology; Max Planck Institute of Experimental Medicine; Goettingen; Germany
| | | | | | | | | |
Collapse
|
39
|
Abstract
Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization.
Collapse
Affiliation(s)
- Yasunori Saheki
- Department of Cell Biology, Howard Hughes Medical Institute and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
40
|
Eguchi K, Nakanishi S, Takagi H, Taoufiq Z, Takahashi T. Maturation of a PKG-dependent retrograde mechanism for exoendocytic coupling of synaptic vesicles. Neuron 2012; 74:517-29. [PMID: 22578503 DOI: 10.1016/j.neuron.2012.03.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2012] [Indexed: 12/24/2022]
Abstract
At presynaptic terminals vesicular membranes are fused into plasma membrane upon exocytosis and retrieved by endocytosis. During a sustained high-frequency transmission, exoendocytic coupling is critical for the maintenance of synaptic transmission. Here, we show that this homeostatic coupling is supported by cGMP-dependent protein kinase (PKG) at the calyx of Held. This mechanism starts to operate after hearing onset during the second postnatal week, when PKG expression becomes upregulated in the brainstem. Pharmacological tests with capacitance measurements revealed that presynaptic PKG activity is supported by a retrograde signal cascade mediated by NO that is released by activation of postsynaptic NMDA receptors. Activation of PKG also upregulates phosphatidylinositol-4,5-bisphosphate, thereby accelerating endocytosis. Furthermore, presynaptic PKG activity upregulates synaptic fidelity during high-frequency transmission. We conclude that maturation of the PKG-dependent retrograde signal cascade strengthens the homeostatic plasticity for the maintenance of high-frequency synaptic transmission at the fast glutamatergic synapse.
Collapse
Affiliation(s)
- Kohgaku Eguchi
- Cellular & Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami, Okinawa 904-0412, Japan.
| | | | | | | | | |
Collapse
|
41
|
Xue L, Zhang Z, McNeil BD, Luo F, Wu XS, Sheng J, Shin W, Wu LG. Voltage-dependent calcium channels at the plasma membrane, but not vesicular channels, couple exocytosis to endocytosis. Cell Rep 2012; 1:632-8. [PMID: 22813738 DOI: 10.1016/j.celrep.2012.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/21/2012] [Accepted: 04/11/2012] [Indexed: 01/01/2023] Open
Abstract
Although calcium influx triggers endocytosis at many synapses and non-neuronal secretory cells, the identity of the calcium channel is unclear. The plasma membrane voltage-dependent calcium channel (VDCC) is a candidate, and it was recently proposed that exocytosis transiently inserts vesicular calcium channels at the plasma membrane, thus triggering endocytosis and coupling it to exocytosis, a mechanism suggested to be conserved from sea urchin to human. Here, we report that the vesicular membrane, when inserted into the plasma membrane upon exocytosis, does not generate a calcium current or calcium increase at a mammalian nerve terminal. Instead, VDCCs at the plasma membrane, including the P/Q-type, provide the calcium influx to trigger rapid and slow endocytosis and, thus, couple endocytosis to exocytosis. These findings call for reconsideration of the vesicular calcium channel hypothesis. They are likely to apply to many synapses and non-neuronal cells in which VDCCs control exocytosis, and exocytosis is coupled to endocytosis.
Collapse
Affiliation(s)
- Lei Xue
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yamashita T. Ca2+-dependent regulation of synaptic vesicle endocytosis. Neurosci Res 2012; 73:1-7. [DOI: 10.1016/j.neures.2012.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 01/25/2023]
|
43
|
A membrane pool retrieved via endocytosis overshoot at nerve terminals: a study of its retrieval mechanism and role. J Neurosci 2012; 32:3398-404. [PMID: 22399762 DOI: 10.1523/jneurosci.5943-11.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endocytosis overshoot, which retrieves more membrane than vesicles just being exocytosed, occurs at nerve terminals and non-neuronal secretory cells. The mechanism that retrieves the overshoot membrane pool and the role of this pool remain largely unknown. We addressed this issue at the rat calyx of Held nerve terminal with capacitance measurements. We found that every calyx contained an overshoot pool ∼1.8 times the readily releasable pool. Retrieval of this pool required large calcium influx, and was inhibited by blockers of calcium/calmodulin-activated calcineurin and dynamin, suggesting the involvement of calcineurin and dynamin in endocytosis overshoot. Depletion of the overshoot pool slowed down compensatory endocytosis, whereas recovery of the overshoot pool via exocytosis that deposited stranded vesicles to the plasma membrane led to recovery of compensatory endocytosis, suggesting that the overshoot pool enhances endocytosis efficiency. These results suggest that the overshoot pool exists at every nerve terminal, is of limited size arising from vesicles stranded at the plasma membrane, is retrieved via calcium/calmodulin/calcineurin and dynamin signaling pathway, and can enhance endocytosis efficiency. Potential mechanisms for how the endocytosis overshoot pool enhances endocytosis efficiency are discussed.
Collapse
|
44
|
Uncoupling the roles of synaptotagmin I during endo- and exocytosis of synaptic vesicles. Nat Neurosci 2011; 15:243-9. [PMID: 22197832 PMCID: PMC3435110 DOI: 10.1038/nn.3013] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022]
Abstract
Synaptotagmin I (syt1) is required for normal rates of synaptic vesicle endo- and exocytosis. However, whether the kinetic defects observed during endocytosis in syt1 knock-out neurons are secondary to defective exocytosis, or whether syt1 directly regulates the rate of vesicle retrieval, remains unresolved. In order to address this question, it is necessary to dissociate these two activities. Here, we have uncoupled the function of syt1 in exo- and endocytosis by re-targeting of the protein, or via mutagenesis of its tandem C2-domains; the impact of these manipulations on exo- and endocytosis were analyzed via electrophysiology, in conjunction with optical imaging of the vesicle cycle. These experiments uncovered a direct role for syt1 in endocytosis. Surprisingly, either C2-domain of syt1 - C2A or C2B - was able to function as Ca2+-sensor for endocytosis. Hence, syt1 functions as a dual Ca2+ sensor for both endo- and exocytosis, potentially coupling these two limbs of the vesicle cycle.
Collapse
|
45
|
Activity-dependent modulation of endocytosis by calmodulin at a large central synapse. Proc Natl Acad Sci U S A 2011; 109:291-6. [PMID: 22184217 DOI: 10.1073/pnas.1100608109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although Ca(2+)/calmodulin has been suggested to play a role during endocytosis, it remains unknown if binding of Ca(2+) to calmodulin is essential for initiating endocytosis or if this interaction only has a modulatory effect on endocytosis. In this study, using time-resolved capacitance measurements at the rat calyx of Held synapse, the role of calmodulin in endocytosis was examined. Our results demonstrate that blocking calmodulin with an inhibitory peptide, which interfers with the binding of calmodulin to downstream targets, slowed the rate of endocytosis, but only when accompanied by high Ca(2+) influx. In response to a short train of action potential-like stimulation, blocking calmodulin had no effect on endocytosis. Furthermore, we have identified conditions in which inhibition of calmodulin fails to affect the rate of endocytosis, but nevertheless retards recruitment of synaptic vesicles to the fast-releasing vesicle pool responsible for synchronous release. The results indicate that calmodulin facilitates endocytosis in an activity-dependent manner but is not mandatory for endocytosis, and suggest that calmodulin modulates an endocytotic intermediate process, which in turn affects synaptic vesicle recruitment and membrane fission.
Collapse
|
46
|
Li H, Foss SM, Dobryy YL, Park CK, Hires SA, Shaner NC, Tsien RY, Osborne LC, Voglmaier SM. Concurrent imaging of synaptic vesicle recycling and calcium dynamics. Front Mol Neurosci 2011; 4:34. [PMID: 22065946 PMCID: PMC3206542 DOI: 10.3389/fnmol.2011.00034] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 10/05/2011] [Indexed: 11/13/2022] Open
Abstract
Synaptic transmission involves the calcium dependent release of neurotransmitter from synaptic vesicles. Genetically encoded optical probes emitting different wavelengths of fluorescent light in response to neuronal activity offer a powerful approach to understand the spatial and temporal relationship of calcium dynamics to the release of neurotransmitter in defined neuronal populations. To simultaneously image synaptic vesicle recycling and changes in cytosolic calcium, we developed a red-shifted reporter of vesicle recycling based on a vesicular glutamate transporter, VGLUT1-mOrange2 (VGLUT1-mOr2), and a presynaptically localized green calcium indicator, synaptophysin-GCaMP3 (SyGCaMP3) with a large dynamic range. The fluorescence of VGLUT1-mOr2 is quenched by the low pH of synaptic vesicles. Exocytosis upon electrical stimulation exposes the luminal mOr2 to the neutral extracellular pH and relieves fluorescence quenching. Reacidification of the vesicle upon endocytosis again reduces fluorescence intensity. Changes in fluorescence intensity thus monitor synaptic vesicle exo- and endocytosis, as demonstrated previously for the green VGLUT1-pHluorin. To monitor changes in calcium, we fused the synaptic vesicle protein synaptophysin to the recently improved calcium indicator GCaMP3. SyGCaMP3 is targeted to presynaptic varicosities, and exhibits changes in fluorescence in response to electrical stimulation consistent with changes in calcium concentration. Using real time imaging of both reporters expressed in the same synapses, we determine the time course of changes in VGLUT1 recycling in relation to changes in presynaptic calcium concentration. Inhibition of P/Q- and N-type calcium channels reduces calcium levels, as well as the rate of synaptic vesicle exocytosis and the fraction of vesicles released.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Psychiatry, School of Medicine, University of California San Francisco San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kwon SE, Chapman ER. Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons. Neuron 2011; 70:847-54. [PMID: 21658579 DOI: 10.1016/j.neuron.2011.04.001] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2011] [Indexed: 01/27/2023]
Abstract
Despite being the most abundant synaptic vesicle membrane protein, the function of synaptophysin remains enigmatic. For example, synaptic transmission was reported to be completely normal in synaptophysin knockout mice; however, direct experiments to monitor the synaptic vesicle cycle have not been carried out. Here, using optical imaging and electrophysiological experiments, we demonstrate that synaptophysin is required for kinetically efficient endocytosis of synaptic vesicles in cultured hippocampal neurons. Truncation analysis revealed that distinct structural elements of synaptophysin differentially regulate vesicle retrieval during and after stimulation. Thus, synaptophysin regulates at least two phases of endocytosis to ensure vesicle availability during and after sustained neuronal activity.
Collapse
Affiliation(s)
- Sung E Kwon
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
48
|
Wu H, Gao SB, Sakurai T, Terakawa S. Fucoidan suppresses endocytosis in cultured HeLa cells. Chin J Integr Med 2011. [PMID: 21853347 DOI: 10.1007/s11655-011-0797-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Indexed: 10/17/2022]
Abstract
OBJECTIVE: To evaluate the effects of fucoidan on endocytosis in cultured HeLa cells: in vitro using live cell imaging. METHODS: A confocal scanning system and an incubation imaging system were used to: observe the effects of fucoidan on the initial (6 h) stages of endocytosis using the fl uorescent probe FM1-43 and inorganic fl uorescent quantum dot (Q-dots). RESULTS: According to the time-lapse images, fucoidan inhibited the: formation of endocytic vesicles in HeLa cells, in which the FM1-43 dye was entrapped. Fucoidan also had an inhibitory effect on the uptake of the Q-dots by the cell membranes of HeLa cells. CONCLUSION: It was concluded: that fucoidan suppresses Ca(2+)-dependent endocytosis in HeLa cells, which may be caused by its inhibitory -effects on agonist-induced Ca(2+) responses.
Collapse
Affiliation(s)
- Hong Wu
- The laboratory of Cell Imaging, Henan College of Traditional Chinese Medicine, Zhengzhou, 450002, China,
| | | | | | | |
Collapse
|
49
|
Armbruster M, Ryan TA. Synaptic vesicle retrieval time is a cell-wide rather than individual-synapse property. Nat Neurosci 2011; 14:824-6. [PMID: 21623361 PMCID: PMC3125437 DOI: 10.1038/nn.2828] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/31/2011] [Indexed: 11/21/2022]
Affiliation(s)
- Moritz Armbruster
- David Rockefeller Graduate Program of Rockefeller University, New York, New York, USA
| | | |
Collapse
|
50
|
Douthitt HL, Luo F, McCann SD, Meriney SD. Dynasore, an inhibitor of dynamin, increases the probability of transmitter release. Neuroscience 2010; 172:187-95. [PMID: 21056636 DOI: 10.1016/j.neuroscience.2010.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/01/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
Abstract
Dynasore was recently developed as a small molecule, selective non-competitive inhibitor of the protein dynamin. This inhibitor has been shown to block dynamin-dependent endocytosis and is now used commonly to study vesicular recycling at synapses. We have measured the effects of dynasore on spontaneous and evoked transmitter release at the frog neuromuscular junction and shown that, in addition to inhibiting endocytosis, dynasore increases the probability of transmitter release. Furthermore, we have shown that dynasore exposure leads to an increase in resting intra-terminal calcium, but this effect does not completely account for the dynasore-mediated increase in the probability of transmitter release. Therefore, in interpreting effects of the dynamin inhibitor dynasore at synapses, one must be alert to potential increases in presynaptic calcium concentration and transmitter release probability.
Collapse
Affiliation(s)
- H L Douthitt
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|