1
|
Maroli N, Ryan MJ, Zanni MT, Kananenka AA. Do selectivity filter carbonyls in K + channels flip away from the pore? Two-dimensional infrared spectroscopy study. J Struct Biol X 2024; 10:100108. [PMID: 39157159 PMCID: PMC11328031 DOI: 10.1016/j.yjsbx.2024.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 08/20/2024] Open
Abstract
Molecular dynamics simulations revealed that the carbonyls of the Val residue in the conserved selectivity filter sequence TVGTG of potassium ion channels can flip away from the pore to form hydrogen bonds with the network of water molecules residing behind the selectivity filter. Such a configuration has been proposed to be relevant for C-type inactivation. Experimentally, X-ray crystallography of the KcsA channel admits the possibility that the Val carbonyls can flip, but it cannot decisively confirm the existence of such a configuration. In this study, we combined molecular dynamics simulations and line shape theory to design two-dimensional infrared spectroscopy experiments that can corroborate the existence of the selectivity filter configuration with flipped Val carbonyls. This ability to distinguish between flipped and unflipped carbonyls is based on the varying strength of the electric field inside and outside the pore, which is directly linked to carbonyl stretching frequencies that can be resolved using infrared spectroscopy.
Collapse
Affiliation(s)
- Nikhil Maroli
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Matthew J. Ryan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alexei A. Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
2
|
Mironenko A, de Groot BL, Kopec W. Selectivity filter mutations shift ion permeation mechanism in potassium channels. PNAS NEXUS 2024; 3:pgae272. [PMID: 39015549 PMCID: PMC11251424 DOI: 10.1093/pnasnexus/pgae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024]
Abstract
Potassium (K+) channels combine high conductance with high ion selectivity. To explain this efficiency, two molecular mechanisms have been proposed. The "direct knock-on" mechanism is defined by water-free K+ permeation and formation of direct ion-ion contacts in the highly conserved selectivity filter (SF). The "soft knock-on" mechanism involves co-permeation of water and separation of K+ by water molecules. With the aim to distinguish between these mechanisms, crystal structures of the KcsA channel with mutations in two SF residues-G77 and T75-were published, where the arrangements of K+ ions and water display canonical soft knock-on configurations. These data were interpreted as evidence of the soft knock-on mechanism in wild-type channels. Here, we test this interpretation using molecular dynamics simulations of KcsA and its mutants. We show that while a strictly water-free direct knock-on permeation is observed in the wild type, conformational changes induced by these mutations lead to distinct ion permeation mechanisms, characterized by co-permeation of K+ and water. These mechanisms are characterized by reduced conductance and impaired potassium selectivity, supporting the importance of full dehydration of potassium ions for the hallmark high conductance and selectivity of K+ channels. In general, we present a case where mutations introduced at the critical points of the permeation pathway in an ion channel drastically change its permeation mechanism in a nonintuitive manner.
Collapse
Affiliation(s)
- Andrei Mironenko
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
- Department of Chemistry, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK
| |
Collapse
|
3
|
Kariev AM, Green ME. Water, Protons, and the Gating of Voltage-Gated Potassium Channels. MEMBRANES 2024; 14:37. [PMID: 38392664 PMCID: PMC10890431 DOI: 10.3390/membranes14020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Ion channels are ubiquitous throughout all forms of life. Potassium channels are even found in viruses. Every cell must communicate with its surroundings, so all cells have them, and excitable cells, in particular, especially nerve cells, depend on the behavior of these channels. Every channel must be open at the appropriate time, and only then, so that each channel opens in response to the stimulus that tells that channel to open. One set of channels, including those in nerve cells, responds to voltage. There is a standard model for the gating of these channels that has a section of the protein moving in response to the voltage. However, there is evidence that protons are moving, rather than protein. Water is critical as part of the gating process, although it is hard to see how this works in the standard model. Here, we review the extensive evidence of the importance of the role of water and protons in gating these channels. Our principal example, but by no means the only example, will be the Kv1.2 channel. Evidence comes from the effects of D2O, from mutations in the voltage sensing domain, as well as in the linker between that domain and the gate, and at the gate itself. There is additional evidence from computations, especially quantum calculations. Structural evidence comes from X-ray studies. The hydration of ions is critical in the transfer of ions in constricted spaces, such as the gate region and the pore of a channel; we will see how the structure of the hydrated ion fits with the structure of the channel. In addition, there is macroscopic evidence from osmotic experiments and streaming current measurements. The combined evidence is discussed in the context of a model that emphasizes the role of protons and water in gating these channels.
Collapse
Affiliation(s)
- Alisher M Kariev
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Michael E Green
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| |
Collapse
|
4
|
Ryan M, Gao L, Valiyaveetil FI, Kananenka AA, Zanni MT. Water inside the Selectivity Filter of a K + Ion Channel: Structural Heterogeneity, Picosecond Dynamics, and Hydrogen Bonding. J Am Chem Soc 2024; 146:1543-1553. [PMID: 38181505 PMCID: PMC10797622 DOI: 10.1021/jacs.3c11513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Water inside biological ion channels regulates the key properties of these proteins, such as selectivity, ion conductance, and gating. In this article, we measure the picosecond spectral diffusion of amide I vibrations of an isotope-labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100-2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope-labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D line shapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent or nonadjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations was observed on a picosecond timescale. These dynamics are in stark contrast with liquid water, which remains highly dynamic even in the presence of ions at high concentrations.
Collapse
Affiliation(s)
- Matthew
J. Ryan
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lujia Gao
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Francis I. Valiyaveetil
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alexei A. Kananenka
- Department
of Physics and Astronomy, University of
Delaware, Newark, Delaware 19716, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Ryan M, Gao L, Valiyaveetil FI, Zanni MT, Kananenka AA. Probing Ion Configurations in the KcsA Selectivity Filter with Single-Isotope Labels and 2D IR Spectroscopy. J Am Chem Soc 2023; 145:18529-18537. [PMID: 37578394 PMCID: PMC10450685 DOI: 10.1021/jacs.3c05339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 08/15/2023]
Abstract
The potassium ion (K+) configurations of the selectivity filter of the KcsA ion channel protein are investigated with two-dimensional infrared (2D IR) spectroscopy of amide I vibrations. Single 13C-18O isotope labels are used, for the first time, to selectively probe the S1/S2 or S2/S3 binding sites in the selectivity filter. These binding sites have the largest differences in ion occupancy in two competing K+ transport mechanisms: soft-knock and hard-knock. According to the former, water molecules alternate between K+ ions in the selectivity filter while the latter assumes that K+ ions occupy the adjacent sites. Molecular dynamics simulations and computational spectroscopy are employed to interpret experimental 2D IR spectra. We find that in the closed conductive state of the KcsA channel, K+ ions do not occupy adjacent binding sites. The experimental data is consistent with simulated 2D IR spectra of soft-knock ion configurations. In contrast, the simulated spectra for the hard-knock ion configurations do not reproduce the experimental results. 2D IR spectra of the hard-knock mechanism have lower frequencies, homogeneous 2D lineshapes, and multiple peaks. In contrast, ion configurations of the soft-knock model produce 2D IR spectra with a single peak at a higher frequency and inhomogeneous lineshape. We conclude that under equilibrium conditions, in the absence of transmembrane voltage, both water and K+ ions occupy the selectivity filter of the KcsA channel in the closed conductive state. The ion configuration is central to the mechanism of ion transport through potassium channels.
Collapse
Affiliation(s)
- Matthew
J. Ryan
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lujia Gao
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Francis I. Valiyaveetil
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Alexei A. Kananenka
- Department
of Physics and Astronomy, University of
Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
6
|
Zhao X, Ding W, Wang H, Wang Y, Liu Y, Li Y, Liu C. Permeability enhancement of Kv1.2 potassium channel by a terahertz electromagnetic field. J Chem Phys 2023; 159:045101. [PMID: 37486058 DOI: 10.1063/5.0143648] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
As biomolecules vibrate and rotate in the terahertz band, the biological effects of terahertz electromagnetic fields have drawn considerable attention from the physiological and medical communities. Ion channels are the basis of biological electrical signals, so studying the effect of terahertz electromagnetic fields on ion channels is significant. In this paper, the effect of a terahertz electromagnetic field with three different frequencies, 6, 15, and 25 THz, on the Kv1.2 potassium ion channel was investigated by molecular dynamics simulations. The results show that an electromagnetic field with a 15 THz frequency can significantly enhance the permeability of the Kv1.2 potassium ion channel, which is 1.7 times higher than without an applied electric field. By analyzing the behavior of water molecules, it is found that the electromagnetic field with the 15 THz frequency shortens the duration of frozen and relaxation processes when potassium ions pass through the channel, increases the proportion of the direct knock-on mode, and, thus, enhances the permeability of the Kv1.2 potassium ion channel.
Collapse
Affiliation(s)
- Xiaofei Zhao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wen Ding
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongguang Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yize Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yanjiang Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yongdong Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chunliang Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
7
|
Yano K, Iwamoto M, Koshiji T, Oiki S. Geometrical and electrophysiological data of the moving membrane method for the osmotic water permeability of a lipid bilayer. Data Brief 2021; 38:107309. [PMID: 34485640 PMCID: PMC8405959 DOI: 10.1016/j.dib.2021.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Data of the osmotic water permeability of a lipid bilayer (diphytanoylphosphaticylcholin) in the presence of cholesterol (30 mole%) are shown under the simultaneous measurement of bilayer tension. Detailed methods and procedures for evaluating the water permeability using the moving membrane method (K. Yano, M. Iwamoto, T. Koshiji & S. Oiki: Visualizing the Osmotic Water Permeability of a Lipid Bilayer under Measured Bilayer Tension Using a Moving Membrane Method. Journal of Membrane Science, 627 (2021) 119231) are presented. The planar lipid bilayer is formed in a glass capillary, separating two aqueous compartments with different osmolarities, and osmotically-driven water flux is visualized as membrane movements along the capillary. The water permeability was evaluated under constant membrane area and tension after correcting for the unstirred layer effect. In these measurements, geometrical features, such as the edge of the planar lipid bilayer and the contact angle between bilayer and monolayer, were image-analyzed. The unstirred layer was evaluated electrophysiologically, in which gramicidin A channel was employed. In the presence of an osmotic gradient, the gramicidin channel generates the streaming potential, and the measured streaming potential data and the derived water-ion coupling ratio (water flux/ion flux) are shown. Detailed descriptions of the integrated method of the moving membrane allow researchers to reproduce the experiment and give opportunities to examine water permeability of various types of membranes, including those containing aquaporins. The present data of osmotic water permeability are compared with the previously published data, while they neglected the bilayer tension.
Collapse
Affiliation(s)
- Keita Yano
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Department of Surgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Takaaki Koshiji
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
8
|
Conductance selectivity of Na + across the K + channel via Na + trapped in a tortuous trajectory. Proc Natl Acad Sci U S A 2021; 118:2017168118. [PMID: 33741736 DOI: 10.1073/pnas.2017168118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ion selectivity of the potassium channel is crucial for regulating electrical activity in living cells; however, the mechanism underlying the potassium channel selectivity that favors large K+ over small Na+ remains unclear. Generally, Na+ is not completely excluded from permeation through potassium channels. Herein, the distinct nature of Na+ conduction through the prototypical KcsA potassium channel was examined. Single-channel current recordings revealed that, at a high Na+ concentration (200 mM), the channel was blocked by Na+, and this blocking was relieved at high membrane potentials, suggesting the passage of Na+ across the channel. At a 2,000 mM Na+ concentration, single-channel Na+ conductance was measured as one-eightieth of the K+ conductance, indicating that the selectivity filter allows substantial conduit of Na+ Molecular dynamics simulations revealed unprecedented atomic trajectories of Na+ permeation. In the selectivity filter having a series of carbonyl oxygen rings, a smaller Na+ was distributed off-center in eight carbonyl oxygen-coordinated sites as well as on-center in four carbonyl oxygen-coordinated sites. This amphipathic nature of Na+ coordination yielded a continuous but tortuous path along the filter. Trapping of Na+ in many deep free energy wells in the filter caused slow elution. Conversely, K+ is conducted via a straight path, and as the number of occupied K+ ions increased to three, the concerted conduction was accelerated dramatically, generating the conductance selectivity ratio of up to 80. The selectivity filter allows accommodation of different ion species, but the ion coordination and interactions between ions render contrast conduction rates, constituting the potassium channel conductance selectivity.
Collapse
|
9
|
Domene C, Ocello R, Masetti M, Furini S. Ion Conduction Mechanism as a Fingerprint of Potassium Channels. J Am Chem Soc 2021; 143:12181-12193. [PMID: 34323472 DOI: 10.1021/jacs.1c04802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
K+-channels are membrane proteins that regulate the selective conduction of potassium ions across cell membranes. Although the atomic mechanisms of K+ permeation have been extensively investigated, previous work focused on characterizing the selectivity and occupancy of the binding sites, the role of water molecules in the conduction process, or the identification of the minimum energy pathways enabling permeation. Here, we exploit molecular dynamics simulations and the analytical power of Markov state models to perform a comparative study of ion conduction in three distinct channel models. Significant differences emerged in terms of permeation mechanisms and binding site occupancy by potassium ions and/or water molecules from 100 μs cumulative trajectories. We found that, at odds with the current paradigm, each system displays a characteristic permeation mechanism, and thus, there is not a unique way by which potassium ions move through K+-channels. The high functional diversity of K+-channels can be attributed in part to the differences in conduction features that have emerged from this work. This study provides crucial information and further inspiration for wet-lab chemists designing new synthetic strategies to produce versatile artificial ion channels that emulate membrane transport for their applications in diagnosis, sensors, the next generation of water treatment technologies, etc., as the ability of synthetic channels to transport molecular ions across a bilayer in a controlled way is usually governed through the choice of metal ions, their oxidation states, or their coordination geometries.
Collapse
Affiliation(s)
- Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.,Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Riccardo Ocello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| |
Collapse
|
10
|
Jing Z, Rackers JA, Pratt LR, Liu C, Rempe SB, Ren P. Thermodynamics of ion binding and occupancy in potassium channels. Chem Sci 2021; 12:8920-8930. [PMID: 34257893 PMCID: PMC8246295 DOI: 10.1039/d1sc01887f] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Potassium channels modulate various cellular functions through efficient and selective conduction of K+ ions. The mechanism of ion conduction in potassium channels has recently emerged as a topic of debate. Crystal structures of potassium channels show four K+ ions bound to adjacent binding sites in the selectivity filter, while chemical intuition and molecular modeling suggest that the direct ion contacts are unstable. Molecular dynamics (MD) simulations have been instrumental in the study of conduction and gating mechanisms of ion channels. Based on MD simulations, two hypotheses have been proposed, in which the four-ion configuration is an artifact due to either averaged structures or low temperature in crystallographic experiments. The two hypotheses have been supported or challenged by different experiments. Here, MD simulations with polarizable force fields validated by ab initio calculations were used to investigate the ion binding thermodynamics. Contrary to previous beliefs, the four-ion configuration was predicted to be thermodynamically stable after accounting for the complex electrostatic interactions and dielectric screening. Polarization plays a critical role in the thermodynamic stabilities. As a result, the ion conduction likely operates through a simple single-vacancy and water-free mechanism. The simulations explained crystal structures, ion binding experiments and recent controversial mutagenesis experiments. This work provides a clear view of the mechanism underlying the efficient ion conduction and demonstrates the importance of polarization in ion channel simulations. Polarization shapes the energy landscape of ion conduction in potassium channels.![]()
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin Austin Texas 78712 USA
| | - Joshua A Rackers
- Center for Integrated Nanotechnologies, Sandia National Laboratories Albuquerque New Mexico 87185 USA
| | - Lawrence R Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University New Orleans Louisiana 70118 USA
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin Austin Texas 78712 USA
| | - Susan B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories Albuquerque New Mexico 87185 USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin Austin Texas 78712 USA
| |
Collapse
|
11
|
Visualizing the osmotic water permeability of a lipid bilayer under measured bilayer tension using a moving membrane method. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
van Putten MJ, Fahlke C, Kafitz KW, Hofmeijer J, Rose CR. Dysregulation of Astrocyte Ion Homeostasis and Its Relevance for Stroke-Induced Brain Damage. Int J Mol Sci 2021; 22:5679. [PMID: 34073593 PMCID: PMC8198632 DOI: 10.3390/ijms22115679] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and chronic disability. Either recovery or progression towards irreversible failure of neurons and astrocytes occurs within minutes to days, depending on remaining perfusion levels. Initial damage arises from energy depletion resulting in a failure to maintain homeostasis and ion gradients between extra- and intracellular spaces. Astrocytes play a key role in these processes and are thus central players in the dynamics towards recovery or progression of stroke-induced brain damage. Here, we present a synopsis of the pivotal functions of astrocytes at the tripartite synapse, which form the basis of physiological brain functioning. We summarize the evidence of astrocytic failure and its consequences under ischemic conditions. Special emphasis is put on the homeostasis and stroke-induced dysregulation of the major monovalent ions, namely Na+, K+, H+, and Cl-, and their involvement in maintenance of cellular volume and generation of cerebral edema.
Collapse
Affiliation(s)
- Michel J.A.M. van Putten
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christoph Fahlke
- Institut für Biologische Informationsprozesse, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Karl W. Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
13
|
Mironenko A, Zachariae U, de Groot BL, Kopec W. The Persistent Question of Potassium Channel Permeation Mechanisms. J Mol Biol 2021; 433:167002. [PMID: 33891905 DOI: 10.1016/j.jmb.2021.167002] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/09/2023]
Abstract
Potassium channels play critical roles in many physiological processes, providing a selective permeation route for K+ ions in and out of a cell, by employing a carefully designed selectivity filter, evolutionarily conserved from viruses to mammals. The structure of the selectivity filter was determined at atomic resolution by x-ray crystallography, showing a tight coordination of desolvated K+ ions by the channel. However, the molecular mechanism of K+ ions permeation through potassium channels remains unclear, with structural, functional and computational studies often providing conflicting data and interpretations. In this review, we will present the proposed mechanisms, discuss their origins, and will critically assess them against all available data. General properties shared by all potassium channels are introduced first, followed by the introduction of two main mechanisms of ion permeation: soft and direct knock-on. Then, we will discuss critical computational and experimental studies that shaped the field. We will especially focus on molecular dynamics (MD) simulations, that provided mechanistic and energetic aspects of K+ permeation, but at the same time created long-standing controversies. Further challenges and possible solutions are presented as well.
Collapse
Affiliation(s)
- Andrei Mironenko
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
14
|
Fuel Cell Using Squid Axon Electrolyte and Its Proton Conductivity. J Funct Biomater 2020; 11:jfb11040086. [PMID: 33287321 PMCID: PMC7768438 DOI: 10.3390/jfb11040086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
Fuel cells using biomaterials have the potential for environmentally friendly clean energy and have attracted a lot of interest. Moreover, biomaterials are expected to develop into in vivo electrical devices such as pacemakers with no side effects. Ion channels, which are membrane proteins, are known to have a fast ion transport capacity. Therefore, by using ion channels, the realization of fuel cell electrolytes with high-proton conductivity can be expected. In this study, we have fabricated a fuel cell using an ion channel electrolyte for the first time and investigated the electrical properties of the ion channel electrolyte. It was found that the fuel cell using the ion channel membrane shows a power density of 0.78 W/cm2 in the humidified condition. On the other hand, the power density of the fuel cell blocking the ion channel with the channel blocker drastically decreased. These results indicate that the fuel cell using the ion channel electrolyte operates through the existence of the ion channel and that the ion channel membrane can be used as the electrolyte of the fuel cell in humidified conditions. Furthermore, the proton conductivity of the ion channel electrolyte drastically increases above 85% relative humidity (RH) and becomes 2 × 10-2 S/m at 96% RH. This result indicates that the ion channel becomes active above 96%RH. In addition, it was deduced from the impedance analysis that the high proton conductivity of the ion channel electrolyte above 96% RH is caused by the activation of ion channels, which are closely related to the fractionalization of water molecule clusters. From these results, it was found that a fuel cell using the squid axon becomes a new fuel cell using the function of the ion channel above 96% RH.
Collapse
|
15
|
Quantum Mechanical Coherence of K+ Ion Wave Packets Increases Conduction in the KcsA Ion Channel. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We simulate the transmission of K+ ions through the KcsA potassium ion channel filter region at physiological temperatures, employing classical molecular dynamics (MD) at the atomic scale together with a quantum mechanical version of MD simulation (QMD), treating single ions as quantum wave packets. We provide a direct comparison between both concepts, embedding the simulations into identical force fields and thermal fluctuations. The quantum simulations permit the estimation of coherence times and wave packet dispersions of a K+ ion over a range of 0.5 nm (a range that covers almost 50% of the filter domains longitudinal extension). We find that this observed extension of particle delocalization changes the mean orientation of the coordinating carbonyl oxygen atoms significantly, transiently suppressing their ‘caging action’ responsible for selective ion coordination. Compared to classical MD simulations, this particular quantum effect allows the K+ ions to ‘escape’ more easily from temporary binding sites provided by the surrounding filter atoms. To further elucidate the role of this observation for ion conduction rates, we compare the temporal pattern of single conduction events between classical MD and quantum QMD simulations at a femto-sec time scale. A finding from both approaches is that ion permeation follows a very irregular time pattern, involving flushes of permeation interrupted by non-conductive time intervals. However, as compared with classical behavior, the QMD simulation shortens non-conductive time by more than a half. As a consequence, and given the same force-fields, the QMD-simulated ion current appears to be considerably stronger as compared with the classical current. To bring this result in line with experimentally observed ion currents and the predictions based on Nernst–Planck theories, the conclusion is that a transient short time quantum behavior of permeating ions can successfully compromise high conduction rates with ion selectivity in the filter of channel proteins.
Collapse
|
16
|
Lewis A, McCrossan ZA, Manville RW, Popa MO, Cuello LG, Goldstein SAN. TOK channels use the two gates in classical K + channels to achieve outward rectification. FASEB J 2020; 34:8902-8919. [PMID: 32519783 DOI: 10.1096/fj.202000545r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 11/11/2022]
Abstract
TOKs are outwardly rectifying K+ channels in fungi with two pore-loops and eight transmembrane spans. Here, we describe the TOKs from four pathogens that cause the majority of life-threatening fungal infections in humans. These TOKs pass large currents only in the outward direction like the canonical isolate from Saccharomyces cerevisiae (ScTOK), and distinct from other K+ channels. ScTOK, AfTOK1 (Aspergillus fumigatus), and H99TOK (Cryptococcus neoformans grubii) are K+ -selective and pass current above the K+ reversal potential. CaTOK (Candida albicans) and CnTOK (Cryptococcus neoformans neoformans) pass both K+ and Na+ and conduct above a reversal potential reflecting the mixed permeability of their selectivity filter. Mutations in CaTOK and ScTOK at sites homologous to those that open the internal gates in classical K+ channels are shown to produce inward TOK currents. A favored model for outward rectification is proposed whereby the reversal potential determines ion occupancy, and thus, conductivity, of the selectivity filter gate that is coupled to an imperfectly restrictive internal gate, permitting the filter to sample ion concentrations on both sides of the membrane.
Collapse
Affiliation(s)
- Anthony Lewis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Zoe A McCrossan
- NIHR Evaluation, Trials and Studies Coordinating Centre (NETSCC), University of Southampton, Southampton, UK
| | - Rían W Manville
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - M Oana Popa
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Steve A N Goldstein
- Departments of Physiology & Biophysics and Pediatrics, School of Medicine, Samueli College of Health Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
17
|
Chaudhari MI, Vanegas JM, Pratt LR, Muralidharan A, Rempe SB. Hydration Mimicry by Membrane Ion Channels. Annu Rev Phys Chem 2020; 71:461-484. [PMID: 32155383 DOI: 10.1146/annurev-physchem-012320-015457] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ions transiting biomembranes might pass readily from water through ion-specific membrane proteins if these protein channels provide environments similar to the aqueous solution hydration environment. Indeed, bulk aqueous solution is an important reference condition for the ion permeation process. Assessment of this hydration mimicry concept depends on understanding the hydration structure and free energies of metal ions in water in order to provide a comparison for the membrane channel environment. To refine these considerations, we review local hydration structures of ions in bulk water and the molecular quasi-chemical theory that provides hydration free energies. In doing so, we note some current views of ion binding to membrane channels and suggest new physical chemical calculations and experiments that might further clarify the hydration mimicry concept.
Collapse
Affiliation(s)
- Mangesh I Chaudhari
- Department of Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA;
| | - Juan M Vanegas
- Department of Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA; .,Current affiliation: Department of Physics, University of Vermont, Burlington, Vermont 05405, USA
| | - L R Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| | - Ajay Muralidharan
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, USA.,Current affiliation: Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Susan B Rempe
- Department of Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA;
| |
Collapse
|
18
|
Strong SE, Hestand NJ, Kananenka AA, Zanni MT, Skinner JL. IR Spectroscopy Can Reveal the Mechanism of K + Transport in Ion Channels. Biophys J 2019; 118:254-261. [PMID: 31812356 DOI: 10.1016/j.bpj.2019.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 01/18/2023] Open
Abstract
Ion channels like KcsA enable ions to move across cell membranes at near diffusion-limited rates and with very high selectivity. Various mechanisms have been proposed to explain this phenomenon. Broadly, there is disagreement among the proposed mechanisms about whether ions occupy adjacent sites in the channel during the transport process. Here, using a mixed quantum-classical approach to calculate theoretical infrared spectra, we propose a set of infrared spectroscopy experiments that can discriminate between mechanisms with and without adjacent ions. These experiments differ from previous ones in that they independently probe specific ion binding sites within the selectivity filter. When ions occupy adjacent sites in the selectivity filter, the predicted spectra are significantly redshifted relative to when ions do not occupy adjacent sites. Comparisons between theoretical and experimental peak frequencies will therefore discriminate the mechanisms.
Collapse
Affiliation(s)
- Steven E Strong
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Nicholas J Hestand
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois; Department of Natural and Applied Sciences, Evangel University, Springfield, Missouri
| | - Alexei A Kananenka
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois; Department of Physics and Astronomy, University of Delaware, Newark, Delaware
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin
| | - J L Skinner
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois.
| |
Collapse
|
19
|
Sumikama T, Oiki S. Queueing arrival and release mechanism for K + permeation through a potassium channel. J Physiol Sci 2019; 69:919-930. [PMID: 31456113 PMCID: PMC10717923 DOI: 10.1007/s12576-019-00706-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/18/2019] [Indexed: 01/26/2023]
Abstract
The mechanism underlying ion permeation through potassium channels still remains controversial. K+ ions permeate across a narrow selectivity filter (SF) in a single file. Conventional scenarios assume that K+ ions are tightly bound in the SF, and, thus, they are displaced from their energy well by ion-ion repulsion with an incoming ion. This tight coupling between entering and exiting ions has been called the "knock-on" mechanism. However, this paradigm is contradicted by experimental data measuring the water-ion flux coupling ratio, demonstrating fewer ion occupancies. Here, the results of molecular dynamics simulations of permeation through the KcsA potassium channel revealed an alternative mechanism. In the aligned ions in the SF (an ion queue), the outermost K+ was readily and spontaneously released toward the extracellular space, and the affinity of the relevant ion was ~ 50 mM. Based on this low-affinity regime, a simple queueing mechanism described by loose coupling of entering and exiting ions is proposed.
Collapse
Affiliation(s)
- Takashi Sumikama
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.
- Biomedical Imaging Research Center, University of Fukui, Fukui, 910-1193, Japan.
| |
Collapse
|
20
|
Structure, function, and ion-binding properties of a K + channel stabilized in the 2,4-ion-bound configuration. Proc Natl Acad Sci U S A 2019; 116:16829-16834. [PMID: 31387976 DOI: 10.1073/pnas.1901888116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Here, we present the atomic resolution crystallographic structure, the function, and the ion-binding properties of the KcsA mutants, G77A and G77C, that stabilize the 2,4-ion-bound configuration (i.e., water, K+, water, K+-ion-bound configuration) of the K+ channel's selectivity filter. A full functional and thermodynamic characterization of the G77A mutant revealed wild-type-like ion selectivity and apparent K+-binding affinity, in addition to showing a lack of C-type inactivation gating and a marked reduction in its single-channel conductance. These structures validate, from a structural point of view, the notion that 2 isoenergetic ion-bound configurations coexist within a K+ channel's selectivity filter, which fully agrees with the water-K+-ion-coupled transport detected by streaming potential measurements.
Collapse
|
21
|
Flood E, Boiteux C, Lev B, Vorobyov I, Allen TW. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem Rev 2019; 119:7737-7832. [DOI: 10.1021/acs.chemrev.8b00630] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Céline Boiteux
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Igor Vorobyov
- Department of Physiology & Membrane Biology/Department of Pharmacology, University of California, Davis, 95616, United States
| | - Toby W. Allen
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
22
|
Oiki S, Iwamoto M. Lipid Bilayers Manipulated through Monolayer Technologies for Studies of Channel-Membrane Interplay. Biol Pharm Bull 2018; 41:303-311. [PMID: 29491206 DOI: 10.1248/bpb.b17-00708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluidity and mosaicity are two critical features of biomembranes, by which membrane proteins function through chemical and physical interactions within a bilayer. To understand this complex and dynamic system, artificial lipid bilayer membranes have served as unprecedented tools for experimental examination, in which some aspects of biomembrane features have been extracted, and to which various methodologies have been applied. Among the lipid bilayers involving liposomes, planar lipid bilayers and nanodiscs, recent developments of lipid bilayer methods and the results of our channel studies are reviewed herein. Principles and techniques of bilayer formation are summarized, which have been extended to the current techniques, where a bilayer is formed from lipid-coated water-in-oil droplets (water-in-oil bilayer). In our newly developed method, termed the contact bubble bilayer (CBB) method, a water bubble is blown from a pipette into a bulk oil phase, and monolayer-lined bubbles are docked to form a bilayer through manipulation by pipette. An asymmetric bilayer can be readily formed, and changes in composition in one leaflet were possible. Taking advantage of the topological configuration of the CBB, such that the membrane's hydrophobic interior is contiguous with the surrounding bulk organic phase, oil-dissolved substances such as cholesterol were delivered directly to the bilayer interior to perfuse around the membrane-embedded channels (membrane perfusion), and current recordings in the single-channel allowed detection of immediate changes in the channels' response to cholesterol. Chemical and mechanical manipulation in each monolayer (monolayer technology) allows the examination of dynamic channel-membrane interplay.
Collapse
Affiliation(s)
- Shigetoshi Oiki
- Department of Molecular Physiology & Biophysics, University of Fukui Faculty of Medical Sciences
| | - Masayuki Iwamoto
- Department of Molecular Physiology & Biophysics, University of Fukui Faculty of Medical Sciences
| |
Collapse
|
23
|
Spyrakis F, Ahmed MH, Bayden AS, Cozzini P, Mozzarelli A, Kellogg GE. The Roles of Water in the Protein Matrix: A Largely Untapped Resource for Drug Discovery. J Med Chem 2017; 60:6781-6827. [PMID: 28475332 DOI: 10.1021/acs.jmedchem.7b00057] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The value of thoroughly understanding the thermodynamics specific to a drug discovery/design study is well known. Over the past decade, the crucial roles of water molecules in protein structure, function, and dynamics have also become increasingly appreciated. This Perspective explores water in the biological environment by adopting its point of view in such phenomena. The prevailing thermodynamic models of the past, where water was seen largely in terms of an entropic gain after its displacement by a ligand, are now known to be much too simplistic. We adopt a set of terminology that describes water molecules as being "hot" and "cold", which we have defined as being easy and difficult to displace, respectively. The basis of these designations, which involve both enthalpic and entropic water contributions, are explored in several classes of biomolecules and structural motifs. The hallmarks for characterizing water molecules are examined, and computational tools for evaluating water-centric thermodynamics are reviewed. This Perspective's summary features guidelines for exploiting water molecules in drug discovery.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino , Via Pietro Giuria 9, 10125 Torino, Italy
| | - Mostafa H Ahmed
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University , Richmond, Virginia 23298-0540, United States
| | - Alexander S Bayden
- CMD Bioscience , 5 Science Park, New Haven, Connecticut 06511, United States
| | - Pietro Cozzini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Laboratorio di Modellistica Molecolare, Università degli Studi di Parma , Parco Area delle Scienze 59/A, 43121 Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Laboratorio di Biochimica, Università degli Studi di Parma , Parco Area delle Scienze 23/A, 43121 Parma, Italy.,Istituto di Biofisica, Consiglio Nazionale delle Ricerche , Via Moruzzi 1, 56124 Pisa, Italy
| | - Glen E Kellogg
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University , Richmond, Virginia 23298-0540, United States
| |
Collapse
|
24
|
Kasahara K, Kinoshita K. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels. PLoS One 2016; 11:e0167524. [PMID: 27907142 PMCID: PMC5132248 DOI: 10.1371/journal.pone.0167524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022] Open
Abstract
Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD) method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML), which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/
Collapse
Affiliation(s)
- Kota Kasahara
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- * E-mail:
| | - Kengo Kinoshita
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
25
|
Kratochvil HT, Carr JK, Matulef K, Annen AW, Li H, Maj M, Ostmeyer J, Serrano AL, Raghuraman H, Moran SD, Skinner JL, Perozo E, Roux B, Valiyaveetil FI, Zanni MT. Instantaneous ion configurations in the K+ ion channel selectivity filter revealed by 2D IR spectroscopy. Science 2016; 353:1040-1044. [PMID: 27701114 PMCID: PMC5544905 DOI: 10.1126/science.aag1447] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/03/2016] [Indexed: 11/02/2022]
Abstract
Potassium channels are responsible for the selective permeation of K+ ions across cell membranes. K+ ions permeate in single file through the selectivity filter, a narrow pore lined by backbone carbonyls that compose four K+ binding sites. Here, we report on the two-dimensional infrared (2D IR) spectra of a semisynthetic KcsA channel with site-specific heavy (13C18O) isotope labels in the selectivity filter. The ultrafast time resolution of 2D IR spectroscopy provides an instantaneous snapshot of the multi-ion configurations and structural distributions that occur spontaneously in the filter. Two elongated features are resolved, revealing the statistical weighting of two structural conformations. The spectra are reproduced by molecular dynamics simulations of structures with water separating two K+ ions in the binding sites, ruling out configurations with ions occupying adjacent sites.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua K Carr
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kimberly Matulef
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alvin W Annen
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Hui Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Michał Maj
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jared Ostmeyer
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Arnaldo L Serrano
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - H Raghuraman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sean D Moran
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - J L Skinner
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Francis I Valiyaveetil
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
26
|
Sumikama T, Oiki S. Digitalized K+ Occupancy in the Nanocavity Holds and Releases Queues of K+ in a Channel. J Am Chem Soc 2016; 138:10284-92. [DOI: 10.1021/jacs.6b05270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Takashi Sumikama
- Department of Molecular Physiology
and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology
and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
27
|
Sumikama T. Origin of the Shape of Current-Voltage Curve through Nanopores: A Molecular Dynamics Study. Sci Rep 2016; 6:25750. [PMID: 27167118 PMCID: PMC4863172 DOI: 10.1038/srep25750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/22/2016] [Indexed: 12/25/2022] Open
Abstract
Ion transports through ion channels, biological nanopores, are essential for life: Living cells generate electrical signals by utilizing ion permeation through channels. The measured current-voltage (i-V) relations through most ion channels are sublinear, however, its physical meaning is still elusive. Here we calculated the i-V curves through anion-doped carbon nanotubes, a model of an ion channel, using molecular dynamics simulation. It was found the i-V curve reflects the physical origin of the rate-determining step: the i-V curve is sublinear when the permeation is entropy bottlenecked, while it is superlinear in the case of the energy bottlenecked permeation. Based on this finding, we discuss the relation between the molecular mechanism of ion permeation through the biological K+ channels and the shape of the i-V curves through them. This work also provides a clue for a novel design of nanopores that show current rectification.
Collapse
|
28
|
Chang HK, Iwamoto M, Oiki S, Shieh RC. Mechanism for attenuated outward conductance induced by mutations in the cytoplasmic pore of Kir2.1 channels. Sci Rep 2015; 5:18404. [PMID: 26678093 PMCID: PMC4683409 DOI: 10.1038/srep18404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/18/2015] [Indexed: 01/12/2023] Open
Abstract
Outward currents through Kir2.1 channels regulate the electrical properties of excitable cells. These currents are subject to voltage-dependent attenuation by the binding of polyamines to high- and low-affinity sites, which leads to inward rectification, thereby controlling cell excitability. To examine the effects of positive charges at the low-affinity site in the cytoplasmic pore on inward rectification, we studied a mutant Kir channel (E224K/H226E) and measured single-channel currents and streaming potentials (Vstream), the latter provide the ratio of water to ions queued in a single-file permeation process in the selectivity filter. The water-ion coupling ratio was near one at a high K+ concentration ([K+]) for the wild-type channel and increased substantially as [K+] decreased. On the other hand, fewer ions occupied the selectivity filter in the mutant at all [K+]. A model for the Kir channel involving a K+ binding site in the wide pore was introduced. Model analyses revealed that the rate constants associated with the binding and release to and from the wide-pore K+ binding site was modified in the mutant. These effects lead to the reduced contribution of a conventional two-ion permeation mode to total conductance, especially at positive potentials, thereby inward rectification.
Collapse
Affiliation(s)
- Hsueh-Kai Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, University of Fukui Faculty of Medical Sciences, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, University of Fukui Faculty of Medical Sciences, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Ru-Chi Shieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| |
Collapse
|
29
|
Furutani Y, Shimizu H, Asai Y, Oiki S, Kandori H. Specific interactions between alkali metal cations and the KcsA channel studied using ATR-FTIR spectroscopy. Biophys Physicobiol 2015; 12:37-45. [PMID: 27493853 PMCID: PMC4736833 DOI: 10.2142/biophysico.12.0_37] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/21/2015] [Indexed: 01/20/2023] Open
Abstract
The X-ray structure of KcsA, a eubacterial potassium channel, displays a selectivity filter composed of four parallel peptide strands. The backbone carbonyl oxygen atoms of these strands solvate multiple K(+) ions. KcsA structures show different distributions of ions within the selectivity filter in solutions containing different cations. To assess the interactions of cations with the selectivity filter, we used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Ion-exchange-induced ATR-FTIR difference spectra were obtained by subtracting the spectrum of KcsA soaked in K(+) solution from that obtained in Li(+), Na(+), Rb(+), and Cs(+) solutions. Large spectral changes in the amide-I and -II regions were observed upon replacing K(+) with smaller-sized cations Li(+) and Na(+) but not with larger-sized cations Rb(+) and Cs(+). These results strongly suggest that the selectivity filter carbonyls coordinating Rb(+) or Cs(+) adopt a conformation similar to those coordinating K(+) (cage configuration), but those coordinating Li(+) or Na(+) adopt a conformation (plane configuration) considerably different from those coordinating K(+). We have identified a cation-type sensitive amide-I band at 1681 cm(-1) and an insensitive amide-I band at 1659 cm(-1). The bands at 1650, 1639, and 1627 cm(-1) observed for Na(+)-coordinating carbonyls were almost identical to those observed in Li(+) solution, suggesting that KcsA forms a similar filter structure in Li(+) and Na(+) solutions. Thus, we conclude that the filter structure adopts a collapsed conformation in Li(+) solution that is similar to that in Na(+) solution but is in clear contrast to the X-ray crystal structure of KcsA with Li(+).
Collapse
Affiliation(s)
- Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan; Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Hirofumi Shimizu
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Matsuoka, Fukui 910-1193, Japan
| | - Yusuke Asai
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Matsuoka, Fukui 910-1193, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
30
|
Oiki S. Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age. J Physiol 2015; 593:2553-73. [PMID: 25833254 DOI: 10.1113/jp270025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/24/2015] [Indexed: 01/30/2023] Open
Abstract
The most essential properties of ion channels for their physiologically relevant functions are ion-selective permeation and gating. Among the channel species, the potassium channel is primordial and the most ubiquitous in the biological world, and knowledge of this channel underlies the understanding of features of other ion channels. The strategy applied to studying channels changed dramatically after the crystal structure of the potassium channel was resolved. Given the abundant structural information available, we exploited the bacterial KcsA potassium channel as a simple model channel. In the postcrystal age, there are two effective frameworks with which to decipher the functional codes present in the channel structure, namely reconstitution and re-animation. Complex channel proteins are decomposed into essential functional components, and well-examined parts are rebuilt for integrating channel function in the membrane (reconstitution). Permeation and gating are dynamic operations, and one imagines the active channel by breathing life into the 'frozen' crystal (re-animation). Capturing the motion of channels at the single-molecule level is necessary to characterize the behaviour of functioning channels. Advanced techniques, including diffracted X-ray tracking, lipid bilayer methods and high-speed atomic force microscopy, have been used. Here, I present dynamic pictures of the KcsA potassium channel from the submolecular conformational changes to the supramolecular collective behaviour of channels in the membrane. These results form an integrated picture of the active channel and offer insights into the processes underlying the physiological function of the channel in the cell membrane.
Collapse
Affiliation(s)
- Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| |
Collapse
|
31
|
Abstract
Planar lipid bilayers have been used to form stable bilayers into which membrane proteins are reconstituted for measurements of their function under an applied membrane potential. Recently, a lipid bilayer membrane is formed by the apposition of two monolayers that line an oil-electrolyte interface. Here, a bilayer membrane system is developed with picoliter bubbles under mechanically and chemically manipulable conditions. A water bubble lined with a phospholipid monolayer is blown from a glass pipette into an oil phase. Two blowing pipettes are manipulated, and bubbles (each with a diameter of ~ 50 μm) are held side by side to form a bilayer, which is termed a contact bubble bilayer. With the electrode implemented in the blowing pipette, currents through the bilayer are readily measured. The intra-bubble pressure is varied with the pressure-controller, leading to various sizes of the bubble and the membrane area. A rapid solution exchange system is developed by introducing additional pressure-driven injection pipettes, and the blowing pipette works as a drain. The solution is exchanged within 20 ms. Also, an asymmetric membrane with different lipid composition of each leaflet is readily formed. Example applications of this versatile method are presented to characterize the function of ion channels.
Collapse
|
32
|
Yamakata A, Shimizu H, Oiki S. Surface-enhanced IR absorption spectroscopy of the KcsA potassium channel upon application of an electric field. Phys Chem Chem Phys 2015; 17:21104-11. [DOI: 10.1039/c5cp02681d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Surface-enhanced IR absorption spectroscopy coupled with an electrochemical system enables the potassium-induced specific structural change of the potassium channel.
Collapse
Affiliation(s)
- Akira Yamakata
- Graduate School of Engineering
- Toyota Technological Institute
- Tempaku
- Japan
| | - Hirofumi Shimizu
- Department of Molecular Physiology and Biophysics
- Faculty of Medical Sciences
- University of Fukui
- Fukui 910-1193
- Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics
- Faculty of Medical Sciences
- University of Fukui
- Fukui 910-1193
- Japan
| |
Collapse
|
33
|
Distinct configurations of cations and water in the selectivity filter of the KcsA potassium channel probed by 3D-RISM theory. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.03.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Köpfer DA, Song C, Gruene T, Sheldrick GM, Zachariae U, de Groot BL. Ion permeation in K⁺ channels occurs by direct Coulomb knock-on. Science 2014; 346:352-5. [PMID: 25324389 DOI: 10.1126/science.1254840] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Potassium channels selectively conduct K(+) ions across cellular membranes with extraordinary efficiency. Their selectivity filter exhibits four binding sites with approximately equal electron density in crystal structures with high K(+) concentrations, previously thought to reflect a superposition of alternating ion- and water-occupied states. Consequently, cotranslocation of ions with water has become a widely accepted ion conduction mechanism for potassium channels. By analyzing more than 1300 permeation events from molecular dynamics simulations at physiological voltages, we observed instead that permeation occurs via ion-ion contacts between neighboring K(+) ions. Coulomb repulsion between adjacent ions is found to be the key to high-efficiency K(+) conduction. Crystallographic data are consistent with directly neighboring K(+) ions in the selectivity filter, and our model offers an intuitive explanation for the high throughput rates of K(+) channels.
Collapse
Affiliation(s)
- David A Köpfer
- Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Chen Song
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Tim Gruene
- Department of Structural Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - George M Sheldrick
- Department of Structural Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Ulrich Zachariae
- School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN, UK. College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Bert L de Groot
- Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
35
|
|
36
|
Phongphanphanee S, Yoshida N, Oiki S, Hirata F. Probing “ambivalent” snug-fit sites in the KcsA potassium channel using three-dimensional reference interaction site model (3D-RISM) theory. PURE APPL CHEM 2014. [DOI: 10.1515/pac-2014-5018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The potassium channel is highly selective for K+ over Na+, and the mechanism underlying this selectivity remains unclear. We show the three-dimensional distribution functions (3D-DFs) of small cations (Li+, Na+, and K+) and the free energy profile of ions inside the open selectivity filter (SF) of the KcsA channel. Our previous results [S. Phongphanphanee, N. Yoshida, S. Oiki, F. Hirata. Abstract Book of 5th International Symposium on Molecular Science of Fluctuations toward Biological Functions, P062 (2012)] indicate that the 3D-DF for K+ exhibits distinct peaks at the sites formed by the eight carbonyl oxygen atoms belonging to the surrounding peptide-backbone and residues (the cage site). Li+ has sharp distributions in the 3D-DF at the center of a quadruplex composed of four carbonyl oxygen atoms (the plane site). Na+ has a rather diffuse distribution throughout the SF region with peaks both in the plane and in cage sites. The results provide microscopic evidence of the phenomenological findings that Li+ and Na+ are not excluded from the SF region and that the binding affinity alone does not cause the ion selectivity of KcsA. In the present study, with an ion placed explicitly along the pore axis, the free energy profiles of the ions inside the SF were calculated; from these profiles we suggest a new mechanism for selective K+ permeation. According to the model, a K+ ion must overcome a free energy barrier that is approximately half that of Na+ to exit from either of the SF mouths due to the existence of an intermediate local minimum along the route for climbing the barriers.
Collapse
|
37
|
Rossi M, Tkatchenko A, Rempe SB, Varma S. Role of methyl-induced polarization in ion binding. Proc Natl Acad Sci U S A 2013; 110:12978-83. [PMID: 23878238 PMCID: PMC3740884 DOI: 10.1073/pnas.1302757110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The chemical property of methyl groups that renders them indispensable to biomolecules is their hydrophobicity. Quantum mechanical studies undertaken here to understand the effect of point substitutions on potassium (K-) channels illustrate quantitatively how methyl-induced polarization also contributes to biomolecular function. K- channels regulate transmembrane salt concentration gradients by transporting K(+) ions selectively. One of the K(+) binding sites in the channel's selectivity filter, the S4 site, also binds Ba(2+) ions, which blocks K(+) transport. This inhibitory property of Ba(2+) ions has been vital in understanding K-channel mechanism. In most K-channels, the S4 site is composed of four threonine amino acids. The K channels that carry serine instead of threonine are significantly less susceptible to Ba(2+) block and have reduced stabilities. We find that these differences can be explained by the lower polarizability of serine compared with threonine, because serine carries one less branched methyl group than threonine. A T→S substitution in the S4 site reduces its polarizability, which, in turn, reduces ion binding by several kilocalories per mole. Although the loss in binding affinity is high for Ba(2+), the loss in K(+) binding affinity is also significant thermodynamically, which reduces channel stability. These results highlight, in general, how biomolecular function can rely on the polarization induced by methyl groups, especially those that are proximal to charged moieties, including ions, titratable amino acids, sulfates, phosphates, and nucleotides.
Collapse
Affiliation(s)
- Mariana Rossi
- Theory Department, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Alexandre Tkatchenko
- Theory Department, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Susan B. Rempe
- Biological and Materials Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185; and
| | - Sameer Varma
- Biological and Materials Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185; and
- Department of Cell Biology, Microbiology, and Molecular Biology, and Department of Physics, University of South Florida, Tampa, FL 33620
| |
Collapse
|
38
|
Abstract
The aquaporins (AQPs) are plasma membrane water-transporting proteins. AQP4 is the principal member of this protein family in the CNS, where it is expressed in astrocytes and is involved in water movement, cell migration and neuroexcitation. AQP1 is expressed in the choroid plexus, where it facilitates cerebrospinal fluid secretion, and in dorsal root ganglion neurons, where it tunes pain perception. The AQPs are potential drug targets for several neurological conditions. Astrocytoma cells strongly express AQP4, which may facilitate their infiltration into the brain, and the neuroinflammatory disease neuromyelitis optica is caused by AQP4-specific autoantibodies that produce complement-mediated astrocytic damage.
Collapse
Affiliation(s)
- Marios C Papadopoulos
- Academic Neurosurgery Unit, St. George's, University of London, Tooting, London, SW17 0RE, UK. mpapadop@sgul. ac.uk
| | | |
Collapse
|
39
|
Kasahara K, Shirota M, Kinoshita K. Ion concentration-dependent ion conduction mechanism of a voltage-sensitive potassium channel. PLoS One 2013; 8:e56342. [PMID: 23418558 PMCID: PMC3572011 DOI: 10.1371/journal.pone.0056342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/08/2013] [Indexed: 01/31/2023] Open
Abstract
Voltage-sensitive potassium ion channels are essential for life, but the molecular basis of their ion conduction is not well understood. In particular, the impact of ion concentration on ion conduction has not been fully studied. We performed several micro-second molecular dynamics simulations of the pore domain of the Kv1.2 potassium channel in KCl solution at four different ion concentrations, and scrutinized each of the conduction events, based on graphical representations of the simulation trajectories. As a result, we observed that the conduction mechanism switched with different ion concentrations: at high ion concentrations, potassium conduction occurred by Hodgkin and Keynes' knock-on mechanism, where the association of an incoming ion with the channel is tightly coupled with the dissociation of an outgoing ion, in a one-step manner. On the other hand, at low ion concentrations, ions mainly permeated by a two-step association/dissociation mechanism, in which the association and dissociation of ions were not coupled, and occurred in two distinct steps. We also found that this switch was triggered by the facilitated association of an ion from the intracellular side within the channel pore and by the delayed dissociation of the outermost ion, as the ion concentration increased.
Collapse
Affiliation(s)
- Kota Kasahara
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Miyagi, Japan
| | - Matsuyuki Shirota
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Kengo Kinoshita
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
- Institute of Development, Aging, and Cancer, Tohoku University, Miyagi, Japan
- * E-mail:
| |
Collapse
|
40
|
Sumino A, Sumikama T, Iwamoto M, Dewa T, Oiki S. The open gate structure of the membrane-embedded KcsA potassium channel viewed from the cytoplasmic side. Sci Rep 2013; 3:1063. [PMID: 23323207 PMCID: PMC3545221 DOI: 10.1038/srep01063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/06/2012] [Indexed: 01/24/2023] Open
Abstract
Crystallographic studies of channel proteins have provided insight into the molecular mechanisms of ion channels, even though these structures are obtained in the absence of the membrane and some structural portions have remained unsolved. Here we report the gating structure of the membrane-embedded KcsA potassium channel using atomic force microscopy (AFM). The activation gate of the KcsA channel is located on the intracellular side, and the cytoplasmic domain was truncated to clear the view of this location. Once opened, the individual subunits in the tetramer were resolved with the pore open at the center. Furthermore, AFM was able to capture the previously unsolved bulge helix at the entrance. A molecular dynamics simulation revealed that the bulge helices fluctuated dramatically at the open entryway. This dynamic behavior was observed as vigorous open-channel noise in the single-channel current recordings. The role of the bulge helices in the open gate structure is discussed.
Collapse
Affiliation(s)
- Ayumi Sumino
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | | | | | | | | |
Collapse
|
41
|
Furutani Y, Shimizu H, Asai Y, Fukuda T, Oiki S, Kandori H. ATR-FTIR Spectroscopy Revealing the Different Vibrational Modes of the Selectivity Filter Interacting with K(+) and Na(+) in the Open and Collapsed Conformations of the KcsA Potassium Channel. J Phys Chem Lett 2012; 3:3806-3810. [PMID: 26291114 DOI: 10.1021/jz301721f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The potassium channel is highly selective for K(+) over Na(+), and the selectivity filter binds multiple dehydrated K(+) ions upon permeation. Here, we applied attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy to extract ion-binding-induced signals of the KcsA potassium channel at neutral pH. Shifts in the peak of the amide-I signal towards lower vibrational frequencies were observed as K(+) was replaced with Na(+). These ion species-specific shifts deduced the selectivity filter as the source of the signal, which was supported by the spectra of a mutant for the selectivity filter (Y78F). The difference FTIR spectra between the solution containing various concentrations of K(+) and that containing pure Na(+) demonstrated two types of peak shifts of the amide-I vibration in response to the K(+) concentration. These signals represent the binding of K(+) ions to the different sites in the selectivity filter with different dissociation constants (KD = 9 or 18 mM).
Collapse
Affiliation(s)
- Yuji Furutani
- †Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- §Division of Biomolecular Sensing, Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Hirofumi Shimizu
- ‡Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Yoshida, 910-1193 Fukui, Japan
| | - Yusuke Asai
- †Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Tetsuya Fukuda
- †Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shigetoshi Oiki
- ‡Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Yoshida, 910-1193 Fukui, Japan
| | - Hideki Kandori
- †Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|