1
|
Lee M, Leskova W, Eshaq RS, Amezquita Z, Harris NR. Mechanisms of retinal photoreceptor loss in spontaneously hypertensive rats. Exp Eye Res 2024; 247:110065. [PMID: 39222765 PMCID: PMC11412233 DOI: 10.1016/j.exer.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Retinal neurodegenerative diseases, including hypertensive retinopathy, involve progressive damage to retinal neurons, leading to visual impairment. In this study, we investigated the pathological mechanisms underlying retinal neurodegeneration in spontaneously hypertensive rats (SHR), using Wistar Kyoto (WKY) rats as normotensive controls. We observed that SHR exhibited significantly higher blood pressure and decreased retinal thickness, indicating retinal neurodegeneration. Molecular tests including quantitative real-time polymerase chain reaction, immunoblot, and immunofluorescent staining showed elevated levels of the pro-inflammatory cytokine tumor necrosis factor-α, apoptotic markers (Fas, FasL, caspase-8, active caspase-3, and cleaved poly (ADP-ribose) polymerase), and necroptotic markers (receptor-interacting protein kinase-1 and -3) in SHR retinas. Additionally, we found elevated transforming growth factor-β (TGF-β) levels in the retinal pigment epithelium (RPE) of SHR, with a decrease in lecithin retinol acyltransferase (LRAT), which regulates retinoid metabolism and photoreceptor health. In human RPE cells (ARPE-19), TGF-β administration suppressed mRNA and protein levels of LRAT; and vactosertib, a selective inhibitor of TGF-β receptor kinase type 1, reversed the effect of TGF-β. These findings suggest that hypertension-induced retinal neurodegeneration involves inflammation, apoptosis, necroptosis, and disrupted retinoid metabolism, providing potential therapeutic targets for hypertensive retinopathy.
Collapse
Affiliation(s)
- Minsup Lee
- Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Wendy Leskova
- Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Randa S Eshaq
- Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Zithlaly Amezquita
- Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Norman R Harris
- Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA.
| |
Collapse
|
2
|
Li S, Jin M. Ablation of Fatty Acid Transport Protein-4 Enhances Cone Survival, M-cone Vision, and Synthesis of Cone-Tropic 9- cis-Retinal in rd12 Mouse Model of Leber Congenital Amaurosis. J Neurosci 2024; 44:e1994232024. [PMID: 38811164 PMCID: PMC11223470 DOI: 10.1523/jneurosci.1994-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/03/2023] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
The canonical visual cycle employing RPE65 as the retinoid isomerase regenerates 11-cis-retinal to support both rod- and cone-mediated vision. Mutations of RPE65 are associated with Leber congenital amaurosis that results in rod and cone photoreceptor degeneration and vision loss of affected patients at an early age. Dark-reared Rpe65-/- mouse has been known to form isorhodopsin that employs 9-cis-retinal as the photosensitive chromophore. The mechanism regulating 9-cis-retinal synthesis and the role of the endogenous 9-cis-retinal in cone survival and function remain largely unknown. In this study, we found that ablation of fatty acid transport protein-4 (FATP4), a negative regulator of 11-cis-retinol synthesis catalyzed by RPE65, increased the formation of 9-cis-retinal, but not 11-cis-retinal, in a light-independent mechanism in both sexes of RPE65-null rd12 mice. Both rd12 and rd12;Fatp4-/- mice contained a massive amount of all-trans-retinyl esters in the eyes, exhibiting comparable scotopic vision and rod degeneration. However, expression levels of M- and S-opsins as well as numbers of M- and S-cones surviving in the superior retinas of rd12;Fatp4-/ - mice were at least twofold greater than those in age-matched rd12 mice. Moreover, FATP4 deficiency significantly shortened photopic b-wave implicit time, improved M-cone visual function, and substantially deaccelerated the progression of cone degeneration in rd12 mice, whereas FATP4 deficiency in mice with wild-type Rpe65 alleles neither induced 9-cis-retinal formation nor influenced cone survival and function. These results identify FATP4 as a new regulator of synthesis of 9-cis-retinal, which is a "cone-tropic" chromophore supporting cone survival and function in the retinas with defective RPE65.
Collapse
Affiliation(s)
- Songhua Li
- Neuroscience Center, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana 70112
| | - Minghao Jin
- Neuroscience Center, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana 70112
- Department of Ophthalmology, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana 70112
| |
Collapse
|
3
|
Ohno-Oishi M, Meiai Z, Sato K, Kanno S, Kawano C, Ishikawa M, Nakazawa T. SH-SY5Y human neuronal cells with mutations of the CDKN2B-AS1 gene are vulnerable under cultured conditions. Biochem Biophys Rep 2024; 38:101723. [PMID: 38737728 PMCID: PMC11088231 DOI: 10.1016/j.bbrep.2024.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Glaucoma is a common cause of blindness worldwide. Genetic effects are believed to contribute to the onset and progress of glaucoma, but the underlying pathological mechanisms are not fully understood. Here, we set out to introduce mutations into the CDKN2B-AS1 gene, which is known as being the closely associated with glaucoma, in a human neuronal cell line in vitro. We introduced gene mutations with CRISPR/Cas9 into exons and introns into the CDKN2B-AS1 gene. Both mutations strongly promoted neuronal cell death in normal culture conditions. RNA sequencing and pathway analysis revealed that the transcriptional factor Fos is a target molecule regulating CDKN2B-AS1 overexpression. We demonstrated that gene mutation of CDKN2B-AS1 is directly associated with neuronal cell vulnerability in vitro. Additionally, Fos, which is a downstream signaling molecule of CDKN2B-AS1, may be a potential source of new therapeutic targets for neuronal degeneration in diseases such as glaucoma.
Collapse
Affiliation(s)
- Michiko Ohno-Oishi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Zou Meiai
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiya Kanno
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chihiro Kawano
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Ishikawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
4
|
Lin Y, Ke S, Ye W, Xie B, Huang Z. Non-Apoptotic Programmed Cell Death as Targets for Diabetic Retinal Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:837. [PMID: 39065688 PMCID: PMC11279440 DOI: 10.3390/ph17070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic retinopathy (DR) remains the leading cause of blindness among the global working-age population. Emerging evidence underscores the significance of diabetic retinal neurodegeneration (DRN) as a pivotal biomarker in the progression of vasculopathy. Inflammation, oxidative stress, neural cell death, and the reduction in neurotrophic factors are the key determinants in the pathophysiology of DRN. Non-apoptotic programmed cell death (PCD) plays a crucial role in regulating stress response, inflammation, and disease management. Therapeutic modalities targeting PCD have shown promising potential for mitigating DRN. In this review, we highlight recent advances in identifying the role of various PCD types in DRN, with specific emphasis on necroptosis, pyroptosis, ferroptosis, parthanatos, and the more recently characterized PANoptosis. In addition, the therapeutic agents aimed at the regulation of PCD for addressing DRN are discussed.
Collapse
Affiliation(s)
- Yingjia Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Shuping Ke
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Weiqing Ye
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Biyao Xie
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
| |
Collapse
|
5
|
Castellini ME, Spagnolli G, Poggi L, Biasini E, Casarosa S, Messina A. Identification of the zebrafish homologues of IMPG2, a retinal proteoglycan. Cell Tissue Res 2023; 394:93-105. [PMID: 37470839 PMCID: PMC10558372 DOI: 10.1007/s00441-023-03808-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Photoreceptor outer segments are surrounded by a carbohydrate-rich matrix, the interphotoreceptor matrix, necessary for physiological retinal function. Few roles for molecules characterizing the interphotoreceptor matrix have been clearly defined. Recent studies have found the presence of nonsense mutations in the interphotoreceptor matrix proteoglycan 2 (IMPG2) gene in patients affected by retinal dystrophies. IMPG2 encodes for a proteoglycan synthesized by photoreceptors and secreted in the interphotoreceptor matrix. Little is known about the structure and function of this protein, we thus decided to characterize zebrafish impg2. In zebrafish there are two Impg2 proteins, Impg2a and Impg2b. We generated a phylogenetic tree based on IMPG2 protein sequence similarity among vertebrates, showing a significant similarity between humans and teleosts. The human and zebrafish proteins share conserved domains, as also shown by homology models. Expression analyses of impg2a and impg2b show a continued expression in the photoreceptor layer starting from developmental stages and continuing through adulthood. Between 1 and 6 months post-fertilization, there is a significant shift of Impg2 expression toward the outer segment region, suggesting an increase in secretion. This raises intriguing hypotheses about its possible role(s) during retinal maturation, laying the groundwork for the generation of most needed models for the study of IMPG2-related inherited retinal dystrophies.
Collapse
Affiliation(s)
- M E Castellini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy
| | - G Spagnolli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy
- Sibylla Biotech S.R.L, Piazzetta Chiavica 2 - 37121, Verona, VR, Italy
| | - L Poggi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Via S. Maria Maddalena, 1, 38122, Trento, TN, Italy
| | - E Biasini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Via S. Maria Maddalena, 1, 38122, Trento, TN, Italy
| | - S Casarosa
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy.
- Centre for Medical Sciences (CISMed), University of Trento, Via S. Maria Maddalena, 1, 38122, Trento, TN, Italy.
| | - A Messina
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, 38068, Rovereto, TN, Italy
| |
Collapse
|
6
|
Ma H, Yang F, York LR, Li S, Ding XQ. Excessive Thyroid Hormone Signaling Induces Photoreceptor Degeneration in Mice. eNeuro 2023; 10:ENEURO.0058-23.2023. [PMID: 37596046 PMCID: PMC10481642 DOI: 10.1523/eneuro.0058-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023] Open
Abstract
Rod and cone photoreceptors degenerate in inherited and age-related retinal degenerative diseases, ultimately leading to loss of vision. Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and metabolism. Recent studies have shown a link between TH signaling and retinal degeneration. This work investigates the effects of excessive TH signaling on photoreceptor function and survival in mice. C57BL/6, Thra1 -/-, Thrb2 -/-, Thrb -/-, and the cone dominant Nrl -/- mice received triiodothyronine (T3) treatment (5-20 μg/ml in drinking water) for 30 d, followed by evaluations of retinal function, photoreceptor survival/death, and retinal stress/damage. Treatment with T3 reduced light responses of rods and cones by 50-60%, compared with untreated controls. Outer nuclear layer thickness and cone density were reduced by ∼18% and 75%, respectively, after T3 treatment. Retinal sections prepared from T3-treated mice showed significantly increased numbers of TUNEL-positive, p-γH2AX-positive, and 8-OHdG-positive cells, and activation of Müller glial cells. Gene expression analysis revealed upregulation of the genes involved in oxidative stress, necroptosis, and inflammation after T3 treatment. Deletion of Thra1 prevented T3-induced degeneration of rods but not cones, whereas deletion of Thrb2 preserved both rods and cones. Treatment with an antioxidant partially preserved photoreceptors and reduced retinal stress responses. This study demonstrates that excessive TH signaling induces oxidative stress/damage and necroptosis, induces photoreceptor degeneration, and impairs retinal function. The findings provide insights into the role of TH signaling in retinal degeneration and support the view of targeting TH signaling for photoreceptor protection.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Lilliana R York
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Shujuan Li
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
7
|
DeRamus ML, Jasien JV, Eppstein JM, Koala P, Kraft TW. Retinal Responses to Visual Stimuli in Interphotoreceptor Retinoid Binding-Protein Knock-Out Mice. Int J Mol Sci 2023; 24:10655. [PMID: 37445836 PMCID: PMC10341985 DOI: 10.3390/ijms241310655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) is an abundant glycoprotein in the subretinal space bound by the photoreceptor (PR) outer segments and the processes of the retinal pigmented epithelium (RPE). IRBP binds retinoids, including 11-cis-retinal and all-trans-retinol. In this study, visual function for demanding visual tasks was assessed in IRBP knock-out (KO) mice. Surprisingly, IRBP KO mice showed no differences in scotopic critical flicker frequency (CFF) compared to wildtype (WT). However, they did have lower photopic CFF than WT. IRBP KO mice had reduced scotopic and photopic acuity and contrast sensitivity compared to WT. IRBP KO mice had a significant reduction in outer nuclear layer (ONL) thickness, PR outer and inner segment, and full retinal thickness (FRT) compared to WT. There were fewer cones in IRBP KO mice. Overall, these results confirm substantial loss of rods and significant loss of cones within 30 days. Absence of IRBP resulted in cone circuit damage, reducing photopic flicker, contrast sensitivity, and spatial frequency sensitivity. The c-wave was reduced and accelerated in response to bright steps of light. This result also suggests altered retinal pigment epithelium activity. There appears to be a compensatory mechanism such as higher synaptic gain between PRs and bipolar cells since the loss of the b-wave did not linearly follow the loss of rods, or the a-wave. Scotopic CFF is normal despite thinning of ONL and reduced scotopic electroretinogram (ERG) in IRBP KO mice, suggesting either a redundancy or plasticity in circuits detecting (encoding) scotopic flicker at threshold even with substantial rod loss.
Collapse
Affiliation(s)
| | | | | | | | - Timothy W. Kraft
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.V.J.); (J.M.E.); (P.K.)
| |
Collapse
|
8
|
Zhang Q, Hu XM, Zhao WJ, Ban XX, Li Y, Huang YX, Wan H, He Y, Liao LS, Shang L, Jiang B, Qing GP, Xiong K. Targeting Necroptosis: A Novel Therapeutic Option for Retinal Degenerative Diseases. Int J Biol Sci 2023; 19:658-674. [PMID: 36632450 PMCID: PMC9830514 DOI: 10.7150/ijbs.77994] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
The discovery of the necroptosis, a form of regulated necrosis that is mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like pseudokinase (MLKL), represents a major breakthrough that has dramatically altered the conception of necrosis - traditionally thought of as uncontrolled cell death - in various human diseases. Retinal cell death is a leading cause of blindness and has been identified in most retinal diseases, e.g., age-related macular degeneration, glaucoma, retinal detachment, retinitis pigmentosa, etc. Increasing evidence demonstrates that retinal degenerative diseases also share a common mechanism in necroptosis. Exacerbated necroptotic cell death hinders the treatment for retinal degenerative diseases. In this review, we highlight recent advances in identifying retinal necroptosis, summarize the underlying mechanisms of necroptosis in retinal degenerative diseases, and discuss potential anti-necroptosis strategies, such as selective inhibitors and chemical agents, for treating retinal degenerative diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| | - Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wen-juan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiao-xia Ban
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan-xia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Hao Wan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ye He
- Changsha Aier Eye Hospital, Changsha, China
| | - Lv-shuang Liao
- School of Physical Education, Hunan Institute of Science and Technology, Yueyang, China
| | - Lei Shang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China
| | - Bin Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-ping Qing
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,✉ Corresponding author: E-mail:
| |
Collapse
|
9
|
Huang Y, Yuan L, He G, Cao Y, Deng X, Deng H. Novel compound heterozygous variants in the USH2A gene associated with autosomal recessive retinitis pigmentosa without hearing loss. Front Cell Dev Biol 2023; 11:1129862. [PMID: 36875754 PMCID: PMC9974670 DOI: 10.3389/fcell.2023.1129862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Background: Retinitis pigmentosa (RP) is a group of progressive inherited retinal dystrophies characterized by the primary degeneration of rod photoreceptors and the subsequent loss of cone photoreceptors because of cell death. It is caused by different mechanisms, including inflammation, apoptosis, necroptosis, pyroptosis, and autophagy. Variants in the usherin gene (USH2A) have been reported in autosomal recessive RP with or without hearing loss. In the present study, we aimed to identify causative variants in a Han-Chinese pedigree with autosomal recessive RP. Methods: A six-member, three-generation Han-Chinese family with autosomal recessive RP was recruited. A full clinical examination, whole exome sequencing, and Sanger sequencing, as well as co-segregation analysis were performed. Results: Three heterozygous variants in the USH2A gene, c.3304C>T (p.Q1102*), c.4745T>C (p.L1582P), and c.14740G>A (p.E4914K), were identified in the proband, which were inherited from parents and transmitted to the daughters. Bioinformatics analysis supported the pathogenicity of the c.3304C>T (p.Q1102*) and c.4745T>C (p.L1582P) variants. Conclusions: Novel compound heterozygous variants in the USH2A gene, c.3304C>T (p.Q1102*) and c.4745T>C (p.L1582P), were identified as the genetic causes of autosomal recessive RP. The findings may enhance the current knowledge of the pathogenesis of USH2A-associated phenotypes, expand the spectrum of the USH2A gene variants, and contribute to improved genetic counseling, prenatal diagnosis, and disease management.
Collapse
Affiliation(s)
- Yanxia Huang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Guiyun He
- Department of Ophthalmology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yanna Cao
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Hao Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Lu C, Li S, Jin M. Rapamycin Inhibits Light-Induced Necrosome Activation Occurring in Wild-Type, but not RPE65-Null, Mouse Retina. Invest Ophthalmol Vis Sci 2022; 63:19. [PMID: 36534385 PMCID: PMC9769341 DOI: 10.1167/iovs.63.13.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose Both photodamage and aberrant visual cycle contribute to disease progress of many retinal degenerative disorders, whereas the signaling pathways causing photoreceptor death remain unclear. Here we investigated the effects of intense photo-stress on (1) necrosome activation in wild-type and RPE65-null mice, (2) interaction of p62/Sequestosome-1 with the necrosome proteins, and (3) the effects of rapamycin on photodamage-induced necrosome activation and retinal degeneration in wild-type mice. Methods Dark-adapted rd12 mice and 129S2/Sv mice with or without rapamycin treatment were exposed to 15,000 lux light for different times. Expression levels and subcellular localization of proteins were determined through immunoblot and immunohistochemical analyses. Cone sheaths were stained with peanut agglutinin. Correlation between photoreceptor degeneration and receptor-interacting protein kinase-1 (RIPK1) expression was assessed with Spearman's correlation analysis. Protein-protein interaction was analyzed by immunoprecipitation. Results Intense light caused rod and cone degeneration accompanied by a significant increase in RIPK1-RIPK3 expressions, mixed lineage kinase domain-like protein phosphorylation, damage-associated molecular patterns protein release, and inflammatory responses in wild-type mouse retina. The same intense light did not induce the necrosome activation in rd12 retina, but it did in rd12 mice that received 9-cis-retinal supply. RIPK1 expression levels are positively correlated with the degrees of rod and cone degeneration. Photodamage upregulated expression and interaction of the p62 autophagosome cargo protein with the necrosome proteins, whereas rapamycin treatment attenuated the light-induced necrosome activation and photoreceptor degeneration. Conclusions Necrosome activation contributed to photodamage-induced rod and cone degeneration. The visual cycle and autophagy are the important therapeutic targets to alleviate light-induced retinal necroptosis.
Collapse
Affiliation(s)
- Chunfeng Lu
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana, United States
| | - Songhua Li
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana, United States
| | - Minghao Jin
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana, United States,Department of Ophthalmology, Louisiana State University School of Medicine, LSU Health New Orleans, New Orleans, Louisiana, United States
| |
Collapse
|
11
|
Zhao L, Hou C, Yan N. Neuroinflammation in retinitis pigmentosa: Therapies targeting the innate immune system. Front Immunol 2022; 13:1059947. [PMID: 36389729 PMCID: PMC9647059 DOI: 10.3389/fimmu.2022.1059947] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is an important cause of irreversible blindness worldwide and lacks effective treatment strategies. Although mutations are the primary cause of RP, research over the past decades has shown that neuroinflammation is an important cause of RP progression. Due to the abnormal activation of immunity, continuous sterile inflammation results in neuron loss and structural destruction. Therapies targeting inflammation have shown their potential to attenuate photoreceptor degeneration in preclinical models. Regardless of variations in genetic background, inflammatory modulation is emerging as an important role in the treatment of RP. We summarize the evidence for the role of inflammation in RP and mention therapeutic strategies where available, focusing on the modulation of innate immune signals, including TNFα signaling, TLR signaling, NLRP3 inflammasome activation, chemokine signaling and JAK/STAT signaling. In addition, we describe epigenetic regulation, the gut microbiome and herbal agents as prospective treatment strategies for RP in recent advances.
Collapse
Affiliation(s)
- Ling Zhao
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Hou
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Naihong Yan
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Naihong Yan,
| |
Collapse
|
12
|
Chen Y, Zheng A, Zhang Y, Xiao M, Zhao Y, Wu X, Li M, Du F, Chen Y, Chen M, Li W, Li X, Sun Y, Gu L, Xiao Z, Shen J. Dysregulation of B7 family and its association with tumor microenvironment in uveal melanoma. Front Immunol 2022; 13:1026076. [PMID: 36311731 PMCID: PMC9615147 DOI: 10.3389/fimmu.2022.1026076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background Uveal melanoma (UVM) is the most common primary intraocular malignancy in adults with a poor prognosis. B7 family is an important modulator of the immune response. However, its dysregulation and underlying molecular mechanism in UVM still remains unclear. Methods Data were derived from TCGA and GEO databases. The prognosis was analyzed by Kaplan-Meier curve. The ESTIMATE algorithm, CIBERSORT algorithm, and TIMER database were used to demonstrate the correlation between B7 family and tumor immune microenvironment in UVM. Single-cell RNA sequencing was used to detect the expression levels of the B7 family in different cell types of UVM. UVM was classified into different types by consistent clustering. Enrichment analysis revealed downstream signaling pathways of the B7 family. The interaction between different cell types was visualized by cell chat. Results The expression level of B7 family in UVM was significantly dysregulated and negatively correlated with methylation level. The expression of B7 family was associated with prognosis and immune infiltration, and B7 family plays an important role in the tumor microenvironment (TME). B7 family members were highly expressed in monocytes/macrophages of UVM compared with other cell types. Immune response and visual perception were the main functions affected by B7 family. The result of cell chat showed that the interaction between photoreceptor cells and immune-related cells was mainly generated by HLA-C-CD8A. CABP4, KCNJ10 and RORB had the strongest correlation with HLA-C-CD8A, and their high expression was significantly correlated with poor prognosis. CABP4 and RORB were specifically expressed in photoreceptor cells. Conclusions Dysregulation of the B7 family in UVM is associated with poor prognosis and affects the tumor immune microenvironment. CABP4 and RORB can serve as potential therapeutic targets for UVM, which can be regulated by the B7 family to affect the visual perception and immune response function of the eye, thus influencing the prognosis of UVM.
Collapse
Affiliation(s)
- Yao Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Pidu District People’s Hospital, Chengdu, Sichuan, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yao Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mintao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jing Shen, ; Zhangang Xiao,
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- *Correspondence: Jing Shen, ; Zhangang Xiao,
| |
Collapse
|
13
|
Tao Y, Murakami Y, Vavvas DG, Sonoda KH. Necroptosis and Neuroinflammation in Retinal Degeneration. Front Neurosci 2022; 16:911430. [PMID: 35844208 PMCID: PMC9277228 DOI: 10.3389/fnins.2022.911430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022] Open
Abstract
Necroptosis mediates the chronic inflammatory phenotype in neurodegeneration. Receptor-interacting protein kinase (RIPK) plays a pivotal role in the induction of necroptosis in various cell types, including microglia, and it is implicated in diverse neurodegenerative diseases in the central nervous system and the retina. Targeting RIPK has been proven beneficial for alleviating both neuroinflammation and degeneration in basic/preclinical studies. In this review, we discuss the role of necroptosis in retinal degeneration, including (1) the molecular pathways involving RIPK, (2) RIPK-dependent microglial activation and necroptosis, and (3) the interactions between necroptosis and retinal neuroinflammation/degeneration. This review will contribute to a renewed focus on neuroinflammation induced by necroptosis and to the development of anti-RIPK drugs against retinal degeneration.
Collapse
Affiliation(s)
- Yan Tao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Demetrios G Vavvas
- Ines and Frederick Yeatts Retinal Research Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Neuroprotection for Age-Related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2022; 2:100192. [PMID: 36570623 PMCID: PMC9767822 DOI: 10.1016/j.xops.2022.100192] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. Early to intermediate AMD is characterized by the accumulation of lipid- and protein-rich drusen. Late stages of the disease are characterized by the development of choroidal neovascularization, termed "exudative" or "neovascular AMD," or retinal pigment epithelium (RPE) cell and photoreceptor death, termed "geographic atrophy" (GA) in advanced nonexudative AMD. Although we have effective treatments for exudative AMD in the form of anti-VEGF agents, they have no role for patients with GA. Neuroprotection strategies have emerged as a possible way to slow photoreceptor degeneration and vision loss in patients with GA. These approaches include reduction of oxidative stress, modulation of the visual cycle, reduction of toxic molecules, inhibition of pathologic protein activity, prevention of cellular apoptosis or programmed necrosis (necroptosis), inhibition of inflammation, direct activation of neurotrophic factors, delivery of umbilical tissue-derived cells, and RPE replacement. Despite active investigation in this area and significant promise based on preclinical studies, many clinical studies have not yielded successful results. We discuss selected past and current neuroprotection trials for AMD, highlight the lessons learned from these past studies, and discuss our perspective regarding remaining questions that must be answered before neuroprotection can be successfully applied in the field of AMD research.
Collapse
Key Words
- AD, Alzheimer disease
- ALA, alpha lipoic acid
- AMD, age-related macular degeneration
- AREDS, Age-Related Eye Disease Study
- AREDS2, Age-Related Eye Disease Study 2
- Age-related macular degeneration
- CFH, complement factor H
- CNTF, ciliary neurotrophic factor
- GA, geographic atrophy
- HTRA1, high-temperature requirement A1
- IOP, intraocular pressure
- Neuroprotection
- RBP, retinol-binding protein
- RGC, retinal ganglion cell
- RIPK3, receptor-interacting serine/threonine-protein kinase 3
- ROS, reactive oxygen species
- RPE, retinal pigment epithelium
- Retinal degeneration
- VA, visual acuity
- iPSC, induced pluripotent stem cell
Collapse
|
15
|
Li M, Xu J, Wang Y, Du X, Zhang T, Chen Y. Astragaloside A Protects Against Photoreceptor Degeneration in Part Through Suppressing Oxidative Stress and DNA Damage-Induced Necroptosis and Inflammation in the Retina. J Inflamm Res 2022; 15:2995-3020. [PMID: 35645574 PMCID: PMC9130102 DOI: 10.2147/jir.s362401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Photoreceptors are specialized retinal neurons responsible for phototransduction. Loss of photoreceptors directly leads to irreversible vision impairment. Pharmacological therapies protecting against photoreceptor degeneration are clinically lacking. Oxidative stress and inflammation are common mechanisms playing important roles in the pathogenesis of photoreceptor degeneration. Astragaloside A (AS-A) is a naturally occurring antioxidant and anti-inflammatory agent with neuroprotective activities. However, the photoreceptor protective effects of AS-A remain unknown. The current study thus aims to illustrate the pharmacological potentials of AS-A in protecting against photoreceptor degeneration. Methods BALB/c and C57/BL6J mice were exposed to bright light and DNA alkylating agent methyl methanesulfonate (MMS) to develop oxidative stress and DNA damage-mediated photoreceptor degeneration, respectively. Microstructural, morphological and functional assessments were performed to directly evaluate the photoreceptor protective effects of AS-A. Ultrastructural and molecular changes in the retina were examined to better understand the pharmacological mechanisms of AS-A in protecting against photoreceptor degeneration. Results AS-A protected against bright light-induced photoreceptor impairment. Bright light-induced retinal oxidative stress and photoreceptor cell death were attenuated by AS-A treatment. AS-A treatment mitigated bright light-induced DNA damage, activation of poly (ADP-ribose) polymerase (PARP) and nuclear dislocation of high mobility group box 1 (HMGB1) in photoreceptors. AS-A broadly counteracted bright light-altered retinal gene expression profiles. In particular, AS-A decreased the retinal expression of genes involved in necroptosis and inflammatory responses. Bright light-induced microglial activation was also suppressed as a result of AS-A treatment. Furthermore, AS-A attenuated MMS-induced photoreceptor morphological impairment, elevated expression of pro-necroptotic and proinflammatory genes as well as microglial activation in the retina. Conclusion The work here demonstrates for the first time that AS-A protects against photoreceptor degeneration in part through mitigating oxidative stress and DNA damage-induced necroptosis and inflammatory responses in the retina.
Collapse
Affiliation(s)
- Mei Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200427, People's Republic of China
| | - Jing Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200427, People's Republic of China.,Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China
| | - Yujue Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200427, People's Republic of China
| | - Xiaoye Du
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200427, People's Republic of China.,Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China
| | - Teng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200427, People's Republic of China.,Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China
| | - Yu Chen
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200427, People's Republic of China.,Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China.,Laboratory of Clinical and Molecular Pharmacology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200427, People's Republic of China
| |
Collapse
|
16
|
Maekawa S, Sato K, Kokubun T, Himori N, Yabana T, Ohno-Oishi M, Shi G, Omodaka K, Nakazawa T. A Plant-Derived Antioxidant Supplement Prevents the Loss of Retinal Ganglion Cells in the Retinas of NMDA-Injured Mice. Clin Ophthalmol 2022; 16:823-832. [PMID: 35330750 PMCID: PMC8939866 DOI: 10.2147/opth.s354958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Shigeto Maekawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Taiki Kokubun
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Miyagi, Japan
| | - Takeshi Yabana
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Michiko Ohno-Oishi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ge Shi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Correspondence: Toru Nakazawa, Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aoba, Sendai, Miyagi, 980-8574, Japan, Tel +81-22-717-7294, Fax +81-22-717-7298, Email
| |
Collapse
|
17
|
Puertas-Neyra K, Galindo-Cabello N, Hernández-Rodríguez LA, González-Pérez F, Rodríguez-Cabello JC, González-Sarmiento R, Pastor JC, Usategui-Martín R, Fernandez-Bueno I. Programmed Cell Death and Autophagy in an in vitro Model of Spontaneous Neuroretinal Degeneration. Front Neuroanat 2022; 16:812487. [PMID: 35221932 PMCID: PMC8873173 DOI: 10.3389/fnana.2022.812487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/18/2022] [Indexed: 11/15/2022] Open
Abstract
Retinal neurodegenerative diseases are the leading causes of visual impairment and irreversible blindness worldwide. Although the retinal response to injury remains closely similar between different retinal neurodegenerative diseases, available therapeutic alternatives are only palliative, too expensive, or very specific, such as gene therapy. In that sense, the development of broad-spectrum neuroprotective therapies seems to be an excellent option. In this regard, it is essential to identify molecular targets involved in retinal degeneration, such as cell death mechanisms. Apoptosis has been considered as the primary cell death mechanism during retinal degeneration; however, recent studies have demonstrated that the only use of anti-apoptotic drugs is not enough to confer good neuroprotection in terms of cell viability and preservation. For that reason, the interrelationship that exists between apoptosis and other cell death mechanisms needs to be characterized deeply to design future therapeutic options that simultaneously block the main cell death pathways. In that sense, the study aimed to characterize the programmed cell death (in terms of apoptosis and necroptosis) and autophagy response and modulation in retinal neurodegenerative diseases, using an in vitro model of spontaneous retinal neurodegeneration. For that purpose, we measured the mRNA relative expression through qPCR of a selected pool of genes involved in apoptosis (BAX, BCL2, CASP3, CASP8, and CASP9), necroptosis (MLKL, RIPK1, and RIPK3), and autophagy (ATG7, BCLIN1, LC3B, mTOR, and SQSTM1); besides, the immunoexpression of their encoding proteins (Casp3, MLKL, RIPK1, LC3B, and p62) were analyzed using immunohistochemistry. Our results showed an increase of pro-apoptotic and pro-necroptotic related genes and proteins during in vitro retinal neurodegeneration. Besides, we describe for the first time the modulation between programmed cell death mechanisms and autophagy in an in vitro retinal neurodegeneration model. This study reinforces the idea that cell death mechanisms are closely interconnected and provides new information about molecular signaling and autophagy along the retinal degeneration process.
Collapse
Affiliation(s)
- Kevin Puertas-Neyra
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Nadia Galindo-Cabello
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Postgraduate Unit, Faculty of Biological Sciences, National University of San Marcos, Lima, Peru
| | | | - Fernando González-Pérez
- Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - José Carlos Pastor
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain
- RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| | - Ricardo Usategui-Martín
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain
- RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
- Ricardo Usategui-Martín,
| | - Ivan Fernandez-Bueno
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain
- RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
- *Correspondence: Ivan Fernandez-Bueno,
| |
Collapse
|
18
|
Mano F, Sugioka K, Kuniyoshi K, Kondo H, Kusaka S. Identification of Interphotoreceptor retinoid-binding protein in the Schisis cavity fluid of a patient with congenital X-linked Retinoschisis. BMC Ophthalmol 2022; 22:14. [PMID: 34991515 PMCID: PMC8740355 DOI: 10.1186/s12886-021-02234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background This case report describes the surgical outcome in a patient with congenital X-linked retinoschisis (CXLRS) and the results of proteomic analysis of surgically extracted samples from both vitreous and intraschisis cavities by mass spectrometry. Case presentation A 3-month-old boy presented with extensive retinoschisis involving macula and retinal periphery in both eyes. Genetic analysis confirmed retinoschisin 1 mutation (c.554C > T), and an electroretinogram showed significant reduction of b-wave and decreased cone and rod responses, which led to a diagnosis of CXLRS. By performing pars plana vitrectomy, including inner wall retinectomy, clear visual axes with stable retinal conditions and functional vision in both eyes were obtained during the 4 years of follow-up. Proteomic analysis of surgically retrieved fluid from the intraschisis cavity revealed a higher expression of interphotoreceptor retinoid-binding protein (IRBP) than that from the vitreous humor. However, both samples showed equal levels of albumin, transferrin, and pigment epithelium-derived factor. Conclusions Cellular adhesive imperfection in CXLRS may cause IRBP diffusion from the interphotoreceptor matrix, resulting in the strong expression of IRBP in the intraschisis cavity. An impaired retinoid cycle caused by an absence of IRBP in the retina may potentially underlie the pathology of CXLRS. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-021-02234-5.
Collapse
Affiliation(s)
- Fukutaro Mano
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Koji Sugioka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan. .,Department of Ophthalmology, Kindai University Nara Hospital, 1248-1 Otodacho, Ikoma City, Nara, 630-0293, Japan.
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
19
|
Zhang J, Gao F, Ma Y, Xue T, Shen Y. Identification of early-onset photoreceptor degeneration in transgenic mouse models of Alzheimer's disease. iScience 2021; 24:103327. [PMID: 34805789 PMCID: PMC8581578 DOI: 10.1016/j.isci.2021.103327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Light sensitivity of the vertebrate retina relies on the integrity of photoreceptors, including rods and cones. Research in patients with Alzheimer's disease (AD) and in AD transgenic mice reports that accumulated amyloid-β (Aβ) plaques in the retina are toxic to retinal neurons. Moreover, Aβ plaques are deposited around the rods and cones, yet photoreceptor anomalies remain unclear in AD. Here, we identify the progressive degeneration of rods and cones characterized by impaired expression of phototransduction proteins, morphological alterations, functional deficits, and even cell loss. Furthermore, we demonstrate that cell senescence and necroptosis were involved in rod degeneration. Importantly, using in vivo scotopic electroretinogram, we detected rod degeneration in early-stage AD transgenic mice before Aβ plaques were observed in the brain. Moreover, we demonstrate that rod degeneration was among the earliest AD retinal manifestations compared with other types of retinal neurons. Overall, our study is the first to identify and detect in vivo, early-onset photoreceptor degeneration in AD. Progressive rod degeneration has been identified in AD transgenic mice Cell senescence and necroptosis were involved in rod degeneration Rod degeneration can be detected by in vivo scotopic electroretinogram Rod degeneration has earlier onset than amyloid-β plaques in the brain
Collapse
Affiliation(s)
- Jie Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Feng Gao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Yuqian Ma
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
- Eye Center at The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Tian Xue
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
- Eye Center at The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Corresponding author
| |
Collapse
|
20
|
Sato K, Sato T, Ohno-Oishi M, Ozawa M, Maekawa S, Shiga Y, Yabana T, Yasuda M, Himori N, Omodaka K, Fujita K, Nishiguchi KM, Ge S, Nakazawa T. CHOP deletion and anti-neuroinflammation treatment with hesperidin synergistically attenuate NMDA retinal injury in mice. Exp Eye Res 2021; 213:108826. [PMID: 34752818 DOI: 10.1016/j.exer.2021.108826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022]
Abstract
Glaucoma is a leading cause of blindness worldwide and is characterized by degeneration associated with the death of retinal ganglion cells (RGCs). It is believed that glaucoma is a group of heterogeneous diseases with multifactorial pathomechanisms. Here, we investigate whether anti-inflammation treatment with an ER stress blockade can selectively promote neuroprotection against NMDA injury in the RGCs. Retinal excitotoxicity was induced with an intravitreal NMDA injection. Microglial activation and neuroinflammation were evaluated with Iba1 immunostaining and cytokine gene expression. A stable HT22 cell line transfected with an NF-kB reporter was used to assess NF-kB activity after hesperidin treatment. CHOP-deficient mice were used as a model of ER stress blockade. Retinal cell death was evaluated with a TUNEL assay. As results, in the NMDA injury group, Iba1-positive microglia increased 6 h after NMDA injection. Also at 6 h, pro-inflammatory cytokines and chemokine increased, including TNFα, IL-1b, IL-6 and MCP-1. In addition, the MCP-1 promoter-driven EGFP signal, which we previously identified as a stress signal in injured RGCs, also increased; hesperidin treatment suppressed this inflammatory response and reduced stressed RGCs. In CHOP-deficient mice that received an NMDA injection, the gene expression of pro-inflammatory cytokines, chemokines, markers of active microglia, and inflammatory regulators was greater than in WT mice. In WT mice, hesperidin treatment partially prevented retinal cell death after NMDA injury; this neuroprotective effect was enhanced in CHOP-deficient mice. These findings demonstrate that ER stress blockade is not enough by itself to prevent RGC loss due to neuroinflammation in the retina, but it has a synergistic neuroprotective effect after NMDA injury when combined with an anti-inflammatory treatment based on hesperidin.
Collapse
Affiliation(s)
- Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan; Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Taimu Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Michiko Ohno-Oishi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Mikako Ozawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shigeto Maekawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Takeshi Yabana
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Masayuki Yasuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kosuke Fujita
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shi Ge
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan; Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan; Department of Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| |
Collapse
|
21
|
Xu H, Qu C, Gan L, Sun K, Tan J, Liu X, Jiang Z, Tian W, Liu W, Zhang S, Yang Y, Jiang L, Zhu X, Zhang L. Deletion of the Impg2 gene causes the degeneration of rod and cone cells in mice. Hum Mol Genet 2021; 29:1624-1634. [PMID: 32242237 DOI: 10.1093/hmg/ddaa062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 11/14/2022] Open
Abstract
Variants in interphotoreceptor matrix proteoglycans (IMPG2) have been reported in retinitis pigmentosa (RP) and vitelliform macular dystrophy (VMD) patients. However, the underlying molecular mechanisms remain elusive due to a lack of suitable disease models. We developed two independent Impg2 knockout (KO) mouse models using the CRISPR/Cas9 technique to assess the in vivo functions of Impg2 in the retina. Impg2 ablation in mice recapitulated the RP phenotypes of patients, including an attenuated electroretinogram (ERG) response and the progressive degeneration of photoreceptors. The histopathological examination of Impg2-KO mice revealed irregularly arranged rod cells and mislocalized rhodopsin protein in the inner segment at 6 months of age. In addition to the pathological changes in rod cells, cone cells were also affected in KO retinas. KO retinas exhibited progressive cone cell death and impaired cone cell elongation. Further immunoblotting analysis revealed increased levels of endoplasmic reticulum (ER) stress-related proteins, including C/EBP homologous protein (CHOP), immunoglobulin heavy-chain-binding protein (BIP) and protein disulfide isomerase (PDI), in Impg2-KO mouse retinas. Increased gliosis and apoptotic cell death were also observed in the KO retinas. As autophagy is closely associated with ER stress, we then checked whether autophagy was disturbed in Impg2-KO mouse retinas. The results showed that autophagy was impaired in KO retinas, as revealed by the increased accumulation of SQSTM1 and other proteins involved in autophagy. Our results demonstrate the essential roles of Impg2 in the retina, and this study provides novel models for mechanistic investigations and development of therapies for RP caused by IMPG2 mutations.
Collapse
Affiliation(s)
- Huijuan Xu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.,Chengdu Institute of Biology, Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu 610072, Sichuan, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan China
| | - Chao Qu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.,Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan China
| | - Li Gan
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Kuanxiang Sun
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen 361005, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen 361005, China
| | - Zhilin Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.,Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan China
| | - Wanli Tian
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Shanshan Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Yeming Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Li Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.,Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.,Chengdu Institute of Biology, Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu 610072, Sichuan, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan China.,Research Unit for Blindness Prevention of Chinese Academy of medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, China.,Department of Ophthalmology, First People's Hospital of Shangqiu, Shangqiu 476000, Henan, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, China
| |
Collapse
|
22
|
The Role of Caspase-12 in Retinal Bystander Cell Death and Innate Immune Responses against MCMV Retinitis. Int J Mol Sci 2021; 22:ijms22158135. [PMID: 34360899 PMCID: PMC8348425 DOI: 10.3390/ijms22158135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 11/25/2022] Open
Abstract
(1) Background: caspase-12 is activated during cytomegalovirus retinitis, although its role is presently unclear. (2) Methods: caspase-12−/− (KO) or caspase-12+/+ (WT) mice were immunosup eyes were analyzed by plaque assay, TUNEL assay, immunohistochemical staining, western blotting, and real-time PCR. (3) Results: increased retinitis and a more extensive virus spread were detected in the retina of infected eyes of KO mice compared to WT mice at day 14 p.i. Compared to MCMV injected WT eyes, mRNA levels of interferons α, β and γ were significantly reduced in the neural retina of MCMV-infected KO eyes at day 14 p.i. Although similar numbers of MCMV infected cells, similar virus titers and similar numbers of TUNEL-staining cells were detected in injected eyes of both KO and WT mice at days 7 and 10 p.i., significantly lower amounts of cleaved caspase-3 and p53 protein were detected in infected eyes of KO mice at both time points. (4) Conclusions: caspase-12 contributes to caspase-3-dependent and independent retinal bystander cell death during MCMV retinitis and may also play an important role in innate immunity against virus infection of the retina.
Collapse
|
23
|
Zhang L, Chen C, Fu J, Lilley B, Berlinicke C, Hansen B, Ding D, Wang G, Wang T, Shou D, Ye Y, Mulligan T, Emmerich K, Saxena MT, Hall KR, Sharrock AV, Brandon C, Park H, Kam TI, Dawson VL, Dawson TM, Shim JS, Hanes J, Ji H, Liu JO, Qian J, Ackerley DF, Rohrer B, Zack DJ, Mumm JS. Large-scale phenotypic drug screen identifies neuroprotectants in zebrafish and mouse models of retinitis pigmentosa. eLife 2021; 10:e57245. [PMID: 34184634 PMCID: PMC8425951 DOI: 10.7554/elife.57245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
Retinitis pigmentosa (RP) and associated inherited retinal diseases (IRDs) are caused by rod photoreceptor degeneration, necessitating therapeutics promoting rod photoreceptor survival. To address this, we tested compounds for neuroprotective effects in multiple zebrafish and mouse RP models, reasoning drugs effective across species and/or independent of disease mutation may translate better clinically. We first performed a large-scale phenotypic drug screen for compounds promoting rod cell survival in a larval zebrafish model of inducible RP. We tested 2934 compounds, mostly human-approved drugs, across six concentrations, resulting in 113 compounds being identified as hits. Secondary tests of 42 high-priority hits confirmed eleven lead candidates. Leads were then evaluated in a series of mouse RP models in an effort to identify compounds effective across species and RP models, that is, potential pan-disease therapeutics. Nine of 11 leads exhibited neuroprotective effects in mouse primary photoreceptor cultures, and three promoted photoreceptor survival in mouse rd1 retinal explants. Both shared and complementary mechanisms of action were implicated across leads. Shared target tests implicated parp1-dependent cell death in our zebrafish RP model. Complementation tests revealed enhanced and additive/synergistic neuroprotective effects of paired drug combinations in mouse photoreceptor cultures and zebrafish, respectively. These results highlight the value of cross-species/multi-model phenotypic drug discovery and suggest combinatorial drug therapies may provide enhanced therapeutic benefits for RP patients.
Collapse
Affiliation(s)
- Liyun Zhang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Conan Chen
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Jie Fu
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Brendan Lilley
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Baranda Hansen
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Ding Ding
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
| | - Guohua Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Tao Wang
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- School of Chemistry, Xuzhou College of Industrial TechnologyXuzhouChina
- College of Light Industry and Food Engineering, Nanjing Forestry UniversityNanjingChina
| | - Daniel Shou
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Ying Ye
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Timothy Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Kevin Emmerich
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Kelsi R Hall
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Abigail V Sharrock
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Carlene Brandon
- Department of Ophthalmology, Medical University of South CarolinaCharlestonUnited States
| | - Hyejin Park
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
| | - Tae-In Kam
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Valina L Dawson
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, TaipaMacauChina
| | - Justin Hanes
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Department of Oncology, Johns Hopkins UniversityBaltimoreUnited States
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - David F Ackerley
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Baerbel Rohrer
- Department of Ophthalmology, Medical University of South CarolinaCharlestonUnited States
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Department of Molecular Biology and Genetics, Johns Hopkins UniversityBaltimoreUnited States
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
24
|
Botto C, Rucli M, Tekinsoy MD, Pulman J, Sahel JA, Dalkara D. Early and late stage gene therapy interventions for inherited retinal degenerations. Prog Retin Eye Res 2021; 86:100975. [PMID: 34058340 DOI: 10.1016/j.preteyeres.2021.100975] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Inherited and age-related retinal degeneration is the hallmark of a large group of heterogeneous diseases and is the main cause of untreatable blindness today. Genetic factors play a major pathogenic role in retinal degenerations for both monogenic diseases (such as retinitis pigmentosa) and complex diseases with established genetic risk factors (such as age-related macular degeneration). Progress in genotyping techniques and back of the eye imaging are completing our understanding of these diseases and their manifestations in patient populations suffering from retinal degenerations. It is clear that whatever the genetic cause, the majority of vision loss in retinal diseases results from the loss of photoreceptor function. The timing and circumstances surrounding the loss of photoreceptor function determine the adequate therapeutic approach to use for each patient. Among such approaches, gene therapy is rapidly becoming a therapeutic reality applicable in the clinic. This massive move from laboratory work towards clinical application has been propelled by the advances in our understanding of disease genetics and mechanisms, gene delivery vectors, gene editing systems, and compensatory strategies for loss of photoreceptor function. Here, we provide an overview of existing modalities of retinal gene therapy and their relevance based on the needs of patient populations suffering from inherited retinal degenerations.
Collapse
Affiliation(s)
- Catherine Botto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Marco Rucli
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Müge Defne Tekinsoy
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Juliette Pulman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, United States; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, F-75012, Paris, France; Fondation Ophtalmologique Rothschild, F-75019, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
25
|
Slow Resting State Fluctuations Enhance Neuronal and Behavioral Responses to Looming Sounds. Brain Topogr 2021; 35:121-141. [PMID: 33768383 DOI: 10.1007/s10548-021-00826-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/17/2021] [Indexed: 01/01/2023]
Abstract
We investigate both experimentally and using a computational model how the power of the electroencephalogram (EEG) recorded in human subjects tracks the presentation of sounds with acoustic intensities that increase exponentially (looming) or remain constant (flat). We focus on the link between this EEG tracking response, behavioral reaction times and the time scale of fluctuations in the resting state, which show considerable inter-subject variability. Looming sounds are shown to generally elicit a sustained power increase in the alpha and beta frequency bands. In contrast, flat sounds only elicit a transient upsurge at frequencies ranging from 7 to 45 Hz. Likewise, reaction times (RTs) in an audio-tactile task at different latencies from sound onset also present significant differences between sound types. RTs decrease with increasing looming intensities, i.e. as the sense of urgency increases, but remain constant with stationary flat intensities. We define the reaction time variation or "gain" during looming sound presentation, and show that higher RT gains are associated with stronger correlations between EEG power responses and sound intensity. Higher RT gain further entails higher relative power differences between loom and flat in the alpha and beta bands. The full-width-at-half-maximum of the autocorrelation function of the eyes-closed resting state EEG also increases with RT gain. The effects are topographically located over the central and frontal electrodes. A computational model reveals that the increase in stimulus-response correlation in subjects with slower resting state fluctuations is expected when EEG power fluctuations at each electrode and in a given band are viewed as simple coupled low-pass filtered noise processes jointly driven by the sound intensity. The model assumes that the strength of stimulus-power coupling is proportional to RT gain in different coupling scenarios, suggesting a mechanism by which slower resting state fluctuations enhance EEG response and shorten reaction times.
Collapse
|
26
|
Retinal Inflammation, Cell Death and Inherited Retinal Dystrophies. Int J Mol Sci 2021; 22:ijms22042096. [PMID: 33672611 PMCID: PMC7924201 DOI: 10.3390/ijms22042096] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of retinal disorders that cause progressive and severe loss of vision because of retinal cell death, mainly photoreceptor cells. IRDs include retinitis pigmentosa (RP), the most common IRD. IRDs present a genetic and clinical heterogeneity that makes it difficult to achieve proper treatment. The progression of IRDs is influenced, among other factors, by the activation of the immune cells (microglia, macrophages, etc.) and the release of inflammatory molecules such as chemokines and cytokines. Upregulation of tumor necrosis factor alpha (TNFα), a pro-inflammatory cytokine, is found in IRDs. This cytokine may influence photoreceptor cell death. Different cell death mechanisms are proposed, including apoptosis, necroptosis, pyroptosis, autophagy, excessive activation of calpains, or parthanatos for photoreceptor cell death. Some of these cell death mechanisms are linked to TNFα upregulation and inflammation. Therapeutic approaches that reduce retinal inflammation have emerged as useful therapies for slowing down the progression of IRDs. We focused this review on the relationship between retinal inflammation and the different cell death mechanisms involved in RP. We also reviewed the main anti-inflammatory therapies for the treatment of IRDs.
Collapse
|
27
|
Zeng S, Zhang T, Madigan MC, Fernando N, Aggio-Bruce R, Zhou F, Pierce M, Chen Y, Huang L, Natoli R, Gillies MC, Zhu L. Interphotoreceptor Retinoid-Binding Protein (IRBP) in Retinal Health and Disease. Front Cell Neurosci 2020; 14:577935. [PMID: 33328889 PMCID: PMC7710524 DOI: 10.3389/fncel.2020.577935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 02/05/2023] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP), also known as retinol binding protein 3 (RBP3), is a lipophilic glycoprotein specifically secreted by photoreceptors. Enriched in the interphotoreceptor matrix (IPM) and recycled by the retinal pigment epithelium (RPE), IRBP is essential for the vision of all vertebrates as it facilitates the transfer of retinoids in the visual cycle. It also helps to transport lipids between the RPE and photoreceptors. The thiol-dependent antioxidant activity of IRBP maintains the delicate redox balance in the normal retina. Thus, its dysfunction is suspected to play a role in many retinal diseases. We have reviewed here the latest research on IRBP in both retinal health and disease, including the function and regulation of IRBP under retinal stress in both animal models and the human retina. We have also explored the therapeutic potential of targeting IRBP in retinal diseases. Although some technical barriers remain, it is possible that manipulating the expression of IRBP in the retina will rescue or prevent photoreceptor degeneration in many retinal diseases.
Collapse
Affiliation(s)
- Shaoxue Zeng
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Michele C Madigan
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia.,The Australian National University Medical School, The Australian National University, Acton, ACT, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Matthew Pierce
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yingying Chen
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Lianlin Huang
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia.,The Australian National University Medical School, The Australian National University, Acton, ACT, Australia
| | - Mark C Gillies
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
28
|
Inverse correlation between fatty acid transport protein 4 and vision in Leber congenital amaurosis associated with RPE65 mutation. Proc Natl Acad Sci U S A 2020; 117:32114-32123. [PMID: 33257550 DOI: 10.1073/pnas.2012623117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fatty acid transport protein 4 (FATP4), a transmembrane protein in the endoplasmic reticulum (ER), is a recently identified negative regulator of the ER-associated retinal pigment epithelium (RPE)65 isomerase necessary for recycling 11-cis-retinal, the light-sensitive chromophore of both rod and cone opsin visual pigments. The role of FATP4 in the disease progression of retinal dystrophies associated with RPE65 mutations is completely unknown. Here we show that FATP4-deficiency in the RPE results in 2.8-fold and 1.7-fold increase of 11-cis- and 9-cis-retinals, respectively, improving dark-adaptation rates as well as survival and function of rods in the Rpe65 R91W knockin (KI) mouse model of Leber congenital amaurosis (LCA). Degradation of S-opsin in the proteasomes, but not in the lysosomes, was remarkably reduced in the KI mouse retinas lacking FATP4. FATP4-deficiency also significantly rescued S-opsin trafficking and M-opsin solubility in the KI retinas. The number of S-cones in the inferior retinas of 4- or 6-mo-old KI;Fatp4 -/- mice was 7.6- or 13.5-fold greater than those in age-matched KI mice. Degeneration rates of S- and M-cones are negatively correlated with expression levels of FATP4 in the RPE of the KI, KI;Fatp4 +/- , and KI;Fatp4 -/- mice. Moreover, the visual function of S- and M-cones is markedly preserved in the KI;Fatp4 -/- mice, displaying an inverse correlation with the FATP4 expression levels in the RPE of the three mutant lines. These findings establish FATP4 as a promising therapeutic target to improve the visual cycle, as well as survival and function of cones and rods in patients with RPE65 mutations.
Collapse
|
29
|
Newton F, Megaw R. Mechanisms of Photoreceptor Death in Retinitis Pigmentosa. Genes (Basel) 2020; 11:genes11101120. [PMID: 32987769 PMCID: PMC7598671 DOI: 10.3390/genes11101120] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common cause of inherited blindness and is characterised by the progressive loss of retinal photoreceptors. However, RP is a highly heterogeneous disease and, while much progress has been made in developing gene replacement and gene editing treatments for RP, it is also necessary to develop treatments that are applicable to all causative mutations. Further understanding of the mechanisms leading to photoreceptor death is essential for the development of these treatments. Recent work has therefore focused on the role of apoptotic and non-apoptotic cell death pathways in RP and the various mechanisms that trigger these pathways in degenerating photoreceptors. In particular, several recent studies have begun to elucidate the role of microglia and innate immune response in the progression of RP. Here, we discuss some of the recent progress in understanding mechanisms of rod and cone photoreceptor death in RP and summarise recent clinical trials targeting these pathways.
Collapse
Affiliation(s)
- Fay Newton
- MRC Human Genetics Unit, University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK;
- Correspondence:
| | - Roly Megaw
- MRC Human Genetics Unit, University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK;
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh EH3 9HA, UK
| |
Collapse
|
30
|
Dysregulation of Cell Death in Human Chronic Inflammation. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037036. [PMID: 31843991 DOI: 10.1101/cshperspect.a037036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inflammation is a fundamental biological process mediating host defense and wound healing during infections and tissue injury. Perpetuated and excessive inflammation may cause autoinflammation, autoimmunity, degenerative disorders, allergies, and malignancies. Multimodal signaling by tumor necrosis factor receptor 1 (TNFR1) plays a crucial role in determining the transition between inflammation, cell survival, and programmed cell death. Targeting TNF signaling has been proven as an effective therapeutic in several immune-related disorders. Mouse studies have provided critical mechanistic insights into TNFR1 signaling and its potential role in a broad spectrum of diseases. The characterization of patients with monogenic primary immunodeficiencies (PIDs) has highlighted the importance of TNFR1 signaling in human disease. In particular, patients with PIDs have revealed paradoxical connections between immunodeficiency, chronic inflammation, and dysregulated cell death. Importantly, studies on PIDs may help to predict beneficial effects and side-effects of therapeutic targeting of TNFR1 signaling.
Collapse
|
31
|
Salvadores N, Court FA. The necroptosis pathway and its role in age-related neurodegenerative diseases: will it open up new therapeutic avenues in the next decade? Expert Opin Ther Targets 2020; 24:679-693. [PMID: 32310729 DOI: 10.1080/14728222.2020.1758668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Necroptosis is a programmed form of necrotic cell death. Growing evidence demonstrates that necroptosis contributes to cell demise in different pathological conditions including age-dependent neurodegenerative diseases (NDs). These findings open new avenues for understanding the mechanisms of neuronal loss in NDs, which might eventually translate into novel therapeutic interventions. AREAS COVERED We reviewed key aspects of necroptosis, in health and disease, focusing on evidence demonstrating its involvement in the pathogenesis of age-related NDs. We then highlight the activation of this pathway in the mechanism of axonal degeneration. We searched on PubMed the literature regarding necroptosis published between 2008 and 2020 and reviewed all publications were necroptosis was studied in the context of age-related NDs. EXPERT OPINION Axonal loss and neuronal death are the ultimate consequences of NDs that translate into disease phenotypes. Targeting degenerative mechanisms of the neuron appears as a strategy that might cover a wide range of diseases. Thus, the participation of necroptosis as a common mediator of neuronal demise emerges as a promising target for therapeutic intervention. Considering evidence demonstrating that necroptosis mediates axonal degeneration, we propose and discuss the potential of targeting necroptosis-mediated axonal destruction as a strategy to tackle NDs before neuronal loss occurs.
Collapse
Affiliation(s)
- Natalia Salvadores
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor , Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism , Santiago, Chile
| | - Felipe A Court
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor , Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism , Santiago, Chile
| |
Collapse
|
32
|
Gorbatyuk MS, Starr CR, Gorbatyuk OS. Endoplasmic reticulum stress: New insights into the pathogenesis and treatment of retinal degenerative diseases. Prog Retin Eye Res 2020; 79:100860. [PMID: 32272207 DOI: 10.1016/j.preteyeres.2020.100860] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Physiological equilibrium in the retina depends on coordinated work between rod and cone photoreceptors and can be compromised by the expression of mutant proteins leading to inherited retinal degeneration (IRD). IRD is a diverse group of retinal dystrophies with multifaceted molecular mechanisms that are not fully understood. In this review, we focus on the contribution of chronically activated unfolded protein response (UPR) to inherited retinal pathogenesis, placing special emphasis on studies employing genetically modified animal models. As constitutively active UPR in degenerating retinas may activate pro-apoptotic programs associated with oxidative stress, pro-inflammatory signaling, dysfunctional autophagy, free cytosolic Ca2+ overload, and altered protein synthesis rate in the retina, we focus on the regulatory mechanisms of translational attenuation and approaches to overcoming translational attenuation in degenerating retinas. We also discuss current research on the role of the UPR mediator PERK and its downstream targets in degenerating retinas and highlight the therapeutic benefits of reprogramming PERK signaling in preclinical animal models of IRD. Finally, we describe pharmacological approaches targeting UPR in ocular diseases and consider their potential applications to IRD.
Collapse
Affiliation(s)
- Marina S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA.
| | - Christopher R Starr
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| | - Oleg S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| |
Collapse
|
33
|
Heib M, Rose-John S, Adam D. Necroptosis, ADAM proteases and intestinal (dys)function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:83-152. [PMID: 32381179 DOI: 10.1016/bs.ircmb.2020.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Recently, an unexpected connection between necroptosis and members of the a disintegrin and metalloproteinase (ADAM) protease family has been reported. Necroptosis represents an important cell death routine which helps to protect from viral, bacterial, fungal and parasitic infections, maintains adult T cell homeostasis and contributes to the elimination of potentially defective organisms before parturition. Equally important for organismal homeostasis, ADAM proteases control cellular processes such as development and differentiation, immune responses or tissue regeneration. Notably, necroptosis as well as ADAM proteases have been implicated in the control of inflammatory responses in the intestine. In this review, we therefore provide an overview of the physiology and pathophysiology of necroptosis, ADAM proteases and intestinal (dys)function, discuss the contribution of necroptosis and ADAMs to intestinal (dys)function, and review the current knowledge on the role of ADAMs in necroptotic signaling.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
34
|
Peng JJ, Song WT, Yao F, Zhang X, Peng J, Luo XJ, Xia XB. Involvement of regulated necrosis in blinding diseases: Focus on necroptosis and ferroptosis. Exp Eye Res 2020; 191:107922. [PMID: 31923413 DOI: 10.1016/j.exer.2020.107922] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
Besides apoptosis, necrosis can also occur in a highly regulated and genetically controlled manner, defined as regulated necrosis, which is characterized by a loss of cell membrane integrity and release of cytoplasmic content. Depending on the involvement of its signal pathway, regulated necrosis can be further classified as necroptosis, ferroptosis, pyroptosis and parthanatos. Numerous studies have demonstrated that regulated necrosis is involved in the pathogenesis of many diseases covering almost all organs including the brain, heart, liver, kidney, intestine, blood vessel, eye and skin, particularly myocardial infarction and stroke. Most recently, growing evidence suggests that multiple types of regulated necrosis contribute to the degeneration of retinal ganglion cells, retinal pigment epithelial cells or photoreceptor cells, which are the main pathologic features for glaucoma, age-related macular degeneration or retinitis pigmentosa, respectively. This review focuses on the involvement of necroptosis and ferroptosis in these blinding diseases.
Collapse
Affiliation(s)
- Jing-Jie Peng
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China; Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Wei-Tao Song
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Fei Yao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xuan Zhang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Xiao-Bo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
35
|
RIP1 kinase mediates angiogenesis by modulating macrophages in experimental neovascularization. Proc Natl Acad Sci U S A 2019; 116:23705-23713. [PMID: 31685620 PMCID: PMC6876205 DOI: 10.1073/pnas.1908355116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pathological angiogenesis has been implicated in diverse pathologies. Infiltrating macrophages, especially those activated to M2-like phenotype, are critically important for angiogenesis. Although the role of RIP1 kinase in the regulation of apoptosis, necroptosis, and inflammation has been well-established, its role in angiogenesis remains elusive, despite being abundantly expressed in angiogenesis-related infiltrating macrophages. This study demonstrates that RIP1 kinase inhibition attenuates angiogenesis in multiple mouse models of pathological angiogenesis in vivo and suggests a therapeutic role of RIP1 kinase inhibition in pathological angiogenesis. Mechanistically, the inhibitory effect on angiogenesis depends on RIP kinase inhibition-mediated caspase activation in infiltrating macrophages through suppression of M2-like polarization, and subsequent attenuation of pathological angiogenesis. Inflammation plays an important role in pathological angiogenesis. Receptor-interacting protein 1 (RIP1) is highly expressed in inflammatory cells and is known to play an important role in the regulation of apoptosis, necroptosis, and inflammation; however, a comprehensive description of its role in angiogenesis remains elusive. Here, we show that RIP1 is abundantly expressed in infiltrating macrophages during angiogenesis, and genetic or pharmacological inhibition of RIP1 kinase activity using kinase-inactive RIP1K45A/K45A mice or necrostatin-1 attenuates angiogenesis in laser-induced choroidal neovascularization, Matrigel plug angiogenesis, and alkali injury-induced corneal neovascularization in mice. The inhibitory effect on angiogenesis is mediated by caspase activation through a kinase-independent function of RIP1 and RIP3. Mechanistically, infiltrating macrophages are the key target of RIP1 kinase inhibition to attenuate pathological angiogenesis. Inhibition of RIP1 kinase activity is associated with caspase activation in infiltrating macrophages and decreased expression of proangiogenic M2-like markers but not M1-like markers. Similarly, in vitro, catalytic inhibition of RIP1 down-regulates the expression of M2-like markers in interleukin-4–activated bone marrow-derived macrophages, and this effect is blocked by simultaneous caspase inhibition. Collectively, these results demonstrate a nonnecrotic function of RIP1 kinase activity and suggest that RIP1-mediated modulation of macrophage activation may be a therapeutic target of pathological angiogenesis.
Collapse
|
36
|
Li S, Green JF, Jin M. Impacts of deletion and ichthyosis prematurity syndrome-associated mutations in fatty acid transport protein 4 on the function of RPE65. FEBS Lett 2019; 594:540-552. [PMID: 31595490 DOI: 10.1002/1873-3468.13633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/23/2022]
Abstract
The retinal pigment epithelium-specific 65 kDa (RPE65) isomerase plays a pivotal role in photoreceptor survival and function. RPE65-catalyzed synthesis of 11-cis-retinol from all-trans-retinyl esters in the visual cycle is negatively regulated, through a heretofore unknown mechanism, by the fatty acid transport protein FATP4, mutations in which are associated with ichthyosis prematurity syndrome (IPS). Here, we analyzed the interaction between deletion mutants of FATP4 and RPE65 and the impacts of IPS-associated FATP4 mutations on RPE65 expression, 11-cis-retinol synthesis, and all-trans-retinyl ester synthesis. Our results suggest that the interaction between FATP4 and RPE65 contributes to the inhibition of RPE65 function and that IPS-associated nonsense and missense mutations in FATP4 have different effects on the visual cycle.
Collapse
Affiliation(s)
- Songhua Li
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - John F Green
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Minghao Jin
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
37
|
Murakami Y, Ishikawa K, Nakao S, Sonoda KH. Innate immune response in retinal homeostasis and inflammatory disorders. Prog Retin Eye Res 2019; 74:100778. [PMID: 31505218 DOI: 10.1016/j.preteyeres.2019.100778] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/12/2019] [Accepted: 09/02/2019] [Indexed: 01/03/2023]
Abstract
Innate immune cells such as neutrophils, monocyte-macrophages and microglial cells are pivotal for the health and disease of the retina. For the maintenance of retinal homeostasis, these cells and immunosuppressive molecules in the eye actively regulate the induction and the expression of inflammation in order to prevent excessive activation and subsequent tissue damage. In the disease context, these regulatory mechanisms are modulated genetically and/or by environmental stimuli such as damage-associated molecular patterns (DAMPs), and a chronic innate immune response regulates or contributes to the formation of diverse retinal disorders such as uveitis, retinitis pigmentosa, retinal vascular diseases and retinal fibrosis. Here we summarize the recent knowledge regarding the innate immune response in both ocular immune regulation and inflammatory retinal diseases, and we describe the potential of the innate immune response as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
38
|
Kim GH, Paik SS, Park YS, Kim HG, Kim IB. Amelioration of Mouse Retinal Degeneration After Blue LED Exposure by Glycyrrhizic Acid-Mediated Inhibition of Inflammation. Front Cell Neurosci 2019; 13:319. [PMID: 31379505 PMCID: PMC6646422 DOI: 10.3389/fncel.2019.00319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
Glycyrrhizic acid (GA) is a major component in the root and rhizomes of licorice (Glycyrrhiza glabra), which have been used as an herbal medicine, because of its anti-inflammatory activity. GA is known as an inhibitor of high-mobility group box 1 (HMGB1), which is involved in the pathogenesis of various inflammatory diseases including inner retinal neuropathy. In this study, we examined the effect of GA in a mouse model of retinal degeneration (RD), the leading cause of blindness. RD was induced by exposure to a blue light-emitting diode (LED). In functional assessment, electroretinography showed that the amplitudes of both a- and b-waves were reduced in RD mice, whereas they were significantly increased in GA-treated RD mice (P < 0.05), compared to those in non-treated RD animals. In histological assessment, GA treatment preserved the outer nuclear layer where photoreceptors reside and reduced photoreceptor cell death. GA-treated retinas showed significantly reduced expression of proinflammatory cytokines such as TNF-α, IL-6, IL-1β, CCL2 and 6, iNOS, and COX-2 (P < 0.05), compared to that in non-treated retinas. Immunohistochemistry showed that Iba-1 and GFAP expression was markedly reduced in GA-treated retinas, indicating decreased glial response and inflammation. Interestingly, HMGB1 expression was reduced in non-treated RD retinas whereas GA paradoxically increased its expression. These results demonstrate that GA preserves retinal structure and function by inhibiting inflammation in blue LED-induced RD, suggesting a potential application of GA as a medication for RD. In addition, we propose a potential retinal protective function of HMGB1 in the pathogenesis of RD.
Collapse
Affiliation(s)
- Gyu Hyun Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun-Sook Paik
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyoun Geun Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
39
|
Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, Qi D, Lin C, Tong R, Wang Y. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). Int J Mol Med 2019; 44:771-786. [PMID: 31198981 PMCID: PMC6658002 DOI: 10.3892/ijmm.2019.4244] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
Necroptosis is a type of programmed cell death with necrotic morphology, occurring in a variety of biological processes, including inflammation, immune response, embryonic development and metabolic abnormalities. The current nomenclature defines necroptosis as cell death mediated by signal transduction from receptor‑interacting serine/threonine kinase (RIP) 1 to RIP3 (hereafter called RIP1/RIP3). However, RIP3‑dependent cell death would be a more precise definition of necroptosis. RIP3 is indispensable for necroptosis, while RIP1 is not consistently involved in the signal transduction. Notably, deletion of RIP1 even promotes RIP3‑mediated necroptosis under certain conditions. Necroptosis was previously thought as an alternate process of cell death in case of apoptosis inhibition. Currently, necroptosis is recognized to serve a pivotal role in regulating various physiological processes. Of note, it mediates a variety of human diseases, such as ischemic brain injury, immune system disorders and cancer. Targeting and inhibiting necroptosis, therefore, has the potential to be used for therapeutic purposes. To date, research has elucidated the suppression of RIP1/RIP3 via effective inhibitors and highlighted their potential application in disease therapy. The present review focused on the molecular mechanisms of RIP1/RIP3‑mediated necroptosis, explored the functions of RIP1/RIP3 in necroptosis, discussed their potential as a novel therapeutic target for disease therapy, and provided valuable suggestions for further study in this field.
Collapse
Affiliation(s)
- Yuping Liu
- Health Management Center, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Ting Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Tiantian Lei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Dingding Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Lea Girani
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Dandan Qi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Chen Lin
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Yi Wang
- Health Management Center, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
40
|
Xu J, Mo J, Liu X, Marshall B, Atherton SS, Dong Z, Smith S, Zhang M. Depletion of the Receptor-Interacting Protein Kinase 3 (RIP3) Decreases Photoreceptor Cell Death During the Early Stages of Ocular Murine Cytomegalovirus Infection. Invest Ophthalmol Vis Sci 2019; 59:2445-2458. [PMID: 29847649 PMCID: PMC5957522 DOI: 10.1167/iovs.18-24086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose The purpose of this study was to determine if the receptor-interacting protein kinase 3 (RIP3) plays a significant role in innate immune responses and death of bystander retinal neurons during murine cytomegalovirus (MCMV) retinal infection, by comparing the innate immune response and cell death in RIP3-depleted mice (Rip3−/−) and Rip3+/+ control mice. Methods Rip3−/− and Rip3+/+ mice were immunosuppressed (IS) and inoculated with MCMV via the supraciliary route. Virus-injected and mock-injected control eyes were removed at days 4, 7, and 10 post infection (p.i.) and markers of innate immunity and cell death were analyzed. Results Compared to Rip3+/+ mice, significantly more MCMV was recovered and more MCMV-infected RPE cells were observed in injected eyes of Rip3−/− mice at days 4 and 7 p.i. In contrast, fewer TUNEL-stained photoreceptors were observed in Rip3−/− eyes than in Rip3+/+ eyes at these times. Electron microscopy showed that significantly more apoptotic photoreceptor cells were present in Rip3+/+ mice than in Rip3−/− mice. Immunohistochemistry showed that the majority of TUNEL-stained photoreceptors died via mitochondrial flavoprotein apoptosis-inducing factor (AIF)-mediated, caspase 3–independent apoptosis. The majority of RIP3-expressing cells in infected eyes were RPE cells, microglia/macrophages, and glia, whereas retinal neurons contained much lower amounts of RIP3. Western blots showed significantly higher levels of activated nuclear factor–κB and caspase 1 were present in Rip3+/+ eyes compared to Rip3−/− eyes. Conclusions Our results suggest that RIP3 enhances innate immune responses against ocular MCMV infection via activation of the inflammasome and nuclear factor–κB, which also leads to inflammation and death of bystander cells by multiple pathways including apoptosis and necroptosis.
Collapse
Affiliation(s)
- Jinxian Xu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Juan Mo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Xinglou Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Sally S Atherton
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Sylvia Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
41
|
Jang KH, Do YJ, Koo TS, Choi JS, Song EJ, Hwang Y, Bae HJ, Lee JH, Kim E. Protective effect of RIPK1-inhibitory compound in in vivo models for retinal degenerative disease. Exp Eye Res 2018; 180:8-17. [PMID: 30500363 DOI: 10.1016/j.exer.2018.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/04/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
Abstract
Receptor interacting protein kinase 1 (RIPK1) plays a key role in necroptosis, which is a type of programmed necrosis that is involved in ocular diseases, including glaucoma and dry age-related macular degeneration (AMD). We previously introduced RIPK1-inhibitory compound (RIC), which has biochemical characteristics and a mode of action that are distinct from those of the prototype RIPK1 inhibitor necrostatin-1. The intraperitoneal administration of RIC exerts a protective effect on retinal ganglion cells against a glaucomatous insult. In this study, we examined the protective effect of RIC on retinal pigment epithelium (RPE) against sodium iodate (SI) insult, which is associated with dry AMD pathogenesis. The eye drop administration of RIC that reached on the retina prevented RPE loss in SI-induced retinal degeneration. RIC consistently demonstrated retinal protection in the funduscopy and electroretinogram analyses in SI-injected rabbits and iodoacetic acid-treated mini-pigs. Moreover, the in vivo protective effects of RIC were superior to those of ACU-4429 and doxycycline, which are other medications investigated in clinical trials for the treatment of dry AMD, and RIC did not induce retinal toxicity following topical administration in rats. Collectively, RIC displayed excellent retinal penetration and prevented retinal degeneration in the pathogenesis of dry AMD with a high in vivo efficacy.
Collapse
Affiliation(s)
- Ki-Hong Jang
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Yun-Ju Do
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Tae-Sung Koo
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, South Korea
| | - Jun-Sub Choi
- Catholic Institute for Visual Science, The Catholic University of Korea, #505 Banpo-dong, Seocho-gu, Seoul, South Korea
| | - Eun Ju Song
- Department of Drug Development, Technology Research Institute, Ensol Biosciences Inc., Daejeon, South Korea
| | - Yeseong Hwang
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Hyun Ju Bae
- Kukjepharma R&D Center, Sanseong-ro 47, Ansan, Gyeonggi-do, South Korea
| | - Ju-Hee Lee
- Kukjepharma R&D Center, Sanseong-ro 47, Ansan, Gyeonggi-do, South Korea
| | - Eunhee Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
42
|
Jun-Long H, Yi L, Bao-Lian Z, Jia-Si L, Ning Z, Zhou-Heng Y, Xue-Jun S, Wen-Wu L. Necroptosis Signaling Pathways in Stroke: From Mechanisms to Therapies. Curr Neuropharmacol 2018; 16:1327-1339. [PMID: 29663889 PMCID: PMC6251040 DOI: 10.2174/1570159x16666180416152243] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/20/2017] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
It has been confirmed that apoptosis, autophagy and necrosis are the three major modes of cell death. For a long time, necrosis is regarded as a deranged or accidental cell demise. In recent years, there is evidence showing that necrotic cell death can be a well regulated and orchestrated event, which is also known as programmed cell death or “necroptosis”. Necroptosis can be triggered by a variety of external stimuli and regulated by a caspase-independent pathway. It plays a key role in the pathogenesis of some diseases including neurological diseases. In the past two decades, a variety of studies have revealed that the necroptosis related pathway is activated in stroke, and plays a crucial role in the pathogenesis of stroke. Moreover, necroptosis may serve as a potential target in the therapy of stroke because genetic or pharmacological inhibition of necroptosis has been shown to be neuroprotective in stroke in vitro and in vivo. In this review, we briefly summarize re-cent advances in necroptosis, introduce the mechanism and strategies targeting necroptosis in stroke, and finally propose some issues in the treatment of stroke by targeting necroptosis
Collapse
Affiliation(s)
- Huang Jun-Long
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Li Yi
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Zhao Bao-Lian
- Department of Naval Clinical Medicine, Second Military Medical University, Shanghai 200433, China
| | - Li Jia-Si
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhang Ning
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Ye Zhou-Heng
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Sun Xue-Jun
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Liu Wen-Wu
- Department of Diving and Hyperbaric Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
43
|
RIP kinases as modulators of inflammation and immunity. Nat Immunol 2018; 19:912-922. [DOI: 10.1038/s41590-018-0188-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
|
44
|
Li S, Sato K, Gordon WC, Sendtner M, Bazan NG, Jin M. Ciliary neurotrophic factor (CNTF) protects retinal cone and rod photoreceptors by suppressing excessive formation of the visual pigments. J Biol Chem 2018; 293:15256-15268. [PMID: 30115683 DOI: 10.1074/jbc.ra118.004008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/15/2018] [Indexed: 12/25/2022] Open
Abstract
The retinal pigment epithelium (RPE)-dependent visual cycle provides 11-cis-retinal to opsins in the photoreceptor outer segments to generate functional visual pigments that initiate phototransduction in response to light stimuli. Both RPE65 isomerase of the visual cycle and the rhodopsin visual pigment have recently been identified as critical players in mediating light-induced retinal degeneration. These findings suggest that the expression and function of RPE65 and rhodopsin need to be coordinately controlled to sustain normal vision and to protect the retina from photodamage. However, the mechanism controlling the development of the retinal visual system remains poorly understood. Here, we show that deficiency in ciliary neurotrophic factor (CNTF) up-regulates the levels of rod and cone opsins accompanied by an increase in the thickness of the outer nuclear layers and the lengths of cone and rod outer segments in the mouse retina. Moreover, retinoid isomerase activity, expression levels of RPE65 and lecithin:retinol acyltransferase (LRAT), which synthesizes the RPE65 substrate, were also significantly increased in the Cntf -/- RPE. Rod a-wave and cone b-wave amplitudes of electroretinograms were increased in Cntf -/- mice, but rod b-wave amplitudes were unchanged compared with those in WT mice. Up-regulated RPE65 and LRAT levels accelerated both the visual cycle rate and recovery rate of rod light sensitivity in Cntf -/- mice. Of note, rods and cones in Cntf -/- mice exhibited hypersusceptibility to light-induced degeneration. These results indicate that CNTF is a common extracellular factor that prevents excessive production of opsins, the photoreceptor outer segments, and 11-cis-retinal to protect rods and cones from photodamage.
Collapse
Affiliation(s)
- Songhua Li
- From the Neuroscience Center of Excellence and
| | - Kota Sato
- From the Neuroscience Center of Excellence and
| | - William C Gordon
- From the Neuroscience Center of Excellence and.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, Louisiana 70112 and
| | - Michael Sendtner
- the Institute of Clinical Neurobiology, University Hospital Würzburg, D-97078 Würzburg, Germany
| | - Nicolas G Bazan
- From the Neuroscience Center of Excellence and.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, Louisiana 70112 and
| | - Minghao Jin
- From the Neuroscience Center of Excellence and .,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, Louisiana 70112 and
| |
Collapse
|
45
|
Sato K, Saigusa D, Saito R, Fujioka A, Nakagawa Y, Nishiguchi KM, Kokubun T, Motoike IN, Maruyama K, Omodaka K, Shiga Y, Uruno A, Koshiba S, Yamamoto M, Nakazawa T. Metabolomic changes in the mouse retina after optic nerve injury. Sci Rep 2018; 8:11930. [PMID: 30093719 PMCID: PMC6085332 DOI: 10.1038/s41598-018-30464-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
In glaucoma, although axonal injury drives retinal ganglion cell (RGC) death, little is known about the underlying pathomechanisms. To provide new mechanistic insights and identify new biomarkers, we combined latest non-targeting metabolomics analyses to profile altered metabolites in the mouse whole retina 2, 4, and 7 days after optic nerve crush (NC). Ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry and liquid chromatography Fourier transform mass spectrometry covering wide spectrum of metabolites in combination highlighted 30 metabolites that changed its concentration after NC. The analysis displayed similar changes for purine nucleotide and glutathione as reported previously in another animal model of axonal injury and detected multiple metabolites that increased after the injury. After studying the specificity of the identified metabolites to RGCs in histological sections using imaging mass spectrometry, two metabolites, i.e., L-acetylcarnitine and phosphatidylcholine were increased not only preceding the peak of RGC death in the whole retina but also at the RGC layer (2.3-fold and 1.2-fold, respectively). These phospholipids propose novel mechanisms of RGC death and may serve as early biomarkers of axonal injury. The combinatory metabolomics analyses promise to illuminate pathomechanisms, reveal biomarkers, and allow the discovery of new therapeutic targets of glaucoma.
Collapse
Affiliation(s)
- Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Ophthalmic imaging and information analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan.,LEAP, Japan Agency for Medical Research and Development (AMED), Chiyoda, Tokyo, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Amane Fujioka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yurika Nakagawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Taiki Kokubun
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ikuko N Motoike
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Department of Systems Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Ophthalmic imaging and information analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan. .,Department of Ophthalmic imaging and information analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan. .,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan. .,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|
46
|
Sato K, Shiga Y, Nakagawa Y, Fujita K, Nishiguchi KM, Tawarayama H, Murayama N, Maekawa S, Yabana T, Omodaka K, Katayama S, Feng Q, Tsuda S, Nakazawa T. Ecel1 Knockdown With an AAV2-Mediated CRISPR/Cas9 System Promotes Optic Nerve Damage-Induced RGC Death in the Mouse Retina. Invest Ophthalmol Vis Sci 2018; 59:3943-3951. [PMID: 30073365 DOI: 10.1167/iovs.18-23784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess the therapeutic potential of endothelin-converting enzyme-like 1 (Ecel1) in a mouse model of optic nerve crush. Methods Ecel1 expression was evaluated with real time quantitative (qRT)-PCR, Western blotting, and immunohistochemistry in mouse retinas after optic nerve crush. Vinblastine administration to the optic nerve and the intravitreal injection of N-methyl-d-aspartate (NMDA) were used to assess Ecel1 gene expression. Ecel1 was deleted with an adeno-associated viral (AAV) clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas9 system, and retinal ganglion cell (RGC) survival was investigated with retrograde labeling, qRT-PCR, and visual evoked potential. Results Optic nerve crush induced Ecel1 expression specifically in the RGCs, peaking on day 4 after optic nerve crush. Ecel1 gene expression was induced by the vinblastine-induced inhibition of axonal flow, but not by NMDA-induced excitotoxicity, even though both are triggers of RGC death. Knockdown of Ecel1 promoted the loss of RGCs after optic nerve crush. Conclusions Our data suggest that Ecel1 induction is part of the retinal neuroprotective response to axonal injury in mice. These findings might provide insight into novel therapeutic targets for the attenuation of RGC damage, such as occurs in traumatic optic neuropathy.
Collapse
Affiliation(s)
- Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yurika Nakagawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kosuke Fujita
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Namie Murayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shigeto Maekawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Takeshi Yabana
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shota Katayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Qiwei Feng
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
47
|
Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration. Mol Neurobiol 2018; 56:1637-1652. [PMID: 29911255 DOI: 10.1007/s12035-018-1192-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/08/2018] [Indexed: 12/24/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited neurological disorders characterized by rod photoreceptor cell death, followed by secondary cone cell death leading to progressive blindness. Currently, there are no viable treatment options for RP. Due to incomplete knowledge of the molecular signaling pathways associated with RP pathogenesis, designing therapeutic strategies remains a challenge. In particular, preventing secondary cone photoreceptor cell loss is a key goal in designing potential therapies. In this study, we identified the main drivers of rod cell death and secondary cone loss in the transgenic S334ter rhodopsin rat model, tested the efficacy of specific cell death inhibitors on retinal function, and compared the effect of combining drugs to target multiple pathways in the S334ter and P23H rhodopsin rat models. The primary driver of early rod cell death in the S334ter model was a caspase-dependent process, whereas cone cell death occurred though RIP3-dependent necroptosis. In comparison, rod cell death in the P23H model was via necroptotic signaling, whereas cone cell loss occurred through inflammasome activation. Combination therapy of four drugs worked better than the individual drugs in the P23H model but not in the S334ter model. These differences imply that treatment modalities need to be tailored for each genotype. Taken together, our data demonstrate that rationally designed genotype-specific drug combinations will be an important requisite to effectively target primary rod cell loss and more importantly secondary cone survival.
Collapse
|
48
|
Yang F, Ma H, Butler MR, Ding XQ. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice. FASEB J 2018; 32:fj201800484RR. [PMID: 29874126 PMCID: PMC6181634 DOI: 10.1096/fj.201800484rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Thyroid hormone (TH) signaling has been shown to regulate cone photoreceptor viability. Suppression of TH signaling with antithyroid drug treatment or by targeting iodothyronine deiodinases and TH receptors preserves cones in mouse models of retinal degeneration, including the Leber congenital amaurosis Rpe65-deficient mice. This work investigates the cellular mechanisms underlying how suppressing TH signaling preserves cones in Rpe65-deficient mice, using mice deficient in type 2 iodothyronine deiodinase (Dio2), the enzyme that converts the prohormone thyroxine to the active hormone triiodothyronine (T3). Deficiency of Dio2 improved cone survival and function in Rpe65-/- and Rpe65-deficiency on a cone dominant background ( Rpe65-/-/ Nrl-/-) mice. Analysis of cell death pathways revealed that receptor-interacting serine/threonine-protein kinase (RIPK)/necroptosis activity was increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency reversed the alterations. Cell-stress analysis showed that the cellular oxidative stress responses were increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency abolished the elevations. Similarly, antithyroid drug treatment resulted in reduced RIPK/necroptosis activity and oxidative stress responses in Rpe65-/-/ Nrl-/- retinas. Moreover, treatment with T3 significantly induced RIPK/necroptosis activity and oxidative stress responses in the retina. This work shows that suppression of TH signaling reduces cellular RIPK/necroptosis activity and oxidative stress responses in degenerating retinas, suggesting a mechanism underlying the observed cone preservation.-Yang, F., Ma, H., Butler, M. R., Ding, X.-Q. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael R. Butler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
49
|
McMurtrey JJ, Tso MOM. A review of the immunologic findings observed in retinitis pigmentosa. Surv Ophthalmol 2018; 63:769-781. [PMID: 29551596 DOI: 10.1016/j.survophthal.2018.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
Most patients suffering from retinitis pigmentosa (RP) inherit the disorder; however, the immune-pathologic features associated with this disease have yet to be extensively studied. Six reports correlate antiretinal immune activity with vision deterioration in RP patients. Some of these patients have sporadic RP that occurs in excess of expected gene segregation during inheritance. The hypothesis that a primary immune-mediated disease process occurs in this sporadic group is supported by significant associations of RP with autoimmune endocrinopathies and other immune-related conditions or factors; however, no immunologic difference regarding RP family history is reported in the peripheral blood studies of RP patients. Twenty-one percent to 51% of RP patients display antiretinal antibodies, whereas 19-58% have antiretinal lymphocyte reactivity to retinal extract, and 60-85% have activated T cells. Mutations in animal models of RP have been shown to cause endoplasmic reticulum stress that may initiate immunopathology for genetic RP, but oxidative stress also encourages immune cytotoxicity. In addition, necrotic cell death is evident, which promotes inflammatory conditions. We review mechanisms and evidence for an occult inflammation in genetic RP and examine reports of efficacy in retarding RP progression with anti-inflammatory agents in clinical trials.
Collapse
Affiliation(s)
- John J McMurtrey
- The Wilmer Ophthalmological Institute, The Johns Hopkins University and Hospital, Baltimore, Maryland, USA.
| | - Mark O M Tso
- The Wilmer Ophthalmological Institute, The Johns Hopkins University and Hospital, Baltimore, Maryland, USA
| |
Collapse
|
50
|
Meng MB, Wang HH, Cui YL, Wu ZQ, Shi YY, Zaorsky NG, Deng L, Yuan ZY, Lu Y, Wang P. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy. Oncotarget 2018; 7:57391-57413. [PMID: 27429198 PMCID: PMC5302997 DOI: 10.18632/oncotarget.10548] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
While the mechanisms underlying apoptosis and autophagy have been well characterized over recent decades, another regulated cell death event, necroptosis, remains poorly understood. Elucidating the signaling networks involved in the regulation of necroptosis may allow this form of regulated cell death to be exploited for diagnosis and treatment of cancer, and will contribute to the understanding of the complex tumor microenvironment. In this review, we have summarized the mechanisms and regulation of necroptosis, the converging and diverging features of necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy, as well as attempts to exploit this newly gained knowledge to provide therapeutics for cancer.
Collapse
Affiliation(s)
- Mao-Bin Meng
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Huan-Huan Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yao-Li Cui
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhi-Qiang Wu
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yang-Yang Shi
- Stanford University School of Medicine, Stanford, CA, United States of America
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Lei Deng
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - You Lu
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|