1
|
Lee JH, Perez-Flores MC, Park S, Kim HJ, Chen Y, Kang M, Kersigo J, Choi J, Thai PN, Woltz RL, Perez-Flores DC, Perkins G, Sihn CR, Trinh P, Zhang XD, Sirish P, Dong Y, Feng WW, Pessah IN, Dixon RE, Sokolowski B, Fritzsch B, Chiamvimonvat N, Yamoah EN. The Piezo channel is a mechano-sensitive complex component in the mammalian inner ear hair cell. Nat Commun 2024; 15:526. [PMID: 38228630 PMCID: PMC10791687 DOI: 10.1038/s41467-023-44230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024] Open
Abstract
The inner ear is the hub where hair cells (HCs) transduce sound, gravity, and head acceleration stimuli to the brain. Hearing and balance rely on mechanosensation, the fastest sensory signals transmitted to the brain. The mechanoelectrical transducer (MET) channel is the entryway for the sound-balance-brain interface, but the channel-complex composition is not entirely known. Here, we report that the mouse utilizes Piezo1 (Pz1) and Piezo2 (Pz2) isoforms as MET-complex components. The Pz channels, expressed in HC stereocilia, and cell lines are co-localized and co-assembled with MET complex partners. Mice expressing non-functional Pz1 and Pz2 at the ROSA26 locus have impaired auditory and vestibular traits that can only be explained if the Pzs are integral to the MET complex. We suggest that Pz subunits constitute part of the MET complex and that interactions with other MET complex components yield functional MET units to generate HC MET currents.
Collapse
Affiliation(s)
- Jeong Han Lee
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Maria C Perez-Flores
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
- Prestige Biopharma, 11-12F, 44, Myongjigukje7-ro, Gangseo-gu, Busan, 67264, South Korea
| | - Hyo Jeong Kim
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Yingying Chen
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Mincheol Kang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
- Prestige Biopharma, 11-12F, 44, Myongjigukje7-ro, Gangseo-gu, Busan, 67264, South Korea
| | | | - Jinsil Choi
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Phung N Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Ryan L Woltz
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | | | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Choong-Ryoul Sihn
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Pauline Trinh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Wayne Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Rose E Dixon
- Department of Physiology & Membrane Biology, Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA
| | - Bernd Sokolowski
- Department of Otolaryngology-Head and Neck Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
- VA Northern California Healthcare System, Sacramento, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
2
|
Qian F, Wei G, Gao Y, Wang X, Gong J, Guo C, Wang X, Zhang X, Zhao J, Wang C, Xu M, Hu Y, Yin G, Kang J, Chai R, Xie G, Liu D. Single-cell RNA-sequencing of zebrafish hair cells reveals novel genes potentially involved in hearing loss. Cell Mol Life Sci 2022; 79:385. [PMID: 35753015 PMCID: PMC11072488 DOI: 10.1007/s00018-022-04410-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 01/22/2023]
Abstract
Hair cells play key roles in hearing and balance, and hair cell loss would result in hearing loss or vestibular dysfunction. Cellular and molecular research in hair cell biology provides us a better understanding of hearing and deafness. Zebrafish, owing to their hair cell-enriched organs, have been widely applied in hair cell-related research worldwide. Similar to mammals, zebrafish have inner ear hair cells. In addition, they also have lateral line neuromast hair cells. These different types of hair cells vary in morphology and function. However, systematic analysis of their molecular characteristics remains lacking. In this study, we analyzed the GFP+ cells isolated from Tg(Brn3c:mGFP) larvae with GFP expression in all hair cells using single-cell RNA-sequencing (scRNA-seq). Three subtypes of hair cells, namely macula hair cell (MHC), crista hair cell (CHC), and neuromast hair cell (NHC), were characterized and validated by whole-mount in situ hybridization analysis of marker genes. The hair cell scRNA-seq data revealed hair cell-specific genes, including hearing loss genes that have been identified in humans and novel genes potentially involved in hair cell formation and function. Two novel genes were discovered to specifically function in NHCs and MHCs, corresponding to their specific expression in NHCs and MHCs. This study allows us to understand the specific genes in hair cell subpopulations of zebrafish, which will shed light on the genetics of both human vestibular and cochlear hair cell function.
Collapse
Affiliation(s)
- Fuping Qian
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| | - Guanyun Wei
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| | - Yajing Gao
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Xin Wang
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Jie Gong
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| | - Chao Guo
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| | - Xiaoning Wang
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Xu Zhang
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Jinxiang Zhao
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Cheng Wang
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| | - Mengting Xu
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Yuebo Hu
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Guoli Yin
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Jiahui Kang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, China
| | - Renjie Chai
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China.
- State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100864, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Gangcai Xie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, China.
| | - Dong Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China.
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW We review recent progress in the characterization of spiral ganglion neurons (SGNs), the afferent neurons that transmit sound information from mechanosensory hair cells in the inner ear to the central nervous system. RECENT FINDINGS Single-cell ribonucleic acid sequencing studies of murine SGNs have demonstrated that SGNs consist of molecularly distinct subtypes. The molecularly defined SGN subtypes likely correspond to SGN subtypes previously identified on the basis of physiological properties, although this has not been experimentally demonstrated. Subtype maturation is completed postnatally in an activity-dependent manner and is impaired in several models of hearing loss. SUMMARY The recent molecular studies open new avenues to rigorously test whether SGN subtypes are important for the encoding of different sound features and if they show differential vulnerability to genetic factors and environmental insults. This could have important implications for the development of therapeutic strategies to treat hearing loss.
Collapse
Affiliation(s)
- Shuohao Sun
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
4
|
Sun S, Li S, Luo Z, Ren M, He S, Wang G, Liu Z. Dual expression of Atoh1 and Ikzf2 promotes transformation of adult cochlear supporting cells into outer hair cells. eLife 2021; 10:66547. [PMID: 34477109 PMCID: PMC8439656 DOI: 10.7554/elife.66547] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
Mammalian cochlear outer hair cells (OHCs) are essential for hearing. Severe hearing impairment follows OHC degeneration. Previous attempts at regenerating new OHCs from cochlear supporting cells (SCs) have been unsuccessful, notably lacking expression of the key OHC motor protein, Prestin. Thus, regeneration of Prestin+ OHCs represents a barrier to restore auditory function in vivo. Here, we reported the successful in vivo conversion of adult mouse cochlear SCs into Prestin+ OHC-like cells through the concurrent induction of two key transcriptional factors known to be necessary for OHC development: Atoh1 and Ikzf2. Single-cell RNA sequencing revealed the upregulation of 729 OHC genes and downregulation of 331 SC genes in OHC-like cells. The resulting differentiation status of these OHC-like cells was much more advanced than previously achieved. This study thus established an efficient approach to induce the regeneration of Prestin+ OHCs, paving the way for in vivo cochlear repair via SC transdifferentiation.
Collapse
Affiliation(s)
- Suhong Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhengnan Luo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Minhui Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shunji He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
5
|
Sarmadi A, Nasrniya S, Soleimani Farsani M, Narrei S, Nouri Z, Sepehrnejad M, Nilforoush MH, Abtahi H, Tabatabaiefar MA. A novel pathogenic variant in the LRTOMT gene causes autosomal recessive non-syndromic hearing loss in an Iranian family. BMC MEDICAL GENETICS 2020; 21:127. [PMID: 32517708 PMCID: PMC7285524 DOI: 10.1186/s12881-020-01061-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Background Hearing loss (HL) is the most common sensorineural disorder with high phenotypic and genotypic heterogeneity, which negatively affects life quality. Autosomal recessive non-syndromic hearing loss (ARNSHL) constitutes a major share of HL cases. In the present study, Whole exome sequencing (WES) was applied to investigate the underlying etiology of HL in an Iranian patient with ARNSHL. Methods A proband from an Iranian consanguineous family was examined via WES, following GJB2 sequencing. WES was utilized to find possible genetic etiology of the disease. Various Bioinformatics tools were used to assess the pathogenicity of the variants. Co-segregation analysis of the candidate variant was carried out. Interpretation of variants was performed according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Results WES results showed a novel frameshift (16 bp deletion) variant (p.Ala170Alafs*20) in the LRTOMT gene. This variant, which resides in exon 6, was found to be co-segregating in the family. It fulfils the criteria set by the ACMG guidelines of being pathogenic. Conclusion Here, we report successful application of WES to identify the molecular pathogenesis of ARNSHL, which is a genetically heterogeneous disorder, in a patient with ARNSHL.
Collapse
Affiliation(s)
- Akram Sarmadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Genetics Department, Erythron Pathobiology and Genetics lab, Isfahan, Iran
| | - Samane Nasrniya
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Soleimani Farsani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Sina Narrei
- Genetics Department, Erythron Pathobiology and Genetics lab, Isfahan, Iran
| | - Zahra Nouri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Sepehrnejad
- Department of Otolaryngology, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hamidreza Abtahi
- Department of Otolaryngology, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. .,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran. .,GenTArget Corp (GTAC), Deputy of Research and Technology, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Jin P, Jan LY, Jan YN. Mechanosensitive Ion Channels: Structural Features Relevant to Mechanotransduction Mechanisms. Annu Rev Neurosci 2020; 43:207-229. [PMID: 32084327 DOI: 10.1146/annurev-neuro-070918-050509] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of mechanosensitive ion channels underlies a variety of fundamental physiological processes that require sensation of mechanical force. Different mechanosensitive channels adapt distinctive structures and mechanotransduction mechanisms to fit their biological roles. How mechanosensitive channels work, especially in animals, has been extensively studied in the past decade. Here we review key findings in the functional and structural characterizations of these channels and highlight the structural features relevant to the mechanotransduction mechanism of each specific channel.
Collapse
Affiliation(s)
- Peng Jin
- Department of Physiology, University of California, San Francisco, California 94158, USA;
| | - Lily Yeh Jan
- Department of Physiology, University of California, San Francisco, California 94158, USA; .,Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA
| | - Yuh-Nung Jan
- Department of Physiology, University of California, San Francisco, California 94158, USA; .,Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA
| |
Collapse
|
7
|
Liu S, Wang S, Zou L, Li J, Song C, Chen J, Hu Q, Liu L, Huang P, Xiong W. TMC1 is an essential component of a leak channel that modulates tonotopy and excitability of auditory hair cells in mice. eLife 2019; 8:47441. [PMID: 31661074 PMCID: PMC6853638 DOI: 10.7554/elife.47441] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/24/2019] [Indexed: 11/13/2022] Open
Abstract
Hearing sensation relies on the mechano-electrical transducer (MET) channel of cochlear hair cells, in which transmembrane channel-like 1 (TMC1) and transmembrane channel-like 2 (TMC2) have been proposed to be the pore-forming subunits in mammals. TMCs were also found to regulate biological processes other than MET in invertebrates, ranging from sensations to motor function. However, whether TMCs have a non-MET role remains elusive in mammals. Here, we report that in mouse hair cells, TMC1, but not TMC2, provides a background leak conductance, with properties distinct from those of the MET channels. By cysteine substitutions in TMC1, we characterized four amino acids that are required for the leak conductance. The leak conductance is graded in a frequency-dependent manner along the length of the cochlea and is indispensable for action potential firing. Taken together, our results show that TMC1 confers a background leak conductance in cochlear hair cells, which may be critical for the acquisition of sound-frequency and -intensity.
Collapse
Affiliation(s)
- Shuang Liu
- School of Life Sciences, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, China
| | - Shufeng Wang
- School of Life Sciences, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, China
| | - Linzhi Zou
- School of Life Sciences, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, China
| | - Jie Li
- School of Life Sciences, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, China
| | - Chenmeng Song
- School of Life Sciences, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, China
| | - Jiaofeng Chen
- School of Life Sciences, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, China
| | - Qun Hu
- School of Life Sciences, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, China
| | - Lian Liu
- School of Life Sciences, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, China
| | - Pingbo Huang
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wei Xiong
- School of Life Sciences, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Pan B, Akyuz N, Liu XP, Asai Y, Nist-Lund C, Kurima K, Derfler BH, György B, Limapichat W, Walujkar S, Wimalasena LN, Sotomayor M, Corey DP, Holt JR. TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells. Neuron 2019; 99:736-753.e6. [PMID: 30138589 DOI: 10.1016/j.neuron.2018.07.033] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/10/2018] [Accepted: 07/19/2018] [Indexed: 11/28/2022]
Abstract
The proteins that form the permeation pathway of mechanosensory transduction channels in inner-ear hair cells have not been definitively identified. Genetic, anatomical, and physiological evidence support a role for transmembrane channel-like protein (TMC) 1 in hair cell sensory transduction, yet the molecular function of TMC proteins remains unclear. Here, we provide biochemical evidence suggesting TMC1 assembles as a dimer, along with structural and sequence analyses suggesting similarity to dimeric TMEM16 channels. To identify the pore region of TMC1, we used cysteine mutagenesis and expressed mutant TMC1 in hair cells of Tmc1/2-null mice. Cysteine-modification reagents rapidly and irreversibly altered permeation properties of mechanosensory transduction. We propose that TMC1 is structurally similar to TMEM16 channels and includes ten transmembrane domains with four domains, S4-S7, that line the channel pore. The data provide compelling evidence that TMC1 is a pore-forming component of sensory transduction channels in auditory and vestibular hair cells.
Collapse
Affiliation(s)
- Bifeng Pan
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nurunisa Akyuz
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Xiao-Ping Liu
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yukako Asai
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Carl Nist-Lund
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kiyoto Kurima
- Molecular Biology and Genetics Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Bruce H Derfler
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bence György
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Walrati Limapichat
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Lahiru N Wimalasena
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - David P Corey
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Abstract
The identity of the inner ear's transduction channel has bedeviled auditory neuroscientists for decades. In this issue of Neuron, Pan et al. (2018) report the most convincing evidence to date implicating the transmembrane channel-like (TMC) proteins as forming the pore of the transduction channel.
Collapse
Affiliation(s)
- Peter G Barr-Gillespie
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
10
|
Baker CVH, Modrell MS. Insights into Electroreceptor Development and Evolution from Molecular Comparisons with Hair Cells. Integr Comp Biol 2019; 58:329-340. [PMID: 29846597 DOI: 10.1093/icb/icy037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The vertebrate lateral line system comprises a mechanosensory division, with neuromasts containing hair cells that detect local water movement ("distant touch"); and an electrosensory division, with electrosensory organs that detect the weak, low-frequency electric fields surrounding other animals in water (primarily used for hunting). The entire lateral line system was lost in the amniote lineage with the transition to fully terrestrial life; the electrosensory division was lost independently in several lineages, including the ancestors of frogs and of teleost fishes. (Electroreception with different characteristics subsequently evolved independently within two teleost lineages.) Recent gene expression studies in a non-teleost actinopterygian fish suggest that electroreceptor ribbon synapses employ the same transmission mechanisms as hair cell ribbon synapses, and show that developing electrosensory organs express transcription factors essential for hair cell development, including Atoh1 and Pou4f3. Previous hypotheses for electroreceptor evolution suggest either that electroreceptors and hair cells evolved independently in the vertebrate ancestor from a common ciliated secondary cell, or that electroreceptors evolved from hair cells. The close developmental and putative physiological similarities implied by the gene expression data support the latter hypothesis, i.e., that electroreceptors evolved in the vertebrate ancestor as a "sister cell-type" to lateral line hair cells.
Collapse
Affiliation(s)
- Clare V H Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK
| | - Melinda S Modrell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
11
|
Schlosser G. A Short History of Nearly Every Sense-The Evolutionary History of Vertebrate Sensory Cell Types. Integr Comp Biol 2019; 58:301-316. [PMID: 29741623 DOI: 10.1093/icb/icy024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Evolving from filter feeding chordate ancestors, vertebrates adopted a more active life style. These ecological and behavioral changes went along with an elaboration of the vertebrate head including novel complex paired sense organs such as the eyes, inner ears, and olfactory epithelia. However, the photoreceptors, mechanoreceptors, and chemoreceptors used in these sense organs have a long evolutionary history and homologous cell types can be recognized in many other bilaterians or even cnidarians. After briefly introducing some of the major sensory cell types found in vertebrates, this review summarizes the phylogenetic distribution of sensory cell types in metazoans and presents a scenario for the evolutionary history of various sensory cell types involving several cell type diversification and fusion events. It is proposed that the evolution of novel cranial sense organs in vertebrates involved the redeployment of evolutionarily ancient sensory cell types for building larger and more complex sense organs.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Biomedical Sciences Building, Newcastle Road, Galway H91 TK33, Ireland
| |
Collapse
|
12
|
Krey JF, Barr-Gillespie PG. Molecular Composition of Vestibular Hair Bundles. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033209. [PMID: 29844221 DOI: 10.1101/cshperspect.a033209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The vertebrate hair bundle, responsible for transduction of mechanical signals into receptor potentials in sensory hair cells, is an evolutionary masterpiece. Composed of actin-filled stereocilia of precisely regulated length, width, and number, the structure of the hair bundle is optimized for sensing auditory and vestibular stimuli. Recent developments in identifying the lipids and proteins constituting the hair bundle, obtained through genetics, biochemistry, and imaging, now permit a description of the consensus composition of vestibular bundles of mouse, rat, and chick.
Collapse
Affiliation(s)
- Jocelyn F Krey
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
13
|
De-la-Torre P, Choudhary D, Araya-Secchi R, Narui Y, Sotomayor M. A Mechanically Weak Extracellular Membrane-Adjacent Domain Induces Dimerization of Protocadherin-15. Biophys J 2018; 115:2368-2385. [PMID: 30527337 PMCID: PMC6302040 DOI: 10.1016/j.bpj.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022] Open
Abstract
The cadherin superfamily of proteins is defined by the presence of extracellular cadherin (EC) "repeats" that engage in protein-protein interactions to mediate cell-cell adhesion, cell signaling, and mechanotransduction. The extracellular domains of nonclassical cadherins often have a large number of EC repeats along with other subdomains of various folds. Protocadherin-15 (PCDH15), a protein component of the inner-ear tip link filament essential for mechanotransduction, has 11 EC repeats and a membrane adjacent domain (MAD12) of atypical fold. Here we report the crystal structure of a pig PCDH15 fragment including EC10, EC11, and MAD12 in a parallel dimeric arrangement. MAD12 has a unique molecular architecture and folds as a ferredoxin-like domain similar to that found in the nucleoporin protein Nup54. Analytical ultracentrifugation experiments along with size-exclusion chromatography coupled to multiangle laser light scattering and small-angle x-ray scattering corroborate the crystallographic dimer and show that MAD12 induces parallel dimerization of PCDH15 near its membrane insertion point. In addition, steered molecular dynamics simulations suggest that MAD12 is mechanically weak and may unfold before tip-link rupture. Sequence analyses and structural modeling predict the existence of similar domains in cadherin-23, protocadherin-24, and the "giant" FAT and CELSR cadherins, indicating that some of them may also exhibit MAD-induced parallel dimerization.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Deepanshu Choudhary
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Structural Biophysics, Section for Neutron and X-ray Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
14
|
Diaz-Horta O, Abad C, Cengiz FB, Bademci G, Blackwelder P, Walz K, Tekin M. Ripor2 is involved in auditory hair cell stereociliary bundle structure and orientation. J Mol Med (Berl) 2018; 96:1227-1238. [PMID: 30280293 PMCID: PMC6238639 DOI: 10.1007/s00109-018-1694-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 11/30/2022]
Abstract
RIPOR2 (previously known as FAM65B) localizes to stereocilia of auditory hair cells and causes deafness when its function is disturbed by mutations. Here, we demonstrate that during the morphogenesis of the hair cell bundle, absence of Ripor2 affects the orientation of this key subcellular structure. We show that Ripor2 interacts with Myh9, a protein encoded by a known deafness gene. Absence of Ripor2 is associated with low Myh9 abundance in the mouse cochlea despite increased amount of Myh9 transcripts. While Myh9 is mainly expressed in stereocilia, a phosphorylated form of Myh9 is particularly enriched in the kinocilium. In Ripor2-deficient mice, kinocilium shows an aberrant localization which associates with a reduced content of phosphorylated Myh9. Acetylated alpha tubulin, another specific kinociliary protein which contributes to microtubule stabilization, is reduced in the absence of Ripor2 as well. We propose that Ripor2 deficiency influences abundance and/or post-translational modifications of proteins expressed in both stereocilia and kinocilia. This effect may have a negative impact on the structure and function of the auditory hair cell bundle.
Collapse
Affiliation(s)
- Oscar Diaz-Horta
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Clemer Abad
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Filiz Basak Cengiz
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Guney Bademci
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Pat Blackwelder
- MGS/RSMAS and UMCAM/Chemistry, University of Miami, Coral Gables, FL, 33146, USA
- NSU Oceanographic Center, Dania Beach, FL, 33004, USA
| | - Katherina Walz
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
15
|
Jaiganesh A, Narui Y, Araya-Secchi R, Sotomayor M. Beyond Cell-Cell Adhesion: Sensational Cadherins for Hearing and Balance. Cold Spring Harb Perspect Biol 2018; 10:a029280. [PMID: 28847902 PMCID: PMC6008173 DOI: 10.1101/cshperspect.a029280] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cadherins form a large family of proteins often involved in calcium-dependent cellular adhesion. Although classical members of the family can provide a physical bond between cells, a subset of special cadherins use their extracellular domains to interlink apical specializations of single epithelial sensory cells. Two of these cadherins, cadherin-23 (CDH23) and protocadherin-15 (PCDH15), form extracellular "tip link" filaments that connect apical bundles of stereocilia on hair cells essential for inner-ear mechanotransduction. As these bundles deflect in response to mechanical stimuli from sound or head movements, tip links gate hair-cell mechanosensitive channels to initiate sensory perception. Here, we review the unusual and diverse structural properties of these tip-link cadherins and the functional significance of their deafness-related missense mutations. Based on the structural features of CDH23 and PCDH15, we discuss the elasticity of tip links and models that bridge the gap between the nanomechanics of cadherins and the micromechanics of hair-cell bundles during inner-ear mechanotransduction.
Collapse
Affiliation(s)
- Avinash Jaiganesh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
16
|
Ge J, Elferich J, Goehring A, Zhao H, Schuck P, Gouaux E. Structure of mouse protocadherin 15 of the stereocilia tip link in complex with LHFPL5. eLife 2018; 7:38770. [PMID: 30070639 PMCID: PMC6092121 DOI: 10.7554/elife.38770] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
Hearing and balance involve the transduction of mechanical stimuli into electrical signals by deflection of bundles of stereocilia linked together by protocadherin 15 (PCDH15) and cadherin 23 'tip links'. PCDH15 transduces tip link tension into opening of a mechano-electrical transduction (MET) ion channel. PCDH15 also interacts with LHFPL5, a candidate subunit of the MET channel. Here we illuminate the PCDH15-LHFPL5 structure, showing how the complex is composed of PCDH15 and LHFPL5 subunit pairs related by a 2-fold axis. The extracellular cadherin domains define a mobile tether coupled to a rigid, 2-fold symmetric 'collar' proximal to the membrane bilayer. LHFPL5 forms extensive interactions with the PCDH15 transmembrane helices and stabilizes the overall PCDH15-LHFPL5 assembly. Our studies illuminate the architecture of the PCDH15-LHFPL5 complex, localize mutations associated with deafness, and shed new light on how forces in the PCDH15 tether may be transduced into the stereocilia membrane.
Collapse
Affiliation(s)
- Jingpeng Ge
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Johannes Elferich
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - April Goehring
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Huaying Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, United States.,Howard Hughes Medical Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
17
|
Abstract
Sensory hair cells are specialized secondary sensory cells that mediate our senses of hearing, balance, linear acceleration, and angular acceleration (head rotation). In addition, hair cells in fish and amphibians mediate sensitivity to water movement through the lateral line system, and closely related electroreceptive cells mediate sensitivity to low-voltage electric fields in the aquatic environment of many fish species and several species of amphibian. Sensory hair cells share many structural and functional features across all vertebrate groups, while at the same time they are specialized for employment in a wide variety of sensory tasks. The complexity of hair cell structure is large, and the diversity of hair cell applications in sensory systems exceeds that seen for most, if not all, sensory cell types. The intent of this review is to summarize the more significant structural features and some of the more interesting and important physiological mechanisms that have been elucidated thus far. Outside vertebrates, hair cells are only known to exist in the coronal organ of tunicates. Electrical resonance, electromotility, and their exquisite mechanical sensitivity all contribute to the attractiveness of hair cells as a research subject.
Collapse
|
18
|
Li T, Bellen HJ, Groves AK. Using Drosophila to study mechanisms of hereditary hearing loss. Dis Model Mech 2018; 11:11/6/dmm031492. [PMID: 29853544 PMCID: PMC6031363 DOI: 10.1242/dmm.031492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Johnston's organ - the hearing organ of Drosophila - has a very different structure and morphology to that of the hearing organs of vertebrates. Nevertheless, it is becoming clear that vertebrate and invertebrate auditory organs share many physiological, molecular and genetic similarities. Here, we compare the molecular and cellular features of hearing organs in Drosophila with those of vertebrates, and discuss recent evidence concerning the functional conservation of Usher proteins between flies and mammals. Mutations in Usher genes cause Usher syndrome, the leading cause of human deafness and blindness. In Drosophila, some Usher syndrome proteins appear to physically interact in protein complexes that are similar to those described in mammals. This functional conservation highlights a rational role for Drosophila as a model for studying hearing, and for investigating the evolution of auditory organs, with the aim of advancing our understanding of the genes that regulate human hearing and the pathogenic mechanisms that lead to deafness.
Collapse
Affiliation(s)
- Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
19
|
Zhang H, Yue X, Cheng H, Zhang X, Cai Y, Zou W, Huang G, Cheng L, Ye F, Kang L. OSM-9 and an amiloride-sensitive channel, but not PKD-2, are involved in mechanosensation in C. elegans male ray neurons. Sci Rep 2018; 8:7192. [PMID: 29740060 PMCID: PMC5940728 DOI: 10.1038/s41598-018-25542-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/05/2018] [Indexed: 11/21/2022] Open
Abstract
Mechanotransduction is crucial for touch sensation, hearing, proprioception, and pain sensing. In C. elegans, male ray neurons have been implicated to be involved in the mechanosensation required for mating behavior. However, whether ray neurons directly sense mechanical stimulation is not yet known, and the underlying molecular mechanisms have not been identified. Using in vivo calcium imaging, we recorded the touch-induced calcium responses in male ray neurons. Our data demonstrated that ray neurons are sensitive to mechanical stimulation in a neurotransmitter-independent manner. PKD-2, a putative sensor component for both mechanosensation and chemosensation in male-specific neurons, was not required for the touch-induced calcium responses in RnB neurons, whereas the TRPV channel OSM-9 shaped the kinetics of the responses. We further showed that RnB-neuron mechanosensation is likely mediated by an amiloride-sensitive DEG/ENaC channel. These observations lay a foundation for better understanding the molecular mechanisms of mechanosensation.
Collapse
Affiliation(s)
- Hu Zhang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaomin Yue
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Hankui Cheng
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyan Zhang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Cai
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pharmacology, Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Wenjuan Zou
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Guifang Huang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Lufeng Cheng
- Department of Pharmacology, Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Fang Ye
- Department of Immunology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.
| | - Lijun Kang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Qiu X, Müller U. Mechanically Gated Ion Channels in Mammalian Hair Cells. Front Cell Neurosci 2018; 12:100. [PMID: 29755320 PMCID: PMC5932396 DOI: 10.3389/fncel.2018.00100] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 01/05/2023] Open
Abstract
Hair cells in the inner ear convert mechanical stimuli provided by sound waves and head movements into electrical signal. Several mechanically evoked ionic currents with different properties have been recorded in hair cells. The search for the proteins that form the underlying ion channels is still in progress. The mechanoelectrical transduction (MET) channel near the tips of stereociliary in hair cells, which is responsible for sensory transduction, has been studied most extensively. Several components of the sensory mechanotransduction machinery in stereocilia have been identified, including the multi-transmembrane proteins tetraspan membrane protein in hair cell stereocilia (TMHS)/LHFPL5, transmembrane inner ear (TMIE) and transmembrane channel-like proteins 1 and 2 (TMC1/2). However, there remains considerable uncertainty regarding the molecules that form the channel pore. In addition to the sensory MET channel, hair cells express the mechanically gated ion channel PIEZO2, which is localized near the base of stereocilia and not essential for sensory transduction. The function of PIEZO2 in hair cells is not entirely clear but it might have a role in damage sensing and repair processes. Additional stretch-activated channels of unknown molecular identity and function have been found to localize at the basolateral membrane of hair cells. Here, we review current knowledge regarding the different mechanically gated ion channels in hair cells and discuss open questions concerning their molecular composition and function.
Collapse
Affiliation(s)
- Xufeng Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ulrich Müller
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Yue X, Zhao J, Li X, Fan Y, Duan D, Zhang X, Zou W, Sheng Y, Zhang T, Yang Q, Luo J, Duan S, Xiao R, Kang L. TMC Proteins Modulate Egg Laying and Membrane Excitability through a Background Leak Conductance in C. elegans. Neuron 2018; 97:571-585.e5. [PMID: 29395910 PMCID: PMC7038793 DOI: 10.1016/j.neuron.2017.12.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/24/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
Membrane excitability is a fundamentally important feature for all excitable cells including both neurons and muscle cells. However, the background depolarizing conductances in excitable cells, especially in muscle cells, are not well characterized. Although mutations in transmembrane channel-like (TMC) proteins TMC1 and TMC2 cause deafness and vestibular defects in mammals, their precise action modes are elusive. Here, we discover that both TMC-1 and TMC-2 are required for normal egg laying in C. elegans. Mutations in these TMC proteins cause membrane hyperpolarization and disrupt the rhythmic calcium activities in both neurons and muscles involved in egg laying. Mechanistically, TMC proteins enhance membrane depolarization through background leak currents and ectopic expression of both C. elegans and mammalian TMC proteins results in membrane depolarization. Therefore, we have identified an unexpected role of TMC proteins in modulating membrane excitability. Our results may provide mechanistic insights into the functions of TMC proteins in hearing loss and other diseases.
Collapse
Affiliation(s)
- Xiaomin Yue
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhao
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Li
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuedan Fan
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Duo Duan
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyan Zhang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjuan Zou
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sheng
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Ting Zhang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Yang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhong Luo
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Shumin Duan
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Xiao
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Smell and Taste, University of Florida, Gainesville, FL, USA.
| | - Lijun Kang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
22
|
Abstract
Our ears are remarkable sensory organs, providing the important senses of balance and hearing. The complex structure of the inner ear, or 'labyrinth', along with the assorted neuroepithelia, have evolved to detect head movements and sounds with impressive sensitivity. The rub is that the inner ear is highly vulnerable to genetic lesions and environmental insults. According to National Institute of Health estimates, hearing loss is one of the most commonly inherited or acquired sensorineural diseases. To understand the causes of deafness and balance disorders, it is imperative to understand the underlying biology of the inner ear, especially the inner workings of the sensory receptors. These receptors, which are termed hair cells, are particularly susceptible to genetic mutations - more than two dozen genes are associated with defects in this cell type in humans. Over the past decade, a substantial amount of progress has been made in working out the molecular basis of hair-cell function using vertebrate animal models. Given the transparency of the inner ear and the genetic tools that are available, zebrafish have become an increasingly popular animal model for the study of deafness and vestibular dysfunction. Mutagenesis screens for larval defects in hearing and balance have been fruitful in finding key components, many of which have been implicated in human deafness. This review will focus on the genes that are required for hair-cell function in zebrafish, with a particular emphasis on mechanotransduction. In addition, the generation of new tools available for the characterization of zebrafish hair-cell mutants will be discussed.
Collapse
Affiliation(s)
- Teresa Nicolson
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, Tel: 503-494-3693,
| |
Collapse
|
23
|
Fritzsch B, Elliott KL. Gene, cell, and organ multiplication drives inner ear evolution. Dev Biol 2017; 431:3-15. [PMID: 28866362 DOI: 10.1016/j.ydbio.2017.08.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/27/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
We review the development and evolution of the ear neurosensory cells, the aggregation of neurosensory cells into an otic placode, the evolution of novel neurosensory structures dedicated to hearing and the evolution of novel nuclei in the brain and their input dedicated to processing those novel auditory stimuli. The evolution of the apparently novel auditory system lies in duplication and diversification of cell fate transcription regulation that allows variation at the cellular level [transforming a single neurosensory cell into a sensory cell connected to its targets by a sensory neuron as well as diversifying hair cells], organ level [duplication of organ development followed by diversification and novel stimulus acquisition] and brain nuclear level [multiplication of transcription factors to regulate various neuron and neuron aggregate fate to transform the spinal cord into the unique hindbrain organization]. Tying cell fate changes driven by bHLH and other transcription factors into cell and organ changes is at the moment tentative as not all relevant factors are known and their gene regulatory network is only rudimentary understood. Future research can use the blueprint proposed here to provide both the deeper molecular evolutionary understanding as well as a more detailed appreciation of developmental networks. This understanding can reveal how an auditory system evolved through transformation of existing cell fate determining networks and thus how neurosensory evolution occurred through molecular changes affecting cell fate decision processes. Appreciating the evolutionary cascade of developmental program changes could allow identifying essential steps needed to restore cells and organs in the future.
Collapse
Affiliation(s)
- Bernd Fritzsch
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States.
| | - Karen L Elliott
- University of Iowa, Department of Biology, Iowa City, IA 52242, United States
| |
Collapse
|
24
|
Are TMCs the Mechanotransduction Channels of Vertebrate Hair Cells? J Neurosci 2017; 36:10921-10926. [PMID: 27798174 DOI: 10.1523/jneurosci.1148-16.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/13/2016] [Indexed: 11/21/2022] Open
Abstract
Sensory transduction in vertebrate hair cells and the molecules that mediate it have long been of great interest. Some components of the mechanotransduction apparatus have been identified, most as deafness gene products. Although prior candidates for the mechanotransduction channel have been proposed, each has faded with new evidence. Now, two strong candidates, TMC1 and TMC2 (transmembrane channel-like), have emerged from discovery of deafness genes in humans and mice. They are expressed at the right time during development: exactly at the onset of mechanosensitivity. They are expressed in the right place: in hair cells but not surrounding cells. Fluorescently tagged TMCs localize to the tips of stereocilia, the site of the transduction channels. TMCs bind other proteins essential for mechanosensation, suggesting a larger transduction complex. Although TMC1 and TMC2 can substitute for each other, genetic deletion of both renders mouse hair cells mechanically insensitive. Finally, the conductance and Ca2+ selectivity of the transduction channels depend on the TMC proteins, differing when hair cells express one or the other TMC, and differing if TMC1 harbors a point mutation. Some contrary evidence has emerged: a current activated in hair cells by negative pressure, with some similarity to the transduction current, persists in TMC knock-outs. But it is not clear that this anomalous current is carried by the same proteins. Further evidence is desired, such as production of a mechanically gated conductance by pure TMCs. But the great majority of evidence is consistent with these TMCs as pore-forming subunits of the long-sought hair-cell transduction channel.
Collapse
|
25
|
CIB2 interacts with TMC1 and TMC2 and is essential for mechanotransduction in auditory hair cells. Nat Commun 2017; 8:43. [PMID: 28663585 PMCID: PMC5491523 DOI: 10.1038/s41467-017-00061-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/02/2017] [Indexed: 11/24/2022] Open
Abstract
Inner ear hair cells detect sound through deflection of stereocilia, the microvilli-like projections that are arranged in rows of graded heights. Calcium and integrin-binding protein 2 is essential for hearing and localizes to stereocilia, but its exact function is unknown. Here, we have characterized two mutant mouse lines, one lacking calcium and integrin-binding protein 2 and one carrying a human deafness-related Cib2 mutation, and show that both are deaf and exhibit no mechanotransduction in auditory hair cells, despite the presence of tip links that gate the mechanotransducer channels. In addition, mechanotransducing shorter row stereocilia overgrow in hair cell bundles of both Cib2 mutants. Furthermore, we report that calcium and integrin-binding protein 2 binds to the components of the hair cell mechanotransduction complex, TMC1 and TMC2, and these interactions are disrupted by deafness-causing Cib2 mutations. We conclude that calcium and integrin-binding protein 2 is required for normal operation of the mechanotransducer channels and is involved in limiting the growth of transducing stereocilia. Inner ear hair cells detect sound through deflection of stereocilia that harbor mechanically-gated channels. Here the authors show that protein responsible for Usher syndrome, CIB2, interacts with these channels and is essential for their function and hearing in mice.
Collapse
|
26
|
Rossi ML, Rubbini G, Martini M, Canella R, Fesce R. Forskolin and protein kinase inhibitors differentially affect hair cell potassium currents and transmitter release at the cytoneural junction in the isolated frog labyrinth. Neuroscience 2017; 357:20-36. [PMID: 28576732 DOI: 10.1016/j.neuroscience.2017.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 11/19/2022]
Abstract
The post-transductional elaboration of sensory input at the frog semicircular canal has been studied by correlating the effects of drugs that interfere with phosphorylation processes on: (i) potassium conductances in isolated hair cell and (ii) transmitter release at the cytoneural junction in the intact labyrinth. At hair cells, delayed potassium currents (IKD) undergo voltage- and time-dependent inactivation; inactivation removal requires ATP, is sensitive to kinase blockade, but is unaffected by exogenous application of cyclic nucleotides. We report here that forskolin, an activator of endogenous adenylyl cyclase, enhances IKD inactivation removal in isolated hair cells, but produces an overall decrease in IKD amplitude consistent with the direct blocking action of the drug on several families of K channels. In the intact labyrinth, forskolin enhances transmitter release, consistent with such depression of K conductances. Kinase blockers - H-89 and KT5823 - have been shown to reduce IKD inactivation removal and IKD amplitude at isolated hair cells. In the labyrinth, the effects of these drugs on junctional activity are quite variable, with predominant inhibition of transmitter release, rather than the enhancement expected from the impairment of K currents. The overall action of forskolin and kinase inhibitors on K conductances is similar (depression), but they have opposite effects on transmitter release: this indicates that some intermediate steps between the bioelectric control of hair cell membrane potential and transmitter release are affected in opposite ways and therefore are presumably regulated by protein phosphorylation.
Collapse
Affiliation(s)
- Maria Lisa Rossi
- Dipartimento di Scienze della Vita e Biotecnologie, Ferrara University, Ferrara, Italy.
| | - Gemma Rubbini
- Dipartimento di Scienze della Vita e Biotecnologie, Ferrara University, Ferrara, Italy
| | - Marta Martini
- Dipartimento di Scienze della Vita e Biotecnologie, Ferrara University, Ferrara, Italy
| | - Rita Canella
- Dipartimento di Scienze della Vita e Biotecnologie, Ferrara University, Ferrara, Italy
| | - Riccardo Fesce
- Centre of Neuroscience, DISTA, Insubria University, Varese, Italy
| |
Collapse
|
27
|
Erickson T, Morgan CP, Olt J, Hardy K, Busch-Nentwich E, Maeda R, Clemens R, Krey JF, Nechiporuk A, Barr-Gillespie PG, Marcotti W, Nicolson T. Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). eLife 2017; 6:e28474. [PMID: 28534737 PMCID: PMC5462536 DOI: 10.7554/elife.28474] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/20/2017] [Indexed: 01/18/2023] Open
Abstract
Transmembrane O-methyltransferase (TOMT/LRTOMT) is responsible for non-syndromic deafness DFNB63. However, the specific defects that lead to hearing loss have not been described. Using a zebrafish model of DFNB63, we show that the auditory and vestibular phenotypes are due to a lack of mechanotransduction (MET) in Tomt-deficient hair cells. GFP-tagged Tomt is enriched in the Golgi of hair cells, suggesting that Tomt might regulate the trafficking of other MET components to the hair bundle. We found that Tmc1/2 proteins are specifically excluded from the hair bundle in tomt mutants, whereas other MET complex proteins can still localize to the bundle. Furthermore, mouse TOMT and TMC1 can directly interact in HEK 293 cells, and this interaction is modulated by His183 in TOMT. Thus, we propose a model of MET complex assembly where Tomt and the Tmcs interact within the secretory pathway to traffic Tmc proteins to the hair bundle.
Collapse
Affiliation(s)
- Timothy Erickson
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Clive P Morgan
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, United States
| | - Katherine Hardy
- Department of Biomedical Science, University of Sheffield, Sheffield, United States
| | | | - Reo Maeda
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Rachel Clemens
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jocelyn F Krey
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Alex Nechiporuk
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, United States
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, United States
| | - Teresa Nicolson
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
28
|
Polymodal Responses in C. elegans Phasmid Neurons Rely on Multiple Intracellular and Intercellular Signaling Pathways. Sci Rep 2017; 7:42295. [PMID: 28195191 PMCID: PMC5307315 DOI: 10.1038/srep42295] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/09/2017] [Indexed: 12/03/2022] Open
Abstract
Animals utilize specialized sensory neurons enabling the detection of a wide range of environmental stimuli from the presence of toxic chemicals to that of touch. However, how these neurons discriminate between different kinds of stimuli remains poorly understood. By combining in vivo calcium imaging and molecular genetic manipulation, here we investigate the response patterns and the underlying mechanisms of the C. elegans phasmid neurons PHA/PHB to a variety of sensory stimuli. Our observations demonstrate that PHA/PHB neurons are polymodal sensory neurons which sense harmful chemicals, hyperosmotic solutions and mechanical stimulation. A repulsive concentration of IAA induces calcium elevations in PHA/PHB and both OSM-9 and TAX-4 are essential for IAA-sensing in PHA/PHB. Nevertheless, the PHA/PHB neurons are inhibited by copper and post-synaptically activated by copper removal. Neuropeptide is likely involved in copper removal-induced calcium elevations in PHA/PHB. Furthermore, mechanical stimulation activates PHA/PHB in an OSM-9-dependent manner. Our work demonstrates how PHA/PHB neurons respond to multiple environmental stimuli and lays a foundation for the further understanding of the mechanisms of polymodal signaling, such as nociception, in more complex organisms.
Collapse
|