1
|
Preisig BC, Meyer M. Predictive coding and dimension-selective attention enhance the lateralization of spoken language processing. Neurosci Biobehav Rev 2025; 172:106111. [PMID: 40118260 DOI: 10.1016/j.neubiorev.2025.106111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/12/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
Hemispheric lateralization in speech and language processing exemplifies functional brain specialization. Seminal work in patients with left hemisphere damage highlighted the left-hemispheric dominance in language functions. However, speech processing is not confined to the left hemisphere. Hence, some researchers associate lateralization with auditory processing asymmetries: slow temporal and fine spectral acoustic information is preferentially processed in right auditory regions, while faster temporal information is primarily handled by left auditory regions. Other scholars posit that lateralization relates more to linguistic processing, particularly for speech and speech-like stimuli. We argue that these seemingly distinct accounts are interdependent. Linguistic analysis of speech relies on top-down processes, such as predictive coding and dimension-selective auditory attention, which enhance lateralized processing by engaging left-lateralized sensorimotor networks. Our review highlights that lateralization is weaker for simple sounds, stronger for speech-like sounds, and strongest for meaningful speech. Evidence shows that predictive speech processing and selective attention enhance lateralization. We illustrate that these top-down processes rely on left-lateralized sensorimotor networks and provide insights into the role of these networks in speech processing.
Collapse
Affiliation(s)
- Basil C Preisig
- The Institute for the Interdisciplinary Study of Language Evolution, Evolutionary Neuroscience of Language, University of Zurich, Switzerland; Zurich Center for Linguistics, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, Switzerland.
| | - Martin Meyer
- The Institute for the Interdisciplinary Study of Language Evolution, Evolutionary Neuroscience of Language, University of Zurich, Switzerland; Zurich Center for Linguistics, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, Switzerland
| |
Collapse
|
2
|
Kepinska O, Dalboni da Rocha J, Tuerk C, Hervais-Adelman A, Bouhali F, Green DW, Price CJ, Golestani N. Auditory cortex anatomy reflects multilingual phonological experience. eLife 2025; 12:RP90269. [PMID: 40137053 PMCID: PMC11942177 DOI: 10.7554/elife.90269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
This study examines whether auditory cortex anatomy reflects multilingual experience, specifically individuals' phonological repertoire. Using data from over 200 participants exposed to 1-7 languages across 36 languages, we analyzed the role of language experience and typological distances between languages they spoke in shaping neural signatures of multilingualism. Our findings reveal a negative relationship between the thickness of the left and right second transverse temporal gyrus (TTG) and participants' degree of multilingualism. Models incorporating phoneme-level information in the language experience index explained the most variance in TTG thickness, suggesting that a more extensive and more phonologically diverse language experience is associated with thinner cortices in the second TTG. This pattern, consistent across two datasets, supports the idea of experience-driven pruning and neural efficiency. Our findings indicate that experience with typologically distant languages appear to impact the brain differently than those with similar languages. Moreover, they suggest that early auditory regions seem to represent phoneme-level cross-linguistic information, contrary to the most established models of language processing in the brain, which suggest that phonological processing happens in more lateral posterior superior temporal gyrus (STG) and superior temporal sulcus (STS).
Collapse
Affiliation(s)
- Olga Kepinska
- Brain and Language Lab, Vienna Cognitive Science Hub, University of ViennaViennaAustria
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of ViennaViennaAustria
| | - Josue Dalboni da Rocha
- Department of Diagnostic Imaging, St Jude Children's Research HospitalMemphisUnited States
| | - Carola Tuerk
- Brain and Language Lab, Department of Psychology, Faculty of Psychology and Educational Sciences, University of GenevaGenevaSwitzerland
| | - Alexis Hervais-Adelman
- Department of Basic Neuroscience, University of GenevaGenevaSwitzerland
- Zurich Linguistics Centre, University of ZurichZurichSwitzerland
| | | | - David W Green
- Experimental Psychology, University College LondonLondonUnited Kingdom
| | - Cathy J Price
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | - Narly Golestani
- Brain and Language Lab, Vienna Cognitive Science Hub, University of ViennaViennaAustria
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of ViennaViennaAustria
- Brain and Language Lab, Department of Psychology, Faculty of Psychology and Educational Sciences, University of GenevaGenevaSwitzerland
| |
Collapse
|
3
|
DeYoe EA, Huddleston W, Greenberg AS. Are neuronal mechanisms of attention universal across human sensory and motor brain maps? Psychon Bull Rev 2024; 31:2371-2389. [PMID: 38587756 PMCID: PMC11680640 DOI: 10.3758/s13423-024-02495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
One's experience of shifting attention from the color to the smell to the act of picking a flower seems like a unitary process applied, at will, to one modality after another. Yet, the unique and separable experiences of sight versus smell versus movement might suggest that the neural mechanisms of attention have been separately optimized to employ each modality to its greatest advantage. Moreover, addressing the issue of universality can be particularly difficult due to a paucity of existing cross-modal comparisons and a dearth of neurophysiological methods that can be applied equally well across disparate modalities. Here we outline some of the conceptual and methodological issues related to this problem and present an instructive example of an experimental approach that can be applied widely throughout the human brain to permit detailed, quantitative comparison of attentional mechanisms across modalities. The ultimate goal is to spur efforts across disciplines to provide a large and varied database of empirical observations that will either support the notion of a universal neural substrate for attention or more clearly identify the degree to which attentional mechanisms are specialized for each modality.
Collapse
Affiliation(s)
- Edgar A DeYoe
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
- , Signal Mountain, USA.
| | - Wendy Huddleston
- School of Rehabilitation Sciences and Technology, College of Health Professions and Sciences, University of Wisconsin - Milwaukee, 3409 N. Downer Ave, Milwaukee, WI, 53211, USA
| | - Adam S Greenberg
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, 53226, USA
| |
Collapse
|
4
|
Robertson A, Miller DJ, Hull A, Butler BE. Quantifying myelin density in the feline auditory cortex. Brain Struct Funct 2024; 229:1927-1941. [PMID: 38981886 DOI: 10.1007/s00429-024-02821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
The cerebral cortex comprises many distinct regions that differ in structure, function, and patterns of connectivity. Current approaches to parcellating these regions often take advantage of functional neuroimaging approaches that can identify regions involved in a particular process with reasonable spatial resolution. However, neuroanatomical biomarkers are also very useful in identifying distinct cortical regions either in addition to, or in place of functional measures. For example, differences in myelin density are thought to relate to functional differences between regions, are sensitive to individual patterns of experience, and have been shown to vary across functional hierarchies in a predictable manner. Accordingly, the current study provides quantitative stereological estimates of myelin density for each of the 13 regions that make up the feline auditory cortex. We demonstrate that significant differences can be observed between auditory cortical regions, with the highest myelin density observed in the regions that comprise the auditory core (i.e., the primary auditory cortex and anterior auditory field). Moreover, our myeloarchitectonic map suggests that myelin density varies in a hierarchical fashion that conforms to the traditional model of spatial organization in auditory cortex. Taken together, these results establish myelin as a useful biomarker for parcellating auditory cortical regions, and provide detailed estimates against which other, less invasive methods of quantifying cortical myelination may be compared.
Collapse
Affiliation(s)
- Austin Robertson
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Daniel J Miller
- Department of Psychology, University of Western Ontario, 1151 Richmond Street N, London, ON, N6A5C1, Canada
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champagne, Urbana, IL, USA
| | - Adam Hull
- Undergraduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Blake E Butler
- Department of Psychology, University of Western Ontario, 1151 Richmond Street N, London, ON, N6A5C1, Canada.
- Western Institute for Neuroscience, University of Western Ontario, London, ON, Canada.
- National Centre for Audiology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
5
|
Luthra S, Razin RN, Tierney AT, Holt LL, Dick F. Systematic changes in neural selectivity reflect the acquired salience of category-diagnostic dimensions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614258. [PMID: 39386708 PMCID: PMC11463673 DOI: 10.1101/2024.09.21.614258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Humans and other animals develop remarkable behavioral specializations for identifying, differentiating, and acting on classes of ecologically important signals. Ultimately, this expertise is flexible enough to support diverse perceptual judgments: a voice, for example, simultaneously conveys what a talker says as well as myriad cues about her identity and state. Mature perception across complex signals thus involves both discovering and learning regularities that best inform diverse perceptual judgments, and weighting this information flexibly as task demands change. Here, we test whether this flexibility may involve endogenous attentional gain to task-relevant dimensions. We use two prospective auditory category learning tasks to relate a complex, entirely novel soundscape to four classes of "alien identity" and two classes of "alien size." Identity, but not size, categorization requires discovery and learning of patterned acoustic input situated in one of two simultaneous, frequency-delimited bands. This allows us to capitalize on the coarsely segregated frequency-band-specific channels of auditory tonotopic maps using fMRI to ask whether category-relevant perceptual information is prioritized relative to simultaneous, uninformative information. Among participants expert at alien identity categorization, we observe prioritization of the diagnostic frequency band that persists even when the diagnostic information becomes irrelevant in the size categorization task. Tellingly, the neural selectivity evoked implicitly in categorization aligns closely with activation driven by explicit, sustained selective attention to other sounds presented in the same frequency band. Additionally, we observe fingerprints of individual differences in the learning trajectories taken to achieve expert-level categorization in patterns of neural activity associated with the diagnostic dimension. In all, this indicates that acquiring categories can drive the emergence of acquired attentional salience to dimensions of acoustic input.
Collapse
|
6
|
Singh S, Sutkus L, Li Z, Baker S, Bear J, Dilger RN, Miller DJ. Standardization of a silver stain to reveal mesoscale myelin in histological preparations of the mammalian brain. J Neurosci Methods 2024; 407:110139. [PMID: 38626852 DOI: 10.1016/j.jneumeth.2024.110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The brain is built of neurons supported by myelin, a fatty substance that improves cellular communication. Noninvasive magnetic resonance imaging (MRI) is now able to measure brain structure like myelin and requires histological validation. NEW METHOD Here we present work in small and large biomedical model mammals to standardize a silver impregnation method as a high-throughput histological myelin visualization procedure. Specifically, we built a new staining well plate to increase batch size, and then systematically varied the staining and clearing cycles to describe the staining response curve across taxa and conditions. We compared tissues fixed by immersion or perfusion, mounted versus free-floating, and cut as thicker or thinner slices, with two-weeks of post-fixation. RESULTS The staining response curves show optimal staining with a single exposure across taxa when incubation and clearing epochs are held to within 3-9 min. We show that clearing was slower in mounted vs free-floating tissue, and that staining was faster and caused fracturing earlier in thinner sliced and smaller volumes of tissue. COMPARISON WITH EXISTING METHODS We developed a batch processing approach to increase throughput while ensuring reproducibility and demonstrate the optimal conditions for fine myelinated fiber morphology visualization with short cycles (<9 minutes). CONCLUSIONS We present our optimized protocol to reveal mesoscale neuroanatomical myelin content in histology across mammals. This standard staining procedure will facilitate multiscale analyses of myelin content across development as well as in the presence of injury or disease.
Collapse
Affiliation(s)
- S Singh
- Department of Evolution, Ecology, and Behavior, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - L Sutkus
- Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - Z Li
- Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - S Baker
- Machine Shop, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - J Bear
- Machine Shop, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - R N Dilger
- Department of Animal Sciences, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - D J Miller
- Department of Evolution, Ecology, and Behavior, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America.
| |
Collapse
|
7
|
Hullett PW, Leonard MK, Gorno-Tempini ML, Mandelli ML, Chang EF. Parallel Encoding of Speech in Human Frontal and Temporal Lobes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585648. [PMID: 38562883 PMCID: PMC10983886 DOI: 10.1101/2024.03.19.585648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Models of speech perception are centered around a hierarchy in which auditory representations in the thalamus propagate to primary auditory cortex, then to the lateral temporal cortex, and finally through dorsal and ventral pathways to sites in the frontal lobe. However, evidence for short latency speech responses and low-level spectrotemporal representations in frontal cortex raises the question of whether speech-evoked activity in frontal cortex strictly reflects downstream processing from lateral temporal cortex or whether there are direct parallel pathways from the thalamus or primary auditory cortex to the frontal lobe that supplement the traditional hierarchical architecture. Here, we used high-density direct cortical recordings, high-resolution diffusion tractography, and hemodynamic functional connectivity to evaluate for evidence of direct parallel inputs to frontal cortex from low-level areas. We found that neural populations in the frontal lobe show speech-evoked responses that are synchronous or occur earlier than responses in the lateral temporal cortex. These short latency frontal lobe neural populations encode spectrotemporal speech content indistinguishable from spectrotemporal encoding patterns observed in the lateral temporal lobe, suggesting parallel auditory speech representations reaching temporal and frontal cortex simultaneously. This is further supported by white matter tractography and functional connectivity patterns that connect the auditory nucleus of the thalamus (medial geniculate body) and the primary auditory cortex to the frontal lobe. Together, these results support the existence of a robust pathway of parallel inputs from low-level auditory areas to frontal lobe targets and illustrate long-range parallel architecture that works alongside the classical hierarchical speech network model.
Collapse
|
8
|
Caprini F, Zhao S, Chait M, Agus T, Pomper U, Tierney A, Dick F. Generalization of auditory expertise in audio engineers and instrumental musicians. Cognition 2024; 244:105696. [PMID: 38160651 DOI: 10.1016/j.cognition.2023.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
From auditory perception to general cognition, the ability to play a musical instrument has been associated with skills both related and unrelated to music. However, it is unclear if these effects are bound to the specific characteristics of musical instrument training, as little attention has been paid to other populations such as audio engineers and designers whose auditory expertise may match or surpass that of musicians in specific auditory tasks or more naturalistic acoustic scenarios. We explored this possibility by comparing students of audio engineering (n = 20) to matched conservatory-trained instrumentalists (n = 24) and to naive controls (n = 20) on measures of auditory discrimination, auditory scene analysis, and speech in noise perception. We found that audio engineers and performing musicians had generally lower psychophysical thresholds than controls, with pitch perception showing the largest effect size. Compared to controls, audio engineers could better memorise and recall auditory scenes composed of non-musical sounds, whereas instrumental musicians performed best in a sustained selective attention task with two competing streams of tones. Finally, in a diotic speech-in-babble task, musicians showed lower signal-to-noise-ratio thresholds than both controls and engineers; however, a follow-up online study did not replicate this musician advantage. We also observed differences in personality that might account for group-based self-selection biases. Overall, we showed that investigating a wider range of forms of auditory expertise can help us corroborate (or challenge) the specificity of the advantages previously associated with musical instrument training.
Collapse
Affiliation(s)
- Francesco Caprini
- Department of Psychological Sciences, Birkbeck, University of London, UK.
| | - Sijia Zhao
- Department of Experimental Psychology, University of Oxford, UK
| | - Maria Chait
- University College London (UCL) Ear Institute, UK
| | - Trevor Agus
- School of Arts, English and Languages, Queen's University Belfast, UK
| | - Ulrich Pomper
- Department of Cognition, Emotion, and Methods in Psychology, Universität Wien, Austria
| | - Adam Tierney
- Department of Psychological Sciences, Birkbeck, University of London, UK
| | - Fred Dick
- Department of Experimental Psychology, University College London (UCL), UK
| |
Collapse
|
9
|
Obasih CO, Luthra S, Dick F, Holt LL. Auditory category learning is robust across training regimes. Cognition 2023; 237:105467. [PMID: 37148640 PMCID: PMC11415078 DOI: 10.1016/j.cognition.2023.105467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/17/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Multiple lines of research have developed training approaches that foster category learning, with important translational implications for education. Increasing exemplar variability, blocking or interleaving by category-relevant dimension, and providing explicit instructions about diagnostic dimensions each have been shown to facilitate category learning and/or generalization. However, laboratory research often must distill the character of natural input regularities that define real-world categories. As a result, much of what we know about category learning has come from studies with simplifying assumptions. We challenge the implicit expectation that these studies reflect the process of category learning of real-world input by creating an auditory category learning paradigm that intentionally violates some common simplifying assumptions of category learning tasks. Across five experiments and nearly 300 adult participants, we used training regimes previously shown to facilitate category learning, but here drew from a more complex and multidimensional category space with tens of thousands of unique exemplars. Learning was equivalently robust across training regimes that changed exemplar variability, altered the blocking of category exemplars, or provided explicit instructions of the category-diagnostic dimension. Each drove essentially equivalent accuracy measures of learning generalization following 40 min of training. These findings suggest that auditory category learning across complex input is not as susceptible to training regime manipulation as previously thought.
Collapse
Affiliation(s)
- Chisom O Obasih
- Department of Psychology, Carnegie Mellon University, United States of America; Neuroscience Institute, Carnegie Mellon University, United States of America; Center for the Neural Basis of Cognition, Carnegie Mellon University, United States of America.
| | - Sahil Luthra
- Department of Psychology, Carnegie Mellon University, United States of America; Neuroscience Institute, Carnegie Mellon University, United States of America; Center for the Neural Basis of Cognition, Carnegie Mellon University, United States of America
| | - Frederic Dick
- Experimental Psychology, University College London, United Kingdom; Birkbeck/UCL Centre for NeuroImaging, United Kingdom
| | - Lori L Holt
- Department of Psychology, Carnegie Mellon University, United States of America; Neuroscience Institute, Carnegie Mellon University, United States of America; Center for the Neural Basis of Cognition, Carnegie Mellon University, United States of America
| |
Collapse
|
10
|
Mesoscopic in vivo human T 2* dataset acquired using quantitative MRI at 7 Tesla. Neuroimage 2022; 264:119733. [PMID: 36375782 DOI: 10.1016/j.neuroimage.2022.119733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/15/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Mesoscopic (0.1-0.5 mm) interrogation of the living human brain is critical for advancing neuroscience and bridging the resolution gap with animal models. Despite the variety of MRI contrasts measured in recent years at the mesoscopic scale, in vivo quantitative imaging of T2* has not been performed. Here we provide a dataset containing empirical T2* measurements acquired at 0.35 × 0.35 × 0.35 mm3 voxel resolution using 7 Tesla MRI. To demonstrate unique features and high quality of this dataset, we generate flat map visualizations that reveal fine-scale cortical substructures such as layers and vessels, and we report quantitative depth-dependent T2* (as well as R2*) values in primary visual cortex and auditory cortex that are highly consistent across subjects. This dataset is freely available at https://doi.org/10.17605/OSF.IO/N5BJ7, and may prove useful for anatomical investigations of the human brain, as well as for improving our understanding of the basis of the T2*-weighted (f)MRI signal.
Collapse
|
11
|
Lage-Castellanos A, De Martino F, Ghose GM, Gulban OF, Moerel M. Selective attention sharpens population receptive fields in human auditory cortex. Cereb Cortex 2022; 33:5395-5408. [PMID: 36336333 PMCID: PMC10152083 DOI: 10.1093/cercor/bhac427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Selective attention enables the preferential processing of relevant stimulus aspects. Invasive animal studies have shown that attending a sound feature rapidly modifies neuronal tuning throughout the auditory cortex. Human neuroimaging studies have reported enhanced auditory cortical responses with selective attention. To date, it remains unclear how the results obtained with functional magnetic resonance imaging (fMRI) in humans relate to the electrophysiological findings in animal models. Here we aim to narrow the gap between animal and human research by combining a selective attention task similar in design to those used in animal electrophysiology with high spatial resolution ultra-high field fMRI at 7 Tesla. Specifically, human participants perform a detection task, whereas the probability of target occurrence varies with sound frequency. Contrary to previous fMRI studies, we show that selective attention resulted in population receptive field sharpening, and consequently reduced responses, at the attended sound frequencies. The difference between our results to those of previous fMRI studies supports the notion that the influence of selective attention on auditory cortex is diverse and may depend on context, stimulus, and task.
Collapse
Affiliation(s)
- Agustin Lage-Castellanos
- Department of Cognitive Neuroscience , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht University , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht Brain Imaging Center (MBIC) , 6200 MD, Maastricht , The Netherlands
- Department of NeuroInformatics, Cuban Neuroscience Center , Havana City 11600 , Cuba
| | - Federico De Martino
- Department of Cognitive Neuroscience , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht University , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht Brain Imaging Center (MBIC) , 6200 MD, Maastricht , The Netherlands
- Center for Magnetic Resonance Research , Department of Radiology, , Minneapolis, MN 55455 , United States
- University of Minnesota , Department of Radiology, , Minneapolis, MN 55455 , United States
| | - Geoffrey M Ghose
- Center for Magnetic Resonance Research , Department of Radiology, , Minneapolis, MN 55455 , United States
- University of Minnesota , Department of Radiology, , Minneapolis, MN 55455 , United States
| | | | - Michelle Moerel
- Department of Cognitive Neuroscience , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht University , Faculty of Psychology and Neuroscience, , 6200 MD, Maastricht , The Netherlands
- Maastricht Brain Imaging Center (MBIC) , 6200 MD, Maastricht , The Netherlands
- Maastricht Centre for Systems Biology, Maastricht University , 6200 MD, Maastricht , The Netherlands
| |
Collapse
|
12
|
Sereno MI, Sood MR, Huang RS. Topological Maps and Brain Computations From Low to High. Front Syst Neurosci 2022; 16:787737. [PMID: 35747394 PMCID: PMC9210993 DOI: 10.3389/fnsys.2022.787737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/29/2022] [Indexed: 01/02/2023] Open
Abstract
We first briefly summarize data from microelectrode studies on visual maps in non-human primates and other mammals, and characterize differences among the features of the approximately topological maps in the three main sensory modalities. We then explore the almost 50% of human neocortex that contains straightforward topological visual, auditory, and somatomotor maps by presenting a new parcellation as well as a movie atlas of cortical area maps on the FreeSurfer average surface, fsaverage. Third, we review data on moveable map phenomena as well as a recent study showing that cortical activity during sensorimotor actions may involve spatially locally coherent traveling wave and bump activity. Finally, by analogy with remapping phenomena and sensorimotor activity, we speculate briefly on the testable possibility that coherent localized spatial activity patterns might be able to ‘escape’ from topologically mapped cortex during ‘serial assembly of content’ operations such as scene and language comprehension, to form composite ‘molecular’ patterns that can move across some cortical areas and possibly return to topologically mapped cortex to generate motor output there.
Collapse
Affiliation(s)
- Martin I. Sereno
- Department of Psychology, San Diego State University, San Diego, CA, United States
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
- *Correspondence: Martin I. Sereno,
| | - Mariam Reeny Sood
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Ruey-Song Huang
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, Macao SAR, China
| |
Collapse
|
13
|
Kachlicka M, Laffere A, Dick F, Tierney A. Slow phase-locked modulations support selective attention to sound. Neuroimage 2022; 252:119024. [PMID: 35231629 PMCID: PMC9133470 DOI: 10.1016/j.neuroimage.2022.119024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 11/16/2022] Open
Abstract
To make sense of complex soundscapes, listeners must select and attend to task-relevant streams while ignoring uninformative sounds. One possible neural mechanism underlying this process is alignment of endogenous oscillations with the temporal structure of the target sound stream. Such a mechanism has been suggested to mediate attentional modulation of neural phase-locking to the rhythms of attended sounds. However, such modulations are compatible with an alternate framework, where attention acts as a filter that enhances exogenously-driven neural auditory responses. Here we attempted to test several predictions arising from the oscillatory account by playing two tone streams varying across conditions in tone duration and presentation rate; participants attended to one stream or listened passively. Attentional modulation of the evoked waveform was roughly sinusoidal and scaled with rate, while the passive response did not. However, there was only limited evidence for continuation of modulations through the silence between sequences. These results suggest that attentionally-driven changes in phase alignment reflect synchronization of slow endogenous activity with the temporal structure of attended stimuli.
Collapse
Affiliation(s)
- Magdalena Kachlicka
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Aeron Laffere
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England
| | - Fred Dick
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England; Division of Psychology & Language Sciences, UCL, Gower Street, London WC1E 6BT, England
| | - Adam Tierney
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, England.
| |
Collapse
|
14
|
Aye N, Lehmann N, Kaufmann J, Heinze HJ, Düzel E, Taubert M, Ziegler G. Test-retest reliability of multi-parametric maps (MPM) of brain microstructure. Neuroimage 2022; 256:119249. [PMID: 35487455 DOI: 10.1016/j.neuroimage.2022.119249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022] Open
Abstract
Multiparameter mapping (MPM) is a quantitative MRI protocol that is promising for studying microstructural brain changes in vivo with high specificity. Reliability values are an important prior knowledge for efficient study design and facilitating replicable findings in development, aging and neuroplasticity research. To explore longitudinal reliability of MPM we acquired the protocol in 31 healthy young subjects twice over a rescan interval of 4 weeks. We assessed the within-subject coefficient of variation (WCV), the between-subject coefficient of variation (BCV), and the intraclass correlation coefficient (ICC). Using these metrics, we investigated the reliability of (semi-) quantitative magnetization transfer saturation (MTsat), proton density (PD), transversal relaxation (R2*) and longitudinal relaxation (R1). To increase relevance for explorative studies in development and training-induced plasticity, we assess reliability both on local voxel- as well as ROI-level. Finally, we disentangle contributions and interplay of within- and between-subject variability to ICC and assess the optimal degree of spatial smoothing applied to the data. We reveal evidence that voxelwise ICC reliability of MPMs is moderate to good with median values in cortex (subcortical GM): MT: 0.789 (0.447) PD: 0.553 (0.264) R1: 0.555 (0.369) R2*: 0.624 (0.477). The Gaussian smoothing kernel of 2 to 4 mm FWHM resulted in optimal reproducibility. We discuss these findings in the context of longitudinal intervention studies and the application to research designs in neuroimaging field.
Collapse
Affiliation(s)
- Norman Aye
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany.
| | - Nico Lehmann
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; Leibniz-Institute for Neurobiology (LIN), Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, Bloomsbury, London, WC1N 3AZ United Kingdom
| | - Marco Taubert
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
15
|
Longo MR. Distortion of mental body representations. Trends Cogn Sci 2022; 26:241-254. [PMID: 34952785 DOI: 10.1016/j.tics.2021.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/07/2023]
Abstract
Our body is central to our sense of self, and distorted body representations are found in several serious medical conditions. This paper reviews evidence that distortions of body representations are also common in healthy individuals, and occur in domains including tactile spatial perception, proprioception, and the conscious body image. Across domains, there is a general tendency for body width to be overestimated compared to body length. Intriguingly, distortions in both eating disorders and chronic pain appear to be exaggerations of this baseline pattern of distortions, suggesting that these conditions may relate to dysfunction of mechanisms for body perception. Distortions of body representations provide a revealing window into basic aspects of self-perception.
Collapse
Affiliation(s)
- Matthew R Longo
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
16
|
Symons AE, Dick F, Tierney AT. Dimension-selective attention and dimensional salience modulate cortical tracking of acoustic dimensions. Neuroimage 2021; 244:118544. [PMID: 34492294 DOI: 10.1016/j.neuroimage.2021.118544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Some theories of auditory categorization suggest that auditory dimensions that are strongly diagnostic for particular categories - for instance voice onset time or fundamental frequency in the case of some spoken consonants - attract attention. However, prior cognitive neuroscience research on auditory selective attention has largely focused on attention to simple auditory objects or streams, and so little is known about the neural mechanisms that underpin dimension-selective attention, or how the relative salience of variations along these dimensions might modulate neural signatures of attention. Here we investigate whether dimensional salience and dimension-selective attention modulate the cortical tracking of acoustic dimensions. In two experiments, participants listened to tone sequences varying in pitch and spectral peak frequency; these two dimensions changed at different rates. Inter-trial phase coherence (ITPC) and amplitude of the EEG signal at the frequencies tagged to pitch and spectral changes provided a measure of cortical tracking of these dimensions. In Experiment 1, tone sequences varied in the size of the pitch intervals, while the size of spectral peak intervals remained constant. Cortical tracking of pitch changes was greater for sequences with larger compared to smaller pitch intervals, with no difference in cortical tracking of spectral peak changes. In Experiment 2, participants selectively attended to either pitch or spectral peak. Cortical tracking was stronger in response to the attended compared to unattended dimension for both pitch and spectral peak. These findings suggest that attention can enhance the cortical tracking of specific acoustic dimensions rather than simply enhancing tracking of the auditory object as a whole.
Collapse
Affiliation(s)
- Ashley E Symons
- Department of Psychological Sciences, Birkbeck College, University of London UK.
| | - Fred Dick
- Department of Psychological Sciences, Birkbeck College, University of London UK; Division of Psychology & Language Sciences, University College London UK
| | - Adam T Tierney
- Department of Psychological Sciences, Birkbeck College, University of London UK
| |
Collapse
|
17
|
Moerel M, Yacoub E, Gulban OF, Lage-Castellanos A, De Martino F. Using high spatial resolution fMRI to understand representation in the auditory network. Prog Neurobiol 2021; 207:101887. [PMID: 32745500 PMCID: PMC7854960 DOI: 10.1016/j.pneurobio.2020.101887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/27/2020] [Accepted: 07/15/2020] [Indexed: 12/23/2022]
Abstract
Following rapid methodological advances, ultra-high field (UHF) functional and anatomical magnetic resonance imaging (MRI) has been repeatedly and successfully used for the investigation of the human auditory system in recent years. Here, we review this work and argue that UHF MRI is uniquely suited to shed light on how sounds are represented throughout the network of auditory brain regions. That is, the provided gain in spatial resolution at UHF can be used to study the functional role of the small subcortical auditory processing stages and details of cortical processing. Further, by combining high spatial resolution with the versatility of MRI contrasts, UHF MRI has the potential to localize the primary auditory cortex in individual hemispheres. This is a prerequisite to study how sound representation in higher-level auditory cortex evolves from that in early (primary) auditory cortex. Finally, the access to independent signals across auditory cortical depths, as afforded by UHF, may reveal the computations that underlie the emergence of an abstract, categorical sound representation based on low-level acoustic feature processing. Efforts on these research topics are underway. Here we discuss promises as well as challenges that come with studying these research questions using UHF MRI, and provide a future outlook.
Collapse
Affiliation(s)
- Michelle Moerel
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands.
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA.
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA; Brain Innovation B.V., Maastricht, the Netherlands.
| | - Agustin Lage-Castellanos
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Department of NeuroInformatics, Cuban Center for Neuroscience, Cuba.
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
18
|
Hamilton LS, Oganian Y, Hall J, Chang EF. Parallel and distributed encoding of speech across human auditory cortex. Cell 2021; 184:4626-4639.e13. [PMID: 34411517 PMCID: PMC8456481 DOI: 10.1016/j.cell.2021.07.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/11/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022]
Abstract
Speech perception is thought to rely on a cortical feedforward serial transformation of acoustic into linguistic representations. Using intracranial recordings across the entire human auditory cortex, electrocortical stimulation, and surgical ablation, we show that cortical processing across areas is not consistent with a serial hierarchical organization. Instead, response latency and receptive field analyses demonstrate parallel and distinct information processing in the primary and nonprimary auditory cortices. This functional dissociation was also observed where stimulation of the primary auditory cortex evokes auditory hallucination but does not distort or interfere with speech perception. Opposite effects were observed during stimulation of nonprimary cortex in superior temporal gyrus. Ablation of the primary auditory cortex does not affect speech perception. These results establish a distributed functional organization of parallel information processing throughout the human auditory cortex and demonstrate an essential independent role for nonprimary auditory cortex in speech processing.
Collapse
Affiliation(s)
- Liberty S Hamilton
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Yulia Oganian
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Jeffery Hall
- Department of Neurology and Neurosurgery, McGill University Montreal Neurological Institute, Montreal, QC, H3A 2B4, Canada
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA.
| |
Collapse
|
19
|
Levy DF, Wilson SM. Categorical Encoding of Vowels in Primary Auditory Cortex. Cereb Cortex 2021; 30:618-627. [PMID: 31241149 DOI: 10.1093/cercor/bhz112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/05/2019] [Accepted: 05/02/2019] [Indexed: 11/14/2022] Open
Abstract
Speech perception involves mapping from a continuous and variable acoustic speech signal to discrete, linguistically meaningful units. However, it is unclear where in the auditory processing stream speech sound representations cease to be veridical (faithfully encoding precise acoustic properties) and become categorical (encoding sounds as linguistic categories). In this study, we used functional magnetic resonance imaging and multivariate pattern analysis to determine whether tonotopic primary auditory cortex (PAC), defined as tonotopic voxels falling within Heschl's gyrus, represents one class of speech sounds-vowels-veridically or categorically. For each of 15 participants, 4 individualized synthetic vowel stimuli were generated such that the vowels were equidistant in acoustic space, yet straddled a categorical boundary (with the first 2 vowels perceived as [i] and the last 2 perceived as [i]). Each participant's 4 vowels were then presented in a block design with an irrelevant but attention-demanding level change detection task. We found that in PAC bilaterally, neural discrimination between pairs of vowels that crossed the categorical boundary was more accurate than neural discrimination between equivalently spaced vowel pairs that fell within a category. These findings suggest that PAC does not represent vowel sounds veridically, but that encoding of vowels is shaped by linguistically relevant phonemic categories.
Collapse
Affiliation(s)
- Deborah F Levy
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
20
|
Corbin N, Callaghan MF. Imperfect spoiling in variable flip angle T 1 mapping at 7T: Quantifying and minimizing impact. Magn Reson Med 2021; 86:693-708. [PMID: 33645814 PMCID: PMC8436769 DOI: 10.1002/mrm.28720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023]
Abstract
Purpose The variable flip angle (VFA) approach to T1 mapping assumes perfectly spoiled transverse magnetisation at the end of each repetition time (TR). Despite radiofrequency (RF) and gradient spoiling, this condition is rarely met, leading to erroneous T1 estimates (T1app). Theoretical corrections can be applied but make assumptions about tissue properties, for example, a global T2 time. Here, we investigate the effect of imperfect spoiling at 7T and the interaction between the RF and gradient spoiling conditions, additionally accounting for diffusion. We provide guidance on the optimal approach to maximise the accuracy of the T1 estimate in the context of 3D multi‐echo acquisitions. Methods The impact of the spoiling regime was investigated through numerical simulations, phantom and invivo experiments. Results The predicted dependence of T1app on tissue properties, system settings, and spoiling conditions was observed in both phantom and in vivo experiments. Diffusion effects modulated the dependence of T1app on both B1+ efficiency and T2 times. Conclusion Error in T1app can be minimized by using an RF spoiling increment and gradient spoiler moment combination that minimizes T2‐dependence and safeguards image quality. Although the diffusion effect was comparatively small at 7T, correction factors accounting for this effect are recommended. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Nadège Corbin
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
21
|
|
22
|
Laffere A, Dick F, Tierney A. Effects of auditory selective attention on neural phase: individual differences and short-term training. Neuroimage 2020; 213:116717. [PMID: 32165265 DOI: 10.1016/j.neuroimage.2020.116717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
How does the brain follow a sound that is mixed with others in a noisy environment? One possible strategy is to allocate attention to task-relevant time intervals. Prior work has linked auditory selective attention to alignment of neural modulations with stimulus temporal structure. However, since this prior research used relatively easy tasks and focused on analysis of main effects of attention across participants, relatively little is known about the neural foundations of individual differences in auditory selective attention. Here we investigated individual differences in auditory selective attention by asking participants to perform a 1-back task on a target auditory stream while ignoring a distractor auditory stream presented 180° out of phase. Neural entrainment to the attended auditory stream was strongly linked to individual differences in task performance. Some variability in performance was accounted for by degree of musical training, suggesting a link between long-term auditory experience and auditory selective attention. To investigate whether short-term improvements in auditory selective attention are possible, we gave participants 2 h of auditory selective attention training and found improvements in both task performance and enhancements of the effects of attention on neural phase angle. Our results suggest that although there exist large individual differences in auditory selective attention and attentional modulation of neural phase angle, this skill improves after a small amount of targeted training.
Collapse
Affiliation(s)
- Aeron Laffere
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
| | - Fred Dick
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK; Division of Psychology & Language Sciences, UCL, Gower Street, London, WC1E 6BT, UK
| | - Adam Tierney
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
23
|
Besle J, Mougin O, Sánchez-Panchuelo RM, Lanting C, Gowland P, Bowtell R, Francis S, Krumbholz K. Is Human Auditory Cortex Organization Compatible With the Monkey Model? Contrary Evidence From Ultra-High-Field Functional and Structural MRI. Cereb Cortex 2020; 29:410-428. [PMID: 30357410 PMCID: PMC6294415 DOI: 10.1093/cercor/bhy267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 11/14/2022] Open
Abstract
It is commonly assumed that the human auditory cortex is organized similarly to that of macaque monkeys, where the primary region, or "core," is elongated parallel to the tonotopic axis (main direction of tonotopic gradients), and subdivided across this axis into up to 3 distinct areas (A1, R, and RT), with separate, mirror-symmetric tonotopic gradients. This assumption, however, has not been tested until now. Here, we used high-resolution ultra-high-field (7 T) magnetic resonance imaging (MRI) to delineate the human core and map tonotopy in 24 individual hemispheres. In each hemisphere, we assessed tonotopic gradients using principled, quantitative analysis methods, and delineated the core using 2 independent (functional and structural) MRI criteria. Our results indicate that, contrary to macaques, the human core is elongated perpendicular rather than parallel to the main tonotopic axis, and that this axis contains no more than 2 mirror-reversed gradients within the core region. Previously suggested homologies between these gradients and areas A1 and R in macaques were not supported. Our findings suggest fundamental differences in auditory cortex organization between humans and macaques.
Collapse
Affiliation(s)
- Julien Besle
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, University Park, Nottingham, UK.,Department of Psychology, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Olivier Mougin
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Rosa-María Sánchez-Panchuelo
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Cornelis Lanting
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, University Park, Nottingham, UK.,Department of Otorhinolaryngology, Radboud University Medical Center, University of Nijmegen, Nijmegen, Netherlands
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Susan Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Katrin Krumbholz
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
24
|
Tabelow K, Balteau E, Ashburner J, Callaghan MF, Draganski B, Helms G, Kherif F, Leutritz T, Lutti A, Phillips C, Reimer E, Ruthotto L, Seif M, Weiskopf N, Ziegler G, Mohammadi S. hMRI - A toolbox for quantitative MRI in neuroscience and clinical research. Neuroimage 2019; 194:191-210. [PMID: 30677501 PMCID: PMC6547054 DOI: 10.1016/j.neuroimage.2019.01.029] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroscience and clinical researchers are increasingly interested in quantitative magnetic resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-to-use tool available on GitHub, for qMRI data handling and processing, presented together with a tutorial and example dataset. This toolbox allows the estimation of high-quality multi-parameter qMRI maps (longitudinal and effective transverse relaxation rates R1 and R2⋆, proton density PD and magnetisation transfer MT saturation) that can be used for quantitative parameter analysis and accurate delineation of subcortical brain structures. The qMRI maps generated by the toolbox are key input parameters for biophysical models designed to estimate tissue microstructure properties such as the MR g-ratio and to derive standard and novel MRI biomarkers. Thus, the current version of the toolbox is a first step towards in vivo histology using MRI (hMRI) and is being extended further in this direction. Embedded in the Statistical Parametric Mapping (SPM) framework, it benefits from the extensive range of established SPM tools for high-accuracy spatial registration and statistical inferences and can be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps. From a user's perspective, the hMRI-toolbox is an efficient, robust and simple framework for investigating qMRI data in neuroscience and clinical research.
Collapse
Affiliation(s)
| | | | | | | | - Bogdan Draganski
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Switzerland; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gunther Helms
- Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Switzerland
| | | | - Enrico Reimer
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gabriel Ziegler
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany
| | | |
Collapse
|
25
|
Holt LL, Tierney AT, Guerra G, Laffere A, Dick F. Dimension-selective attention as a possible driver of dynamic, context-dependent re-weighting in speech processing. Hear Res 2018; 366:50-64. [PMID: 30131109 PMCID: PMC6107307 DOI: 10.1016/j.heares.2018.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/10/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
Abstract
The contribution of acoustic dimensions to an auditory percept is dynamically adjusted and reweighted based on prior experience about how informative these dimensions are across the long-term and short-term environment. This is especially evident in speech perception, where listeners differentially weight information across multiple acoustic dimensions, and use this information selectively to update expectations about future sounds. The dynamic and selective adjustment of how acoustic input dimensions contribute to perception has made it tempting to conceive of this as a form of non-spatial auditory selective attention. Here, we review several human speech perception phenomena that might be consistent with auditory selective attention although, as of yet, the literature does not definitively support a mechanistic tie. We relate these human perceptual phenomena to illustrative nonhuman animal neurobiological findings that offer informative guideposts in how to test mechanistic connections. We next present a novel empirical approach that can serve as a methodological bridge from human research to animal neurobiological studies. Finally, we describe four preliminary results that demonstrate its utility in advancing understanding of human non-spatial dimension-based auditory selective attention.
Collapse
Affiliation(s)
- Lori L Holt
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Adam T Tierney
- Department of Psychological Sciences, Birkbeck College, University of London, London, WC1E 7HX, UK; Centre for Brain and Cognitive Development, Birkbeck College, London, WC1E 7HX, UK
| | - Giada Guerra
- Department of Psychological Sciences, Birkbeck College, University of London, London, WC1E 7HX, UK; Centre for Brain and Cognitive Development, Birkbeck College, London, WC1E 7HX, UK
| | - Aeron Laffere
- Department of Psychological Sciences, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Frederic Dick
- Department of Psychological Sciences, Birkbeck College, University of London, London, WC1E 7HX, UK; Centre for Brain and Cognitive Development, Birkbeck College, London, WC1E 7HX, UK; Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| |
Collapse
|
26
|
Fisher JM, Dick FK, Levy DF, Wilson SM. Neural representation of vowel formants in tonotopic auditory cortex. Neuroimage 2018; 178:574-582. [PMID: 29860083 DOI: 10.1016/j.neuroimage.2018.05.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 11/25/2022] Open
Abstract
Speech sounds are encoded by distributed patterns of activity in bilateral superior temporal cortex. However, it is unclear whether speech sounds are topographically represented in cortex, or which acoustic or phonetic dimensions might be spatially mapped. Here, using functional MRI, we investigated the potential spatial representation of vowels, which are largely distinguished from one another by the frequencies of their first and second formants, i.e. peaks in their frequency spectra. This allowed us to generate clear hypotheses about the representation of specific vowels in tonotopic regions of auditory cortex. We scanned participants as they listened to multiple natural tokens of the vowels [ɑ] and [i], which we selected because their first and second formants overlap minimally. Formant-based regions of interest were defined for each vowel based on spectral analysis of the vowel stimuli and independently acquired tonotopic maps for each participant. We found that perception of [ɑ] and [i] yielded differential activation of tonotopic regions corresponding to formants of [ɑ] and [i], such that each vowel was associated with increased signal in tonotopic regions corresponding to its own formants. This pattern was observed in Heschl's gyrus and the superior temporal gyrus, in both hemispheres, and for both the first and second formants. Using linear discriminant analysis of mean signal change in formant-based regions of interest, the identity of untrained vowels was predicted with ∼73% accuracy. Our findings show that cortical encoding of vowels is scaffolded on tonotopy, a fundamental organizing principle of auditory cortex that is not language-specific.
Collapse
Affiliation(s)
- Julia M Fisher
- Department of Linguistics, University of Arizona, Tucson, AZ, USA; Statistics Consulting Laboratory, BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Frederic K Dick
- Department of Psychological Sciences, Birkbeck College, University of London, UK; Birkbeck-UCL Center for Neuroimaging, London, UK; Department of Experimental Psychology, University College London, UK
| | - Deborah F Levy
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|