1
|
Amakhin DV, Sinyak DS, Soboleva EB, Zaitsev AV. HCN channels promote Na/K-ATPase activity during slow afterhyperpolarization after seizure-like events in vitro. J Physiol 2025; 603:1197-1223. [PMID: 39918972 DOI: 10.1113/jp286965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are strongly involved in the regulation of neuronal excitability, with their precise role being determined by their subcellular localization and interaction with other ion channels and transporters. Their role in causing epileptic seizures is not fully understood. Using whole-cell patch-clamp recordings of rat brain slices, we show that HCN channels constitute a substantial fraction of the membrane conductance of deep entorhinal principal neurons. Using the 4-aminopyridine model of epileptic seizures in vitro, we show that HCN channel blockade with ZD-7288 increases the frequency of seizure-like events (SLEs) and alters the time course of afterhyperpolarization after SLEs (post-SLE AHP), promoting its faster onset and making it more transient. Simultaneous whole-cell patch-clamp and K+ ion-selective electrode recordings revealed that the time course of changes in neuronal membrane potential and extracellular K+ concentration after SLEs in the presence of ZD-7288 differed from that in the control, which can be explained by altered Na/K-ATPase [sodium-potassium adenosine triphosphatase (sodium-potassium pump)] activity after SLEs. To confirm this hypothesis, we demonstrated the ouabain sensitivity of post-SLE AHP and showed that loading neurons with high intracellular Na+ concentration prevented the effect of HCN channel blockade on post-SLE AHP. Taken together, the results obtained suggest that during post-SLE AHP, the influx of Na+ through HCN channels helps to maintain Na/K-ATPase hyperactivity, resulting in the longer pauses between SLEs. Mathematical modelling confirmed the feasibility of the proposed mechanism. Such an interplay between Na/K-ATPase and HCN channels may be crucial for the regulation of seizure termination in epilepsy. KEY POINTS: HCN channels constitute a significant fraction of the resting membrane conductance of deep entorhinal principal neurons. HCN channels modulate the seizure-like events (SLEs) in the entorhinal cortex. The blockade of HCN channels increases the frequency of SLEs and reduces the duration of the afterhyperpolarization that follows them. The results suggest that HCN channels affect intracellular sodium ion concentration dynamics, prolonging the activity of the Na/K-ATPase [sodium-potassium adenosine triphosphatase (sodium-potassium) pump] after SLEs, which in turn results in longer pauses between them.
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Denis S Sinyak
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Elena B Soboleva
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| |
Collapse
|
2
|
Cohen JD, You D, Sharma AK, Takai T, Hara H, Sales VT, Yukawa T, Cai B. In vitro human ion channel assays predictive of drug-induced seizure. Toxicol Sci 2025; 203:253-268. [PMID: 39661496 PMCID: PMC11775423 DOI: 10.1093/toxsci/kfae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Seizure is among the most severe FDA black box warnings of neurotoxicity reported on drug labels. Gaining a better mechanistic understanding of off-targets causative of seizure will improve the identification of potential seizure risks preclinically. In the present study, we evaluated an in vitro panel of 9 investigational (Cav2.1, Cav3.2, GlyRA1, AMPA, HCN1, Kv1.1, Kv7.2/7.3, NaV1.1, Nav1.2) and 2 standard (GABA-A, NMDA) ion channel targets with strong correlative links to seizure, using automated electrophysiology. Each target was assessed with a library of 34 preclinical compounds and 10 approved drugs with known effects of convulsion in vivo and/or in patients. Cav2.1 had the highest frequency of positive hits, 20 compounds with an EC30 or IC30 ≤ 30 µM, and the highest importance score relative to the 11 targets. An additional 35 approved drugs, with categorized low to frequent seizure risk in patients, were evaluated in the Cav2.1 assay. The Cav2.1 assay predicted preclinical compounds to cause convulsion in nonclinical species with a sensitivity of 52% and specificity of 78%, and approved drugs to cause seizure in nonclinical species or in patients with a sensitivity of 48% or 54% and specificity of 71% or 78%, respectively. The integrated panel of 11 ion channel targets predicted preclinical compounds to cause convulsion in nonclinical species with a sensitivity of 68%, specificity of 56%, and accuracy of 65%. This study highlights the utility of expanding the in vitro panel of targets evaluated for seizurogenic activity, in order to reduce compound attrition early on in drug discovery.
Collapse
Affiliation(s)
- Jennifer D Cohen
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, San Diego, CA 92121-1964, United States
| | - Dahea You
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, San Diego, CA 92121-1964, United States
| | - Ashok K Sharma
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, San Diego, CA 92121-1964, United States
| | - Takafumi Takai
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, San Diego, CA 92121-1964, United States
| | - Hideto Hara
- Drug Safety Research & Evaluation, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Vicencia T Sales
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, Cambridge, MA 02139, United States
| | - Tomoya Yukawa
- Drug Safety Research & Evaluation, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Beibei Cai
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc, San Diego, CA 92121-1964, United States
| |
Collapse
|
3
|
Bleakley LE, Reid CA. HCN1 epilepsy: From genetics and mechanisms to precision therapies. J Neurochem 2024; 168:3891-3910. [PMID: 37565989 DOI: 10.1111/jnc.15928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023]
Abstract
Pathogenic variation in HCN1 is now an established cause of epilepsy and intellectual disability. Variation in HCN1 causes a spectrum of disease with a genotype-phenotype relationship emerging. De novo pathogenic variants that occur in the transmembrane domains of the channel typically cause a cation 'leak' that associates with severe developmental and epileptic encephalopathy (DEE). Genotype-phenotype associations for variants that fall outside of the transmembrane domains are less well established but do include milder forms of epilepsy that can be either de novo or inherited. HCN1 DEE mouse models have been generated which recapitulate the seizures and learning difficulties seen in human patients. These mice have also acted as powerful preclinical models which share pharmacoresponsiveness with human HCN1 DEE patients. Data from these mouse models support the conclusion that anti-seizure medications with sodium channel block as their primary mechanism of action should be used with caution in HCN1 DEE. Other comorbidities of HCN1 DEE including retinal dysfunction have also been modelled in HCN1 DEE mice, suggesting HCN1 variants can cause a dramatically reduced sensitivity to light with limited ability to process temporal information. Our understanding of the genetics and pathophysiological mechanisms underlying HCN1 epilepsy has progressed significantly and is already influencing therapy. However, more research effort is needed to fully understand the natural histories of HCN1 epilepsies and to develop precision therapeutic approaches.
Collapse
Affiliation(s)
- Lauren E Bleakley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Buss EW, Lofaro OM, Barnett A, Leroy F, Santoro B, Siegelbaum SA, Bock T. HCN1 hyperpolarization-activated cyclic nucleotide-gated channels enhance evoked GABA release from parvalbumin-positive interneurons. Proc Natl Acad Sci U S A 2024; 121:e2319246121. [PMID: 39378096 PMCID: PMC11494348 DOI: 10.1073/pnas.2319246121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels generate the cationic Ih current in neurons and regulate the excitability of neuronal networks. The function of HCN channels depends, in part, on their subcellular localization. Of the four HCN isoforms (HCN1-4), HCN1 is strongly expressed in the dendrites of pyramidal neurons (PNs) in hippocampal area CA1 but also in presynaptic terminals of parvalbumin-positive interneurons (PV+ INs), which provide strong inhibitory control over hippocampal activity. Yet, little is known about how HCN1 channels in these cells regulate the evoked release of the inhibitory transmitter GABA from their axon terminals. Here, we used genetic, optogenetic, electrophysiological, and imaging techniques to investigate how the electrophysiological properties of PV+ INs are regulated by HCN1, including how HCN1 activity at presynaptic terminals regulates the release of GABA onto PNs in CA1. We found that application of HCN1 pharmacological blockers reduced the amplitude of the inhibitory postsynaptic potential recorded from CA1 PNs in response to selective optogenetic stimulation of PV+ INs. Homozygous HCN1 knockout mice also show reduced IPSCs in postsynaptic cells. Finally, two-photon imaging using genetically encoded fluorescent calcium indicators revealed that HCN1 blockers reduced the probability that an extracellular electrical stimulating pulse evoked a Ca2+ response in individual PV+ IN presynaptic boutons. Taken together, our results show that HCN1 channels in the axon terminals of PV+ interneurons facilitate GABAergic transmission in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Eric W. Buss
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Olivia M. Lofaro
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Anastasia Barnett
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Felix Leroy
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Bina Santoro
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Steven A. Siegelbaum
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Tobias Bock
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
- Department of Systems Neurophysiology, Institute for Zoology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen52074, Germany
| |
Collapse
|
5
|
Jean Jacques A, D’Avanzo N. Inhibition of HCN1 currents by norquetiapine, an active metabolite of the atypical anti-psychotic drug quetiapine. Front Pharmacol 2024; 15:1445509. [PMID: 39434909 PMCID: PMC11491390 DOI: 10.3389/fphar.2024.1445509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Quetiapine is a second-generation atypical antipsychotic drug that has been commonly prescribed for the treatment of schizophrenia, major depressive disorder (depression), and other psychological disorders. Targeted inhibition of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels, which generate Ih, may provide effective resistance against schizophrenia and depression. We investigated if HCN channels could contribute to the therapeutic effect of quetiapine, and its major active metabolite norquetiapine. Two-electrode voltage clamp recordings were used to assess the effects of quetiapine and its active metabolites 7-hydroxyquetiapine and norquetiapine on currents from HCN1 channels expressed in Xenopus laevis oocytes. Norquetiapine, but not quetiapine nor 7-hydroxyquetiapine, has an inhibitory effect on HCN1 channels. Norquetiapine selectively inhibited HCN1 currents by shifting the voltage-dependence of activation to more hyperpolarized potentials in a concentration-dependent manner with an IC50 of 13.9 ± 0.8 μM for HCN1 and slowing channel opening, without changing the kinetics of closing. Inhibition by norquetiapine primarily occurs from in the closed state. Norquetiapine inhibition is not sensitive to the external potassium concentration, and therefore, likely does not block the pore. Norquetiapine inhibition also does not dependent on the cyclic-nucleotide binding domain. Norquetiapine also inhibited HCN4 channels with reduced efficacy than HCN1 and had no effect on HCN2 channels. Therefore, HCN channels are key targets of norquetiapine, the primary active metabolite of quetiapine. These data help to explain the therapeutic mechanisms by which quetiapine aids in the treatment of anxiety, major depressive disorder, bipolar disorder, and schizophrenia, and may represent a novel structure for future drug design of HCN inhibitors.
Collapse
Affiliation(s)
| | - Nazzareno D’Avanzo
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Wang Y, Yang H, Li N, Wang L, Guo C, Ma W, Liu S, Peng C, Chen J, Song H, Chen H, Ma X, Yi J, Lian J, Kong W, Dong J, Tu X, Shah M, Tian X, Huang Z. A Novel Ubiquitin Ligase Adaptor PTPRN Suppresses Seizure Susceptibility through Endocytosis of Na V1.2 Sodium Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400560. [PMID: 38874331 PMCID: PMC11304301 DOI: 10.1002/advs.202400560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Intrinsic plasticity, a fundamental process enabling neurons to modify their intrinsic properties, plays a crucial role in shaping neuronal input-output function and is implicated in various neurological and psychiatric disorders. Despite its importance, the underlying molecular mechanisms of intrinsic plasticity remain poorly understood. In this study, a new ubiquitin ligase adaptor, protein tyrosine phosphatase receptor type N (PTPRN), is identified as a regulator of intrinsic neuronal excitability in the context of temporal lobe epilepsy. PTPRN recruits the NEDD4 Like E3 Ubiquitin Protein Ligase (NEDD4L) to NaV1.2 sodium channels, facilitating NEDD4L-mediated ubiquitination, and endocytosis of NaV1.2. Knockout of PTPRN in hippocampal granule cells leads to augmented NaV1.2-mediated sodium currents and higher intrinsic excitability, resulting in increased seizure susceptibility in transgenic mice. Conversely, adeno-associated virus-mediated delivery of PTPRN in the dentate gyrus region decreases intrinsic excitability and reduces seizure susceptibility. Moreover, the present findings indicate that PTPRN exerts a selective modulation effect on voltage-gated sodium channels. Collectively, PTPRN plays a significant role in regulating intrinsic excitability and seizure susceptibility, suggesting a potential strategy for precise modulation of NaV1.2 channels' function.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Hui Yang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Na Li
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Lili Wang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Chang Guo
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Weining Ma
- Department of NeurologyShengjing Hospital Affiliated to China Medical UniversityShenyang110022China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Chao Peng
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jiexin Chen
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Huifang Song
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Hedan Chen
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jingyun Yi
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jingjing Lian
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Weikaixin Kong
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jie Dong
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xinyu Tu
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Mala Shah
- UCL School of PharmacyUniversity College LondonLondonWC1N 1AXUK
| | - Xin Tian
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400016China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| |
Collapse
|
7
|
Zhao K, Li Y, Lai H, Niu R, Li H, He S, Su Z, Gui Y, Ren L, Yang X, Zhou L. Alterations in HCN1 expression and distribution during epileptogenesis in rats. Epilepsy Res 2024; 202:107355. [PMID: 38555654 DOI: 10.1016/j.eplepsyres.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND The hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN1) is predominantly located in key regions associated with epilepsy, such as the neocortex and hippocampus. Under normal physiological conditions, HCN1 plays a crucial role in the excitatory and inhibitory regulation of neuronal networks. In temporal lobe epilepsy, the expression of HCN1 is decreased in the hippocampi of both animal models and patients. However, whether HCN1 expression changes during epileptogenesis preceding spontaneous seizures remains unclear. OBJECTIVE The aim of this study was to determine whether the expression of HCN1 is altered during the epileptic prodromal phase, thereby providing evidence for its role in epileptogenesis. METHODS We utilized a cobalt wire-induced rat epilepsy model to observe changes in HCN1 during epileptogenesis and epilepsy. Additionally, we also compared HCN1 alterations in epileptogenic tissues between cobalt wire- and pilocarpine-induced epilepsy rat models. Long-term video EEG recordings were used to confirm seizures development. Transcriptional changes, translation, and distribution of HCN1 were assessed using high-throughput transcriptome sequencing, total protein extraction, membrane and cytoplasmic protein fractionation, western blotting, immunohistochemistry, and immunofluorescence techniques. RESULTS In the cobalt wire-induced rat epilepsy model during the epileptogenesis phase, total HCN1 mRNA and protein levels were downregulated. Specifically, the membrane expression of HCN1 was decreased, whereas cytoplasmic HCN1 expression showed no significant change. The distribution of HCN1 in the distal dendrites of neurons decreased. During the epilepsy period, similar HCN1 alterations were observed in the neocortex of rats with cobalt wire-induced epilepsy and hippocampus of rats with lithium pilocarpine-induced epilepsy, including downregulation of mRNA levels, decreased total protein expression, decreased membrane expression, and decreased distal dendrite expression. CONCLUSIONS Alterations in HCN1 expression and distribution are involved in epileptogenesis beyond their association with seizure occurrence. Similarities in HCN1 alterations observed in epileptogenesis-related tissues from different models suggest a shared pathophysiological pathway in epileptogenesis involving HCN1 dysregulation. Therefore, the upregulation of HCN1 expression in neurons, maintenance of the HCN1 membrane, and distal dendrite distribution in neurons may represent promising disease-modifying strategies in epilepsy.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Guangzhou National Laboratory, Guangzhou, China; Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | | | - Ruili Niu
- Guangzhou National Laboratory, Guangzhou, China
| | - Huifeng Li
- Guangzhou National Laboratory, Guangzhou, China
| | - Shipei He
- Guangzhou National Laboratory, Guangzhou, China
| | - Zhengwei Su
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yue Gui
- Guangzhou National Laboratory, Guangzhou, China
| | - Lijie Ren
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| | | | - Liemin Zhou
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
8
|
Houdayer C, Phillips AM, Chabbert M, Bourreau J, Maroofian R, Houlden H, Richards K, Saadi NW, Dad'ová E, Van Bogaert P, Rupin M, Keren B, Charles P, Smol T, Riquet A, Pais L, O'Donnell-Luria A, VanNoy GE, Bayat A, Møller RS, Olofsson K, Abou Jamra R, Syrbe S, Dasouki M, Seaver LH, Sullivan JA, Shashi V, Alkuraya FS, Poss AF, Spence JE, Schnur RE, Forster IC, Mckenzie CE, Simons C, Wang M, Snell P, Kothur K, Buckley M, Roscioli T, Elserafy N, Dauriat B, Procaccio V, Henrion D, Lenaers G, Colin E, Verbeek NE, Van Gassen KL, Legendre C, Bonneau D, Reid CA, Howell KB, Ziegler A, Legros C. Mono and biallelic variants in HCN2 cause severe neurodevelopmental disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.19.24303984. [PMID: 38562733 PMCID: PMC10984036 DOI: 10.1101/2024.03.19.24303984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Hyperpolarization activated Cyclic Nucleotide (HCN) gated channels are crucial for various neurophysiological functions, including learning and sensory functions, and their dysfunction are responsible for brain disorders, such as epilepsy. To date, HCN2 variants have only been associated with mild epilepsy and recently, one monoallelic missense variant has been linked to developmental and epileptic encephalopathy. Here, we expand the phenotypic spectrum of HCN2- related disorders by describing twenty-one additional individuals from fifteen unrelated families carrying HCN2 variants. Seventeen individuals had developmental delay/intellectual disability (DD/ID), two had borderline DD/ID, and one had borderline DD. Ten individuals had epilepsy with DD/ID, with median age of onset of 10 months, and one had epilepsy with normal development. Molecular diagnosis identified thirteen different pathogenic HCN2 variants, including eleven missense variants affecting highly conserved amino acids, one frameshift variant, and one in-frame deletion. Seven variants were monoallelic of which five occurred de novo, one was not maternally inherited, one was inherited from a father with mild learning disabilities, and one was of unknown inheritance. The remaining six variants were biallelic, with four homozygous and two compound heterozygous variants. Functional studies using two-electrode voltage-clamp recordings in Xenopus laevis oocytes were performed on three monoallelic variants, p.(Arg324His), p.(Ala363Val), and p.(Met374Leu), and three biallelic variants, p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp). The p.(Arg324His) variant induced a strong increase of HCN2 conductance, while p.(Ala363Val) and p.(Met374Leu) displayed dominant negative effects, leading to a partial loss of HCN2 channel function. By confocal imaging, we found that the p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp) pathogenic variants impaired membrane trafficking, resulting in a complete loss of HCN2 elicited currents in Xenopus oocytes. Structural 3D-analysis in depolarized and hyperpolarized states of HCN2 channels, revealed that the pathogenic variants p.(His205Gln), p.(Ser409Leu), p.(Arg324Cys), p.(Asn369Ser) and p.(Gly460Asp) modify molecular interactions altering HCN2 function. Taken together, our data broadens the clinical spectrum associated with HCN2 variants, and disclose that HCN2 is involved in developmental encephalopathy with or without epilepsy.
Collapse
|
9
|
Lai S, Zhang L, Tu X, Ma X, Song Y, Cao K, Li M, Meng J, Shi Y, Wu Q, Yang C, Lan Z, Lau CG, Shi J, Ma W, Li S, Xue YX, Huang Z. Termination of convulsion seizures by destabilizing and perturbing seizure memory engrams. SCIENCE ADVANCES 2024; 10:eadk9484. [PMID: 38507477 PMCID: PMC10954199 DOI: 10.1126/sciadv.adk9484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Epileptogenesis, arising from alterations in synaptic strength, shares mechanistic and phenotypic parallels with memory formation. However, direct evidence supporting the existence of seizure memory remains scarce. Leveraging a conditioned seizure memory (CSM) paradigm, we found that CSM enabled the environmental cue to trigger seizure repetitively, and activating cue-responding engram cells could generate CSM artificially. Moreover, cue exposure initiated an analogous process of memory reconsolidation driven by mammalian target of rapamycin-brain-derived neurotrophic factor signaling. Pharmacological targeting of the mammalian target of rapamycin pathway within a limited time window reduced seizures in animals and interictal epileptiform discharges in patients with refractory seizures. Our findings reveal a causal link between seizure memory engrams and seizures, which leads us to a deeper understanding of epileptogenesis and points to a promising direction for epilepsy treatment.
Collapse
Affiliation(s)
- Shirong Lai
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
- School of Health Management, Xihua University, Chengdu 610039, China
| | - Libo Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Xinyu Tu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yujing Song
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Kexin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Miaomiao Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jihong Meng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Yiqiang Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qing Wu
- School of Health Management, Xihua University, Chengdu 610039, China
| | - Chen Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zifan Lan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | | | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Weining Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Shaoyi Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Harde E, Hierl M, Weber M, Waiz D, Wyler R, Wach JY, Haab R, Gundlfinger A, He W, Schnider P, Paina M, Rolland JF, Greiter-Wilke A, Gasser R, Reutlinger M, Dupont A, Roberts S, O'Connor EC, Bartels B, Hall BJ. Selective and brain-penetrant HCN1 inhibitors reveal links between synaptic integration, cortical function, and working memory. Cell Chem Biol 2024; 31:577-592.e23. [PMID: 38042151 DOI: 10.1016/j.chembiol.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/04/2023]
Abstract
Hyperpolarization-activated and cyclic-nucleotide-gated 1 (HCN1) ion channels are proposed to be critical for cognitive function through regulation of synaptic integration. However, resolving the precise role of HCN1 in neurophysiology and exploiting its therapeutic potential has been hampered by minimally selective antagonists with poor potency and limited in vivo efficiency. Using automated electrophysiology in a small-molecule library screen and chemical optimization, we identified a primary carboxamide series of potent and selective HCN1 inhibitors with a distinct mode of action. In cognition-relevant brain circuits, selective inhibition of native HCN1 produced on-target effects, including enhanced excitatory postsynaptic potential summation, while administration of a selective HCN1 inhibitor to rats recovered decrement working memory. Unlike prior non-selective HCN antagonists, selective HCN1 inhibition did not alter cardiac physiology in human atrial cardiomyocytes or in rats. Collectively, selective HCN1 inhibitors described herein unmask HCN1 as a potential target for the treatment of cognitive dysfunction in brain disorders.
Collapse
Affiliation(s)
- Eva Harde
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Markus Hierl
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Michael Weber
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - David Waiz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Roger Wyler
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jean-Yves Wach
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Rachel Haab
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anja Gundlfinger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Weiping He
- WuXi AppTec (Wuhan) Co., Ltd, 666 Gaoxin Road, Wuhan East Lake High-Tech Development Zone, Wuhan, Huibei, China
| | - Patrick Schnider
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | - Andrea Greiter-Wilke
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Rodolfo Gasser
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Michael Reutlinger
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Amanda Dupont
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sonia Roberts
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eoin C O'Connor
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Björn Bartels
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Benjamin J Hall
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
11
|
Kim D, Roh H, Lee HM, Kim SJ, Im M. Localization of hyperpolarization-activated cyclic nucleotide-gated channels in the vertebrate retinas across species and their physiological roles. Front Neuroanat 2024; 18:1385932. [PMID: 38562955 PMCID: PMC10982330 DOI: 10.3389/fnana.2024.1385932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Transmembrane proteins known as hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control the movement of Na+ and K+ ions across cellular membranes. HCN channels are known to be involved in crucial physiological functions in regulating neuronal excitability and rhythmicity, and pacemaker activity in the heart. Although HCN channels have been relatively well investigated in the brain, their distribution and function in the retina have received less attention, remaining their physiological roles to be comprehensively understood. Also, because recent studies reported HCN channels have been somewhat linked with the dysfunction of photoreceptors which are affected by retinal diseases, investigating HCN channels in the retina may offer valuable insights into disease mechanisms and potentially contribute to identifying novel therapeutic targets for retinal degenerative disorders. This paper endeavors to summarize the existing literature on the distribution and function of HCN channels reported in the vertebrate retinas of various species and discuss the potential implications for the treatment of retinal diseases. Then, we recapitulate current knowledge regarding the function and regulation of HCN channels, as well as their relevance to various neurological disorders.
Collapse
Affiliation(s)
- Daniel Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University (SNU), Seoul, Republic of Korea
| | - Hyeonhee Roh
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Hyung-Min Lee
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Sang Jeong Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University (SNU), Seoul, Republic of Korea
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Tiryaki ES, Arslan G, Günaydın C, Ayyıldız M, Ağar E. The role of HCN channels on the effects of T-type calcium channels and GABA A receptors in the absence epilepsy model of WAG/Rij rats. Pflugers Arch 2024; 476:337-350. [PMID: 38159130 DOI: 10.1007/s00424-023-02900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
In this study we used ivabradine (IVA), a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, to identify its effect on spike-wave discharges (SWDs); and aimed to determine the role of IVA on the effects of T-type calcium channel blocker NNC 55-0396, GABAA receptor agonist muscimol and antagonist bicuculline in male WAG/Rij rats. After tripolar electrodes for electrocorticogram (ECoG) recordings were placed on the WAG/Rij rats' skulls, 5, 10, and 20 mg/kg IVA were intraperitoneally administered for 7 consecutive days and ECoG recordings were obtained on days 0th, 3rd, 6th, and 7th for three hours before and after injections. While acute injection of 5, 10, and 20 mg/kg IVA did not affect the total number and the mean duration of SWDs, subacute administration (7 days) of IVA decreased the SWDs parameters 24 hours after the 7th injection. Interestingly, when IVA was administered again 24 hours after the 6th IVA injection, it increased the SWDs parameters. Western-blot analyses showed that HCN1 and HCN2 expressions decreased and HCN4 increased in the 5-month-old WAG/Rij rats compared to the 1-month-old WAG/Rij and 5-month-old native Wistar rats, while subacute IVA administration increased the levels of HCN1 and HCN2 channels, except HCN4. Subacute administration of IVA reduced the antiepileptic activity of NNC, while the proepileptic activity of muscimol and the antiepileptic activity of bicuculline were abolished. It might be suggested that subacute IVA administration reduces absence seizures by changing the HCN channel expressions in WAG/Rij rats, and this affects the T-type calcium channels and GABAA receptors.
Collapse
Affiliation(s)
- Emre Soner Tiryaki
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye.
| | - Caner Günaydın
- Department of Pharmacology, Faculty of Medicine, University of Samsun, Samsun, Türkiye
| | - Mustafa Ayyıldız
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Erdal Ağar
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| |
Collapse
|
13
|
Kazmierska-Grebowska P, Jankowski MM, MacIver MB. Missing Puzzle Pieces in Dementia Research: HCN Channels and Theta Oscillations. Aging Dis 2024; 15:22-42. [PMID: 37450922 PMCID: PMC10796085 DOI: 10.14336/ad.2023.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Increasing evidence indicates a role of hyperpolarization activated cation (HCN) channels in controlling the resting membrane potential, pacemaker activity, memory formation, sleep, and arousal. Their disfunction may be associated with the development of epilepsy and age-related memory decline. Neuronal hyperexcitability involved in epileptogenesis and EEG desynchronization occur in the course of dementia in human Alzheimer's Disease (AD) and animal models, nevertheless the underlying ionic and cellular mechanisms of these effects are not well understood. Some suggest that theta rhythms involved in memory formation could be used as a marker of memory disturbances in the course of neurogenerative diseases, including AD. This review focusses on the interplay between hyperpolarization HCN channels, theta oscillations, memory formation and their role(s) in dementias, including AD. While individually, each of these factors have been linked to each other with strong supportive evidence, we hope here to expand this linkage to a more inclusive picture. Thus, HCN channels could provide a molecular target for developing new therapeutic agents for preventing and/or treating dementia.
Collapse
Affiliation(s)
| | - Maciej M. Jankowski
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk, Poland.Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
| | - M. Bruce MacIver
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of of Medicine, Stanford University, CA, USA.
| |
Collapse
|
14
|
Yuan T, Wang Y, Jin Y, Yang H, Xu S, Zhang H, Chen Q, Li N, Ma X, Song H, Peng C, Geng Z, Dong J, Duan G, Sun Q, Yang Y, Yang F, Huang Z. Coupling of Slack and Na V1.6 sensitizes Slack to quinidine blockade and guides anti-seizure strategy development. eLife 2024; 12:RP87559. [PMID: 38289338 PMCID: PMC10942592 DOI: 10.7554/elife.87559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Quinidine has been used as an anticonvulsant to treat patients with KCNT1-related epilepsy by targeting gain-of-function KCNT1 pathogenic mutant variants. However, the detailed mechanism underlying quinidine's blockade against KCNT1 (Slack) remains elusive. Here, we report a functional and physical coupling of the voltage-gated sodium channel NaV1.6 and Slack. NaV1.6 binds to and highly sensitizes Slack to quinidine blockade. Homozygous knockout of NaV1.6 reduces the sensitivity of native sodium-activated potassium currents to quinidine blockade. NaV1.6-mediated sensitization requires the involvement of NaV1.6's N- and C-termini binding to Slack's C-terminus and is enhanced by transient sodium influx through NaV1.6. Moreover, disrupting the Slack-NaV1.6 interaction by viral expression of Slack's C-terminus can protect against SlackG269S-induced seizures in mice. These insights about a Slack-NaV1.6 complex challenge the traditional view of 'Slack as an isolated target' for anti-epileptic drug discovery efforts and can guide the development of innovative therapeutic strategies for KCNT1-related epilepsy.
Collapse
Affiliation(s)
- Tian Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Yifan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Yuchen Jin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Hui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Shuai Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Heng Zhang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang UniversityZhejiangChina
| | - Qian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Na Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Huifang Song
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Chao Peng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Ze Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Jie Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Guifang Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Qi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue UniversityWest LafayetteUnited States
| | - Fan Yang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang UniversityZhejiangChina
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, HangzhouZhejiangChina
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science CenterBeijingChina
- IDG/McGovern Institute for Brain Research, Peking UniversityBeijingChina
| |
Collapse
|
15
|
Topczewska A, Giacalone E, Pratt WS, Migliore M, Dolphin AC, Shah MM. T-type Ca 2+ and persistent Na + currents synergistically elevate ventral, not dorsal, entorhinal cortical stellate cell excitability. Cell Rep 2023; 42:112699. [PMID: 37368752 PMCID: PMC10687207 DOI: 10.1016/j.celrep.2023.112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Dorsal and ventral medial entorhinal cortex (mEC) regions have distinct neural network firing patterns to differentially support functions such as spatial memory. Accordingly, mEC layer II dorsal stellate neurons are less excitable than ventral neurons. This is partly because the densities of inhibitory conductances are higher in dorsal than ventral neurons. Here, we report that T-type Ca2+ currents increase 3-fold along the dorsal-ventral axis in mEC layer II stellate neurons, with twice as much CaV3.2 mRNA in ventral mEC compared with dorsal mEC. Long depolarizing stimuli trigger T-type Ca2+ currents, which interact with persistent Na+ currents to elevate the membrane voltage and spike firing in ventral, not dorsal, neurons. T-type Ca2+ currents themselves prolong excitatory postsynaptic potentials (EPSPs) to enhance their summation and spike coupling in ventral neurons only. These findings indicate that T-type Ca2+ currents critically influence the dorsal-ventral mEC stellate neuron excitability gradient and, thereby, mEC dorsal-ventral circuit activity.
Collapse
Affiliation(s)
| | | | - Wendy S Pratt
- Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michele Migliore
- Institute of Biophysics, National Research Council, 90146 Palermo, Italy
| | - Annette C Dolphin
- Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Mala M Shah
- Pharmacology, School of Pharmacy, University College London, London WC1N 4AX, UK.
| |
Collapse
|
16
|
Crunelli V, David F, Morais TP, Lorincz ML. HCN channels and absence seizures. Neurobiol Dis 2023; 181:106107. [PMID: 37001612 DOI: 10.1016/j.nbd.2023.106107] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Hyperpolarization-activation cyclic nucleotide-gated (HCN) channels were for the first time implicated in absence seizures (ASs) when an abnormal Ih (the current generated by these channels) was reported in neocortical layer 5 neurons of a mouse model. Genetic studies of large cohorts of children with Childhood Absence Epilepsy (where ASs are the only clinical symptom) have identified only 3 variants in HCN1 (one of the genes that code for the 4 HCN channel isoforms, HCN1-4), with one (R590Q) mutation leading to loss-of-function. Due to the multi-faceted effects that HCN channels exert on cellular excitability and neuronal network dynamics as well as their modulation by environmental factors, it has been difficult to identify the detailed mechanism by which different HCN isoforms modulate ASs. In this review, we systematically and critically analyze evidence from established AS models and normal non-epileptic animals with area- and time-selective ablation of HCN1, HCN2 and HCN4. Notably, whereas knockout of rat HCN1 and mouse HCN2 leads to the expression of ASs, the pharmacological block of all HCN channel isoforms abolishes genetically determined ASs. These seemingly contradictory results could be reconciled by taking into account the well-known opposite effects of Ih on cellular excitability and network function. Whereas existing evidence from mouse and rat AS models indicates that pan-HCN blockers may provide a novel approach for the treatment of human ASs, the development of HCN isoform-selective drugs would greatly contribute to current research on the role for these channels in ASs generation and maintenance as well as offer new potential clinical applications.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK.
| | - Francois David
- Integrative Neuroscience and Cognition Center, Paris University, Paris, France
| | - Tatiana P Morais
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, Malta University, Msida, Malta
| | - Magor L Lorincz
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK; Department of Physiology, Szeged University, Szeged, Hungary.
| |
Collapse
|
17
|
Labbaf A, Dellin M, Komadowski M, Chetkovich DM, Decher N, Pape HC, Seebohm G, Budde T, Zobeiri M. Characterization of Kv1.2-mediated outward current in TRIP8b-deficient mice. Biol Chem 2023; 404:291-302. [PMID: 36852869 DOI: 10.1515/hsz-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Tonic current through hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels is influencing neuronal firing properties and channel function is strongly influenced by the brain-specific auxiliary subunit tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). Since Kv1.2 channels and TRIP8b were also suggested to interact, we assessed brain Kv1.2 mRNA and protein expression as well as the reduction of K+ outward currents by Kv1.2-blocking compounds (Psora-4; tityustoxin-Kα, TsTX-Kα) in different brain areas of TRIP8b-deficient (TRIP8b -/- ) compared to wildtype (WT) mice. We found that transcription levels of Kv1.2 channels were not different between genotypes. Furthermore, Kv1.2 current amplitude was not affected upon co-expression with TRIP8b in oocytes. However, Kv1.2 immunofluorescence was stronger in dendritic areas of cortical and hippocampal neurons. Furthermore, the peak net outward current was increased and the inactivation of the Psora-4-sensitive current component was less pronounced in cortical neurons in TRIP8b -/- mice. In current clamp recordings, application of TsTX increased the excitability of thalamocortical (TC) neurons with increased number of elicited action potentials upon step depolarization. We conclude that TRIP8b may not preferentially influence the amplitude of current through Kv1.2 channels but seems to affect current inactivation and channel localization. In TRIP8b -/- a compensatory upregulation of other Kv channels was observed.
Collapse
Affiliation(s)
- Afsaneh Labbaf
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Maurice Dellin
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany
| | - Marlene Komadowski
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Dane M Chetkovich
- Medical Center, Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Hans-Chrisitian Pape
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Mehrnoush Zobeiri
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| |
Collapse
|
18
|
Rizzello E, Pimpinella D, Pignataro A, Titta G, Merenda E, Saviana M, Porcheddu G, Paolantoni C, Malerba F, Giorgi C, Curia G, Middei S, Marchetti C. Lamotrigine rescues neuronal alterations and prevents seizure-induced memory decline in an Alzheimer's disease mouse model. Neurobiol Dis 2023; 181:106106. [PMID: 37001613 DOI: 10.1016/j.nbd.2023.106106] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Epilepsy is a comorbidity associated with Alzheimer's disease (AD), often starting many years earlier than memory decline. Investigating this association in the early pre-symptomatic stages of AD can unveil new mechanisms of the pathology as well as guide the use of antiepileptic drugs to prevent or delay hyperexcitability-related pathological effects of AD. We investigated the impact of repeated seizures on hippocampal memory and amyloid-β (Aβ) load in pre-symptomatic Tg2576 mice, a transgenic model of AD. Seizure induction caused memory deficits and an increase in oligomeric Aβ42 and fibrillary species selectively in pre-symptomatic transgenic mice, and not in their wildtype littermates. Electrophysiological patch-clamp recordings in ex vivo CA1 pyramidal neurons and immunoblots were carried out to investigate the neuronal alterations associated with the behavioral outcomes of Tg2576 mice. CA1 pyramidal neurons exhibited increased intrinsic excitability and lower hyperpolarization-activated Ih current. CA1 also displayed lower expression of the hyperpolarization-activated cyclic nucleotide-gated HCN1 subunit, a protein already identified as downregulated in the AD human proteome. The antiepileptic drug lamotrigine restored electrophysiological alterations and prevented both memory deficits and the increase in extracellular Aβ induced by seizures. Thus our study provides evidence of pre-symptomatic hippocampal neuronal alterations leading to hyperexcitability and associated with both higher susceptibility to seizures and to AD-specific seizure-induced memory impairment. Our findings also provide a basis for the use of the antiepileptic drug lamotrigine as a way to counteract acceleration of AD induced by seizures in the early phases of the pathology.
Collapse
|
19
|
Altered EEG power spectrum, but not sleep-wake architecture, in HCN1 knockout mice. Behav Brain Res 2023; 437:114105. [PMID: 36089097 DOI: 10.1016/j.bbr.2022.114105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022]
Abstract
Sleep is a complex biological state characterized by large populations of neurons firing in a rhythmic or synchronized manner. HCN channels play a critical role in generating and sustaining synchronized neuronal firing and are involved in the actions of anaesthetics. However, the role of these channels in sleep-wakefulness per se has yet to be studied. We conducted polysomnographic recordings of Hcn1 constitutive knockout (Hcn1 KO) and wild-type (WT) mice in order to investigate the potential role of HCN1 channels in sleep/wake regulation. EEG and EMG data were analysed using the Somnivore™ machine learning algorithm. Time spent in each vigilance state, bout number and duration, and EEG power spectral activity were compared between genotypes. There were no significant differences in the time spent in wake, rapid eye movement (REM) or non-REM (NREM) sleep between Hcn1 KO and WT mice. Wake bout duration during the inactive phase was significantly shorter in Hcn1 KO mice whilst no other bout parameters were affected by genotype. Hcn1 KO mice showed a reduction in overall EEG power which was particularly prominent in the theta (5-9 Hz) and alpha (9-15 Hz) frequency bands and most evident during NREM sleep. Together these data suggest that HCN1 channels do not play a major role in sleep architecture or modulation of vigilance states. However, loss of these channels significantly alters underlying neuronal activity within these states which may have functional consequences.
Collapse
|
20
|
Sitnikova E, Rutskova E, Smirnov K. Alpha2-Adrenergic Receptors as a Pharmacological Target for Spike-Wave Epilepsy. Int J Mol Sci 2023; 24:1477. [PMID: 36674992 PMCID: PMC9862736 DOI: 10.3390/ijms24021477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Spike-wave discharges are the hallmark of idiopathic generalized epilepsy. They are caused by a disorder in the thalamocortical network. Commercially available anti-epileptic drugs have pronounced side effects (i.e., sedation and gastroenterological concerns), which might result from a low selectivity to molecular targets. We suggest a specific subtype of adrenergic receptors (ARs) as a promising anti-epileptic molecular target. In rats with a predisposition to absence epilepsy, alpha2 ARs agonists provoke sedation and enhance spike-wave activity during transitions from awake/sedation. A number of studies together with our own observations bring evidence that the sedative and proepileptic effects require different alpha2 ARs subtypes activation. Here we introduce a new concept on target pharmacotherapy of absence epilepsy via alpha2B ARs which are presented almost exclusively in the thalamus. We discuss HCN and calcium channels as the most relevant cellular targets of alpha2 ARs involved in spike-wave activity generation.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
| | - Elizaveta Rutskova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
| | - Kirill Smirnov
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 121205, Russia
| |
Collapse
|
21
|
Zhao K, Li Y, Yang X, Zhou L. The Impact of Altered HCN1 Expression on Brain Function and Its Relationship with Epileptogenesis. Curr Neuropharmacol 2023; 21:2070-2078. [PMID: 37366350 PMCID: PMC10556362 DOI: 10.2174/1570159x21666230214110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated cation channel 1 (HCN1) is predominantly expressed in neurons from the neocortex and hippocampus, two important regions related to epilepsy. Both animal models for epilepsy and epileptic patients show decreased HCN1 expression and HCN1-mediated Ih current. It has been shown in neuroelectrophysiological experiments that a decreased Ih current can increase neuronal excitability. However, some studies have shown that blocking the Ih current in vivo can exert antiepileptic effects. This paradox raises an important question regarding the causal relationship between HCN1 alteration and epileptogenesis, which to date has not been elucidated. In this review, we summarize the literature related to HCN1 and epilepsy, aiming to find a possible explanation for this paradox, and explore the correlation between HCN1 and the mechanism of epileptogenesis. We analyze the alterations in the expression and distribution of HCN1 and the corresponding impact on brain function in epilepsy. In addition, we also discuss the effect of blocking Ih on epilepsy symptoms. Addressing these issues will help to inspire new strategies to explore the relationship between HCN1 and epileptogenesis, and ultimately promote the development of new targets for epilepsy therapy.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| | - Xiaofeng Yang
- Guangzhou Laboratory, Guangzhou, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Liemin Zhou
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| |
Collapse
|
22
|
Soti M, Ranjbar H, Kohlmeier KA, Razavinasab M, Masoumi-Ardakani Y, Shabani M. Probable role of the hyperpolarization-activated current in the dual effects of CB1R antagonism on behaviors in a Parkinsonism mouse model. Brain Res Bull 2022; 191:78-92. [DOI: 10.1016/j.brainresbull.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022]
|
23
|
Fei F, Wang X, Xu C, Shi J, Gong Y, Cheng H, Lai N, Ruan Y, Ding Y, Wang S, Chen Z, Wang Y. Discrete subicular circuits control generalization of hippocampal seizures. Nat Commun 2022; 13:5010. [PMID: 36008421 PMCID: PMC9411516 DOI: 10.1038/s41467-022-32742-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 08/15/2022] [Indexed: 11/09/2022] Open
Abstract
Epilepsy is considered a circuit-level dysfunction associated with imbalanced excitation-inhibition, it is therapeutically necessary to identify key brain regions and related circuits in epilepsy. The subiculum is an essential participant in epileptic seizures, but the circuit mechanism underlying its role remains largely elusive. Here we deconstruct the diversity of subicular circuits in a mouse model of epilepsy. We find that excitatory subicular pyramidal neurons heterogeneously control the generalization of hippocampal seizures by projecting to different downstream regions. Notably, anterior thalamus-projecting subicular neurons bidirectionally mediate seizures, while entorhinal cortex-projecting subicular neurons act oppositely in seizure modulation. These two subpopulations are structurally and functionally dissociable. An intrinsically enhanced hyperpolarization-activated current and robust bursting intensity in anterior thalamus-projecting neurons facilitate synaptic transmission, thus contributing to the generalization of hippocampal seizures. These results demonstrate that subicular circuits have diverse roles in epilepsy, suggesting the necessity to precisely target specific subicular circuits for effective treatment of epilepsy.
Collapse
Affiliation(s)
- Fan Fei
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xia Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jiaying Shi
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiwei Gong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Heming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nanxi Lai
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yao Ding
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang Wang
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China. .,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China. .,Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yi Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China. .,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China. .,Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Merseburg A, Kasemir J, Buss EW, Leroy F, Bock T, Porro A, Barnett A, Tröder SE, Engeland B, Stockebrand M, Moroni A, Siegelbaum S, Isbrandt D, Santoro B. Seizures, behavioral deficits and adverse drug responses in two new genetic mouse models of HCN1 epileptic encephalopathy. eLife 2022; 11:70826. [PMID: 35972069 PMCID: PMC9481245 DOI: 10.7554/elife.70826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
De novo mutations in voltage- and ligand-gated channels have been associated with an increasing number of cases of developmental and epileptic encephalopathies, which often fail to respond to classic antiseizure medications. Here, we examine two knock-in mouse models replicating de novo sequence variations in the HCN1 voltage-gated channel gene, p.G391D and p.M153I (Hcn1G380D/+ and Hcn1M142I/+ in mouse), associated with severe drug-resistant neonatal- and childhood-onset epilepsy, respectively. Heterozygous mice from both lines displayed spontaneous generalized tonic-clonic seizures. Animals replicating the p.G391D variant had an overall more severe phenotype, with pronounced alterations in the levels and distribution of HCN1 protein, including disrupted targeting to the axon terminals of basket cell interneurons. In line with clinical reports from patients with pathogenic HCN1 sequence variations, administration of the antiepileptic Na+ channel antagonists lamotrigine and phenytoin resulted in the paradoxical induction of seizures in both mouse lines, consistent with an effect to further impair inhibitory neuron function. We also show that these variants can render HCN1 channels unresponsive to classic antagonists, indicating the need to screen mutated channels to identify novel compounds with diverse mechanism of action. Our results underscore the necessity of tailoring effective therapies for specific channel gene variants, and how strongly validated animal models may provide an invaluable tool towards reaching this objective.
Collapse
Affiliation(s)
- Andrea Merseburg
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Jacquelin Kasemir
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Eric W Buss
- Department of Neuroscience, Columbia University, New York, United States
| | - Felix Leroy
- Department of Neuroscience, Columbia University, New York, United States
| | - Tobias Bock
- Department of Neuroscience, Columbia University, New York, United States
| | | | - Anastasia Barnett
- Department of Neuroscience, Columbia University, New York, United States
| | - Simon E Tröder
- Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Birgit Engeland
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Malte Stockebrand
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Steve Siegelbaum
- Department of Neuroscience, Columbia University, New York, United States
| | - Dirk Isbrandt
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Cologne, Germany
| | - Bina Santoro
- Department of Neuroscience, Columbia University, New York, United States
| |
Collapse
|
25
|
Xie C, Liu F, He H, He F, Mao L, Wang X, Yin F, Peng J. Novel HCN1 Mutations Associated With Epilepsy and Impacts on Neuronal Excitability. Front Mol Neurosci 2022; 15:870182. [PMID: 35845605 PMCID: PMC9280081 DOI: 10.3389/fnmol.2022.870182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel plays a critical role in regulating the resting membrane potential and integrating synaptic transmission. Variants of HCN1 have been recognized as causes of epilepsy, and mutant HCN1 channels could act with loss-of-function (LOF), loss- and gain-of-function (LOF and GOF) and gain-of-function (GOF) mechanisms. However, phenotypes and pathogenesis of HCN1-related epilepsy are still poorly understood. This study enrolled five epileptic cases carrying five different HCN1 variants: two pathogenic variants (I380F and S710Rfs*71), two likely pathogenic variants (E240G and A395G), and a paternally inherited variant (V572A). Four variants were novel. Electrophysiological experiments revealed impaired biophysical properties of the identified mutants, including current densities and activation/deactivation kinetics. Moreover, three variants exerted effects on the biophysical properties of wild-type HCN1 channels in heterozygous conditions. Immunofluorescence experiments showed that two variants reduced the protein expression of HCN1channels in neurons. Neurons expressing E240G (GOF) variant showed increased input resistance. However, the variant of I380F (LOF) increased the neuronal firing rate, thus leading to neuronal hyperexcitability. In conclusion, the present study expands the genotypic and phenotypic spectrum of patients with HCN1-related epilepsy and clarifies the underlying mechanisms. We reported five new cases including four unreported likely/pathogenic variants. We provided assessments of biophysical function for each variant, which could help patients to receive individual therapy in the future. We confirmed that HCN1 variants contributed to neuronal hyperexcitability by regulating input resistance and the action potential firing rate, and we have shown that they can affect protein expression in neurons for the first time.
Collapse
Affiliation(s)
- Changning Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Fangyun Liu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Leilei Mao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaole Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Development Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Development Disabilities Research Center, Changsha, China
- *Correspondence: Jing Peng,
| |
Collapse
|
26
|
Kessi M, Peng J, Duan H, He H, Chen B, Xiong J, Wang Y, Yang L, Wang G, Kiprotich K, Bamgbade OA, He F, Yin F. The Contribution of HCN Channelopathies in Different Epileptic Syndromes, Mechanisms, Modulators, and Potential Treatment Targets: A Systematic Review. Front Mol Neurosci 2022; 15:807202. [PMID: 35663267 PMCID: PMC9161305 DOI: 10.3389/fnmol.2022.807202] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hyperpolarization-activated cyclic nucleotide-gated (HCN) current reduces dendritic summation, suppresses dendritic calcium spikes, and enables inhibitory GABA-mediated postsynaptic potentials, thereby suppressing epilepsy. However, it is unclear whether increased HCN current can produce epilepsy. We hypothesized that gain-of-function (GOF) and loss-of-function (LOF) variants of HCN channel genes may cause epilepsy. Objectives This systematic review aims to summarize the role of HCN channelopathies in epilepsy, update genetic findings in patients, create genotype–phenotype correlations, and discuss animal models, GOF and LOF mechanisms, and potential treatment targets. Methods The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, for all years until August 2021. Results We identified pathogenic variants of HCN1 (n = 24), HCN2 (n = 8), HCN3 (n = 2), and HCN4 (n = 6) that were associated with epilepsy in 74 cases (43 HCN1, 20 HCN2, 2 HCN3, and 9 HCN4). Epilepsy was associated with GOF and LOF variants, and the mechanisms were indeterminate. Less than half of the cases became seizure-free and some developed drug-resistant epilepsy. Of the 74 cases, 12 (16.2%) died, comprising HCN1 (n = 4), HCN2 (n = 2), HCN3 (n = 2), and HCN4 (n = 4). Of the deceased cases, 10 (83%) had a sudden unexpected death in epilepsy (SUDEP) and 2 (16.7%) due to cardiopulmonary failure. SUDEP affected more adults (n = 10) than children (n = 2). HCN1 variants p.M234R, p.C329S, p.V414M, p.M153I, and p.M305L, as well as HCN2 variants p.S632W and delPPP (p.719–721), were associated with different phenotypes. HCN1 p.L157V and HCN4 p.R550C were associated with genetic generalized epilepsy. There are several HCN animal models, pharmacological targets, and modulators, but precise drugs have not been developed. Currently, there are no HCN channel openers. Conclusion We recommend clinicians to include HCN genes in epilepsy gene panels. Researchers should explore the possible underlying mechanisms for GOF and LOF variants by identifying the specific neuronal subtypes and neuroanatomical locations of each identified pathogenic variant. Researchers should identify specific HCN channel openers and blockers with high binding affinity. Such information will give clarity to the involvement of HCN channelopathies in epilepsy and provide the opportunity to develop targeted treatments.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Department of Pediatrics, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Ying Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Guoli Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Karlmax Kiprotich
- Department of Epidemiology and Medical Statistics, School of Public Health, Moi University, Eldoret, Kenya
| | - Olumuyiwa A. Bamgbade
- Department of Anesthesiology and Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- *Correspondence: Fei Yin
| |
Collapse
|
27
|
Mayar S, Memarpoor-Yazdi M, Makky A, Eslami Sarokhalil R, D'Avanzo N. Direct Regulation of Hyperpolarization-Activated Cyclic-Nucleotide Gated (HCN1) Channels by Cannabinoids. Front Mol Neurosci 2022; 15:848540. [PMID: 35465092 PMCID: PMC9019169 DOI: 10.3389/fnmol.2022.848540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Cannabinoids are a broad class of molecules that act primarily on neurons, affecting pain sensation, appetite, mood, learning, and memory. In addition to interacting with specific cannabinoid receptors (CBRs), cannabinoids can directly modulate the function of various ion channels. Here, we examine whether cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), the most prevalent phytocannabinoids in Cannabis sativa, can regulate the function of hyperpolarization-activated cyclic-nucleotide-gated (HCN1) channels independently of CBRs. HCN1 channels were expressed in Xenopus oocytes since they do not express CBRs, and the effects of cannabinoid treatment on HCN1 currents were examined by a two-electrode voltage clamp. We observe opposing effects of CBD and THC on HCN1 current, with CBD acting to stimulate HCN1 function, while THC inhibited current. These effects persist in HCN1 channels lacking the cyclic-nucleotide binding domain (HCN1ΔCNBD). However, changes to membrane fluidity, examined by treating cells with TX-100, inhibited HCN1 current had more pronounced effects on the voltage-dependence and kinetics of activation than THC, suggesting this is not the primary mechanism of HCN1 regulation by cannabinoids. Our findings may contribute to the overall understanding of how cannabinoids may act as promising therapeutic molecules for the treatment of several neurological disorders in which HCN function is disturbed.
Collapse
|
28
|
Cai W, Liu SS, Li BM, Zhang XH. Presynaptic HCN channels constrain GABAergic synaptic transmission in pyramidal cells of the medial prefrontal cortex. Biol Open 2021; 11:272636. [PMID: 34709375 PMCID: PMC8966777 DOI: 10.1242/bio.058840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are widely expressed in neurons in the central nervous system. It has been documented that HCN channels regulate the intrinsic excitability of pyramidal cells in the medial prefrontal cortex (mPFC) of rodents. Here, we report that HCN channels limited GABAergic transmission onto pyramidal cells in rat mPFC. The pharmacological blockade of HCN channels resulted in a significant increase in the frequency of both spontaneous and miniature inhibitory postsynaptic currents (IPSCs) in mPFC pyramidal cells, whereas potentiation of HCN channels reversely decreases the frequency of mIPSCs. Furthermore, such facilitation effect on mIPSC frequency required presynaptic Ca2+ influx. Immunofluorescence staining showed that HCN channels expressed in presynaptic GABAergic terminals, as well as in both soma and neurite of parvalbumin-expressing (PV-expressing) basket cells in mPFC. The present results indicate that HCN channels in GABAergic interneurons, most likely PV-expressing basket cells, constrain inhibitory control over layer 5-6 pyramidal cells by restricting presynaptic Ca2+ entry.
Collapse
Affiliation(s)
- Wei Cai
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Shu-Su Liu
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Bao-Ming Li
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Xue-Han Zhang
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Zhang J, Chen X, Eaton M, Wu J, Ma Z, Lai S, Park A, Ahmad TS, Que Z, Lee JH, Xiao T, Li Y, Wang Y, Olivero-Acosta MI, Schaber JA, Jayant K, Yuan C, Huang Z, Lanman NA, Skarnes WC, Yang Y. Severe deficiency of the voltage-gated sodium channel Na V1.2 elevates neuronal excitability in adult mice. Cell Rep 2021; 36:109495. [PMID: 34348148 PMCID: PMC8382316 DOI: 10.1016/j.celrep.2021.109495] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Scn2a encodes the voltage-gated sodium channel NaV1.2, a main mediator of neuronal action potential firing. The current paradigm suggests that NaV1.2 gain-of-function variants enhance neuronal excitability, resulting in epilepsy, whereas NaV1.2 deficiency impairs neuronal excitability, contributing to autism. However, this paradigm does not explain why ∼20%-30% of individuals with NaV1.2 deficiency still develop seizures. Here, we report the counterintuitive finding that severe NaV1.2 deficiency results in increased neuronal excitability. Using a NaV1.2-deficient mouse model, we show enhanced intrinsic excitability of principal neurons in the prefrontal cortex and striatum, brain regions known to be involved in Scn2a-related seizures. This increased excitability is autonomous and reversible by genetic restoration of Scn2a expression in adult mice. RNA sequencing reveals downregulation of multiple potassium channels, including KV1.1. Correspondingly, KV channel openers alleviate the hyperexcitability of NaV1.2-deficient neurons. This unexpected neuronal hyperexcitability may serve as a cellular basis underlying NaV1.2 deficiency-related seizures.
Collapse
Affiliation(s)
- Jingliang Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaoling Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Muriel Eaton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Jiaxiang Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Zhixiong Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Shirong Lai
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Anthony Park
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Talha S Ahmad
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Zhefu Que
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Ji Hea Lee
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Tiange Xiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Yuansong Li
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Yujia Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Maria I Olivero-Acosta
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - James A Schaber
- Bioscience Imaging Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Krishna Jayant
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Nadia A Lanman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - William C Skarnes
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
30
|
The HCN channel as a pharmacological target: Why, where, and how to block it. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:173-181. [PMID: 34303730 DOI: 10.1016/j.pbiomolbio.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022]
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, expressed in a variety of cell types and in all tissues, control excitation and rhythm. Since their discovery in neurons and cardiac pacemaker cells, they attracted the attention of medicinal chemistry and pharmacology as novel targets to shape (patho)physiological mechanisms. To date, ivabradine represents the first-in-class drug as specific bradycardic agent in cardiac diseases; however, new applications are emerging in parallel with the demonstration of the involvement of different HCN isoforms in central and peripheral nervous system. Hence, the possibility to target specific isoforms represents an attractive development in this field; indeed, HCN1, HCN2 or HCN4 specific blockers have shown promising features in vitro and in vivo, with remarkable pharmacological differences likely depending on the diverse functional role and tissue distribution. Here, we show a recently developed compound with high potency as HCN2-HCN4 blocker; because of its unique profile, this compound may deserve further investigation.
Collapse
|
31
|
Loss of HCN2 in Dorsal Hippocampus of Young Adult Mice Induces Specific Apoptosis of the CA1 Pyramidal Neuron Layer. Int J Mol Sci 2021; 22:ijms22136699. [PMID: 34206649 PMCID: PMC8269412 DOI: 10.3390/ijms22136699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/20/2022] Open
Abstract
Neurons inevitably rely on a proper repertoire and distribution of membrane-bound ion-conducting channels. Among these proteins, the family of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels possesses unique properties giving rise to the corresponding Ih-current that contributes to various aspects of neural signaling. In mammals, four genes (hcn1-4) encode subunits of HCN channels. These subunits can assemble as hetero- or homotetrameric ion-conducting channels. In order to elaborate on the specific role of the HCN2 subunit in shaping electrical properties of neurons, we applied an Adeno-associated virus (AAV)-mediated, RNAi-based knock-down strategy of hcn2 gene expression both in vitro and in vivo. Electrophysiological measurements showed that HCN2 subunit knock-down resulted in specific yet anticipated changes in Ih-current properties in primary hippocampal neurons and, in addition, corroborated that the HCN2 subunit participates in postsynaptic signal integration. To further address the role of the HCN2 subunit in vivo, we injected recombinant (r)AAVs into the dorsal hippocampus of young adult male mice. Behavioral and biochemical analyses were conducted to assess the contribution of HCN2-containing channels in shaping hippocampal network properties. Surprisingly, knock-down of hcn2 expression resulted in a severe degeneration of the CA1 pyramidal cell layer, which did not occur in mice injected with control rAAV constructs. This finding might pinpoint to a vital and yet unknown contribution of HCN2 channels in establishing or maintaining the proper function of CA1 pyramidal neurons of the dorsal hippocampus.
Collapse
|
32
|
Abstract
This scientific commentary refers to ‘Cation leak underlies neuronal excitability in an HCN1 developmental and epileptic encephalopathy’ by Bleakley et al. (doi:10.1093/brain/awab145).
Collapse
Affiliation(s)
- Mala M Shah
- UCL School of Pharmacy, University College London, London, UK
| |
Collapse
|
33
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
34
|
Miao B, Mao G, Wu J, Zhao B, Shi H, Fei S. Protective effect of HCN2-induced SON sensitization on chronic visceral hypersensitivity in neonatal-CRD rat model. Brain Res 2021; 1767:147538. [PMID: 34052259 DOI: 10.1016/j.brainres.2021.147538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/23/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023]
Abstract
Abnormal brain-gut interactions contribute to the development of chronic visceral hypersensitivity (CVH), which is the pivotal feature of irritable bowel syndrome (IBS). Despite the consensus with respect to the vital role of hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) channels in promoting painful symptoms in the peripheral nervous system, we identified that the upregulation of HCN2 in supraoptic nucleus (SON) was involved in the modulation of CVH in rat model of neonatal colorectal distention (n-CRD). Specifically, colorectal distention (CRD) upregulated the expression of c-Fos in SON in adult CVH rats, indicating the involvement of SON sensitazation in visceral sensation. Moreover, the administration of ZD7288 (the pan-HCN channel inhibitor) rather than 8-Br-cAMP (the non-specific HCN channel agonist) aggravated the CVH symptoms and reduced the phosphorylation level of CaMKII-CREB cascade. Together, the findings indicated that the upregulation of supraoptic HCN2 contributed to the sensitization of SON, which had protective effects on the modulation of CVH with the involvement of CaMKII-CREB cascade in n-CRD rat model.
Collapse
Affiliation(s)
- Bei Miao
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China; Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Guangtong Mao
- Department of Pathology, Xinyi People's Hospital, 16 Renmin Road, Xinyi 221400, Jiangsu Province, China
| | - Jiaojiao Wu
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Benhuo Zhao
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Hengliang Shi
- Central Laboratory, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China.
| | - Sujuan Fei
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China; Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China.
| |
Collapse
|
35
|
Advances in the Development of Biomarkers for Poststroke Epilepsy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5567046. [PMID: 33959658 PMCID: PMC8075663 DOI: 10.1155/2021/5567046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022]
Abstract
Stroke is the main cause of acquired epilepsy in elderly people. Poststroke epilepsy (PSE) not only affects functional recovery after stroke but also brings considerable social consequences. While some factors such as cortical involvement, hemorrhagic transformation, and stroke severity are associated with increased seizure risk, so far that remains controversial. In recent years, there are an increasing number of studies on potential biomarkers of PSE as tools for diagnosing and predicting epileptic seizures. Biomarkers such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), glutamate, and S100 calcium-binding protein B (S100B) in blood are associated with the occurrence of PSE. This review is aimed at summarizing the progress on potential biomarkers of PSE.
Collapse
|
36
|
Yu D, Febbo IG, Maroteaux MJ, Wang H, Song Y, Han X, Sun C, Meyer EE, Rowe S, Chen Y, Canavier CC, Schrader LA. The Transcription Factor Shox2 Shapes Neuron Firing Properties and Suppresses Seizures by Regulation of Key Ion Channels in Thalamocortical Neurons. Cereb Cortex 2021; 31:3194-3212. [PMID: 33675359 DOI: 10.1093/cercor/bhaa414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 01/02/2023] Open
Abstract
Thalamocortical neurons (TCNs) play a critical role in the maintenance of thalamocortical oscillations, dysregulation of which can result in certain types of seizures. Precise control over firing rates of TCNs is foundational to these oscillations, yet the transcriptional mechanisms that constrain these firing rates remain elusive. We hypothesized that Shox2 is a transcriptional regulator of ion channels important for TCN function and that loss of Shox2 alters firing frequency and activity, ultimately perturbing thalamocortical oscillations into an epilepsy-prone state. In this study, we used RNA sequencing and quantitative PCR of control and Shox2 knockout mice to determine Shox2-affected genes and revealed a network of ion channel genes important for neuronal firing properties. Protein regulation was confirmed by Western blotting, and electrophysiological recordings showed that Shox2 KO impacted the firing properties of a subpopulation of TCNs. Computational modeling showed that disruption of these conductances in a manner similar to Shox2's effects modulated frequency of oscillations and could convert sleep spindles to near spike and wave activity, which are a hallmark for absence epilepsy. Finally, Shox2 KO mice were more susceptible to pilocarpine-induced seizures. Overall, these results reveal Shox2 as a transcription factor important for TCN function in adult mouse thalamus.
Collapse
Affiliation(s)
- Diankun Yu
- Neuroscience Program, Brain Institute, Tulane University, USA
| | | | | | - Hanyun Wang
- Neuroscience Program, Brain Institute, Tulane University, USA
| | - Yingnan Song
- Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Xiao Han
- Neuroscience Program, Brain Institute, Tulane University, USA
| | - Cheng Sun
- Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Emily E Meyer
- Neuroscience Program, Brain Institute, Tulane University, USA
| | - Stuart Rowe
- Neuroscience Program, Brain Institute, Tulane University, USA
| | - Yiping Chen
- Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Carmen C Canavier
- Cell Biology and Anatomy, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Laura A Schrader
- Neuroscience Program, Brain Institute, Tulane University, USA.,Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
37
|
Zhang J, Zhang C, Chen X, Wang B, Ma W, Yang Y, Zheng R, Huang Z. PKA-RIIβ autophosphorylation modulates PKA activity and seizure phenotypes in mice. Commun Biol 2021; 4:263. [PMID: 33649504 PMCID: PMC7921646 DOI: 10.1038/s42003-021-01748-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common and intractable neurological disorders in adults. Dysfunctional PKA signaling is causally linked to the TLE. However, the mechanism underlying PKA involves in epileptogenesis is still poorly understood. In the present study, we found the autophosphorylation level at serine 114 site (serine 112 site in mice) of PKA-RIIβ subunit was robustly decreased in the epileptic foci obtained from both surgical specimens of TLE patients and seizure model mice. The p-RIIβ level was negatively correlated with the activities of PKA. Notably, by using a P-site mutant that cannot be autophosphorylated and thus results in the released catalytic subunit to exert persistent phosphorylation, an increase in PKA activities through transduction with AAV-RIIβ-S112A in hippocampal DG granule cells decreased mIPSC frequency but not mEPSC, enhanced neuronal intrinsic excitability and seizure susceptibility. In contrast, a reduction of PKA activities by RIIβ knockout led to an increased mIPSC frequency, a reduction in neuronal excitability, and mice less prone to experimental seizure onset. Collectively, our data demonstrated that the autophosphorylation of RIIβ subunit plays a critical role in controlling neuronal and network excitabilities by regulating the activities of PKA, providing a potential therapeutic target for TLE.
Collapse
Affiliation(s)
- Jingliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Chenyu Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoling Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Bingwei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Weining Ma
- Department of Neurology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN, USA
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- Neuroscience Research Institute, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education, Beijing, China.
- Key Laboratory for Neuroscience of National Health Commission, Beijing, China.
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education, Beijing, China.
- Key Laboratory for Neuroscience of National Health Commission, Beijing, China.
| |
Collapse
|
38
|
Homeostatic plasticity and burst activity are mediated by hyperpolarization-activated cation currents and T-type calcium channels in neuronal cultures. Sci Rep 2021; 11:3236. [PMID: 33547341 PMCID: PMC7864958 DOI: 10.1038/s41598-021-82775-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/20/2021] [Indexed: 01/27/2023] Open
Abstract
Homeostatic plasticity stabilizes neuronal networks by adjusting the responsiveness of neurons according to their global activity and the intensity of the synaptic inputs. We investigated the homeostatic regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) and T-type calcium (CaV3) channels in dissociated and organotypic slice cultures. After 48 h blocking of neuronal activity by tetrodotoxin (TTX), our patch-clamp experiments revealed an increase in the depolarizing voltage sag and post-inhibitory rebound mediated by HCN and CaV3 channels, respectively. All HCN subunits (HCN1 to 4) and T-type Ca-channel subunits (CaV3.1, 3.2 and 3.3) were expressed in both control and activity-deprived hippocampal cultures. Elevated expression levels of CaV3.1 mRNA and a selective increase in the expression of TRIP8b exon 4 isoforms, known to regulate HCN channel localization, were also detected in TTX-treated cultured hippocampal neurons. Immunohistochemical staining in TTX-treated organotypic slices verified a more proximal translocation of HCN1 channels in CA1 pyramidal neurons. Computational modeling also implied that HCN and T-type calcium channels have important role in the regulation of synchronized bursting evoked by previous activity-deprivation. Thus, our findings indicate that HCN and T-type Ca-channels contribute to the homeostatic regulation of excitability and integrative properties of hippocampal neurons.
Collapse
|
39
|
Han Y, Lyman KA, Foote KM, Chetkovich DM. The structure and function of TRIP8b, an auxiliary subunit of hyperpolarization-activated cyclic-nucleotide gated channels. Channels (Austin) 2020; 14:110-122. [PMID: 32189562 PMCID: PMC7153792 DOI: 10.1080/19336950.2020.1740501] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/08/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed throughout the mammalian central nervous system (CNS). These channels have been implicated in a wide range of diseases, including Major Depressive Disorder and multiple subtypes of epilepsy. The diversity of functions that HCN channels perform is in part attributable to differences in their subcellular localization. To facilitate a broad range of subcellular distributions, HCN channels are bound by auxiliary subunits that regulate surface trafficking and channel function. One of the best studied auxiliary subunits is tetratricopeptide-repeat containing, Rab8b-interacting protein (TRIP8b). TRIP8b is an extensively alternatively spliced protein whose only known function is to regulate HCN channels. TRIP8b binds to HCN pore-forming subunits at multiple interaction sites that differentially regulate HCN channel function and subcellular distribution. In this review, we summarize what is currently known about the structure and function of TRIP8b isoforms with an emphasis on the role of this auxiliary subunit in health and disease.
Collapse
Affiliation(s)
- Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyle A. Lyman
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Kendall M. Foote
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dane M. Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
40
|
Santoro B, Shah MM. Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels as Drug Targets for Neurological Disorders. Annu Rev Pharmacol Toxicol 2020; 60:109-131. [PMID: 31914897 DOI: 10.1146/annurev-pharmtox-010919-023356] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are voltage-gated ion channels that critically modulate neuronal activity. Four HCN subunits (HCN1-4) have been cloned, each having a unique expression profile and distinctive effects on neuronal excitability within the brain. Consistent with this, the expression and function of these subunits are altered in diverse ways in neurological disorders. Here, we review current knowledge on the structure and distribution of the individual HCN channel isoforms, their effects on neuronal activity under physiological conditions, and how their expression and function are altered in neurological disorders, particularly epilepsy, neuropathic pain, and affective disorders. We discuss the suitability of HCN channels as therapeutic targets and how drugs might be strategically designed to specifically act on particular isoforms. We conclude that medicines that target individual HCN isoforms and/or their auxiliary subunit, TRIP8b, may provide valuable means of treating distinct neurological conditions.
Collapse
Affiliation(s)
- Bina Santoro
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Mala M Shah
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, United Kingdom;
| |
Collapse
|
41
|
Lignani G, Baldelli P, Marra V. Homeostatic Plasticity in Epilepsy. Front Cell Neurosci 2020; 14:197. [PMID: 32676011 PMCID: PMC7333442 DOI: 10.3389/fncel.2020.00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/05/2020] [Indexed: 11/26/2022] Open
Abstract
In the healthy brain, neuronal excitability and synaptic strength are homeostatically regulated to keep neuronal network activity within physiological boundaries. Epilepsy is characterized by episodes of highly synchronized firing across in widespread neuronal populations, due to a failure in regulation of network activity. Here we consider epilepsy as a failure of homeostatic plasticity or as a maladaptive response to perturbations in the activity. How homeostatic compensation is involved in epileptogenic processes or in the chronic phase of epilepsy, is still debated. Although several theories have been proposed, there is relatively little experimental evidence to evaluate them. In this perspective, we will discuss recent results that shed light on the potential role of homeostatic plasticity in epilepsy. First, we will present some recent insights on how homeostatic compensations are probably active before and during epileptogenesis and how their actions are temporally regulated and closely dependent on the progression of pathology. Then, we will consider the dual role of transcriptional regulation during epileptogenesis, and finally, we will underline the importance of homeostatic plasticity in the context of therapeutic interventions for epilepsy. While classic pharmacological interventions may be counteracted by the epileptic brain to maintain its potentially dysfunctional set point, novel therapeutic approaches may provide the neuronal network with the tools necessary to restore its physiological balance.
Collapse
Affiliation(s)
- Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Vincenzo Marra
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
42
|
Lin W, Qin J, Ni G, Li Y, Xie H, Yu J, Li H, Sui L, Guo Q, Fang Z, Zhou L. Downregulation of hyperpolarization-activated cyclic nucleotide-gated channels (HCN) in the hippocampus of patients with medial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS). Hippocampus 2020; 30:1112-1126. [PMID: 32543742 DOI: 10.1002/hipo.23219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 11/09/2022]
Abstract
Changes in the expression of HCN ion channels leading to changes in Ih function and neuronal excitability are considered to be possible mechanisms involved in epileptogenesis in kinds of human epilepsy. In previous animal studies of febrile seizures and temporal lobe epilepsy, changes in the expression of HCN1 and HCN2 channels at different time points and in different parts of the brain were not consistent, suggesting that transcriptional disorders involving HCNs play a crucial role in the epileptogenic process. Therefore, we aimed to assess the transcriptional regulation of HCN channels in Medial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) patients. This study included eight nonhippocampal sclerosis patients and 40 MTLE-HS patients. The mRNA expression of HCN channels was evaluated by qRT-PCR, while the protein expression was quantitatively analyzed by Western blotting. The subcellular localization of HCN channels in the hippocampus was explored by immunofluorescence. We demonstrated that the mRNA and protein expression of HCN1 and HCN2 are downregulated in controls compared to that in MTLE-HS patients. In the hippocampal CA1/CA4 subregion and GCL, in addition to a large decrease in neurons, the expression of HCN1 and HCN2 on neuronal cell membranes was also downregulated in MTLE-HS patients. These findings suggest that the expression of HCN channels are downregulated in MTLE-HS, which indicates that the decline in HCN channels in the hippocampus during chronic epilepsy in MTLE-HS patients leads to the downregulation of Ih current density and function, thereby reducing the inhibitory effect and increasing neuronal excitability and eventually causing disturbances in the electrical activity of neurons.
Collapse
Affiliation(s)
- Wanrong Lin
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiaming Qin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guanzhong Ni
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Haitao Xie
- Department of Epilepsy Center, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jiabin Yu
- Department of Epilepsy Center, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Hainan Li
- Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Lisen Sui
- Department of Epilepsy Center, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Qiang Guo
- Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Ziyan Fang
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Liemin Zhou
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Jaworski T. Control of neuronal excitability by GSK-3beta: Epilepsy and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118745. [PMID: 32450268 DOI: 10.1016/j.bbamcr.2020.118745] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/22/2022]
Abstract
Glycogen synthase kinase 3beta (GSK-3β) is an enzyme with a variety of cellular functions in addition to the regulation of glycogen metabolism. In the central nervous system, different intracellular signaling pathways converge on GSK-3β through a cascade of phosphorylation events that ultimately control a broad range of neuronal functions in the development and adulthood. In mice, genetically removing or increasing GSK-3β cause distinct functional and structural neuronal phenotypes and consequently affect cognition. Precise control of GSK-3β activity is important for such processes as neuronal migration, development of neuronal morphology, synaptic plasticity, excitability, and gene expression. Altered GSK-3β activity contributes to aberrant plasticity within neuronal circuits leading to neurological, psychiatric disorders, and neurodegenerative diseases. Therapeutically targeting GSK-3β can restore the aberrant plasticity of neuronal networks at least in animal models of these diseases. Although the complete repertoire of GSK-3β neuronal substrates has not been defined, emerging evidence shows that different ion channels and their accessory proteins controlling excitability, neurotransmitter release, and synaptic transmission are regulated by GSK-3β, thereby supporting mechanisms of synaptic plasticity in cognition. Dysregulation of ion channel function by defective GSK-3β activity sustains abnormal excitability in the development of epilepsy and other GSK-3β-linked human diseases.
Collapse
Affiliation(s)
- Tomasz Jaworski
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
44
|
Rivolta I, Binda A, Masi A, DiFrancesco JC. Cardiac and neuronal HCN channelopathies. Pflugers Arch 2020; 472:931-951. [PMID: 32424620 DOI: 10.1007/s00424-020-02384-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed as four different isoforms (HCN1-4) in the heart and in the central and peripheral nervous systems. In the voltage range of activation, HCN channels carry an inward current mediated by Na+ and K+, termed If in the heart and Ih in neurons. Altered function of HCN channels, mainly HCN4, is associated with sinus node dysfunction and other arrhythmias such as atrial fibrillation, ventricular tachycardia, and atrioventricular block. In recent years, several data have also shown that dysfunctional HCN channels, in particular HCN1, but also HCN2 and HCN4, can play a pathogenic role in epilepsy; these include experimental data from animal models, and data collected over genetic mutations of the channels identified and characterized in epileptic patients. In the central nervous system, alteration of the Ih current could predispose to the development of neurodegenerative diseases such as Parkinson's disease; since HCN channels are widely expressed in the peripheral nervous system, their dysfunctional behavior could also be associated with the pathogenesis of neuropathic pain. Given the fundamental role played by the HCN channels in the regulation of the discharge activity of cardiac and neuronal cells, the modulation of their function for therapeutic purposes is under study since it could be useful in various pathological conditions. Here we review the present knowledge of the HCN-related channelopathies in cardiac and neurological diseases, including clinical, genetic, therapeutic, and physiopathological aspects.
Collapse
Affiliation(s)
- Ilaria Rivolta
- School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy
| | - Anna Binda
- School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Jacopo C DiFrancesco
- School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy. .,Department of Neurology, ASST San Gerardo Hospital, University of Milano-Bicocca, Via Pergolesi, 33, 20900, Monza, MB, Italy.
| |
Collapse
|
45
|
Muñoz-Manchado AB, Bengtsson Gonzales C, Zeisel A, Munguba H, Bekkouche B, Skene NG, Lönnerberg P, Ryge J, Harris KD, Linnarsson S, Hjerling-Leffler J. Diversity of Interneurons in the Dorsal Striatum Revealed by Single-Cell RNA Sequencing and PatchSeq. Cell Rep 2020; 24:2179-2190.e7. [PMID: 30134177 PMCID: PMC6117871 DOI: 10.1016/j.celrep.2018.07.053] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/03/2018] [Accepted: 07/16/2018] [Indexed: 11/02/2022] Open
Abstract
Striatal locally projecting neurons, or interneurons, act on nearby circuits and shape functional output to the rest of the basal ganglia. We performed single-cell RNA sequencing of striatal cells enriching for interneurons. We find seven discrete interneuron types, six of which are GABAergic. In addition to providing specific markers for the populations previously described, including those expressing Sst/Npy, Th, Npy without Sst, and Chat, we identify two small populations of cells expressing Cck with or without Vip. Surprisingly, the Pvalb-expressing cells do not constitute a discrete cluster but rather are part of a larger group of cells expressing Pthlh with a spatial gradient of Pvalb expression. Using PatchSeq, we show that Pthlh cells exhibit a continuum of electrophysiological properties correlated with expression of Pvalb. Furthermore, we find significant molecular differences that correlate with differences in electrophysiological properties between Pvalb-expressing cells of the striatum and those of the cortex.
Collapse
Affiliation(s)
- Ana B Muñoz-Manchado
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Carolina Bengtsson Gonzales
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Amit Zeisel
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hermany Munguba
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Bo Bekkouche
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Nathan G Skene
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Peter Lönnerberg
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jesper Ryge
- Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Kenneth D Harris
- UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; UCL Department of Neuroscience, Physiology and Pharmacology, 21 University Street, London WC1E 6DE, UK
| | - Sten Linnarsson
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
46
|
Miao QL, Herlitze S, Mark MD, Noebels JL. Adult loss of Cacna1a in mice recapitulates childhood absence epilepsy by distinct thalamic bursting mechanisms. Brain 2020; 143:161-174. [PMID: 31800012 PMCID: PMC6935748 DOI: 10.1093/brain/awz365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 12/15/2022] Open
Abstract
Inborn errors of CACNA1A-encoded P/Q-type calcium channels impair synaptic transmission, producing early and lifelong neurological deficits, including childhood absence epilepsy, ataxia and dystonia. Whether these impairments owe their pathologies to defective channel function during the critical period for thalamic network stabilization in immature brain remains unclear. Here we show that mice with tamoxifen-induced adult-onset ablation of P/Q channel alpha subunit (iKOp/q) display identical patterns of dysfunction, replicating the inborn loss-of-function phenotypes and, therefore demonstrate that these neurological defects do not rely upon developmental abnormality. Unexpectedly, unlike the inborn model, the adult-onset pattern of excitability changes believed to be pathogenic within the thalamic network is non-canonical. Specifically, adult ablation of P/Q channels does not promote Cacna1g-mediated burst firing or T-type calcium current (IT) in the thalamocortical relay neurons; however, burst firing in thalamocortical relay neurons remains essential as iKOp/q mice generated on a Cacna1g deleted background show substantially diminished seizure generation. Moreover, in thalamic reticular nucleus neurons, burst firing is impaired accompanied by attenuated IT. Interestingly, inborn deletion of thalamic reticular nucleus-enriched, human childhood absence epilepsy-linked gene Cacna1h in iKOp/q mice reduces thalamic reticular nucleus burst firing and promotes rather than reduces seizure, indicating an epileptogenic role for loss-of-function Cacna1h gene variants reported in human childhood absence epilepsy cases. Together, our results demonstrate that P/Q channels remain critical for maintaining normal thalamocortical oscillations and motor control in the adult brain, and suggest that the developmental plasticity of membrane currents regulating pathological rhythmicity is both degenerate and age-dependent.
Collapse
Affiliation(s)
- Qing-Long Miao
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston TX, USA
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr University of Bochum, Bochum, Germany
| | - Melanie D Mark
- Department of Zoology and Neurobiology, Ruhr University of Bochum, Bochum, Germany
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX, USA
| |
Collapse
|
47
|
Thomas M, Ranjith G, Radhakrishnan A, Arun Anirudhan V. Effects of HCN2 Mutations on Dendritic Excitability and Synaptic Plasticity: A Computational Study. Neuroscience 2019; 423:148-161. [DOI: 10.1016/j.neuroscience.2019.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022]
|
48
|
Foote KM, Lyman KA, Han Y, Michailidis IE, Heuermann RJ, Mandikian D, Trimmer JS, Swanson GT, Chetkovich DM. Phosphorylation of the HCN channel auxiliary subunit TRIP8b is altered in an animal model of temporal lobe epilepsy and modulates channel function. J Biol Chem 2019; 294:15743-15758. [PMID: 31492750 DOI: 10.1074/jbc.ra119.010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a prevalent neurological disorder with many patients experiencing poor seizure control with existing anti-epileptic drugs. Thus, novel insights into the mechanisms of epileptogenesis and identification of new drug targets can be transformative. Changes in ion channel function have been shown to play a role in generating the aberrant neuronal activity observed in TLE. Previous work demonstrates that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate neuronal excitability and are mislocalized within CA1 pyramidal cells in a rodent model of TLE. The subcellular distribution of HCN channels is regulated by an auxiliary subunit, tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), and disruption of this interaction correlates with channel mislocalization. However, the molecular mechanisms responsible for HCN channel dysregulation in TLE are unclear. Here we investigated whether changes in TRIP8b phosphorylation are sufficient to alter HCN channel function. We identified a phosphorylation site at residue Ser237 of TRIP8b that enhances binding to HCN channels and influences channel gating by altering the affinity of TRIP8b for the HCN cytoplasmic domain. Using a phosphospecific antibody, we demonstrate that TRIP8b phosphorylated at Ser237 is enriched in CA1 distal dendrites and that phosphorylation is reduced in the kainic acid model of TLE. Overall, our findings indicate that the TRIP8b-HCN interaction can be modulated by changes in phosphorylation and suggest that loss of TRIP8b phosphorylation may affect HCN channel properties during epileptogenesis. These results highlight the potential of drugs targeting posttranslational modifications to restore TRIP8b phosphorylation to reduce excitability in TLE.
Collapse
Affiliation(s)
- Kendall M Foote
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University, Chicago, Illinois 60611.,Department of Pharmacology, Northwestern University, Chicago, Illinois 60611.,Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| | - Kyle A Lyman
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University, Chicago, Illinois 60611.,Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232.,Department of Medicine, Stanford University, Palo Alto, California 94305
| | - Ye Han
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University, Chicago, Illinois 60611.,Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| | - Ioannis E Michailidis
- Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| | - Robert J Heuermann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Danielle Mandikian
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616.,Department of Physiology and Membrane Biology, University of California, Davis, California 95616
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University, Chicago, Illinois 60611.,Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Dane M Chetkovich
- Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| |
Collapse
|
49
|
Song C, Orlandi C, Sutton LP, Martemyanov KA. The signaling proteins GPR158 and RGS7 modulate excitability of L2/3 pyramidal neurons and control A-type potassium channel in the prelimbic cortex. J Biol Chem 2019; 294:13145-13157. [PMID: 31311860 DOI: 10.1074/jbc.ra119.007533] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Stress profoundly affects physiological properties of neurons across brain circuits and thereby increases the risk for depression. However, the molecular and cellular mechanisms mediating these effects are poorly understood. In this study, we report that chronic physical restraint stress in mice decreases excitability specifically in layer 2/3 of pyramidal neurons within the prelimbic subarea of the prefrontal cortex (PFC) accompanied by the induction of depressive-like behavioral states. We found that a complex between G protein-coupled receptor (GPCR) 158 (GPR158) and regulator of G protein signaling 7 (RGS7), a regulatory GPCR signaling node recently discovered to be a key modulator of affective behaviors, plays a key role in controlling stress-induced changes in excitability in this neuronal population. Deletion of GPR158 or RGS7 enhanced excitability of layer 2/3 PFC neurons and prevented the impact of stress. Investigation of the underlying molecular mechanisms revealed that the A-type potassium channel Kv4.2 subunit is a molecular target of the GPR158-RGS7 complex. We further report that GPR158 physically associates with Kv4.2 channel and promotes its function by suppressing inhibitory modulation by cAMP-protein kinase A (PKA)-mediated phosphorylation. Taken together, our observations reveal a critical mechanism that adjusts neuronal excitability in L2/3 pyramidal neurons of the PFC and may thereby modulate the effects of stress on depression.
Collapse
Affiliation(s)
- Chenghui Song
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Laurie P Sutton
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458.
| |
Collapse
|
50
|
Nishitani A, Yoshihara T, Tanaka M, Kuwamura M, Asano M, Tsubota Y, Kuramoto T. Muscle weakness and impaired motor coordination in hyperpolarization-activated cyclic nucleotide-gated potassium channel 1-deficient rats. Exp Anim 2019; 69:11-17. [PMID: 31292305 PMCID: PMC7004805 DOI: 10.1538/expanim.19-0067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated potassium channel 1 (HCN1) contribute
to spontaneous rhythmic activity in different tissues, including the heart and brain.
Deficiency in HCN1 function is associated with sick sinus syndrome in mice and epilepsy in
humans. We recently developed Hcn1-deficient rats and found that they
exhibit absence epilepsy. While rearing Hcn1-deficient rats, we noticed
loose muscle tension and abnormal gait. We therefore evaluated the muscle strength and
motor functions of Hcn1-deficient rats. When subjected to the wire hang
test, Hcn1-deficient rats fell down more easily than control F344 rats.
Grip strength of Hcn1-deficient rats was significantly smaller than F344
rats. In the inclined plane test, they exhibited a smaller maximum angle. In the rotarod
test, the latency to fall was shorter for Hcn1-deficient rats than F344
rats. In the footprint analysis, Hcn1-deficient rats exhibited smaller
step length and wider step width than F344 rats. Instead of poor motor coordination
ability and muscle weakness, Hcn1-deficient rats exhibited normal
electromyograms, muscle histology, and deep tendon reflex. These findings suggest that
HCN1 channels contribute to motor coordination and muscle strength, and that the muscle
weakness of Hcn1-deficient rats results from the involvement not of the
peripheral but of the central nervous system.
Collapse
Affiliation(s)
- Ai Nishitani
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toru Yoshihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Miyuu Tanaka
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Veterinary Medical Center, Osaka Prefecture University, 1-58 Rinkuu Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Prefecture University, 1-58 Rinkuu Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuji Tsubota
- Laboratory of Physiology, Osaka Kawasaki Rehabilitation University, 158 Mizuma, Kaizuka, Osaka 597-0104, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| |
Collapse
|