1
|
Cerne R, Smith JL, Chrzanowska A, Lippa A. Nonsedating anxiolytics. Pharmacol Biochem Behav 2024; 245:173895. [PMID: 39461622 DOI: 10.1016/j.pbb.2024.173895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Anxiety disorders are the most prevalent psychiatric pathology with substantial cost to society, but the existing treatments are often inadequate. This has rekindled the interest in the GABAA-receptor (GABAAR) positive allosteric modulator (PAM) compounds, which have a long history in treatment of anxiety beginning with diazepam, chlordiazepoxide, and alprazolam. While the GABAAR PAMs possess remarkable anxiolytic efficacy, they have fallen out of favor due to a host of adverse effects including sedation, motor impairment, addictive potential and tolerance development. A substantial effort was thus devoted to the design of GABAAR PAMs as anxiolytics with reduced sedative liabilities. Several non-benzodiazepine (BZD) GABAAPAMs progressed to clinical trials (bretazenil, abecarnil, alpidem, and ocinaplon) with alpidem obtaining regulatory approval as anxiolytic, but later withdrawn from market due to hepatotoxicity. Advances in molecular biology gave birth to a host of subtype selective GABAAR-PAMs which suffered from signs of sedation and motor impairment and only three compounds progressed to proof-of-concept studies (TPA-023, AZD7325 and PF-06372865). TPA-023 was terminated due to toxicity in preclinical species while AZD7325 and PF-06372865 did not achieve efficacy endpoints in patients. We highlight a new compound, KRM-II-81, that is an imidazodiazepine selective for GABAAR containing α2/3 and β3 proteins. In preclinical studies KRM-II-81 produced anxiolytic-like effects but with minimal sedation, respiratory depression, and abuse liability. Thus, KRM-II-81 is a newly discovered, non- BZD anxiolytic compound, which targets a selective population of GABAAR for improved therapeutic gain and reduced side effects.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| | | | - Arnold Lippa
- RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA
| |
Collapse
|
2
|
Wang YJ, Seibert H, Ahn LY, Schaffer AE, Mu TW. Pharmacological chaperones restore proteostasis of epilepsy-associated GABA A receptor variants. Pharmacol Res 2024; 208:107356. [PMID: 39216838 PMCID: PMC11457296 DOI: 10.1016/j.phrs.2024.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Recent advances in genetic diagnosis identified variants in genes encoding GABAA receptors as causative for genetic epilepsy. Here, we selected eight disease-associated variants in the α1 subunit of GABAA receptors causing mild to severe clinical phenotypes and showed that they are loss of function, mainly by reducing the folding and surface trafficking of the α1 protein. Furthermore, we sought client protein-specific pharmacological chaperones to restore the function of pathogenic receptors. Applications of positive allosteric modulators, including Hispidulin and TP003, increase the functional surface expression of the α1 variants. Mechanism of action study demonstrated that they enhance the folding, assembly, and trafficking and reduce the degradation of GABAA variants without activating the unfolded protein response in HEK293T cells and human iPSC-derived neurons. Since these compounds cross the blood-brain barrier, such a pharmacological chaperoning strategy holds great promise to treat genetic epilepsy in a GABAA receptor-specific manner.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hailey Seibert
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lucie Y Ahn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Schwarz L, Križanac AM, Schneider H, Falker-Gieske C, Heise J, Liu Z, Bennewitz J, Thaller G, Tetens J. Genetic and genomic analysis of reproduction traits in holstein cattle using SNP chip data and imputed sequence level genotypes. BMC Genomics 2024; 25:880. [PMID: 39300329 DOI: 10.1186/s12864-024-10782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Reproductive performance plays an important role in animal welfare, health and profitability in animal husbandry and breeding. It is well established that there is a negative correlation between performance and reproduction in dairy cattle. This relationship is being increasingly considered in breeding programs. By elucidating the genetic architecture of underlying reproduction traits, it will be possible to make a more detailed contribution to this. Our study followed two approaches to elucidate this area; in a first part, variance components were estimated for 14 different calving and fertility traits, and then genome-wide association studies were performed for 13 reproduction traits on imputed sequence-level genotypes with subsequent enrichment analyses. RESULTS Variance components analyses showed a low to moderate heritability (h2) for the traits analysed, ranging from 0.014 for endometritis up to 0.271 for stillbirth, indicating variable degrees of variation within the reproduction traits. For genome-wide association studies, we were able to detect genome-wide significant association signals for nine out of 13 analysed traits after Bonferroni correction on chromosome 6, 18 and the X chromosome. In total, we detected over 2700 associated SNPs encircling more than 90 different genes using the imputed whole-genome sequence data. Functional associations were reviewed so far known and potential candidate regions in the proximity of reproduction events were hypothesised. CONCLUSION Our results confirm previous findings of other authors in a comprehensive cohort including 13 different traits at the same time. Additionally, we identified new candidate genes involved in dairy cattle reproduction and made initial suggestions regarding their potential impact, with special regard to the X chromosome as a putative information source for further research. This work can make a contribution to reveal the genetic architecture of reproduction traits in context of trait specific interactions.
Collapse
Affiliation(s)
- Leopold Schwarz
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany.
| | - Ana-Marija Križanac
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany
| | - Helen Schneider
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | | | - Johannes Heise
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany
| | - Zengting Liu
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24118, Kiel, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany
| |
Collapse
|
4
|
Chang Y, Xie X, Liu Y, Liu M, Zhang H. Exploring clinical applications and long-term effectiveness of benzodiazepines: An integrated perspective on mechanisms, imaging, and personalized medicine. Biomed Pharmacother 2024; 173:116329. [PMID: 38401518 DOI: 10.1016/j.biopha.2024.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024] Open
Abstract
Benzodiazepines have been long-established treatments for various conditions, including anxiety disorders and insomnia. Recent FDA warnings emphasize the risks of misuse and dependence associated with benzodiazepines. This article highlights their benefits and potential drawbacks from various perspectives. It achieves this by explaining how benzodiazepines work in terms of neuroendocrinology, immunomodulation, sleep, anxiety, cognition, and addiction, ultimately improving their clinical effectiveness. Benzodiazepines play a regulatory role in the HPA axis and impact various systems, including neuropeptide Y and cholecystokinin. Benzodiazepines can facilitate sleep-dependent memory consolidation by promoting spindle wave activity, but they can also lead to memory deficits in older individuals due to reduced slow-wave sleep. The cognitive effects of chronic benzodiazepines use remain uncertain; however, no adverse findings have been reported in clinical imaging studies. This article aims to comprehensively review the evidence on benzodiazepines therapy, emphasizing the need for more clinical studies, especially regarding long-term benzodiazepines use.
Collapse
Affiliation(s)
- Yiheng Chang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xueting Xie
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yudan Liu
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Meichen Liu
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Huimin Zhang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
5
|
Li C, McElroy BD, Phillips J, McCloskey NS, Shi X, Unterwald EM, Kirby LG. Role of α1-GABA A receptors in the serotonergic dorsal raphe nucleus in models of opioid reward, anxiety, and depression. J Psychopharmacol 2024; 38:188-199. [PMID: 38293836 PMCID: PMC10921389 DOI: 10.1177/02698811241227672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND The serotonin (5-hydroxytryptamine (5-HT))-mediated system plays an important role in stress-related psychiatric disorders and substance abuse. Our previous studies showed that stress and drug exposure can modulate the dorsal raphe nucleus (DRN)-5-HT system via γ-aminobutyric acid (GABA)A receptors. Moreover, GABAA receptor-mediated inhibition of serotonergic DRN neurons is required for stress-induced reinstatement of opioid seeking. AIM/METHODS To further test the role of GABAA receptors in the 5-HT system in stress and opioid-sensitive behaviors, our current study generated mice with conditional genetic deletions of the GABAA α1 subunit to manipulate GABAA receptors in either the DRN or the entire population of 5-HT neurons. The GABAA α1 subunit is a constituent of the most abundant GABAA subtype in the brain and the most highly expressed subunit in 5-HT DRN neurons. RESULTS Our results showed that mice with DRN-specific knockout of α1-GABAA receptors exhibited a normal phenotype in tests of anxiety- and depression-like behaviors as well as swim stress-induced reinstatement of morphine-conditioned place preference. By contrast, mice with 5-HT neuron-specific knockout of α1-GABAA receptors exhibited an anxiolytic phenotype at baseline and increased sensitivity to post-morphine withdrawal-induced anxiety. CONCLUSIONS Our data suggest that GABAA receptors on 5-HT neurons contribute to anxiety-like behaviors and sensitivity of those behaviors to opioid withdrawal.
Collapse
Affiliation(s)
- Chen Li
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Bryan D McElroy
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jared Phillips
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Xiangdang Shi
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Lynn G Kirby
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Silva-Almeida C, Muniz SCA, Jobim CMN, Laureano-Melo R, Lau RS, Costa CRM, Côrtes WS, Malvar DC, Reis LC, Mecawi AS, Rocha FF. Perinatal environmental enrichment changes anxiety-like behaviours in mice and produces similar intergenerational benefits in offspring. Behav Brain Res 2024; 456:114700. [PMID: 37802391 DOI: 10.1016/j.bbr.2023.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Environmental enrichment implemented in early life is able to induce long-term changes in gene expression, synaptic function and behavioural responses. In this study, we evaluated the adult behavioural effects of perinatal environment enrichment in male and female mice (PEE), as well as the males and females of PEE male offspring (OPEE). For this purpose, animals were submitted to the following battery of behavioural analyses: elevated plus maze, open field test, light-dark box and novelty suppression feeding test. The frontal cortex and ventral hippocampus of PEE mice were collected for the evaluation of the expression of gamma-aminobutyric acid (GABA)-related genes. The PEE animals showed an increase in exploratory activity, associated with a reduction in anxiety-like behaviours on the elevated plus maze; this effect was mainly observed in males. Additionally, the male OPEE showed a reduction in anxiety-like behaviours on the elevated plus maze, mainly observed in a reduction of risk assessment-related behaviours. The PEE male mice also showed reduced expression of Gabra3 in the ventral hippocampus when compared to the control group. These results demonstrate that perinatal environmental enrichment promotes a reduction in anxiety-like behaviour that can be transferred intergenerationally.
Collapse
Affiliation(s)
- C Silva-Almeida
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil; Department of Veterinary Medicine of State University of Maringá, Umuarama, Brazil
| | - S C A Muniz
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil
| | - C M N Jobim
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil
| | - R Laureano-Melo
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil; Behavioral Physiopharmacology Laboratory, Barra Mansa Center University, Barra Mansa, Brazil
| | - R S Lau
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil
| | - C R M Costa
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil
| | - W S Côrtes
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil; Department of Physiological Sciences of Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - D C Malvar
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil; Department of Physiological Sciences of Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - L C Reis
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil; Department of Physiological Sciences of Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - A S Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics of Federal University of São Paulo, São Paulo, Brazil
| | - F F Rocha
- Multicenter Graduate Program in Physiological Sciences, Federal Rural University of Rio de Janeiro/Brazilian Society of Physiology, Seropédica, Brazil; Department of Physiological Sciences of Federal Rural University of Rio de Janeiro, Seropédica, Brazil.
| |
Collapse
|
7
|
Wang YJ, Seibert H, Ahn LY, Schaffer AE, Mu TW. Pharmacological chaperones restore proteostasis of epilepsy-associated GABA A receptor variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537383. [PMID: 37131660 PMCID: PMC10153171 DOI: 10.1101/2023.04.18.537383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recent advances in genetic diagnosis identified variants in genes encoding GABAA receptors as causative for genetic epilepsy. Here, we selected eight disease-associated variants in the α 1 subunit of GABAA receptors causing mild to severe clinical phenotypes and showed that they are loss of function, mainly by reducing the folding and surface trafficking of the α 1 protein. Furthermore, we sought client protein-specific pharmacological chaperones to restore the function of pathogenic receptors. Applications of positive allosteric modulators, including Hispidulin and TP003, increase the functional surface expression of the α 1 variants. Mechanism of action study demonstrated that they enhance the folding and assembly and reduce the degradation of GABAA variants without activating the unfolded protein response in HEK293T cells and human iPSC-derived neurons. Since these compounds cross the blood-brain barrier, such a pharmacological chaperoning strategy holds great promise to treat genetic epilepsy in a GABAA receptor-specific manner.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Hailey Seibert
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Lucie Y. Ahn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ashleigh E. Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
8
|
Singewald N, Sartori SB, Reif A, Holmes A. Alleviating anxiety and taming trauma: Novel pharmacotherapeutics for anxiety disorders and posttraumatic stress disorder. Neuropharmacology 2023; 226:109418. [PMID: 36623804 PMCID: PMC10372846 DOI: 10.1016/j.neuropharm.2023.109418] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Psychiatric disorders associated with psychological trauma, stress and anxiety are a highly prevalent and increasing cause of morbidity worldwide. Current therapeutic approaches, including medication, are effective in alleviating symptoms of anxiety disorders and posttraumatic stress disorder (PTSD), at least in some individuals, but have unwanted side-effects and do not resolve underlying pathophysiology. After a period of stagnation, there is renewed enthusiasm from public, academic and commercial parties in designing and developing drug treatments for these disorders. Here, we aim to provide a snapshot of the current state of this field that is written for neuropharmacologists, but also practicing clinicians and the interested lay-reader. After introducing currently available drug treatments, we summarize recent/ongoing clinical assessment of novel medicines for anxiety and PTSD, grouped according to primary neurochemical targets and their potential to produce acute and/or enduring therapeutic effects. The evaluation of putative treatments targeting monoamine (including psychedelics), GABA, glutamate, cannabinoid, cholinergic and neuropeptide systems, amongst others, are discussed. We emphasize the importance of designing and clinically assessing new medications based on a firm understanding of the underlying neurobiology stemming from the rapid advances being made in neuroscience. This includes harnessing neuroplasticity to bring about lasting beneficial changes in the brain rather than - as many current medications do - produce a transient attenuation of symptoms, as exemplified by combining psychotropic/cognitive enhancing drugs with psychotherapeutic approaches. We conclude by noting some of the other emerging trends in this promising new phase of drug development.
Collapse
Affiliation(s)
- Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| | - Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
9
|
Huang J, Xu F, Yang L, Tuolihong L, Wang X, Du Z, Zhang Y, Yin X, Li Y, Lu K, Wang W. Involvement of the GABAergic system in PTSD and its therapeutic significance. Front Mol Neurosci 2023; 16:1052288. [PMID: 36818657 PMCID: PMC9928765 DOI: 10.3389/fnmol.2023.1052288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The neurobiological mechanism of post-traumatic stress disorder (PTSD) is poorly understood. The inhibition of GABA neurons, especially in the amygdala, is crucial for the precise regulation of the consolidation, expression, and extinction of fear conditioning. The GABAergic system is involved in the pathophysiological process of PTSD, with several studies demonstrating that the function of the GABAergic system decreases in PTSD patients. This paper reviews the preclinical and clinical studies, neuroimaging techniques, and pharmacological studies of the GABAergic system in PTSD and summarizes the role of the GABAergic system in PTSD. Understanding the role of the GABAergic system in PTSD and searching for new drug targets will be helpful in the treatment of PTSD.
Collapse
Affiliation(s)
| | - Fei Xu
- Department of Psychiatry of School of Public Health, Southern Medical University, Guangzhou, China
| | - Liping Yang
- Department of Applied Psychology of School of Public Health, Southern Medical University, Guangzhou, China
| | - Lina Tuolihong
- Department of Basic Medical of Basic Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyu Wang
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zibo Du
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiqi Zhang
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xuanlin Yin
- Department of Basic Medical of Basic Medical College, Southern Medical University, Guangzhou, China
| | - Yingjun Li
- Department of Medical Laboratory Science, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Kangrong Lu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
| | - Wanshan Wang
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Voltage-clamp evidence of GABA A receptor subunit-specific effects: pharmacodynamic fingerprint of chlornordiazepam, the major active metabolite of mexazolam, as compared to alprazolam, bromazepam, and zolpidem. Pharmacol Rep 2022; 74:956-968. [PMID: 36097257 DOI: 10.1007/s43440-022-00411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Anxiolytic benzodiazepines, due to their clinical effectiveness, are one of the most prescribed drugs worldwide, despite being associated with sedative effects and impaired psychomotor and cognitive performance. Not every GABAA receptor functions in the same manner. Those containing α1 subunits are associated with sleep regulation and have a greater effect on the sedative-hypnotic benzodiazepines, whereas those containing α2 and/or α3 subunits are associated with anxiety phenomena and have a greater effect on the anxiolytic benzodiazepines. Therefore, characterization of the selectivity profile of anxiolytic drugs could translate into a significant clinical impact. METHODS The present study pharmacodynamically evaluated chlornordiazepam, the main active metabolite of mexazolam, upon GABAA receptors containing α2 and/or α3, anxiety-related, and those containing an α1 subunit, associated with sleep modulation. RESULTS As shown by whole-cell patch-clamp data, chlornordiazepam potentiated GABA-evoked current amplitude in α2 and α3 containing receptors without changing the current amplitude in α1 containing receptors. However, current decay time increased, particularly in GABAA receptors containing α1 subunits. In contrast, other anxiolytic benzodiazepines such as alprazolam, bromazepam, and zolpidem, all increased currents associated with GABAA receptors containing the α1 subunit. CONCLUSIONS This novel evidence demonstrates that mexazolam (through its main metabolite chlornordiazepam) has a "pharmacodynamic fingerprint" that correlates better with an anxiolytic profile and fewer sedative effects, when compared to alprazolam, bromazepam and zolpidem, explaining clinical trial outcomes with these drugs. This also highlights the relevance of the pharmacological selectivity over GABAA receptor subtypes in the selection of benzodiazepines, in addition to their clinical performance and pharmacokinetic characteristics.
Collapse
|
11
|
Gurrell R, Iredale P, Evrard A, Duveau V, Ruggiero C, Roucard C. Pronounced antiseizure activity of the subtype-selective GABA A positive allosteric modulator darigabat in a mouse model of drug-resistant focal epilepsy. CNS Neurosci Ther 2022; 28:1875-1882. [PMID: 35965432 PMCID: PMC9532903 DOI: 10.1111/cns.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
Aim Darigabat is an α2/3/5 subunit‐selective positive allosteric modulator of GABAA receptors that has demonstrated broad‐spectrum activity in several preclinical models of epilepsy as well as in a clinical photoepilepsy trial. The objective here was to assess the acute antiseizure effect of darigabat in the mesial temporal lobe epilepsy (MTLE) mouse model of drug‐resistant focal seizures. Methods The MTLE model is generated by single unilateral intrahippocampal injection of low dose (1 nmole) kainic acid in adult mice, and subsequent epileptiform activity is recorded following implantation of a bipolar electrode under general anesthesia. After a period of epileptogenesis (~4 weeks), spontaneous and recurrent hippocampal paroxysmal discharges (HPD; focal seizures) are recorded using intracerebral electroencephalography. The number and cumulated duration of HPDs were recorded following administration of vehicle (PO), darigabat (0.3–10 mg kg−1, PO), and positive control diazepam (2 mg kg−1, IP). RESULTS Darigabat dose‐dependently reduced the expression of HPDs, demonstrating comparable efficacy profile to diazepam at doses of 3 and 10 mg kg−1. CONCLUSIONS Darigabat exhibited a robust efficacy profile in the MTLE model, a preclinical model of drug‐resistant focal epilepsy. A Phase II proof‐of‐concept placebo‐controlled, adjunctive‐therapy trial (NCT04244175) is ongoing to evaluate efficacy and safety of darigabat in patients with drug‐resistant focal seizures.
Collapse
|
12
|
Bernardo A, Lee P, Marcotte M, Mian MY, Rezvanian S, Sharmin D, Kovačević A, Savić MM, Cook JM, Sibille E, Prevot TD. Symptomatic and neurotrophic effects of GABAA receptor positive allosteric modulation in a mouse model of chronic stress. Neuropsychopharmacology 2022; 47:1608-1619. [PMID: 35701547 PMCID: PMC9283409 DOI: 10.1038/s41386-022-01360-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 12/27/2022]
Abstract
Chronic stress is a risk factor for Major Depressive Disorder (MDD), and in rodents, it recapitulates human behavioral, cellular and molecular changes. In MDD and after chronic stress, neuronal dysfunctions and deficits in GABAergic signaling are observed and responsible for symptom severity. GABA signals predominantly through GABAA receptors (GABAA-R) composed of various subunit types that relate to downstream outcomes. Activity at α2-GABAA-Rs contributes to anxiolytic properties, α5-GABAA-Rs to cognitive functions, and α1-GABAA-Rs to sedation. Therefore, a therapy aiming at increasing α2- and α5-GABAA-Rs activity, but devoid of α1-GABAA-R activity, has potential to address several symptomologies of depression while avoiding side-effects. This study investigated the activity profiles and behavioral efficacy of two enantiomers of each other (GL-II-73 and GL-I-54), separately and as a racemic mixture (GL-RM), and potential disease-modifying effects on neuronal morphology. Results confirm GL-I-54 and GL-II-73 exert positive allosteric modulation at the α2-, α3-, α5-GABAA-Rs and α5-containing GABAA-Rs, respectively, and separately reduces immobility in the forced swim test and improves stress-induced spatial working memory deficits. Using unpredictable chronic mild stress (UCMS), we show that acute and chronic administration of GL-RM provide pro-cognitive effects, with mild efficacy on mood symptoms, although at lower doses avoiding sedation. Morphology studies showed reversal of spine density loss caused by UCMS after chronic GL-RM treatment at apical and basal dendrites of the PFC and CA1. Together, these results support using a racemic mixture with combined α2-, α3-, α5-GABAA-R profile to reverse chronic stress-induced mood symptoms, cognitive deficits, and with anti-stress neurotrophic effects.
Collapse
Affiliation(s)
- Ashley Bernardo
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada
| | - Philip Lee
- grid.17063.330000 0001 2157 2938Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Michael Marcotte
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada
| | - Md Yeunus Mian
- grid.267468.90000 0001 0695 7223Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, USA
| | - Sepideh Rezvanian
- grid.267468.90000 0001 0695 7223Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, USA
| | - Dishary Sharmin
- grid.267468.90000 0001 0695 7223Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, USA
| | - Aleksandra Kovačević
- grid.7149.b0000 0001 2166 9385Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Miroslav M. Savić
- grid.7149.b0000 0001 2166 9385Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - James M. Cook
- grid.267468.90000 0001 0695 7223Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, USA
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Canada.
| | - Thomas D. Prevot
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Palagini L, Bianchini C. Pharmacotherapeutic management of insomnia and effects on sleep processes, neural plasticity, and brain systems modulating stress: A narrative review. Front Neurosci 2022; 16:893015. [PMID: 35968380 PMCID: PMC9374363 DOI: 10.3389/fnins.2022.893015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionInsomnia is a stress-related sleep disorder, may favor a state of allostatic overload impairing brain neuroplasticity, stress immune and endocrine pathways, and may contribute to mental and physical disorders. In this framework, assessing and targeting insomnia is of importance.AimSince maladaptive neuroplasticity and allostatic overload are hypothesized to be related to GABAergic alterations, compounds targeting GABA may play a key role. Accordingly, the aim of this review was to discuss the effect of GABAA receptor agonists, short-medium acting hypnotic benzodiazepines and the so called Z-drugs, at a molecular level.MethodLiterature searches were done according to PRISMA guidelines. Several combinations of terms were used such as “hypnotic benzodiazepines” or “brotizolam,” or “lormetazepam” or “temazepam” or “triazolam” or “zolpidem” or “zopiclone” or “zaleplon” or “eszopiclone” and “insomnia” and “effects on sleep” and “effect on brain plasticity” and “effect on stress system”. Given the complexity and heterogeneity of existing literature, we ended up with a narrative review.ResultsAmong short-medium acting compounds, triazolam has been the most studied and may regulate the stress system at central and peripheral levels. Among Z-drugs eszopiclone may regulate the stress system. Some compounds may produce more “physiological” sleep such as brotizolam, triazolam, and eszopiclone and probably may not impair sleep processes and related neural plasticity. In particular, triazolam, eszopiclone, and zaleplon studied in vivo in animal models did not alter neuroplasticity.ConclusionCurrent models of insomnia may lead us to revise the way in which we use hypnotic compounds in clinical practice. Specifically, compounds should target sleep processes, the stress system, and sustain neural plasticity. In this framework, among the short/medium acting hypnotic benzodiazepines, triazolam has been the most studied compound while among the Z-drugs eszopiclone has demonstrated interesting effects. Both offer potential new insight for treating insomnia.
Collapse
Affiliation(s)
- Laura Palagini
- Psychiatry Division, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- *Correspondence: Laura Palagini,
| | | |
Collapse
|
14
|
Cerne R, Lippa A, Poe MM, Smith JL, Jin X, Ping X, Golani LK, Cook JM, Witkin JM. GABAkines - Advances in the discovery, development, and commercialization of positive allosteric modulators of GABA A receptors. Pharmacol Ther 2022; 234:108035. [PMID: 34793859 PMCID: PMC9787737 DOI: 10.1016/j.pharmthera.2021.108035] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022]
Abstract
Positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors or GABAkines have been widely used medicines for over 70 years for anxiety, epilepsy, sleep, and other disorders. Traditional GABAkines like diazepam have safety and tolerability concerns that include sedation, motor-impairment, respiratory depression, tolerance and dependence. Multiple GABAkines have entered clinical development but the issue of side-effects has not been fully solved. The compounds that are presently being developed and commercialized include several neuroactive steroids (an allopregnanolone formulation (brexanolone), an allopregnanolone prodrug (LYT-300), Sage-324, zuranolone, and ganaxolone), the α2/3-preferring GABAkine, KRM-II-81, and the α2/3/5-preferring GABAkine PF-06372865 (darigabat). The neuroactive steroids are in clinical development for post-partum depression, intractable epilepsy, tremor, status epilepticus, and genetic epilepsy disorders. Darigabat is in development for epilepsy and anxiety. The imidazodiazepine, KRM-II-81 is efficacious in animal models for the treatment of epilepsy and post-traumatic epilepsy, acute and chronic pain, as well as anxiety and depression. The efficacy of KRM-II-81 in models of pharmacoresistant epilepsy, preventing the development of seizure sensitization, and in brain tissue of intractable epileptic patients bodes well for improved therapeutics. Medicinal chemistry efforts are also ongoing to identify novel and improved GABAkines. The data document gaps in our understanding of the molecular pharmacology of GABAkines that drive differential pharmacological profiles, but emphasize advancements in the ability to successfully utilize GABAA receptor potentiation for therapeutic gain in neurology and psychiatry.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia.,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | | | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Lalit K. Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M. Cook
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
15
|
Ríos JL, Schinella GR, Moragrega I. Phenolics as GABA A Receptor Ligands: An Updated Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061770. [PMID: 35335130 PMCID: PMC8953830 DOI: 10.3390/molecules27061770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
Natural products can act as potential GABA modulators, avoiding the undesirable effects of traditional pharmacology used for the inhibition of the central nervous system such as benzodiazepines (BZD). Phenolics, especially flavonoids and phlorotannins, have been considered as modulators of the BZD-site of GABAA receptors (GABAARs), with sedative, anxiolytic or anticonvulsant effects. However, the wide chemical structural variability of flavonoids shows their potential action at more than one additional binding site on GABAARs, which may act either negatively, positively, by neutralizing GABAARs, or directly as allosteric agonists. Therefore, the aim of the present review is to compile and discuss an update of the role of phenolics, namely as pharmacological targets involving dysfunctions of the GABA system, analyzing both their different compounds and their mechanism as GABAergic modulators. We focus this review on articles written in English since the year 2010 until the present. Of course, although more research would be necessary to fully establish the type specificity of phenolics and their pharmacological activity, the evidence supports their potential as GABAAR modulators, thereby favoring their inclusion in the development of new therapeutic targets based on natural products. Specifically, the data compiled in this review allows for the directing of future research towards ortho-dihydroxy diterpene galdosol, the flavonoids isoliquiritigenin (chalcone), rhusflavone and agathisflavone (biflavonoids), as well as the phlorotannins, dieckol and triphlorethol A. Clinically, flavonoids are the most interesting phenolics due to their potential as anticonvulsant and anxiolytic drugs, and phlorotannins are also of interest as sedative agents.
Collapse
Affiliation(s)
- José-Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
- Correspondence:
| | - Guillermo R. Schinella
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata BA1900, Argentina;
- Instituto de Ciencias de la Salud, UNAJ-CICPBA, Florencio Varela BA1888, Argentina
| | - Inés Moragrega
- Departament de Psicobiologia, Facultat de Psicologia, Universitat de València, Av. Blasco Ibáñez 21, 46010 Valencia, Spain;
| |
Collapse
|
16
|
Sahadevan S, Hembach KM, Tantardini E, Pérez-Berlanga M, Hruska-Plochan M, Megat S, Weber J, Schwarz P, Dupuis L, Robinson MD, De Rossi P, Polymenidou M. Synaptic FUS accumulation triggers early misregulation of synaptic RNAs in a mouse model of ALS. Nat Commun 2021; 12:3027. [PMID: 34021139 PMCID: PMC8140117 DOI: 10.1038/s41467-021-23188-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Mutations disrupting the nuclear localization of the RNA-binding protein FUS characterize a subset of amyotrophic lateral sclerosis patients (ALS-FUS). FUS regulates nuclear RNAs, but its role at the synapse is poorly understood. Using super-resolution imaging we determined that the localization of FUS within synapses occurs predominantly near the vesicle reserve pool of presynaptic sites. Using CLIP-seq on synaptoneurosomes, we identified synaptic FUS RNA targets, encoding proteins associated with synapse organization and plasticity. Significant increase of synaptic FUS during early disease in a mouse model of ALS was accompanied by alterations in density and size of GABAergic synapses. mRNAs abnormally accumulated at the synapses of 6-month-old ALS-FUS mice were enriched for FUS targets and correlated with those depicting increased short-term mRNA stability via binding primarily on multiple exonic sites. Our study indicates that synaptic FUS accumulation in early disease leads to synaptic impairment, potentially representing an initial trigger of neurodegeneration.
Collapse
Affiliation(s)
- Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Katharina M Hembach
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Elena Tantardini
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | | | | | - Salim Megat
- Inserm, University of Strasbourg, Strasbourg, France
| | - Julien Weber
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital Zurich, Zürich, Switzerland
| | - Luc Dupuis
- Inserm, University of Strasbourg, Strasbourg, France
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Pierre De Rossi
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | | |
Collapse
|
17
|
Wagner S, Lee C, Rojas L, Specht CG, Rhee J, Brose N, Papadopoulos T. The α3 subunit of GABA A receptors promotes formation of inhibitory synapses in the absence of collybistin. J Biol Chem 2021; 296:100709. [PMID: 33901490 PMCID: PMC8141935 DOI: 10.1016/j.jbc.2021.100709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 01/03/2023] Open
Abstract
Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects—or synaptopathies—are at the basis of many neurological and psychiatric disorders. Collybistin (CB), a brain-specific guanine nucleotide exchange factor, is essential for the formation of γ-aminobutyric acidergic (GABAergic) postsynapses in defined regions of the mammalian forebrain, including the hippocampus and basolateral amygdala. This process depends on a direct interaction of CB with the scaffolding protein gephyrin, which leads to the redistribution of gephyrin into submembranous clusters at nascent inhibitory synapses. Strikingly, synaptic clustering of gephyrin and GABAA type A receptors (GABAARs) in several brain regions, including the cerebral cortex and certain thalamic areas, is unperturbed in CB-deficient mice, indicating that the formation of a substantial subset of inhibitory postsynapses must be controlled by gephyrin-interacting proteins other than CB. Previous studies indicated that the α3 subunit of GABAARs (GABAAR-α3) binds directly and with high affinity to gephyrin. Here, we provide evidence (i) that a homooligomeric GABAAR-α3A343W mutant induces the formation of submembranous gephyrin clusters independently of CB in COS-7 cells, (ii) that gephyrin clustering is unaltered in the neuronal subpopulations endogenously expressing the GABAAR-α3 in CB-deficient brains, and (iii) that exogenous expression of GABAAR-α3 partially rescues impaired gephyrin clustering in CB-deficient hippocampal neurons. Our results identify an important role of GABAAR-α3 in promoting gephyrin-mediated and CB-independent formation of inhibitory postsynapses.
Collapse
Affiliation(s)
- Sven Wagner
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - ChoongKu Lee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lucia Rojas
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Christian G Specht
- Diseases and Hormones of the Nervous System (DHNS), Inserm U1195, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
18
|
Castellano D, Shepard RD, Lu W. Looking for Novelty in an "Old" Receptor: Recent Advances Toward Our Understanding of GABA ARs and Their Implications in Receptor Pharmacology. Front Neurosci 2021; 14:616298. [PMID: 33519367 PMCID: PMC7841293 DOI: 10.3389/fnins.2020.616298] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Diverse populations of GABAA receptors (GABAARs) throughout the brain mediate fast inhibitory transmission and are modulated by various endogenous ligands and therapeutic drugs. Deficits in GABAAR signaling underlie the pathophysiology behind neurological and neuropsychiatric disorders such as epilepsy, anxiety, and depression. Pharmacological intervention for these disorders relies on several drug classes that target GABAARs, such as benzodiazepines and more recently neurosteroids. It has been widely demonstrated that subunit composition and receptor stoichiometry impact the biophysical and pharmacological properties of GABAARs. However, current GABAAR-targeting drugs have limited subunit selectivity and produce their therapeutic effects concomitantly with undesired side effects. Therefore, there is still a need to develop more selective GABAAR pharmaceuticals, as well as evaluate the potential for developing next-generation drugs that can target accessory proteins associated with native GABAARs. In this review, we briefly discuss the effects of benzodiazepines and neurosteroids on GABAARs, their use as therapeutics, and some of the pitfalls associated with their adverse side effects. We also discuss recent advances toward understanding the structure, function, and pharmacology of GABAARs with a focus on benzodiazepines and neurosteroids, as well as newly identified transmembrane proteins that modulate GABAARs.
Collapse
Affiliation(s)
- David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ryan David Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
19
|
Schaefer TL, Ashworth AA, Tiwari D, Tomasek MP, Parkins EV, White AR, Snider A, Davenport MH, Grainger LM, Becker RA, Robinson CK, Mukherjee R, Williams MT, Gibson JR, Huber KM, Gross C, Erickson CA. GABA A Alpha 2,3 Modulation Improves Select Phenotypes in a Mouse Model of Fragile X Syndrome. Front Psychiatry 2021; 12:678090. [PMID: 34093287 PMCID: PMC8175776 DOI: 10.3389/fpsyt.2021.678090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability. FXS is caused by functional loss of the Fragile X Protein (FXP), also known as Fragile X Mental Retardation Protein (FMRP). In humans and animal models, loss of FXP leads to sensory hypersensitivity, increased susceptibility to seizures and cortical hyperactivity. Several components of the GABAergic system, the major inhibitory system in the brain, are dysregulated in FXS, and thus modulation of GABAergic transmission was suggested and tested as a treatment strategy. However, so far, clinical trials using broad spectrum GABAA or GABAB receptor-specific agonists have not yielded broad improvement of FXS phenotypes in humans. Here, we tested a more selective strategy in Fmr1 knockout (KO) mice using the experimental drug BAER-101, which is a selective GABAA α2/α3 agonist. Our results suggest that BAER-101 reduces hyperexcitability of cortical circuits, partially corrects increased frequency-specific baseline cortical EEG power, reduces susceptibility to audiogenic seizures and improves novel object memory. Other Fmr1 KO-specific phenotypes were not improved by the drug, such as increased hippocampal dendritic spine density, open field activity and marble burying. Overall, this work shows that BAER-101 improves select phenotypes in Fmr1 KO mice and encourages further studies into the efficacy of GABAA-receptor subunit-selective agonists for the treatment of FXS.
Collapse
Affiliation(s)
- Tori L Schaefer
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Amy A Ashworth
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Madison P Tomasek
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Emma V Parkins
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Angela R White
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Andrew Snider
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew H Davenport
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Lindsay M Grainger
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Robert A Becker
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Chandler K Robinson
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rishav Mukherjee
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael T Williams
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jay R Gibson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Craig A Erickson
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
20
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
21
|
Bouayyadi A, Aliani AE, Kasmi Y, Moussaif A, Abbadi NE, Mesfioui A, Essassi EM, Mzibri ME. Molecular docking analysis of α2-containing GABAA receptors with benzimidazoles derivatives. Bioinformation 2020; 16:611-619. [PMID: 33214749 PMCID: PMC7649024 DOI: 10.6026/97320630016611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 11/23/2022] Open
Abstract
It is of interest to study the binding capacity of "3-[2-(2-Amino-1H-benzo[d]imidazol-1-yl)ethyl]-1,3-oxazolidin-2-one" (OXB2) with the active site of gamma-aminobutyric acid (GABA) located in the GABA type A receptor (GABAAR) in comparison with different GABAA subtypes. Optimal binding features were observed with the α2β2γ2 isoform (-8 kcal/mol). This is similar (-7.3 and -7.2 kcal/mol, respectively) for subtypes (α3β2γ2 and α1β2γ2). This implies that OXB2 binds preferentially to subtypes associated with anxiety (α2- and/or α3-containing receptors) linked molecules than with the subtype associated with sedation (α1-containing receptors). It is further noted that molecular dynamics simulation data of the complex (OXB2-GABAAR) shows adequate structural stability in aqueous environment. Moreover, relevant ADMET data is found adequate for further consideration.
Collapse
Affiliation(s)
- Abdellatif Bouayyadi
- Division of Life Sciences, National Centre for Energy, Nuclear Sciences and Techniques (CNESTEN), Morocco
| | - Aissam El Aliani
- Division of Life Sciences, National Centre for Energy, Nuclear Sciences and Techniques (CNESTEN), Morocco
| | - Yassine Kasmi
- Division of Life Sciences, National Centre for Energy, Nuclear Sciences and Techniques (CNESTEN), Morocco
| | - Ahmed Moussaif
- Division of Life Sciences, National Centre for Energy, Nuclear Sciences and Techniques (CNESTEN), Morocco
| | - Najia El Abbadi
- Division of Life Sciences, National Centre for Energy, Nuclear Sciences and Techniques (CNESTEN), Morocco
| | - Abdelhalim Mesfioui
- Laboratory of Genetic, Endocrinology and Biotechnology–Faculty of Sciences, Ibn Tofaïl University, Morocco
| | - El Mokhtar Essassi
- Moroccan Foundation for Advanced Sciences, Innovation and Research. Morocco
| | - Mohammed El Mzibri
- Division of Life Sciences, National Centre for Energy, Nuclear Sciences and Techniques (CNESTEN), Morocco
| |
Collapse
|
22
|
Meng Z, Berro LF, Sawyer EK, Rüedi-Bettschen D, Cook JE, Li G, Platt DM, Cook JM, Rowlett JK. Evaluation of the anti-conflict, reinforcing, and sedative effects of YT-III-31, a ligand functionally selective for α3 subunit-containing GABA A receptors. J Psychopharmacol 2020; 34:348-357. [PMID: 31670615 PMCID: PMC8011597 DOI: 10.1177/0269881119882803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In recent years, pharmacological strategies have implicated α3 subunit-containing GABAA (α3GABAA) receptor subtypes in the anxiety-reducing effects of benzodiazepines, whereas transgenic mouse approaches have implicated α2 or α5 subunit-containing GABAA receptors. AIMS We investigated the role of α3GABAA subtypes in benzodiazepine-induced behaviors by evaluating the anti-conflict, reinforcing, and sedative-motor effects of the novel compound YT-III-31, which has functional selectivity for α3GABAA receptors. METHODS Female and male rhesus monkeys were trained under a conflict procedure (n = 3), and a progressive-ratio schedule of reinforcement with midazolam as the training drug (n = 4). Sedative-like behavior was assessed using a quantitative behavioral observation procedure (n = 4). A range of doses of YT-III-31 was administered in all tests using the i.v. route of administration. RESULTS In the conflict procedure, increasing doses of YT-III-31 resulted only in dose-dependent attenuation of non-suppressed responding. In the progressive-ratio model of self-administration, YT-III-31 maintained average injections/session above vehicle levels at 0.1 and 0.18 mg/kg/injection. In quantitative observation procedures, YT-III-31 engendered mild sedative effects ("rest/sleep posture"), and deep sedation at the highest dose tested (5.6 mg/kg, i.v.), along with a suppression of tactile/oral exploration and increased observable ataxia. In contrast to other benzodiazepine-like ligands, YT-III-31 uniquely engendered a biphasic dose-response function for locomotion and suppressed self-groom. CONCLUSIONS The finding that YT-III-31 lacked anti-conflict properties is in accordance with transgenic mouse research indicating no role for α3GABAA subtypes in benzodiazepine-mediated anxiety reduction. Instead, our results raise the possibility of a role for α3GABAA receptors in the abuse potential and sedative effects of benzodiazepine-type drugs.
Collapse
Affiliation(s)
- Zhiqiang Meng
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,New England Primate Research Center, Harvard Medical School, Southborough, MA, USA,Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, CHINA
| | - Lais F Berro
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Eileen K Sawyer
- New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | - Daniela Rüedi-Bettschen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jemma E Cook
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Guanguan Li
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James K Rowlett
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| |
Collapse
|
23
|
Vega Alanis BA, Iorio MT, Silva LL, Bampali K, Ernst M, Schnürch M, Mihovilovic MD. Allosteric GABA A Receptor Modulators-A Review on the Most Recent Heterocyclic Chemotypes and Their Synthetic Accessibility. Molecules 2020; 25:E999. [PMID: 32102309 PMCID: PMC7070463 DOI: 10.3390/molecules25040999] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022] Open
Abstract
GABAA receptor modulators are structurally almost as diverse as their target protein. A plethora of heterocyclic scaffolds has been described as modulating this extremely important receptor family. Some made it into clinical trials and, even on the market, some were dismissed. This review focuses on the synthetic accessibility and potential for library synthesis of GABAA receptor modulators containing at least one heterocyclic scaffold, which were disclosed within the last 10 years.
Collapse
Affiliation(s)
- Blanca Angelica Vega Alanis
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/193, 1060 Vienna, Austria; (B.A.V.A.); (M.T.I.); (M.D.M.)
| | - Maria Teresa Iorio
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/193, 1060 Vienna, Austria; (B.A.V.A.); (M.T.I.); (M.D.M.)
| | - Luca L. Silva
- Department of Anesthesiology and Intensive Care Medicine, Charité–Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Konstantina Bampali
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria;
| | - Margot Ernst
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria;
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/193, 1060 Vienna, Austria; (B.A.V.A.); (M.T.I.); (M.D.M.)
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/193, 1060 Vienna, Austria; (B.A.V.A.); (M.T.I.); (M.D.M.)
| |
Collapse
|
24
|
Early-life stress influences acute and sensitized responses of adult mice to cocaine by interacting with GABAA α2 receptor expression. Behav Pharmacol 2020; 30:272-281. [PMID: 30724801 DOI: 10.1097/fbp.0000000000000466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early-life stress (ELS) is known to exert long-term effects on brain function, with resulting deleterious consequences for several aspects of mental health, including the development of addiction to drugs of abuse. One potential mechanism in humans is suggested by findings that ELS interacts with polymorphisms of the GABRA2 gene, encoding α2 subunits of GABAA receptors, to increase the risk for both post-traumatic stress disorder and vulnerability to cocaine addiction. We used a mouse model, in which the amount of material for nest building was reduced during early postnatal life, to study interactions between ELS and expression of α2-containing GABAA receptors in influencing cocaine-related behaviour. Breeding of parents heterozygous for a deletion of α2 resulted in litters containing homozygous knockout (α2), heterozygous knockout (α2) and wild-type (α2) offspring. Following the ELS procedure, the mice were allowed to develop to adulthood before being tested for the acute effect of cocaine on locomotor stimulation, behavioural sensitization to repeated cocaine and to cocaine-conditioned activity. Exposure to ELS resulted in increased acute locomotor stimulant effects of cocaine across all genotypes, with the most marked effects in α2 mice (which also showed increased activity following vehicle). Repeated cocaine administration to nonstressed mice resulted in sensitization in α2 and α2 mice, but, in keeping with previous findings, not in α2 mice. Previous exposure to ELS reduced sensitization in α2 mice, albeit not significantly, and abolished sensitization in α2 mice. Conditioned activity was elevated following ELS in all animals, independently of genotype. Thus, while the enhanced acute effects of cocaine following ELS being most marked in α2 mice suggests a function of α2-containing GABAA receptors in protecting against stress, the interaction between ELS and genotype in influencing sensitization may be more in keeping with ELS reducing expression of α2-containing GABAA receptors. The ability of ELS to increase cocaine-conditioned locomotor activity appears to be independent of α2-containing GABAA receptors.
Collapse
|
25
|
Mattei C, Taly A, Soualah Z, Saulais O, Henrion D, Guérineau NC, Verleye M, Legros C. Involvement of the GABA A receptor α subunit in the mode of action of etifoxine. Pharmacol Res 2019; 145:104250. [PMID: 31059790 DOI: 10.1016/j.phrs.2019.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/21/2019] [Accepted: 04/27/2019] [Indexed: 12/31/2022]
Abstract
Etifoxine (EFX) is a non-benzodiazepine psychoactive drug which exhibits anxiolytic effects through a dual mechanism, by directly binding to GABAA receptors (GABAARs) and to the mitochondrial 18-kDa translocator protein, resulting in the potentiation of the GABAergic function. The β subunit subtype plays a key role in the EFX-GABAAR interaction, however this does not explain the anxiolytic effects of this drug. Here, we combined behavioral and electrophysiological experiments to challenge the role of the GABAAR α subunit in the EFX mode of action. After single administrations of anxiolytic doses (25-50 mg/kg, intraperitoneal), EFX did not induce any neurological nor locomotor impairments, unlike the benzodiazepine bromazepam (0.5-1 mg/kg, intraperitoneal). We established the EFX pharmacological profile on heteropentameric GABAARs constructed with α1 to α6 subunit expressed in Xenopus oocyte. Unlike what is known for benzodiazepines, neither the γ nor δ subunits influenced EFX-mediated potentiation of GABA-evoked currents. EFX acted first as a partial agonist on α2β3γ2S, α3β3γ2S, α6β3γ2S and α6β3δ GABAARs, but not on α1β3γ2S, α4β3γ2S, α4β3δ nor α5β3γ2S GABAARs. Moreover, EFX exhibited much higher positive allosteric modulation towards α2β3γ2S, α3β3γ2S and α6β3γ2S than for α1β3γ2S, α4β3γ2S and α5β3γ2S GABAARs. At 20 μM, corresponding to brain concentration at anxiolytic doses, EFX increased GABA potency to the highest extent for α3β3γ2S GABAARs. We built a docking model of EFX on α3β3γ2S GABAARs, which is consistent with a binding site located between α and β subunits in the extracellular domain. In conclusion, EFX preferentially potentiates α2β3γ2S and α3β3γ2S GABAARs, which might support its advantageous anxiolytic/sedative balance.
Collapse
Affiliation(s)
- César Mattei
- Institut MITOVASC, UMR CNRS 6015 - UMR INSERM U1083, Université d'Angers, 3 Rue Roger Amsler 49100 ANGERS, France.
| | - Antoine Taly
- Theoretical Biochemistry Laboratory, Institute of Physico-Chemical Biology, CNRS UPR9080, University of Paris Diderot Sorbonne Paris Cité, 75005 Paris, France
| | - Zineb Soualah
- Institut MITOVASC, UMR CNRS 6015 - UMR INSERM U1083, Université d'Angers, 3 Rue Roger Amsler 49100 ANGERS, France
| | - Ophélie Saulais
- Institut MITOVASC, UMR CNRS 6015 - UMR INSERM U1083, Université d'Angers, 3 Rue Roger Amsler 49100 ANGERS, France
| | - Daniel Henrion
- Institut MITOVASC, UMR CNRS 6015 - UMR INSERM U1083, Université d'Angers, 3 Rue Roger Amsler 49100 ANGERS, France
| | - Nathalie C Guérineau
- Institut MITOVASC, UMR CNRS 6015 - UMR INSERM U1083, Université d'Angers, 3 Rue Roger Amsler 49100 ANGERS, France
| | - Marc Verleye
- Biocodex, Department of Pharmacology, Zac de Mercières, 60200 Compiègne, France
| | - Christian Legros
- Institut MITOVASC, UMR CNRS 6015 - UMR INSERM U1083, Université d'Angers, 3 Rue Roger Amsler 49100 ANGERS, France.
| |
Collapse
|
26
|
Chen X, van Gerven J, Cohen A, Jacobs G. Human pharmacology of positive GABA-A subtype-selective receptor modulators for the treatment of anxiety. Acta Pharmacol Sin 2019; 40:571-582. [PMID: 30518829 DOI: 10.1038/s41401-018-0185-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Anxiety disorders arise from disruptions among the highly interconnected circuits that normally serve to process the streams of potentially threatening stimuli. The resulting imbalance among these circuits can cause a fundamental misinterpretation of neural sensory information as threatening and can lead to the inappropriate emotional and behavioral responses observed in anxiety disorders. There is considerable preclinical evidence that the GABAergic system, in general, and its α2- and/or α5-subunit-containing GABA(A) receptor subtypes, in particular, are involved in the pathophysiology of anxiety disorders. However, the clinical efficacy of GABA-A α2-selective agonists for the treatment of anxiety disorders has not been unequivocally demonstrated. In this review, we present several human pharmacological studies that have been performed with the aim of identifying the pharmacologically active doses/exposure levels of several GABA-A subtype-selective novel compounds with potential anxiolytic effects. The pharmacological selectivity of novel α2-subtype-selective GABA(A) receptor partial agonists has been demonstrated by their distinct effect profiles on the neurophysiological and neuropsychological measurements that reflect the functions of multiple CNS domains compared with those of benzodiazepines, which are nonselective, full GABA(A) agonists. Normalizing the undesired pharmacodynamic side effects against the desired on-target effects on the saccadic peak velocity is a useful approach for presenting the pharmacological features of GABA(A)-ergic modulators. Moreover, combining the anxiogenic symptom provocation paradigm with validated neurophysiological and neuropsychological biomarkers may provide further construct validity for the clinical effects of novel anxiolytic agents. In addition, the observed drug effects on serum prolactin levels support the use of serum prolactin levels as a complementary neuroendocrine biomarker to further validate the pharmacodynamic measurements used during the clinical pharmacological study of novel anxiolytic agents.
Collapse
|
27
|
Owen RM, Blakemore DC, Cao L, Flanagan N, Fish R, Gibson KR, Gurrell R, Huh CW, Kammonen J, Mortimer-Cassen E, Nickolls S, Omoto K, Owen DR, Pike A, Pryde DC, Reynolds D, Roeloffs R, Rose CR, Stead C, Takeuchi M, Warmus JS, Watson C. Design and identification of a novel, functionally subtype selective GABAApositive allosteric modulator (PF-06372865). J Med Chem 2019; 62:5773-5796. [DOI: 10.1021/acs.jmedchem.9b00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Berggaard N, Witter MP, van der Want JJL. GABA A Receptor Subunit α3 in Network Dynamics in the Medial Entorhinal Cortex. Front Syst Neurosci 2019; 13:10. [PMID: 30930755 PMCID: PMC6428777 DOI: 10.3389/fnsys.2019.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Layer II of the medial entorhinal cortex (MEC LII) contains the largest number of spatially modulated grid cells and is one of the first regions in the brain to express Alzheimer's disease (AD)-related pathology. The most common principal cell type in MEC LII, reelin-expressing stellate cells, are grid cell candidates. Recently we found evidence that γ-aminobutyric acid (GABA)A receptor subunits show a specific distribution in MEC LII, in which GABAA α3 is selectively associated with reelin-positive neurons, with limited association with the other principal cell type, calbindin (CB)-positive pyramidal neurons. Furthermore, the expression of α3 subunit decreases in mice between P15 and P25, which coincides with the emergence of stable grid cell activity. It has been shown that the α3 subunit undergoes specific developmental changes and that it may exert pro-inflammatory actions if improperly regulated. In this review article, we evaluate the changing kinetics of α3-GABAA receptors (GABAARs). during development in relation to α3-subunit expression pattern in MEC LII and conclude that α3 could be closely related to the stabilization of grid cell activity and theta oscillations. We further conclude that dysregulated α3 may be a driving factor in early AD pathology.
Collapse
Affiliation(s)
- Nina Berggaard
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Johannes J L van der Want
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
29
|
Probing the molecular basis for affinity/potency- and efficacy-based subtype-selectivity exhibited by benzodiazepine-site modulators at GABAA receptors. Biochem Pharmacol 2018; 158:339-358. [DOI: 10.1016/j.bcp.2018.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022]
|
30
|
TP003 is a non-selective benzodiazepine site agonist that induces anxiolysis via α2GABAA receptors. Neuropharmacology 2018; 143:71-78. [DOI: 10.1016/j.neuropharm.2018.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/27/2018] [Accepted: 09/17/2018] [Indexed: 01/09/2023]
|
31
|
Abstract
OBJECTIVES Anxiety and adjustment disorders are among the most prevalent mental health conditions. This review focuses on γ-aminobutyric acid receptor type A (GABAAR)-mediated anxiolysis, describing the action of both endogenous and exogenous modulators of GABAAR. Future directions and innovative strategies to alleviate anxiety symptoms are discussed, with a particular emphasis on etifoxine. METHODS We used available data from the recent literature to update the mode of action of anxiolytics. We focussed our search on anxiolytics acting at GABAARs, as well as on the pharmacological properties of formerly and currently prescribed anxiolytics. RESULTS Considering the adverse effects of current treatments aimed at increasing inhibitory controls, optimisation of existing pharmacotherapies is of crucial importance. Among the alternative compounds targeting the GABAergic system, translocator protein (TSPO) ligands, such as etifoxine (EFX), which promote endogenous neurosteroidogenesis, are emerging as promising candidates for anxiety relief. In several papers comparing the efficacy of benzodiazepines and EFX, EFX showed interesting properties with limited side effects. Indeed, neurosteroids are potent GABAAR modulators with highly underrated anxiolytic properties. CONCLUSIONS Novel therapeutic strategies have been emerging following the recognition of neurosteroids as potent anxiolytics. Featured at the top of the list for well-tolerated anxiety relief, TSPO ligands such as etifoxine appear promising.
Collapse
Affiliation(s)
- Pierrick Poisbeau
- a Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI) , Strasbourg , France
| | - Geraldine Gazzo
- a Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI) , Strasbourg , France
| | - Laurent Calvel
- a Centre National de la Recherche Scientifique and University of Strasbourg, Institute for Cellular and Integrative Neuroscience (INCI) , Strasbourg , France
| |
Collapse
|
32
|
Sieghart W, Savić MM. International Union of Basic and Clinical Pharmacology. CVI: GABAA Receptor Subtype- and Function-selective Ligands: Key Issues in Translation to Humans. Pharmacol Rev 2018; 70:836-878. [DOI: 10.1124/pr.117.014449] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
33
|
Szodorai E, Bampali K, Romanov RA, Kasper S, Hökfelt T, Ernst M, Lubec G, Harkany T. Diversity matters: combinatorial information coding by GABA A receptor subunits during spatial learning and its allosteric modulation. Cell Signal 2018; 50:142-159. [DOI: 10.1016/j.cellsig.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 01/11/2023]
|
34
|
Batinić B, Stanković T, Stephen MR, Kodali R, Tiruveedhula VV, Li G, Scholze P, Marković BD, Obradović AL, Ernst M, Cook JM, Savić MM. Attaining in vivo selectivity of positive modulation of α3βγ2 GABA A receptors in rats: A hard task! Eur Neuropsychopharmacol 2018; 28:903-914. [PMID: 29891214 DOI: 10.1016/j.euroneuro.2018.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/10/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022]
Abstract
It is unclear whether GABAA receptors (GABAARs) that contain the α3-subunit are substantially involved in the anxiolytic effects of benzodiazepines (BDZs). In the present study, we tested YT-III-31, a newer BDZ ligand with functional preference for α3βγ2 GABAARs, in two paradigms of unconditioned anxiety, the open field and elevated plus maze in rats. The effective dose of YT-III-31 (2 mg/kg) displayed a clear anxiolytic-like profile, unhampered by sedative action, in both tests. At a higher dose (10 mg/kg), YT-III-31 induced ataxia in the rotarod and sedation in spontaneous locomotor activity test. The latter effect was preventable by flumazenil and βCCt, the non-selective and α1βγ2 GABAAR affinity-selective antagonist, respectively, demonstrating that sedative properties of YT-III-31, when attained, are mediated by the α1γ2 site. To elucidate the receptor substrate of subtle behavioral differences between YT-III-31 and diazepam, we approximated in vivo receptor potentiation for both ligands, based on estimated unbound concentrations in rat brains. Far different from diazepam, YT-III-31 has significantly lower affinity for the α1γ2 over other BDZ-sensitive sites, and at lower doses (1-2 mg/kg) was devoid of potentiation at α1βγ2 GABAARs. The approximation approach revealed a modest selectivity of YT-III-31 for α3γ2- in comparison to α2γ2 and α5γ2 binding sites, suggesting that its anxiolytic-like activity may not necessarily or predominantly reflect potentiation at α3βγ2 GABAARs. Nonetheless, as the anxiolytic effects are achievable at a dose devoid of any sedative potential, and having favorable safety (cytotoxicity) and metabolic stability profile, YT-III-31 represents a valuable candidate for further translational research.
Collapse
Affiliation(s)
- Bojan Batinić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Tamara Stanković
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Michael Rajesh Stephen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | - Revathi Kodali
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | - Veera V Tiruveedhula
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | - Guanguan Li
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Bojan D Marković
- Department of Pharmaceutical Pharmacy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Aleksandar Lj Obradović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Margot Ernst
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | - Miroslav M Savić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
35
|
An Emerging Circuit Pharmacology of GABA A Receptors. Trends Pharmacol Sci 2018; 39:710-732. [PMID: 29903580 DOI: 10.1016/j.tips.2018.04.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/23/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
In the past 20 years we have learned a great deal about GABAA receptor (GABAAR) subtypes, and which behaviors are regulated or which drug effects are mediated by each subtype. However, the question of where GABAARs involved in specific drug effects and behaviors are located in the brain remains largely unanswered. We review here recent studies taking a circuit pharmacology approach to investigate the functions of GABAAR subtypes in specific brain circuits controlling fear, anxiety, learning, memory, reward, addiction, and stress-related behaviors. The findings of these studies highlight the complexity of brain inhibitory systems and the importance of taking a subtype-, circuit-, and neuronal population-specific approach to develop future therapeutic strategies using cell type-specific drug delivery.
Collapse
|
36
|
Nickolls SA, Gurrell R, van Amerongen G, Kammonen J, Cao L, Brown AR, Stead C, Mead A, Watson C, Hsu C, Owen RM, Pike A, Fish RL, Chen L, Qiu R, Morris ED, Feng G, Whitlock M, Gorman D, van Gerven J, Reynolds DS, Dua P, Butt RP. Pharmacology in translation: the preclinical and early clinical profile of the novel α2/3 functionally selective GABA A receptor positive allosteric modulator PF-06372865. Br J Pharmacol 2018; 175:708-725. [PMID: 29214652 DOI: 10.1111/bph.14119] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/30/2017] [Accepted: 11/23/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Benzodiazepines, non-selective positive allosteric modulators (PAMs) of GABAA receptors, have significant side effects that limit their clinical utility. As many of these side effects are mediated by the α1 subunit, there has been a concerted effort to develop α2/3 subtype-selective PAMs. EXPERIMENTAL APPROACH In vitro screening assays were used to identify molecules with functional selectivity for receptors containing α2/3 subunits over those containing α1 subunits. In vivo receptor occupancy (RO) was conducted, prior to confirmation of in vivo α2/3 and α1 pharmacology through quantitative EEG (qEEG) beta frequency and zolpidem drug discrimination in rats respectively. PF-06372865 was then progressed to Phase 1 clinical trials. KEY RESULTS PF-06372865 exhibited functional selectivity for those receptors containing α2/3/5 subunits, with significant positive allosteric modulation (90-140%) but negligible activity (≤20%) at GABAA receptors containing α1 subunits. PF-06372865 exhibited concentration-dependent occupancy of GABAA receptors in preclinical species. There was an occupancy-dependent increase in qEEG beta frequency and no generalization to a GABAA α1 cue in the drug-discrimination assay, clearly demonstrating the lack of modulation at the GABAA receptors containing an α1 subtype. In a Phase 1 single ascending dose study in healthy volunteers, evaluation of the pharmacodynamics of PF-06372865 demonstrated a robust increase in saccadic peak velocity (a marker of α2/3 pharmacology), increases in beta frequency qEEG and a slight saturating increase in body sway. CONCLUSIONS AND IMPLICATIONS PF-06372865 has a unique clinical pharmacology profile and a highly predictive translational data package from preclinical species to the clinical setting.
Collapse
Affiliation(s)
- Sarah A Nickolls
- Pfizer Inc., Cambridge, UK.,GSK Medicines Research Centre, Stevenage, UK
| | | | | | | | | | | | | | - Andy Mead
- Pfizer Worldwide Research and Development, Groton, CT, USA.,Drug Safety & Metabolism, AstraZeneca, Cambridge, UK
| | - Christine Watson
- Department of Worldwide Medicinal Chemistry, Pfizer Global Research and Development, Sandwich Laboratories, Sandwich, Kent, UK
| | - Cathleen Hsu
- Pfizer Worldwide Research and Development, Groton, CT, USA
| | | | | | | | - Laigao Chen
- Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Ruolun Qiu
- Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kato AS, Witkin JM. Protein complexes as psychiatric and neurological drug targets. Biochem Pharmacol 2018; 151:263-281. [PMID: 29330067 DOI: 10.1016/j.bcp.2018.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
Abstract
The need for improved medications for psychiatric and neurological disorders is clear. Difficulties in finding such drugs demands that all strategic means be utilized for their invention. The discovery of forebrain specific AMPA receptor antagonists, which selectively block the specific combinations of principal and auxiliary subunits present in forebrain regions but spare targets in the cerebellum, was recently disclosed. This discovery raised the possibility that other auxiliary protein systems could be utilized to help identify new medicines. Discussion of the TARP-dependent AMPA receptor antagonists has been presented elsewhere. Here we review the diversity of protein complexes of neurotransmitter receptors in the nervous system to highlight the broad range of protein/protein drug targets. We briefly outline the structural basis of protein complexes as drug targets for G-protein-coupled receptors, voltage-gated ion channels, and ligand-gated ion channels. This review highlights heterodimers, subunit-specific receptor constructions, multiple signaling pathways, and auxiliary proteins with an emphasis on the later. We conclude that the use of auxiliary proteins in chemical compound screening could enhance the detection of specific, targeted drug searches and lead to novel and improved medicines for psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Akihiko S Kato
- Neuroscience Discovery, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Jeffrey M Witkin
- Neuroscience Discovery, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
38
|
Cheng T, Wallace DM, Ponteri B, Tuli M. Valium without dependence? Individual GABA A receptor subtype contribution toward benzodiazepine addiction, tolerance, and therapeutic effects. Neuropsychiatr Dis Treat 2018; 14:1351-1361. [PMID: 29872302 PMCID: PMC5973310 DOI: 10.2147/ndt.s164307] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Benzodiazepines are one of the most prescribed medications as first-line treatment of anxiety, insomnia, and epilepsy around the world. Over the past two decades, advances in the neuropharmacological understanding of gamma aminobutyric acid (GABA)A receptors revealed distinct contributions from each subtype and produced effects. Recent findings have highlighted the importance of α1 containing GABAA receptors in the mechanisms of addiction and tolerance in benzodiazepine treatments. This has shown promise in the development of tranquilizers with minimal side effects such as cognitive impairment, dependence, and tolerance. A valium-like drug without its side effects, as repeatedly demonstrated in animals, is achievable.
Collapse
Affiliation(s)
| | | | | | - Mahir Tuli
- University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Liang L, Zhou H, Zhang S, Yuan J, Wu H. Effects of gut microbiota disturbance induced in early life on the expression of extrasynaptic GABA-A receptor α5 and δ subunits in the hippocampus of adult rats. Brain Res Bull 2017; 135:113-119. [DOI: 10.1016/j.brainresbull.2017.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 12/26/2022]
|
40
|
Ishikawa C, Shiga T. The postnatal 5-HT 1A receptor regulates adult anxiety and depression differently via multiple molecules. Prog Neuropsychopharmacol Biol Psychiatry 2017; 78:66-74. [PMID: 28483674 DOI: 10.1016/j.pnpbp.2017.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 11/16/2022]
Abstract
Serotonin (5-HT) and the 5-HT1A receptor during development are known to modulate anxiety and depression in later life. However, the brain mechanisms linking the postnatal 5-HT system and adult behavior remain unknown. Here, we examined the effects of pharmacological 5-HT1A receptor activation during the postnatal period on anxiety and depression-like behavior in adult BALB/c male mice. To elucidate the underlying mechanisms, we measured mRNA expression of the 5-HT1A receptor, brain-derived neurotrophic factor (BDNF), GABAA receptor subunits, and AMPA receptor subunits in the medial prefrontal cortex (mPFC), amygdala, and hippocampus. Treatment with the selective 5-HT reuptake inhibitor (fluoxetine) and 5-HT1A receptor agonist (8-OH-DPAT) during the postnatal period decreased anxiety-like behavior in adulthood, whereas only 8-OH-DPAT treatment increased depression-like behavior. Concomitantly with the behavioral effects, postnatal treatment with fluoxetine and 8-OH-DPAT decreased the mRNA expression of the GABAA receptor α3 subunit in the mPFC and ventral hippocampus in adulthood, while 8-OH-DPAT, but not fluoxetine, decreased the mRNA expression of the 5-HT1A receptor and BDNF in the mPFC and the GABAA receptor α2 subunit in the mPFC and ventral hippocampus. On the basis of the correlative changes between behavior and mRNA expression, these results suggest that the GABAA receptor α3 subunit in the mPFC and ventral hippocampus may regulate anxiety-like behavior. In contrast, depression-like behavior may be regulated by the 5-HT1A receptor and BDNF in the mPFC and by the GABAA receptor α2 subunit in the mPFC and ventral hippocampus. In summary, activation of the 5-HT1A receptor during the postnatal period may reduce anxiety levels, but increase depression levels during adulthood via different multiple molecules in the mPFC and ventral hippocampus.
Collapse
Affiliation(s)
- Chihiro Ishikawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Takashi Shiga
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; Department of Neurobiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan.
| |
Collapse
|
41
|
Fischer BD, Schlitt RJ, Hamade BZ, Rehman S, Ernst M, Poe MM, Li G, Kodali R, Arnold LA, Cook JM. Pharmacological and antihyperalgesic properties of the novel α2/3 preferring GABA A receptor ligand MP-III-024. Brain Res Bull 2017; 131:62-69. [PMID: 28267561 PMCID: PMC5501353 DOI: 10.1016/j.brainresbull.2017.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022]
Abstract
γ-Aminobutyric acid type A (GABAA) receptors are located in spinal nociceptive circuits where they modulate the transmission of pain sensory signals from the periphery to higher centers. Benzodiazepine-type drugs bind to GABAA receptors containing α1, α2, α3, and α5 subunits (α1GABAA, α2GABAA, α3GABAA and α5GABAA receptors, respectively) through which they inhibit the transmission of these signals. In the present study we describe the novel benzodiazepine site positive allosteric modulator modulator methyl 8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate (MP-III-024). MP-III-024 displayed preference for α2GABAA and α3GABAA receptors relative to α1GABAA and α5GABAA receptors as well as an improved metabolic profile relative to subtype-selective positive modulators that are available currently. Administration of MP-III-024 resulted in a dose- and time-dependent reversal of mechanical hyperalgesia. On locomotor activity and schedule-controlled responding, MP-III-024 was ineffective across the doses tested. These data provide further evidence that α2GABAA and α3GABAA receptors play an important role in the antihyperalgesic effects and may not be involved in some of the undesired effects of benzodiazepine-like drugs. Further, these findings suggest that MP-III-024 is a suitable research tool for investigating the role of α2GABAA and α3GABAA receptors in the behavioral properties of benzodiazepine-like drugs in mice.
Collapse
Affiliation(s)
- Bradford D Fischer
- Cooper Medical School of Rowan University, Department of Biomedical Sciences Camden, NJ 08103, USA.
| | - Raymond J Schlitt
- Cooper Medical School of Rowan University, Department of Biomedical Sciences Camden, NJ 08103, USA
| | - Bryan Z Hamade
- Cooper Medical School of Rowan University, Department of Biomedical Sciences Camden, NJ 08103, USA
| | - Sabah Rehman
- Medical University of Vienna, Department of Molecular Neurosciences, 1090 Vienna, Austria
| | - Margot Ernst
- Medical University of Vienna, Department of Molecular Neurosciences, 1090 Vienna, Austria
| | - Michael M Poe
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, Milwaukee, WI 53201, USA
| | - Guanguan Li
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, Milwaukee, WI 53201, USA
| | - Revathi Kodali
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, Milwaukee, WI 53201, USA
| | - Leggy A Arnold
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, Milwaukee, WI 53201, USA
| | - James M Cook
- University of Wisconsin-Milwaukee, Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, Milwaukee, WI 53201, USA
| |
Collapse
|
42
|
Effects of Traumatic Stress Induced in the Juvenile Period on the Expression of Gamma-Aminobutyric Acid Receptor Type A Subunits in Adult Rat Brain. Neural Plast 2017; 2017:5715816. [PMID: 28352479 PMCID: PMC5352903 DOI: 10.1155/2017/5715816] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/18/2017] [Accepted: 02/15/2017] [Indexed: 12/04/2022] Open
Abstract
Studies have found that early traumatic experience significantly increases the risk of posttraumatic stress disorder (PTSD). Gamma-aminobutyric acid (GABA) deficits were proposed to be implicated in development of PTSD, but the alterations of GABA receptor A (GABAAR) subunits induced by early traumatic stress have not been fully elucidated. Furthermore, previous studies suggested that exercise could be more effective than medications in reducing severity of anxiety and depression but the mechanism is unclear. This study used inescapable foot-shock to induce PTSD in juvenile rats and examined their emotional changes using open-field test and elevated plus maze, memory changes using Morris water maze, and the expression of GABAAR subunits (γ2, α2, and α5) in subregions of the brain in the adulthood using western blotting and immunohistochemistry. We aimed to observe the role of GABAAR subunits changes induced by juvenile trauma in the pathogenesis of subsequent PTSD in adulthood. In addition, we investigated the protective effects of exercise for 6 weeks and benzodiazepine (clonazepam) for 2 weeks. This study found that juvenile traumatic stress induced chronic anxiety and spatial memory loss and reduced expression of GABAAR subunits in the adult rat brains. Furthermore, exercise led to significant improvement as compared to short-term BZ treatment.
Collapse
|
43
|
Poe MM, Methuku KR, Li G, Verma AR, Teske KA, Stafford DC, Arnold LA, Cramer JW, Jones TM, Cerne R, Krambis MJ, Witkin JM, Jambrina E, Rehman S, Ernst M, Cook JM, Schkeryantz JM. Synthesis and Characterization of a Novel γ-Aminobutyric Acid Type A (GABA A) Receptor Ligand That Combines Outstanding Metabolic Stability, Pharmacokinetics, and Anxiolytic Efficacy. J Med Chem 2016; 59:10800-10806. [PMID: 27933953 DOI: 10.1021/acs.jmedchem.6b01332] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1,4-Benzodiazepines are used in the treatment of anxiety disorders but have limited long-term use due to adverse effects. HZ-166 (2) has been shown to have anxiolytic-like effects with reduced sedative/ataxic liabilities. A 1,3-oxazole KRM-II-81 (9) was discovered from a series of six bioisosteres with significantly improved pharmacokinetic and pharmacodynamic properties as compared to 2. Oxazole 9 was further characterized and exhibited improved anxiolytic-like effects in a mouse marble burying assay and a rat Vogel conflict test.
Collapse
Affiliation(s)
- Michael M Poe
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Kashi Reddy Methuku
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Guanguan Li
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Ashwini R Verma
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Kelly A Teske
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Douglas C Stafford
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Jeffrey W Cramer
- Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 42685, United States
| | - Timothy M Jones
- Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 42685, United States
| | - Rok Cerne
- Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 42685, United States
| | - Michael J Krambis
- Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 42685, United States
| | - Jeffrey M Witkin
- Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 42685, United States
| | - Enrique Jambrina
- Lilly Research Laboratories, Eli Lilly and Company , 28108 Alcobendas, Spain
| | - Sabah Rehman
- Department for Molecular Neurosciences, Medical University of Vienna , 1090 Vienna, Austria
| | - Margot Ernst
- Department for Molecular Neurosciences, Medical University of Vienna , 1090 Vienna, Austria
| | - James M Cook
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Jeffrey M Schkeryantz
- Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana 42685, United States
| |
Collapse
|
44
|
Chagraoui A, Skiba M, Thuillez C, Thibaut F. To what extent is it possible to dissociate the anxiolytic and sedative/hypnotic properties of GABAA receptors modulators? Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:189-202. [PMID: 27495357 DOI: 10.1016/j.pnpbp.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 01/16/2023]
Abstract
The relatively common view indicates a possible dissociation between the anxiolytic and sedative/hypnotic properties of benzodiazepines (BZs). Indeed, GABAA receptor (GABAAR) subtypes have specific cerebral distribution in distinct neural circuits. Thus, GABAAR subtype-selective drugs may be expected to perform distinct functions. However, standard behavioral test assays provide limited direction towards highlighting new action mechanisms of ligands targeting GABAARs. Automated behavioral tests, lack sensitivity as some behavioral characteristics or subtle behavioral changes of drug effects or that are not considered in the overall analysis (Ohl et al., 2001) and observation-based analyses are not always performed. In addition, despite the use of genetically engineered mice, any possible dissociation between the anxiolytic and sedative properties of BZs remains controversial. Moreover, the involvement the different subtypes of GABAAR subtypes in the anxious behavior and the mechanism of action of anxiolytic agents remains unclear since there has been little success in the pharmacological investigations so far. This raises the question of the involvement of the different subunits in anxiolytic-like and/or sedative effects; and the actual implication of these subunits, particularly, α-subunits in the modulation of sedation and/or anxiety-related disorders. This present review was prompted by several conflicting studies on the degree of involvement of these subunits in anxiolytic-like and/or sedative effects. To this end, we explored the GABAergic system, particularly, the role of different subunits containing synaptic GABAARs. We report herein the targeting gene encoding the different subunits and their contribution in anxiolytic-like and/or sedative actions, as well as, the mechanism underlying tolerance to BZs.
Collapse
Affiliation(s)
- A Chagraoui
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedecine, Normandy University, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France.
| | - M Skiba
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedecine, Normandy University, France
| | - C Thuillez
- Department of Pharmacology, Rouen University Hospital, Rouen, and INSERM U1096, Laboratory of New Pharmacological Targets for Endothelial Protection and Heart Failure, Institute for Research and Innovation in Biomedicine, Normandy University, France
| | - F Thibaut
- Department of Psychiatry, University Hospital Cochin (site Tarnier), University of Paris-Descartes and INSERM U 894 Laboratory of Psychiatry and Neurosciences, Paris, France
| |
Collapse
|
45
|
Stephens DN, King SL, Lambert JJ, Belelli D, Duka T. GABAAreceptor subtype involvement in addictive behaviour. GENES BRAIN AND BEHAVIOR 2016; 16:149-184. [DOI: 10.1111/gbb.12321] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | - S. L. King
- School of Psychology; University of Sussex; Brighton UK
| | - J. J. Lambert
- Division of Neuroscience; University of Dundee; Dundee UK
| | - D. Belelli
- Division of Neuroscience; University of Dundee; Dundee UK
| | - T. Duka
- School of Psychology; University of Sussex; Brighton UK
| |
Collapse
|
46
|
Behlke LM, Foster RA, Liu J, Benke D, Benham RS, Nathanson AJ, Yee BK, Zeilhofer HU, Engin E, Rudolph U. A Pharmacogenetic 'Restriction-of-Function' Approach Reveals Evidence for Anxiolytic-Like Actions Mediated by α5-Containing GABAA Receptors in Mice. Neuropsychopharmacology 2016; 41:2492-501. [PMID: 27067130 PMCID: PMC4987847 DOI: 10.1038/npp.2016.49] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 02/03/2023]
Abstract
Benzodiazepines have been widely used for their anxiolytic actions. However, the contribution of GABAA receptor subtypes to anxiolysis is still controversial. Studies with mutant mice harboring diazepam-insensitive α-subunits α1, α2, α3, or α5 have revealed that α2-containing GABAA receptors (α2-GABAARs) are required for diazepam-induced anxiolysis, with no evidence for an involvement of any other α-subunit, whereas TP003, described as a selective modulator of α3-containing GABAA receptors, was shown to be anxiolytic. Here, we describe a novel, systematic approach to evaluate the role of positive allosteric modulation of each of the four diazepam-sensitive α-subtypes in anxiety-related behavioral paradigms. By combining H to R point mutations in three out of the four diazepam-sensitive α-subunits in mice with a 129X1/SvJ background, diazepam becomes a subtype-specific modulator of the remaining non-mutated α-subtype. Modulation of α5-GABAARs, but not of α2-GABAARs, increased the time in the light side of the light-dark box as well as open-arm exploration in the elevated plus maze. In contrast, modulation of α3-GABAARs decreased open-arm exploration, whereas modulation of α2-GABAARs increased time in the center in the open-field test. Modulation of any single α-subtype had no effect on stress-induced hyperthermia. Our results provide evidence that modulation of α5-GABAARs elicits anxiolytic-like actions, whereas our data do not provide evidence for an anxiolytic-like action of α3-GABAARs. Thus, α5-GABAARs may be suitable targets for novel anxiolytic drugs.
Collapse
Affiliation(s)
- Lauren M Behlke
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Rachel A Foster
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jing Liu
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Rebecca S Benham
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Anna J Nathanson
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Benjamin K Yee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zürich, Switzerland
| | - Elif Engin
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA,Laboratory of Genetic Neuropharmacology, McLean Hospital, Mailstop No. 145, 115 Mill Street, Belmont, MA 02478-1064, USA, Tel: +1 617 855 2088, Fax: +1 617 855 2012, E-mail:
| |
Collapse
|
47
|
Forkuo GS, Guthrie ML, Yuan NY, Nieman AN, Kodali R, Jahan R, Stephen MR, Yocum GT, Treven M, Poe MM, Li G, Yu OB, Hartzler BD, Zahn NM, Ernst M, Emala CW, Stafford DC, Cook JM, Arnold LA. Development of GABAA Receptor Subtype-Selective Imidazobenzodiazepines as Novel Asthma Treatments. Mol Pharm 2016; 13:2026-38. [PMID: 27120014 DOI: 10.1021/acs.molpharmaceut.6b00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies have demonstrated that subtype-selective GABAA receptor modulators are able to relax precontracted human airway smooth muscle ex vivo and reduce airway hyper-responsiveness in mice upon aerosol administration. Our goal in this study was to investigate systemic administration of subtype-selective GABAA receptor modulators to alleviate bronchoconstriction in a mouse model of asthma. Expression of GABAA receptor subunits was identified in mouse lungs, and the effects of α4-subunit-selective GABAAR modulators, XHE-III-74EE and its metabolite XHE-III-74A, were investigated in a murine model of asthma (ovalbumin sensitized and challenged BALB/c mice). We observed that chronic treatment with XHE-III-74EE significantly reduced airway hyper-responsiveness. In addition, acute treatment with XHE-III-74A but not XHE-III-74EE decreased airway eosinophilia. Immune suppressive activity was also shown in activated human T-cells with a reduction in IL-2 expression and intracellular calcium concentrations [Ca(2+)]i in the presence of GABA or XHE-III-74A, whereas XHE-III-74EE showed only partial reduction of [Ca(2+)]i and no inhibition of IL-2 secretion. However, both compounds significantly relaxed precontracted tracheal rings ex vivo. Overall, we conclude that the systemic delivery of a α4-subunit-selective GABAAR modulator shows good potential for a novel asthma therapy; however, the pharmacokinetic properties of this class of drug candidates have to be improved to enable better beneficial systemic pharmacodynamic effects.
Collapse
Affiliation(s)
- Gloria S Forkuo
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Margaret L Guthrie
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Nina Y Yuan
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Amanda N Nieman
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Revathi Kodali
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Rajwana Jahan
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Michael R Stephen
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Gene T Yocum
- Department of Anesthesiology, Columbia University , New York, New York 10032, United States
| | - Marco Treven
- Department of Molecular Neurosciences, Medical University of Vienna , 1090 Vienna, Austria
| | - Michael M Poe
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Guanguan Li
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Olivia B Yu
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Benjamin D Hartzler
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Nicolas M Zahn
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Margot Ernst
- Department of Molecular Neurosciences, Medical University of Vienna , 1090 Vienna, Austria
| | - Charles W Emala
- Department of Anesthesiology, Columbia University , New York, New York 10032, United States
| | - Douglas C Stafford
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - James M Cook
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
48
|
Hegeman DJ, Hong ES, Hernández VM, Chan CS. The external globus pallidus: progress and perspectives. Eur J Neurosci 2016; 43:1239-65. [PMID: 26841063 PMCID: PMC4874844 DOI: 10.1111/ejn.13196] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The external globus pallidus (GPe) of the basal ganglia is in a unique and powerful position to influence processing of motor information by virtue of its widespread projections to all basal ganglia nuclei. Despite the clinical importance of the GPe in common motor disorders such as Parkinson's disease, there is only limited information about its cellular composition and organizational principles. In this review, recent advances in the understanding of the diversity in the molecular profile, anatomy, physiology and corresponding behaviour during movement of GPe neurons are described. Importantly, this study attempts to build consensus and highlight commonalities of the cellular classification based on existing but contentious literature. Additionally, an analysis of the literature concerning the intricate reciprocal loops formed between the GPe and major synaptic partners, including both the striatum and the subthalamic nucleus, is provided. In conclusion, the GPe has emerged as a crucial node in the basal ganglia macrocircuit. While subtleties in the cellular makeup and synaptic connection of the GPe create new challenges, modern research tools have shown promise in untangling such complexity, and will provide better understanding of the roles of the GPe in encoding movements and their associated pathologies.
Collapse
Affiliation(s)
- Daniel J Hegeman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ellie S Hong
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vivian M Hernández
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
49
|
GABAergic modulation in central sensitization in humans: a randomized placebo-controlled pharmacokinetic-pharmacodynamic study comparing clobazam with clonazepam in healthy volunteers. Pain 2015; 156:397-404. [PMID: 25687539 DOI: 10.1097/01.j.pain.0000460331.33385.e8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Positive allosteric modulators of GABAA receptors (GAMs) acting at specific subtypes of GABAA receptors effectively restore compromised spinal pain control in rodents. Studies addressing a similar antihyperalgesic effect in humans are sparse and are hampered by sedative effects of nonselective GAMs available for use in humans. We present results from a randomized controlled double-blind crossover study in 25 healthy volunteers, which addressed potential antihyperalgesic actions of clobazam (CBZ) and clonazepam (CLN) at mildly sedating equianticonvulsive doses. Clobazam was chosen because of its relatively low sedative properties and CLN because of its use in neuropathic pain. Tolterodine (TLT) was used as an active placebo. The primary outcome parameter was a change in the area of cutaneous UVB irradiation-induced secondary hyperalgesia (ASH), which was monitored for 8 hours after drug application. Sedative effects were assessed in parallel to antihyperalgesia. Compared with TLT, recovery from hyperalgesia was significantly faster in the CBZ and CLN groups (P = 0.009). At the time point of maximum effect, the rate of recovery from hyperalgesia was accelerated by CBZ and CLN, relative to placebo by 15.7% (95% confidence interval [CI] 0.8-30.5), P = 0.040, and 28.6% (95% CI 4.5-52.6), P = 0.022, respectively. Active compounds induced stronger sedation than placebo, but these differences disappeared 8 hours after drug application. We demonstrate here that GAMs effectively reduce central sensitization in healthy volunteers. These results provide proof-of-principle evidence supporting efficacy of GAMs as antihyperalgesic agents in humans and should stimulate further research on compounds with improved subtype specificity.
Collapse
|
50
|
Yan MZ, Chang Q, Zhong Y, Xiao BX, Feng L, Cao FR, Pan RL, Zhang ZS, Liao YH, Liu XM. Lotus Leaf Alkaloid Extract Displays Sedative-Hypnotic and Anxiolytic Effects through GABAA Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9277-9285. [PMID: 26448283 DOI: 10.1021/acs.jafc.5b04141] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lotus leaves have been used traditionally as both food and herbal medicine in Asia. Open-field, sodium pentobarbital-induced sleeping and light/dark box tests were used to evaluate sedative-hypnotic and anxiolytic effects of the total alkaloids (TA) extracted from the herb, and the neurotransmitter levels in the brain were determined by ultrafast liquid chromatography-tandem mass spectrometry. The effects of picrotoxin, flumazenil, and bicuculline on the hypnotic activity of TA, as well as the influence of TA on Cl(-) influx in cerebellar granule cells, were also investigated. TA showed a sedative-hypnotic effect by increasing the brain level of γ-aminobutyric acid (GABA), and the hypnotic effect could be blocked by picrotoxin and bicuculline, but could not be antagonized by flumazenil. Additionally, TA could increase Cl(-) influx in cerebellar granule cells. TA at 20 mg/kg induced anxiolytic-like effects and significantly increased the concentrations of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and dopamine (DA). These data demonstrated that TA exerts sedative-hypnotic and anxiolytic effects via binding to the GABAA receptor and activating the monoaminergic system.
Collapse
Affiliation(s)
- Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193, People's Republic of China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, People's Republic of China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193, People's Republic of China
| | - Yu Zhong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193, People's Republic of China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, People's Republic of China
| | - Bing-Xin Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193, People's Republic of China
| | - Li Feng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193, People's Republic of China
| | - Fang-Rui Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193, People's Republic of China
| | - Rei-Le Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193, People's Republic of China
| | - Ze-Sheng Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology , Tianjin 300457, People's Republic of China
| | - Yong-Hong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193, People's Republic of China
| | - Xin-Min Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100193, People's Republic of China
| |
Collapse
|