1
|
Khaled H, Ghasemi Z, Inagaki M, Patel K, Naito Y, Feller B, Yi N, Bourojeni FB, Lee AK, Chofflet N, Kania A, Kosako H, Tachikawa M, Connor S, Takahashi H. The TrkC-PTPσ complex governs synapse maturation and anxiogenic avoidance via synaptic protein phosphorylation. EMBO J 2024:10.1038/s44318-024-00252-9. [PMID: 39333774 DOI: 10.1038/s44318-024-00252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The precise organization of pre- and postsynaptic terminals is crucial for normal synaptic function in the brain. In addition to its canonical role as a neurotrophin-3 receptor tyrosine kinase, postsynaptic TrkC promotes excitatory synapse organization through interaction with presynaptic receptor-type tyrosine phosphatase PTPσ. To isolate the synaptic organizer function of TrkC from its role as a neurotrophin-3 receptor, we generated mice carrying TrkC point mutations that selectively abolish PTPσ binding. The excitatory synapses in mutant mice had abnormal synaptic vesicle clustering and postsynaptic density elongation, more silent synapses, and fewer active synapses, which additionally exhibited enhanced basal transmission with impaired release probability. Alongside these phenotypes, we observed aberrant synaptic protein phosphorylation, but no differences in the neurotrophin signaling pathway. Consistent with reports linking these aberrantly phosphorylated proteins to neuropsychiatric disorders, mutant TrkC knock-in mice displayed impaired social responses and increased avoidance behavior. Thus, through its regulation of synaptic protein phosphorylation, the TrkC-PTPσ complex is crucial for the maturation, but not formation, of excitatory synapses in vivo.
Collapse
Affiliation(s)
- Husam Khaled
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Molecular Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Zahra Ghasemi
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Mai Inagaki
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Kyle Patel
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Yusuke Naito
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B2, Canada
| | - Benjamin Feller
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Neuroscience, Faculty of medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Nayoung Yi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Molecular Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Farin B Bourojeni
- Neural Circuit Development Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Alfred Kihoon Lee
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B2, Canada
| | - Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B2, Canada
| | - Artur Kania
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B2, Canada
- Neural Circuit Development Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Masanori Tachikawa
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan.
| | - Steven Connor
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada.
- Department of Molecular Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B2, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada.
| |
Collapse
|
2
|
Wietek J, Nozownik A, Pulin M, Saraf-Sinik I, Matosevich N, Gowrishankar R, Gat A, Malan D, Brown BJ, Dine J, Imambocus BN, Levy R, Sauter K, Litvin A, Regev N, Subramaniam S, Abrera K, Summarli D, Goren EM, Mizrachi G, Bitton E, Benjamin A, Copits BA, Sasse P, Rost BR, Schmitz D, Bruchas MR, Soba P, Oren-Suissa M, Nir Y, Wiegert JS, Yizhar O. A bistable inhibitory optoGPCR for multiplexed optogenetic control of neural circuits. Nat Methods 2024; 21:1275-1287. [PMID: 38811857 PMCID: PMC11239505 DOI: 10.1038/s41592-024-02285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein-coupled receptor pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable G-protein-coupled receptor that can suppress synaptic transmission in mammalian neurons with high temporal precision in vivo. PdCO has useful biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.
Collapse
Affiliation(s)
- Jonas Wietek
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Adrianna Nozownik
- Center for Molecular Neurobiology, Hamburg, Germany
- Paris Brain Institute, Institut du Cerveau (ICM), CNRS UMR 7225, INSERM U1127, Sorbonne Université, Paris, France
| | - Mauro Pulin
- Center for Molecular Neurobiology, Hamburg, Germany
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Matosevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Raajaram Gowrishankar
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Excellence in the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
| | - Asaf Gat
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Daniela Malan
- Institut für Physiologie I, University of Bonn, Bonn, Germany
| | - Bobbie J Brown
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Julien Dine
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- Boehringer Ingelheim Pharma GmbH & Co. KG; CNS Diseases, Biberach an der Riss, Germany
| | | | - Rivka Levy
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | | | - Anna Litvin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Regev
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Suraj Subramaniam
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Khalid Abrera
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Dustin Summarli
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Eva Madeline Goren
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- University of Michigan, Ann Arbor, MI, USA
| | - Gili Mizrachi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Bitton
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Benjamin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Bryan A Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp Sasse
- Institut für Physiologie I, University of Bonn, Bonn, Germany
| | - Benjamin R Rost
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neurosciences, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Excellence in the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Peter Soba
- LIMES-Institute, University of Bonn, Bonn, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - J Simon Wiegert
- Center for Molecular Neurobiology, Hamburg, Germany
- MCTN, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Ofer Yizhar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Wietek J, Nozownik A, Pulin M, Saraf-Sinik I, Matosevich N, Malan D, Brown BJ, Dine J, Levy R, Litvin A, Regev N, Subramaniam S, Bitton E, Benjamin A, Copits BA, Sasse P, Rost BR, Schmitz D, Soba P, Nir Y, Wiegert JS, Yizhar O. A bistable inhibitory OptoGPCR for multiplexed optogenetic control of neural circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.547328. [PMID: 37425961 PMCID: PMC10327178 DOI: 10.1101/2023.07.01.547328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein coupled receptor (GPCRs) pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision, or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable GPCR that can suppress synaptic transmission in mammalian neurons with high temporal precision in-vivo. PdCO has superior biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.
Collapse
Affiliation(s)
- Jonas Wietek
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Adrianna Nozownik
- Center for Molecular Neurobiology, Hamburg, Germany
- Present address: Paris Brain Institute, Institut du Cerveau (ICM), CNRS UMR 7225, INSERM U1127, Sorbonne Université, Paris, France
| | - Mauro Pulin
- Center for Molecular Neurobiology, Hamburg, Germany
- Present address: Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Matosevich
- Sagol school of neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Daniela Malan
- Institut für Physiologie I, Universität Bonn, Bonn, Germany
| | - Bobbie J. Brown
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Julien Dine
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- Present address: Boehringer Ingelheim Pharma GmbH & Co. KG; CNS Diseases, Biberach an der Riss, Germany
| | - Rivka Levy
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Litvin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Regev
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Suraj Subramaniam
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Bitton
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Benjamin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Bryan A. Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp Sasse
- Institut für Physiologie I, Universität Bonn, Bonn, Germany
| | - Benjamin R. Rost
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Peter Soba
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- LIMES-Institute, University of Bonn, Bonn, Germany
| | - Yuval Nir
- Sagol school of neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - J. Simon Wiegert
- Center for Molecular Neurobiology, Hamburg, Germany
- Present address: MCTN, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Ofer Yizhar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Pavlinek A, Matuleviciute R, Sichlinger L, Dutan Polit L, Armeniakos N, Vernon AC, Srivastava DP. Interferon-γ exposure of human iPSC-derived neurons alters major histocompatibility complex I and synapsin protein expression. Front Psychiatry 2022; 13:836217. [PMID: 36186864 PMCID: PMC9515429 DOI: 10.3389/fpsyt.2022.836217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Human epidemiological data links maternal immune activation (MIA) during gestation with increased risk for psychiatric disorders with a putative neurodevelopmental origin, including schizophrenia and autism. Animal models of MIA provide evidence for this association and suggest that inflammatory cytokines represent one critical link between maternal infection and any potential impact on offspring brain and behavior development. However, to what extent specific cytokines are necessary and sufficient for these effects remains unclear. It is also unclear how specific cytokines may impact the development of specific cell types. Using a human cellular model, we recently demonstrated that acute exposure to interferon-γ (IFNγ) recapitulates molecular and cellular phenotypes associated with neurodevelopmental disorders. Here, we extend this work to test whether IFNγ can impact the development of immature glutamatergic neurons using an induced neuronal cellular system. We find that acute exposure to IFNγ activates a signal transducer and activator of transcription 1 (STAT1)-pathway in immature neurons, and results in significantly increased major histocompatibility complex I (MHCI) expression at the mRNA and protein level. Furthermore, acute IFNγ exposure decreased synapsin I/II protein in neurons but did not affect the expression of synaptic genes. Interestingly, complement component 4A (C4A) gene expression was significantly increased following acute IFNγ exposure. This study builds on our previous work by showing that IFNγ-mediated disruption of relevant synaptic proteins can occur at early stages of neuronal development, potentially contributing to neurodevelopmental disorder phenotypes.
Collapse
Affiliation(s)
- Adam Pavlinek
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Rugile Matuleviciute
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Laura Sichlinger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Lucia Dutan Polit
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Nikolaos Armeniakos
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Anthony Christopher Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Deepak Prakash Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Yan P, Liu H, Zhou T, Sun P, Wang Y, Wang X, Zhang L, Wang T, Dong J, Zhu J, Lv L, Li W, Qi S, Liang Y, Kong E. Crosstalk of Synapsin1 palmitoylation and phosphorylation controls the dynamicity of synaptic vesicles in neurons. Cell Death Dis 2022; 13:786. [PMID: 36097267 PMCID: PMC9468182 DOI: 10.1038/s41419-022-05235-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023]
Abstract
The dynamics of synaptic vesicles (SVs) within presynaptic domains are tightly controlled by synapsin1 phosphorylation; however, the mechanism underlying the anchoring of synapsin1 with F-actin or SVs is not yet fully understood. Here, we found that Syn1 is modified with protein palmitoylation, and examining the roles of Syn1 palmitoylation in neurons led us to uncover that Syn1 palmitoylation is negatively regulated by its phosphorylation; together, they manipulate the clustering and redistribution of SVs. Using the combined approaches of electron microscopy and genetics, we revealed that Syn1 palmitoylation is vital for its binding with F-actin but not SVs. Inhibition of Syn1 palmitoylation causes defects in SVs clustering and a reduced number of total SVs in vivo. We propose a model in which SVs redistribution is triggered by upregulated Syn1 phosphorylation and downregulated Syn1 palmitoylation, and they reversibly promote SVs clustering. The crosstalk of Syn1 palmitoylation and phosphorylation thereby bidirectionally manipulates SVs dynamics in neurons.
Collapse
Affiliation(s)
- Peipei Yan
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China ,grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Huicong Liu
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China ,grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Tao Zhou
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Pu Sun
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Yilin Wang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Xibin Wang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Lin Zhang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Tian Wang
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Jing Dong
- grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| | - Jiangli Zhu
- grid.13291.380000 0001 0807 1581Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, 610041 Chengdu, China
| | - Luxian Lv
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shiqian Qi
- grid.13291.380000 0001 0807 1581Department of Urology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, 610041 Chengdu, China
| | - Yinming Liang
- grid.412990.70000 0004 1808 322XLaboratory of Genetic Regulators in the Immune System, Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Eryan Kong
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China ,grid.412990.70000 0004 1808 322XInstitute of Psychiatry and Neuroscience, Xinxiang key laboratory of protein palmitoylation and major human diseases, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
6
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
7
|
Giving names to the actors of synaptic transmission: The long journey from synaptic vesicles to neural plasticity. ADVANCES IN PHARMACOLOGY 2021; 90:19-37. [PMID: 33706933 DOI: 10.1016/bs.apha.2020.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
More than a scientific paper or a review article, this is a remembrance of a unique time of science and life that the authors spent in Paul Greengard's laboratory at the Rockefeller University in New York in the 1980s and 1990s, forming the so-called synaptic vesicle group. It was a time in which the molecular mechanisms of synaptic transmission and the nature of the organelles in charge of storing and releasing neurotransmitter were just beginning to be understood. It was an exciting time in which the protein composition of synaptic vesicles started to be identified. It turned out that the interactions of synaptic vesicle proteins with the cytoskeleton and the presynaptic membrane and their modulation by protein phosphorylation represented an essential network regulating the efficiency of neurotransmitter release and thereby synaptic strength and plasticity. This is also a description of the distinct scientific journeys that the three authors took on going back to Europe and how they were strongly influenced by the generous and outstanding mentorship of Paul Greengard, his genuine interest in their lives and careers and the life-long friendship with him.
Collapse
|
8
|
Merino P, Diaz A, Torre ER, Yepes M. Urokinase-type plasminogen activator (uPA) regulates the expression and function of growth-associated protein 43 (GAP-43) in the synapse. J Biol Chem 2019; 295:619-630. [PMID: 31819012 DOI: 10.1074/jbc.ra119.010644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/19/2019] [Indexed: 11/06/2022] Open
Abstract
Growth-associated protein 43 (GAP-43) plays a central role in the formation of presynaptic terminals, synaptic plasticity, and axonal growth and regeneration. During development, GAP-43 is found in axonal extensions of most neurons. In contrast, in the mature brain, its expression is restricted to a few presynaptic terminals and scattered axonal growth cones. Urokinase-type plasminogen activator (uPA) is a serine proteinase that, upon binding to its receptor (uPAR), catalyzes the conversion of plasminogen into plasmin and activates signaling pathways that promote cell migration, proliferation, and survival. In the developing brain, uPA induces neuritogenesis and neuronal migration. In contrast, the expression and function of uPA in the mature brain are poorly understood. However, recent evidence reveals that different forms of injury induce release of uPA and expression of uPAR in neurons and that uPA/uPAR binding triggers axonal growth and synapse formation. Here we show that binding of uPA to uPAR induces not only the mobilization of GAP-43 from the axonal shaft to the presynaptic terminal but also its activation in the axonal bouton by PKC-induced calcium-dependent phosphorylation at Ser-41 (pGAP-43). We found that this effect requires open presynaptic N-methyl-d-aspartate receptors but not plasmin generation. Furthermore, our work reveals that, following its activation by uPA/uPAR binding, pGAP-43 colocalizes with presynaptic vesicles and triggers their mobilization to the synaptic release site. Together, these data reveal a novel role of uPA as an activator of the synaptic vesicle cycle in cerebral cortical neurons via its ability to induce presynaptic recruitment and activation of GAP-43.
Collapse
Affiliation(s)
- Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208
| | - Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208
| | - Enrique R Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208; Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322-0001; Department of Neurology, Veterans Affairs Medical Center, Atlanta, Georgia 30033-4004.
| |
Collapse
|
9
|
SIV-Mediated Synaptic Dysfunction Is Associated with an Increase in Synapsin Site 1 Phosphorylation and Impaired PP2A Activity. J Neurosci 2019; 39:7006-7018. [PMID: 31270156 DOI: 10.1523/jneurosci.0178-19.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/31/2019] [Accepted: 06/22/2019] [Indexed: 11/21/2022] Open
Abstract
Although the reduction of viral loads in people with HIV undergoing combination antiretroviral therapy has mitigated AIDS-related symptoms, the prevalence of neurological impairments has remained unchanged. HIV-associated CNS dysfunction includes impairments in memory, attention, memory processing, and retrieval. Here, we show a significant site-specific increase in the phosphorylation of Syn I serine 9, site 1, in the frontal cortex lysates and synaptosome preparations of male rhesus macaques infected with simian immunodeficiency virus (SIV) but not in uninfected or SIV-infected antiretroviral therapy animals. Furthermore, we found that a lower protein phosphatase 2A (PP2A) activity, a phosphatase responsible for Syn I (S9) dephosphorylation, is primarily associated with the higher S9 phosphorylation in the frontal cortex of SIV-infected macaques. Comparison of brain sections confirmed higher Syn I (S9) in the frontal cortex and greater coexpression of Syn I and PP2A A subunit, which was observed as perinuclear aggregates in the somata of the frontal cortex of SIV-infected macaques. Synaptosomes from SIV-infected animals were physiologically tested using a synaptic vesicle endocytosis assay and FM4-64 dye showing a significantly higher baseline depolarization levels in synaptosomes of SIV+-infected than uninfected control or antiretroviral therapy animals. A PP2A-activating FDA-approved drug, FTY720, decreased the higher synaptosome depolarization in SIV-infected animals. Our results suggest that an impaired distribution and lower activity of serine/threonine phosphatases in the context of HIV infection may cause an indirect effect on the phosphorylation levels of essential proteins involving in synaptic transmission, supporting the occurrence of specific impairments in the synaptic activity during SIV infection.SIGNIFICANCE STATEMENT Even with antiretroviral therapy, neurocognitive deficits, including impairments in attention, memory processing, and retrieval, are still major concerns in people living with HIV. Here, we used the rhesus macaque simian immunodeficiency virus model with and without antiretroviral therapy to study the dynamics of phosphorylation of key amino acid residues of synapsin I, which critically impacts synaptic vesicle function. We found a significant increase in synapsin I phosphorylation at serine 9, which was driven by dysfunction of serine/threonine protein phosphatase 2A in the nerve terminals. Our results suggest that an impaired distribution and lower activity of serine/threonine phosphatases in the context of HIV infection may cause an indirect effect on the phosphorylation levels of essential proteins involved in synaptic transmission.
Collapse
|
10
|
Chen X, Wang X, Yang Y, Li Z, Zhang Y, Gao W, Xiao J, Li B. Schwann cells protect against CaMKII- and PKA-dependent Acrylamide-induced Synapsin I phosphorylation. Brain Res 2018; 1701:18-27. [PMID: 30028969 DOI: 10.1016/j.brainres.2018.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To explore the effects of Acrylamide (ACR), as well as the influence of Schwann cells (SCs), on the signal transduction pathway and phosphorylation of Synapsin I in a Human neuroblastoma cell line (NB-1). METHODS NB-1s, NB-1s co-cultured with SCs, and a negative control group (NB-1 cells without ACR) were exposed to gradient concentrations of ACR for 48 h. Cell proliferation and viability were determined by MTT. Protein and mRNA expression levels of typical kinases (i.e., cAMP-dependent protein kinase [PKA], calcium/calmodulin-dependent protein kinase II [CaMKII], and mitogen-activated protein kinase-extracellular signal-regulated kinases [MAPK-Erk]), their phosphorylation status, as well as Synapsin I and its phosphorylation status, were tested by western blotting and polymerase chain reaction, respectively. Further, the effect of SCs on ACR-induced NB-1 cell toxicity was evaluated. RESULTS (1) The MTT assay showed a sustained, dose- and time-dependent inhibition of NB-1s exposed to ACR. (2) ACR exposure increased the phosphorylation of CaMKII and PKA, which subsequently increased the phosphorylation of Synapsin I (at Serine603 [a substrate site of CaMKII] and Serine9 [a substrate site of PKA]). Pretreatment with CaMKII and PKA inhibitors blocked the ACR-mediated increase in phosphorylation. The above-described results were all significantly different when compared to the control group (p < 0.05). (3) When co-cultured with SCs, ACR-induced NB-1 inhibition was obviously decreased, and the trend of change of phosphorylated CaMKII, PKA, and Synapsin I were changed (first slightly increased and then decreased), which was inconsistent with what we observed in NB-1s cultured alone. CONCLUSIONS The toxic effects of ACR on neurons may be mediated by CaMKII and PKA-dependent signaling pathways in which Synapsin I may act as a downstream effector. Furthermore, glial cells (SCs) may be able to prevent a certain degree of ACR-induced neuronal damage.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiuhui Wang
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yiguang Yang
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Zhongsheng Li
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yi Zhang
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Weimin Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, West Virginia, USA
| | - Jingwei Xiao
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Bin Li
- Department of Toxicology, Key Lab of Chemical Safety and Health, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
11
|
Guarnieri FC, Pozzi D, Raimondi A, Fesce R, Valente MM, Delvecchio VS, Van Esch H, Matteoli M, Benfenati F, D'Adamo P, Valtorta F. A novel SYN1 missense mutation in non-syndromic X-linked intellectual disability affects synaptic vesicle life cycle, clustering and mobility. Hum Mol Genet 2018; 26:4699-4714. [PMID: 28973667 DOI: 10.1093/hmg/ddx352] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023] Open
Abstract
Intellectual Disability is a common and heterogeneous disorder characterized by limitations in intellectual functioning and adaptive behaviour, whose molecular mechanisms remain largely unknown. Among the numerous genes found to be involved in the pathogenesis of intellectual disability, 10% are located on the X-chromosome. We identified a missense mutation (c.236 C > G; p.S79W) in the SYN1 gene coding for synapsin I in the MRX50 family, affected by non-syndromic X-linked intellectual disability. Synapsin I is a neuronal phosphoprotein involved in the regulation of neurotransmitter release and neuronal development. Several mutations in SYN1 have been identified in patients affected by epilepsy and/or autism. The S79W mutation segregates with the disease in the MRX50 family and all affected members display intellectual disability as sole clinical manifestation. At the protein level, the S79W Synapsin I mutation is located in the region of the B-domain involved in recognition of highly curved membranes. Expression of human S79W Synapsin I in Syn1 knockout hippocampal neurons causes aberrant accumulation of small clear vesicles in the soma, increased clustering of synaptic vesicles at presynaptic terminals and increased frequency of excitatory spontaneous release events. In addition, the presence of S79W Synapsin I strongly reduces the mobility of synaptic vesicles, with possible implications for the regulation of neurotransmitter release and synaptic plasticity. These results implicate SYN1 in the pathogenesis of non-syndromic intellectual disability, showing that alterations of synaptic vesicle trafficking are one possible cause of this disease, and suggest that distinct mutations in SYN1 may lead to distinct brain pathologies.
Collapse
Affiliation(s)
- Fabrizia C Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.,San Raffaele Vita-Salute University, 20132 Milan, Italy
| | - Davide Pozzi
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Riccardo Fesce
- Centre of Neuroscience and DISTA, University of Insubria, 21100 Varese, Italy
| | - Maria M Valente
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, B3000 Leuven, Belgium
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy.,CNR Institute of Neuroscience, Milan, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Patrizia D'Adamo
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.,San Raffaele Vita-Salute University, 20132 Milan, Italy
| |
Collapse
|
12
|
Martin B, Wang R, Cong WN, Daimon CM, Wu WW, Ni B, Becker KG, Lehrmann E, Wood WH, Zhang Y, Etienne H, van Gastel J, Azmi A, Janssens J, Maudsley S. Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction. J Biol Chem 2017; 292:11508-11530. [PMID: 28522608 DOI: 10.1074/jbc.m116.773820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior.
Collapse
Affiliation(s)
- Bronwen Martin
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Rui Wang
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Wei-Na Cong
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Caitlin M Daimon
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Wells W Wu
- From the Metabolism Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Bin Ni
- the Receptor Pharmacology Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Kevin G Becker
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Elin Lehrmann
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - William H Wood
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Yongqing Zhang
- the Gene Expression and Genomics Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Harmonie Etienne
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Jaana van Gastel
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Abdelkrim Azmi
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Jonathan Janssens
- the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| | - Stuart Maudsley
- the Receptor Pharmacology Unit, NIA, National Institutes of Health, Baltimore, Maryland 21224, .,the Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, AN-2610 Antwerp, Belgium, and.,the Department of Biomedical Sciences, University of Antwerp, AN-2610 Antwerp, Belgium
| |
Collapse
|
13
|
Sphingosine-1-Phosphate (S1P) Impacts Presynaptic Functions by Regulating Synapsin I Localization in the Presynaptic Compartment. J Neurosci 2016; 36:4624-34. [PMID: 27098703 DOI: 10.1523/jneurosci.3588-15.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/16/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Growing evidence indicates that sphingosine-1-P (S1P) upregulates glutamate secretion in hippocampal neurons. However, the molecular mechanisms through which S1P enhances excitatory activity remain largely undefined. The aim of this study was to identify presynaptic targets of S1P action controlling exocytosis. Confocal analysis of rat hippocampal neurons showed that S1P applied at nanomolar concentration alters the distribution of Synapsin I (SynI), a presynaptic phosphoprotein that controls the availability of synaptic vesicles for exocytosis. S1P induced SynI relocation to extrasynaptic regions of mature neurons, as well as SynI dispersion from synaptic vesicle clusters present at axonal growth cones of developing neurons. S1P-induced SynI relocation occurred in a Ca(2+)-independent but ERK-dependent manner, likely through the activation of S1P3 receptors, as it was prevented by the S1P3 receptor selective antagonist CAY1044 and in neurons in which S1P3 receptor was silenced. Our recent evidence indicates that microvesicles (MVs) released by microglia enhance the metabolism of endogenous sphingolipids in neurons and stimulate excitatory transmission. We therefore investigated whether MVs affect SynI distribution and whether endogenous S1P could be involved in the process. Analysis of SynI immunoreactivity showed that exposure to microglial MVs induces SynI mobilization at presynaptic sites and growth cones, whereas the use of inhibitors of sphingolipid cascade identified S1P as the sphingolipid mediating SynI redistribution. Our data represent the first demonstration that S1P induces SynI mobilization from synapses, thereby indicating the phosphoprotein as a novel target through which S1P controls exocytosis. SIGNIFICANCE STATEMENT Growing evidence indicates that the bioactive lipid sphingosine and its metabolite sphingosine-1-P (S1P) stimulate excitatory transmission. While it has been recently clarified that sphingosine influences directly the exocytotic machinery by activating the synaptic vesicle protein VAMP2 to form SNARE fusion complexes, the molecular mechanism by which S1P promotes neurotransmission remained largely undefined. In this study, we identify Synapsin I, a presynaptic phosphoprotein involved in the control of availability of synaptic vesicles for exocytosis, as the key target of S1P action. In addition, we provide evidence that S1P can be produced at mature axon terminals as well as at immature growth cones in response to microglia-derived signals, which may be important to stabilize nascent synapses and to restore or potentiate transmission.
Collapse
|
14
|
Voelzmann A, Okenve-Ramos P, Qu Y, Chojnowska-Monga M, del Caño-Espinel M, Prokop A, Sanchez-Soriano N. Tau and spectraplakins promote synapse formation and maintenance through Jun kinase and neuronal trafficking. eLife 2016; 5:e14694. [PMID: 27501441 PMCID: PMC4977155 DOI: 10.7554/elife.14694] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/12/2016] [Indexed: 11/13/2022] Open
Abstract
The mechanisms regulating synapse numbers during development and ageing are essential for normal brain function and closely linked to brain disorders including dementias. Using Drosophila, we demonstrate roles of the microtubule-associated protein Tau in regulating synapse numbers, thus unravelling an important cellular requirement of normal Tau. In this context, we find that Tau displays a strong functional overlap with microtubule-binding spectraplakins, establishing new links between two different neurodegenerative factors. Tau and the spectraplakin Short Stop act upstream of a three-step regulatory cascade ensuring adequate delivery of synaptic proteins. This cascade involves microtubule stability as the initial trigger, JNK signalling as the central mediator, and kinesin-3 mediated axonal transport as the key effector. This cascade acts during development (synapse formation) and ageing (synapse maintenance) alike. Therefore, our findings suggest novel explanations for intellectual disability in Tau deficient individuals, as well as early synapse loss in dementias including Alzheimer's disease.
Collapse
Affiliation(s)
- Andre Voelzmann
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Pilar Okenve-Ramos
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Yue Qu
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Monika Chojnowska-Monga
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Manuela del Caño-Espinel
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Natalia Sanchez-Soriano
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
15
|
Ankolekar SM, Sikdar SK. Early postnatal exposure to lithium in vitro induces changes in AMPAR mEPSCs and vesicular recycling at hippocampal glutamatergic synapses. J Biosci 2016; 40:339-54. [PMID: 25963261 DOI: 10.1007/s12038-015-9527-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lithium is an effective mood stabilizer but its use is associated with many side effects. Electrophysiological recordings of miniature excitatory postsynaptic currents (mEPSCs) mediated by glutamate receptor AMPA-subtype (AMPARs) in hippocampal pyramidal neurons revealed that CLi (therapeutic concentration of 1 mM lithium, from days in vitro 4-10) decreased the mean amplitude and mean rectification index (RI) of AMPAR mEPSCs. Lowered mean RI indicate that contribution of Ca2+ -permeable AMPARs in synaptic events is higher in CLi neurons (supported by experiments sensitive to Ca2+ -permeable AMPAR modulation). Co-inhibiting PKA, GSK-3 beta and glutamate reuptake was necessary to bring about changes in AMPAR mEPSCs similar to that seen in CLi neurons. FM1-43 experiments revealed that recycling pool size was affected in CLi cultures. Results from minimum loading, chlorpromazine treatment and hyperosmotic treatment experiments indicate that endocytosis in CLi is affected while not much difference is seen in modes of exocytosis. CLi cultures did not show the high KCl associated presynaptic potentiation observed in control cultures. This study, by calling attention to long-term lithium-exposure-induced synaptic changes, might have implications in understanding the side effects such as CNS complications occurring in perinatally exposed babies and cognitive dulling seen in patients on lithium treatment.
Collapse
Affiliation(s)
- Shreya M Ankolekar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
16
|
Balakrishnan S, Niebert M, Richter DW. Rescue of Cyclic AMP Mediated Long Term Potentiation Impairment in the Hippocampus of Mecp2 Knockout (Mecp2(-/y) ) Mice by Rolipram. Front Cell Neurosci 2016; 10:15. [PMID: 26869885 PMCID: PMC4737891 DOI: 10.3389/fncel.2016.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/15/2016] [Indexed: 11/13/2022] Open
Abstract
Rett syndrome (RTT) patients experience learning difficulties and memory loss. Analogous deficits of hippocampal plasticity are reported in mouse models of RTT. To elucidate the underlying pathophysiology, we studied long term potentiation (LTP) at the CA3 to CA1 synapses in the hippocampus in acute brain slices from WT and Mecp2(-/y) mice, by either activating cAMP dependent pathway or using high frequency stimulation, by means of patch clamp. We have observed that, the NMDA channel current characteristics remain unchanged in the Mecp2(-/y) mice. The adenylyl cyclase (AC) agonist forskolin evoked a long lasting potentiation of evoked EPSCs in WT CA1 neurons, but only minimally enhanced the EPSCs in the Mecp2(-/y) mice. This weaker potentiation in Mecp2 (-/) (y) mice was ameliorated by application of phosphodiesterase 4 inhibitor rolipram. The hyperpolarization activated cyclic nucleotide gated channel current (I h) was potentiated to similar extent by forskolin in both phenotypes. Multiple tetanus induced cAMP-dependent plasticity was also impaired in the Mecp2 (-/) (y) mice, and was also partially rescued by rolipram. Western blot analysis of CA region of Mecp2 (-/) (y) mice hippocampus revealed more than twofold up-regulation of protein kinase A (PKA) regulatory subunits, while the expression of the catalytic subunit remained unchanged. We hypothesize that the overexpressed PKA regulatory subunits buffer cAMP and restrict the PKA mediated phosphorylation of target proteins necessary for LTP. Blocking the degradation of cAMP, thereby saturating the regulatory subunits alleviated this defect.
Collapse
Affiliation(s)
- Saju Balakrishnan
- Institute for Neuro and Sensory Physiology, University of Göttingen Göttingen, Germany
| | - Marcus Niebert
- Institute for Neuro and Sensory Physiology, University of Göttingen Göttingen, Germany
| | - Diethelm W Richter
- Institute for Neuro and Sensory Physiology, University of Göttingen Göttingen, Germany
| |
Collapse
|
17
|
Zhang Z, Chu SF, Mou Z, Gao Y, Wang ZZ, Wei GN, Chen NH. Ganglioside GQ1b induces dopamine release through the activation of Pyk2. Mol Cell Neurosci 2015; 71:102-13. [PMID: 26704905 DOI: 10.1016/j.mcn.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 12/04/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022] Open
Abstract
Growing evidence indicates that GQ1b, one of the gangliosides members, contributes to synaptic transmission and synapse formation. Previous studies have shown that GQ1b could enhance depolarization induced neurotransmitter release, while the role of GQ1b in asynchronous release is still largely unknown. Here in our result, we found low concentration of GQ1b, but not GT1b or GD1b (which were generated from GQ1b by plasma membrane-associated sialidases), evoked asynchronous dopamine (DA) release from both clonal rat pheochromocytoma PC12 cells and rat striatal slices significantly. The release peaked at 2 min after GQ1b exposure, and lasted for more than 6 min. This effect was caused by the enhancement of intracellular Ca(2+) and the activation of Pyk2. Inhibition of Pyk2 by PF-431396 (a dual inhibitor of Pyk2 and FAK) or Pyk2 siRNA abolished DA release induced by GQ1b. Moreover, Pyk2 Y402, but not other tyrosine site, was phosphorylated at the peaking time. The mutant of Pyk2 Y402 (Pyk2-Y402F) was built to confirm the essential role of Y402 activation. Further studies revealed that activated Pyk2 stimulated ERK1/2 and p-38, while only the ERK1/2 activation was indispensable for GQ1b induced DA release, which interacted with Synapsin I directly and led to its phosphorylation, then depolymerization of F-actin, thus contributed to DA release. In conclusion, low concentration of GQ1b is able to enhance asynchronous DA release through Pyk2/ERK/Synapsin I/actin pathway. Our findings provide new insights into the role of GQ1b in neuronal communication, and implicate the potential application of GQ1b in neurological disorders.
Collapse
Affiliation(s)
- Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shi-Feng Chu
- Key Laboratory of Diagnostics of Traditional Chinese Medicine, Collaborative Innovation Center of Digital Traditional Chinese Medicine, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zheng Mou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Gui-Ning Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Intracellular and extracellular O-linked N-acetylglucosamine in the nervous system. Exp Neurol 2015; 274:166-74. [DOI: 10.1016/j.expneurol.2015.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/16/2022]
|
19
|
Piccini A, Perlini LE, Cancedda L, Benfenati F, Giovedì S. Phosphorylation by PKA and Cdk5 Mediates the Early Effects of Synapsin III in Neuronal Morphological Maturation. J Neurosci 2015; 35:13148-59. [PMID: 26400944 PMCID: PMC6605445 DOI: 10.1523/jneurosci.1379-15.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 12/27/2022] Open
Abstract
Synapsin III (SynIII) is a neuron-specific phosphoprotein that plays a unique role in neuronal development. SynIII is phosphorylated by cAMP-dependent protein kinase (PKA) at a highly conserved phosphorylation site and by cyclin-dependent kinase-5 (Cdk5) at a newly described site. Although SynIII is known to be involved in axon elongation in vitro, the role of its phosphorylation by PKA and Cdk5 in the modulation of this process is unknown. We expressed either wild-type (WT) or phosphorylation-site mutants of SynIII in primary SynIII knock-out (KO) mouse neurons at early stages of in vitro development. Whereas the neurite elongation phenotype of SynIII KO neurons was fully rescued by the expression of WT SynIII, the expression of nonphosphorylatable and pseudo-phosphorylated PKA mutants was ineffective. Also, the nonphosphorylatable Cdk5 mutant was unable to rescue the neurite elongation phenotype of SynIII KO neurons. By contrast, the pseudo-phosphorylated mutant rescued the delay in neuronal maturation and axonal elongation, revealing a Cdk5-dependent regulation of SynIII function. Interestingly, SynIII KO neurons also exhibited decreased survival that was fully rescued by the expression of WT SynIII, but not by its phosphorylation mutants, and was associated with increased activated caspase3 and altered tropomyosin receptor kinase B isoform expression. These results indicate that PKA and Cdk5 phosphorylation is required for the physiological action of SynIII on axon specification and neurite outgrowth and that the expression of a functional SynIII is crucial for cell survival. Significance statement: Synapsin III is an atypical member of the synapsin family of synaptic vesicle-associated phosphoproteins that is precociously expressed in neurons and is downregulated afterward. Although experimental evidence suggests a specific role for Synapsin III in neuronal development, the molecular mechanisms are still largely unknown. We found that Synapsin III plays a central role in early stages of neuronal development involving neuronal survival, polarization, and neuritic growth and that these effects are dependent on phosphorylation by cAMP-dependent protein kinase and cyclin-dependent protein kinase-5. These results explain the recently described neurodevelopmental defects in the migration and orientation of Synapsin III-depleted cortical neurons and support the potential association of Synapsin III with neurodevelopmental disorders such as schizophrenia.
Collapse
Affiliation(s)
- Alessandra Piccini
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy, and
| | - Laura E Perlini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy, and Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Silvia Giovedì
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy, and
| |
Collapse
|
20
|
de Ceglia R, Chaabane L, Biffi E, Bergamaschi A, Ferrigno G, Amadio S, Del Carro U, Mazzocchi N, Comi G, Bianchi V, Taverna S, Forti L, D'Adamo P, Martino G, Menegon A, Muzio L. Down-sizing of neuronal network activity and density of presynaptic terminals by pathological acidosis are efficiently prevented by Diminazene Aceturate. Brain Behav Immun 2015; 45:263-76. [PMID: 25499583 DOI: 10.1016/j.bbi.2014.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 11/26/2022] Open
Abstract
Local acidosis is associated with neuro-inflammation and can have significant effects in several neurological disorders, including multiple sclerosis, brain ischemia, spinal cord injury and epilepsy. Despite local acidosis has been implicated in numerous pathological functions, very little is known about the modulatory effects of pathological acidosis on the activity of neuronal networks and on synaptic structural properties. Using non-invasive MRI spectroscopy we revealed protracted extracellular acidosis in the CNS of Experimental Autoimmune Encephalomyelitis (EAE) affected mice. By multi-unit recording in cortical neurons, we established that acidosis affects network activity, down-sizing firing and bursting behaviors as well as amplitudes. Furthermore, a protracted acidosis reduced the number of presynaptic terminals, while it did not affect the postsynaptic compartment. Application of the diarylamidine Diminazene Aceturate (DA) during acidosis significantly reverted both the loss of neuronal firing and bursting and the reduction of presynaptic terminals. Finally, in vivo DA delivery ameliorated the clinical disease course of EAE mice, reducing demyelination and axonal damage. DA is known to block acid-sensing ion channels (ASICs), which are proton-gated, voltage-insensitive, Na(+) permeable channels principally expressed by peripheral and central nervous system neurons. Our data suggest that ASICs activation during acidosis modulates network electrical activity and exacerbates neuro-degeneration in EAE mice. Therefore pharmacological modulation of ASICs in neuroinflammatory diseases could represent a new promising strategy for future therapies aimed at neuro-protection.
Collapse
Affiliation(s)
- Roberta de Ceglia
- Neuroimmunolgy Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Italy
| | - Linda Chaabane
- Neuroimmunolgy Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Italy; Department of Neurology, Institute of Experimental Neurology (INSPE), Vita Salute San Raffaele University, Milan, Italy
| | - Emilia Biffi
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy; Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Andrea Bergamaschi
- Neuroimmunolgy Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Italy
| | - Giancarlo Ferrigno
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| | - Stefano Amadio
- Neurophysiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Italy
| | - Ubaldo Del Carro
- Neurophysiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Italy
| | - Nausicaa Mazzocchi
- Advanced Light and Electron Microscopy Bio-Imaging Centre, Experimental Imaging Centre, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology (INSPE), Vita Salute San Raffaele University, Milan, Italy
| | - Veronica Bianchi
- Dulbecco Telethon Institute at San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milan, Italy
| | - Stefano Taverna
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Lia Forti
- Center for Neuroscience and Dept. of Theoretical and Applied Sciences, Biomedical Division, University of Insubria, 21052 Busto Arsizio, Italy
| | - Patrizia D'Adamo
- Dulbecco Telethon Institute at San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milan, Italy
| | - Gianvito Martino
- Neuroimmunolgy Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Italy.
| | - Andrea Menegon
- Advanced Light and Electron Microscopy Bio-Imaging Centre, Experimental Imaging Centre, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Muzio
- Neuroimmunolgy Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Italy.
| |
Collapse
|
21
|
Monocular deprivation delays the dynamic changes of phosphorylated synapsin Ia/b at site-1 in contralateral visual cortex of juvenile mice. Neurochem Res 2015; 40:524-30. [PMID: 25576091 DOI: 10.1007/s11064-014-1492-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 12/21/2022]
Abstract
Synapsins as a family of presynaptic terminal phosphoprotein participates in neuronal development, but their role in the synaptic plasticity of visual cortex is unclear. In this study, the impact of monocular deprivation (MD) on dynamic changes of isoform-specific protein expression and site 1 phosphorylation of synapsins in visual cortex of the postnatal mice were observed by using the technique of Western blot analysis. The results showed that the total (T-) protein levels of synapsins including the isoform of Ia/b, IIa/b and IIIa were about 21-26% of adult level in visual cortex of mice at postnatal 7 days (P7), and then the T-synapsin Ia/b and IIb could quickly reach adult level at P35. However, the T-synapsin IIa and IIIa increased more slowly (71-74% at P35), and then kept increasing in the visual cortex of mice at P60. Unlike to the changes of T-synapsins, the level of phosphorylated (P-) synapsin Ia/b (not IIa/b and IIIa) at site 1 increased with development to the highest level at P21, and then decreased rapidly to a low level in visual cortex of mice at P35-60. In addition, we found that the levels of P-synapsin Ia/b increased significantly in left visual cortex of P28 and P35 (not P21 and P42) mice with 1-week MD of right eye; and no significant changes of T-synapsins were observed in both left and right sides of visual cortex in P21-42 mice with MD treatment. These results suggested that the isoform-specific protein expression and site-1 phosphorylation of synapsins might play a different role in the synaptic plasticity of visual cortex, and MD delays the dynamic changes of phosphorylated synapsin Ia/b at site-1 in contralateral visual cortex of juvenile mice.
Collapse
|
22
|
Wang D, Ren M, Guo J, Yang G, Long X, Hu R, Shen W, Wang X, Zeng K. The inhibitory effects of Npas4 on seizures in pilocarpine-induced epileptic rats. PLoS One 2014; 9:e115801. [PMID: 25536221 PMCID: PMC4275263 DOI: 10.1371/journal.pone.0115801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/26/2014] [Indexed: 01/22/2023] Open
Abstract
To explore the effects of neuronal Per-Arnt-Sim domain protein 4 (Npas4) on seizures in pilocarpine-induced epileptic rats, Npas4 expression was detected by double-label immunofluorescence, immunohistochemistry, and Western blotting in the brains of pilocarpine-induced epileptic model rats at 6 h, 24 h, 72 h, 7 d, 14 d, 30 d, and 60 d after status epilepticus. Npas4 was localized primarily in the nucleus and in the cytoplasm of neurons. The Npas4 protein levels increased in the acute phase of seizures (between 6 h and 72 h) and decreased in the chronic phases (between 7 d and 60 d) in the rat model. Npas4 expression was knocked down by specific siRNA interference. Then, the animals were treated with pilocarpine, and the effects on seizures were evaluated on the 7th day. The onset latencies of pilocarpine-induced seizures were decreased, while the seizure frequency, duration and attack rate increased in these rats. Our study indicates that Npas4 inhibits seizure attacks in pilocarpine-induced epileptic rats.
Collapse
Affiliation(s)
- Dan Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Min Ren
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Jiamei Guo
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guang Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xianghua Long
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Rong Hu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Wenjing Shen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xuefeng Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Kebin Zeng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
- * E-mail:
| |
Collapse
|
23
|
O’Neal-Moffitt G, Pilli J, Kumar S, Olcese J. Genetic deletion of MT1/MT2 melatonin receptors enhances murine cognitive and motor performance. Neuroscience 2014; 277:506-21. [DOI: 10.1016/j.neuroscience.2014.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 12/13/2022]
|
24
|
Matsumoto JPP, Almeida MG, Castilho-Martins EA, Costa MA, Fior-Chadi DR. Protein kinase A mediates adenosine A2a receptor modulation of neurotransmitter release via synapsin I phosphorylation in cultured cells from medulla oblongata. Neurosci Res 2014; 85:1-11. [PMID: 24912137 DOI: 10.1016/j.neures.2014.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 04/09/2014] [Accepted: 05/07/2014] [Indexed: 01/25/2023]
Abstract
Synaptic transmission is an essential process for neuron physiology. Such process is enabled in part due to modulation of neurotransmitter release. Adenosine is a synaptic modulator of neurotransmitter release in the Central Nervous System, including neurons of medulla oblongata, where several nuclei are involved with neurovegetative reflexes. Adenosine modulates different neurotransmitter systems in medulla oblongata, specially glutamate and noradrenaline in the nucleus tractussolitarii, which are involved in hypotensive responses. However, the intracellular mechanisms involved in this modulation remain unknown. The adenosine A2a receptor modulates neurotransmitter release by activating two cAMP protein effectors, the protein kinase A and the exchange protein activated by cAMP. Therefore, an in vitro approach (cultured cells) was carried out to evaluate modulation of neurotransmission by adenosine A2a receptor and the signaling intracellular pathway involved. Results show that the adenosine A2a receptor agonist, CGS 21680, increases neurotransmitter release, in particular, glutamate and noradrenaline and such response is mediated by protein kinase A activation, which in turn increased synapsin I phosphorylation. This suggests a mechanism of A2aR modulation of neurotransmitter release in cultured cells from medulla oblongata of Wistar rats and suggest that protein kinase A mediates this modulation of neurotransmitter release via synapsin I phosphorylation.
Collapse
Affiliation(s)
| | - Marina Gomes Almeida
- Department of Physiology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Maisa Aparecida Costa
- Department of Physiology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
25
|
Park AJ, Havekes R, Choi JH, Luczak V, Nie T, Huang T, Abel T. A presynaptic role for PKA in synaptic tagging and memory. Neurobiol Learn Mem 2014; 114:101-112. [PMID: 24882624 DOI: 10.1016/j.nlm.2014.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/01/2014] [Accepted: 05/04/2014] [Indexed: 12/14/2022]
Abstract
Protein kinase A (PKA) and other signaling molecules are spatially restricted within neurons by A-kinase anchoring proteins (AKAPs). Although studies on compartmentalized PKA signaling have focused on postsynaptic mechanisms, presynaptically anchored PKA may contribute to synaptic plasticity and memory because PKA also regulates presynaptic transmitter release. Here, we examine this issue using genetic and pharmacological application of Ht31, a PKA anchoring disrupting peptide. At the hippocampal Schaffer collateral CA3-CA1 synapse, Ht31 treatment elicits a rapid decay of synaptic responses to repetitive stimuli, indicating a fast depletion of the readily releasable pool of synaptic vesicles. The interaction between PKA and proteins involved in producing this pool of synaptic vesicles is supported by biochemical assays showing that synaptic vesicle protein 2 (SV2), Rim1, and SNAP25 are components of a complex that interacts with cAMP. Moreover, acute treatment with Ht31 reduces the levels of SV2. Finally, experiments with transgenic mouse lines, which express Ht31 in excitatory neurons at the Schaffer collateral CA3-CA1 synapse, highlight a requirement for presynaptically anchored PKA in pathway-specific synaptic tagging and long-term contextual fear memory. These results suggest that a presynaptically compartmentalized PKA is critical for synaptic plasticity and memory by regulating the readily releasable pool of synaptic vesicles.
Collapse
Affiliation(s)
- Alan Jung Park
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Robbert Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Jennifer Hk Choi
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Vince Luczak
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Ting Nie
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.,Department of Pediatrics, Emory University, VAMC, 1670 Clairmont Rd Atlanta, GA 30033, USA
| | - Ted Huang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| |
Collapse
|
26
|
Abstract
The elongation rate of axons is tightly regulated during development. Recycling of the plasma membrane is known to regulate axon extension; however, the specific molecules involved in recycling within the growth cone have not been fully characterized. Here, we investigated whether the small GTPases Rab4 and Rab5 involved in short-loop recycling regulate the extension of Xenopus retinal axons. We report that, in growth cones, Rab5 and Rab4 proteins localize to endosomes, which accumulate markers that are constitutively recycled. Fluorescence recovery after photo-bleaching experiments showed that Rab5 and Rab4 are recruited to endosomes in the growth cone, suggesting that they control recycling locally. Dynamic image analysis revealed that Rab4-positive carriers can bud off from Rab5 endosomes and move to the periphery of the growth cone, suggesting that both Rab5 and Rab4 contribute to recycling within the growth cone. Inhibition of Rab4 function with dominant-negative Rab4 or Rab4 morpholino and constitutive activation of Rab5 decreases the elongation of retinal axons in vitro and in vivo, but, unexpectedly, does not disrupt axon pathfinding. Thus, Rab5- and Rab4-mediated control of endosome trafficking appears to be crucial for axon growth. Collectively, our results suggest that recycling from Rab5-positive endosomes via Rab4 occurs within the growth cone and thereby supports axon elongation.
Collapse
|
27
|
Vasileva M, Renden R, Horstmann H, Gitler D, Kuner T. Overexpression of synapsin Ia in the rat calyx of Held accelerates short-term plasticity and decreases synaptic vesicle volume and active zone area. Front Cell Neurosci 2013; 7:270. [PMID: 24391547 PMCID: PMC3868894 DOI: 10.3389/fncel.2013.00270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/04/2013] [Indexed: 01/10/2023] Open
Abstract
Synapsins are synaptic vesicle (SV) proteins organizing a component of the reserve pool of vesicles at most central nervous system synapses. Alternative splicing of the three mammalian genes results in multiple isoforms that may differentially contribute to the organization and maintenance of the SV pools. To address this, we first characterized the expression pattern of synapsin isoforms in the rat calyx of Held. At postnatal day 16, synapsins Ia, Ib, IIb and IIIa were present, while IIa-known to sustain repetitive transmission in glutamatergic terminals-was not detectable. To test if the synapsin I isoforms could mediate IIa-like effect, and if this depends on the presence of the E-domain, we overexpressed either synapsin Ia or synapsin Ib in the rat calyx of Held via recombinant adeno-associated virus-mediated gene transfer. Although the size and overall structure of the perturbed calyces remained unchanged, short-term depression and recovery from depression were accelerated upon overexpression of synapsin I isoforms. Using electron microscopic three-dimensional reconstructions we found a redistribution of SV clusters proximal to the active zones (AZ) alongside with a decrease of both AZ area and SV volume. The number of SVs at individual AZs was strongly reduced. Hence, our data indicate that the amount of synapsin Ia expressed in the calyx regulates the rate and extent of short-term synaptic plasticity by affecting vesicle recruitment to the AZ. Finally, our study reveals a novel contribution of synapsin Ia to define the surface area of AZs.
Collapse
Affiliation(s)
- Mariya Vasileva
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Robert Renden
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Heinz Horstmann
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Thomas Kuner
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| |
Collapse
|
28
|
Akiyama H, Kamiguchi H. Second messenger networks for accurate growth cone guidance. Dev Neurobiol 2013; 75:411-22. [PMID: 24285606 DOI: 10.1002/dneu.22157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 02/02/2023]
Abstract
Growth cones are able to navigate over long distances to find their appropriate target by following guidance cues that are often presented to them in the form of an extracellular gradient. These external cues are converted into gradients of specific signaling molecules inside growth cones, while at the same time these internal signals are amplified. The amplified instruction is then used to generate asymmetric changes in the growth cone turning machinery so that one side of the growth cone migrates at a rate faster than the other side, and thus the growth cone turns toward or away from the external cue. This review examines how signal specification and amplification can be achieved inside the growth cone by multiple second messenger signaling pathways activated downstream of guidance cues. These include the calcium ion, cyclic nucleotide, and phosphatidylinositol signaling pathways.
Collapse
Affiliation(s)
- Hiroki Akiyama
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
29
|
Easley-Neal C, Fierro J, Buchanan J, Washbourne P. Late recruitment of synapsin to nascent synapses is regulated by Cdk5. Cell Rep 2013; 3:1199-212. [PMID: 23602570 DOI: 10.1016/j.celrep.2013.03.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/05/2013] [Accepted: 03/20/2013] [Indexed: 11/17/2022] Open
Abstract
Synapse formation is a complex process that involves the recruitment and assembly of a myriad of pre- and postsynaptic proteins. Despite being present at every synapse in the vertebrate CNS, little is known about the transport, recruitment, and stabilization of synapsin at nascent synapses during development. We examined the transport and recruitment of synapsin to nascent presynaptic terminals in vivo in the developing zebrafish spinal cord. Synapsin was transported in a transport packet independently of two other presynaptic organelles: synaptic vesicle (SV) protein transport vesicles (STVs) and Piccolo-containing active zone precursor transport vesicles (PTVs). During presynaptic assembly, recruitment of all three transport packets occurred in an ordered sequence: STVs preceded PTVs, which in turn preceded synapsin. Importantly, cyclin-dependent kinase 5 (Cdk5) specifically regulated the late recruitment of synapsin transport packets at synapses. These results point to additional layers of complexity in the established mechanisms of synaptogenesis.
Collapse
|
30
|
Yun J, Nagai T, Furukawa-Hibi Y, Kuroda K, Kaibuchi K, Greenberg ME, Yamada K. Neuronal Per Arnt Sim (PAS) domain protein 4 (NPAS4) regulates neurite outgrowth and phosphorylation of synapsin I. J Biol Chem 2012; 288:2655-64. [PMID: 23172225 DOI: 10.1074/jbc.m112.413310] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuronal Per Arnt Sim domain protein 4 (NPAS4), a brain-specific basic helix-loop-helix transcription factor, has recently been shown to regulate the development of the GABAergic inhibitory synapses and transcription program for contextual memory formation in the hippocampus. We previously reported that chronic social isolation or restriction stress in mice resulted in an impairment in memory and emotional behavior, which was associated with a decrease in Npas4 mRNA levels. In this study, we investigated the role of NPAS4 in neuronal function in vitro and in vivo. Differentiation medium-induced neurite outgrowth was inhibited in Npas4 knockdown Neuro2a cells, whereas overexpression of NPAS4 accelerated the neurite outgrowth in Neuro2a cells. Furthermore, depolarization-induced neurite outgrowth was abolished in Npas4 KO hippocampal neurons. NPAS4 overexpression increased cyclin-dependent kinase 5 (CDK5)-dependent synapsin I phosphorylation in Neuro2a cells and primary cultured hippocampal neurons. A CDK5 inhibitor, roscovitine, inhibited the neurite outgrowth and the increase in phosphorylated synapsin I (p-SYN I) levels in Npas4-overexpressed Neuro2a cells. Interaction of NPAS4 with promoters of Cdk5 and NeuN genes was demonstrated by a chromatin immunoprecipitation assay. In an in vivo study, pentylenetetrazole-induced convulsions in mice resulted in an increase in NPAS4 and p-SYN I levels in the prefrontal cortex of wild-type mice, although no changes in p-SYN I levels were observed in Npas4 knock-out mice. These results suggest that NPAS4 plays an important role in the structural and functional plasticity of neurons.
Collapse
Affiliation(s)
- Jaesuk Yun
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 466-8560, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Synapsins contribute to the dynamic spatial organization of synaptic vesicles in an activity-dependent manner. J Neurosci 2012; 32:12214-27. [PMID: 22933803 DOI: 10.1523/jneurosci.1554-12.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The precise subcellular organization of synaptic vesicles (SVs) at presynaptic sites allows for rapid and spatially restricted exocytotic release of neurotransmitter. The synapsins (Syns) are a family of presynaptic proteins that control the availability of SVs for exocytosis by reversibly tethering them to each other and to the actin cytoskeleton in a phosphorylation-dependent manner. Syn ablation leads to reduction in the density of SV proteins in nerve terminals and increased synaptic fatigue under high-frequency stimulation, accompanied by the development of an epileptic phenotype. We analyzed cultured neurons from wild-type and Syn I,II,III(-/-) triple knock-out (TKO) mice and found that SVs were severely dispersed in the absence of Syns. Vesicle dispersion did not affect the readily releasable pool of SVs, whereas the total number of SVs was considerably reduced at synapses of TKO mice. Interestingly, dispersion apparently involved exocytosis-competent SVs as well; it was not affected by stimulation but was reversed by chronic neuronal activity blockade. Altogether, these findings indicate that Syns are essential to maintain the dynamic structural organization of synapses and the size of the reserve pool of SVs during intense SV recycling, whereas an additional Syn-independent mechanism, whose molecular substrate remains to be clarified, targets SVs to synaptic boutons at rest and might be outpaced by activity.
Collapse
|
32
|
Lontay B, Pál B, Serfőző Z, Kőszeghy Á, Szücs G, Rusznák Z, Erdődi F. Protein phosphatase-1M and Rho-kinase affect exocytosis from cortical synaptosomes and influence neurotransmission at a glutamatergic giant synapse of the rat auditory system. J Neurochem 2012; 123:84-99. [PMID: 22817114 DOI: 10.1111/j.1471-4159.2012.07882.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein phosphatase-1M (PP1M, myosin phosphatase) consists of a PP1 catalytic subunit (PP1c) and the myosin phosphatase target subunit-1 (MYPT1). RhoA-activated kinase (ROK) regulates PP1M via inhibitory phosphorylation of MYPT1. Using multidisciplinary approaches, we have studied the roles of PP1M and ROK in neurotransmission. Electron microscopy demonstrated the presence of MYPT1 and ROK in both pre- and post-synaptic terminals. Tautomycetin (TMC), a PP1-specific inhibitor, decreased the depolarization-induced exocytosis from cortical synaptosomes. trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride, a ROK-specific inhibitor, had the opposite effect. Mass spectrometry analysis identified several MYPT1-bound synaptosomal proteins, of which interactions of synapsin-I, syntaxin-1, calcineurin-A subunit, and Ca(2+) /calmodulin-dependent kinase II with MYPT1 were confirmed. In intact synaptosomes, TMC increased, whereas Y27632 decreased the phosphorylation levels of MYPT1(Thr696) , myosin-II light chain(Ser19) , synapsin-I(Ser9) , and syntaxin-1(Ser14) , indicating that PP1M and ROK influence their phosphorylation status. Confocal microscopy indicated that MYPT1 and ROK are present in the rat ventral cochlear nucleus both pre- and post-synaptically. Analysis of the neurotransmission in an auditory glutamatergic giant synapse demonstrated that PP1M and ROK affect neurotransmission via both pre- and post-synaptic mechanisms. Our data suggest that both PP1M and ROK influence synaptic transmission, but further studies are needed to give a full account of their mechanism of action.
Collapse
Affiliation(s)
- Beáta Lontay
- Department of Medical Chemistry and Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
33
|
Synaptic functions of invertebrate varicosities: what molecular mechanisms lie beneath. Neural Plast 2012; 2012:670821. [PMID: 22655209 PMCID: PMC3359714 DOI: 10.1155/2012/670821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/27/2012] [Indexed: 11/26/2022] Open
Abstract
In mammalian brain, the cellular and molecular events occurring in both synapse formation and plasticity are difficult to study due to the large number of factors involved in these processes and because the contribution of each component is not well defined. Invertebrates, such as Drosophila, Aplysia, Helix, Lymnaea, and Helisoma, have proven to be useful models for studying synaptic assembly and elementary forms of learning. Simple nervous system, cellular accessibility, and genetic simplicity are some examples of the invertebrate advantages that allowed to improve our knowledge about evolutionary neuronal conserved mechanisms. In this paper, we present an overview of progresses that elucidates cellular and molecular mechanisms underlying synaptogenesis and synapse plasticity in invertebrate varicosities and their validation in vertebrates. In particular, the role of invertebrate synapsin in the formation of presynaptic terminals and the cell-to-cell interactions that induce specific structural and functional changes in their respective targets will be analyzed.
Collapse
|
34
|
Gelsomino G, Menna E, Antonucci F, Rodighiero S, Riganti L, Mulle C, Benfenati F, Valtorta F, Verderio C, Matteoli M. Kainate Induces Mobilization of Synaptic Vesicles at the Growth Cone through the Activation of Protein Kinase A. Cereb Cortex 2012; 23:531-41. [DOI: 10.1093/cercor/bhs026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Abstract
Epilepsy is characterized by spontaneous recurrent seizures and comprises a diverse group of syndromes with different etiologies. Epileptogenesis refers to the process whereby the brain becomes epileptic and can be related to several factors, such as acquired structural brain lesions, inborn brain malformations, alterations in neuronal signaling, and defects in maturation and plasticity of neuronal networks. In this review, we will focus on alterations of brain development that lead to an hyperexcitability phenotype in adulthood, providing examples from both animal and human studies. Malformations of cortical development (including focal cortical dysplasia, lissencephaly, heterotopia, and polymicrogyria) are frequently epileptogenic and result from defects in cell proliferation in the germinal zone and/or impaired neuronal migration and differentiation. Delayed or reduced arrival of inhibitory interneurons into the cortical plate is another possible cause of epileptogenesis. GABAergic neurons are generated during early development in the ganglionic eminences, and failure to pursue migration toward the cortex alters the excitatory/inhibitory balance resulting in aberrant network hyperexcitability. More subtle defects in the developmental assembly of excitatory and inhibitory synapses are also involved in epilepsy. For example, mutations in the presynaptic proteins synapsins and SNAP-25 cause derangements of synaptic transmission and plasticity which underlie appearance of an epileptic phenotype. Finally, there is evidence that defects in synapse elimination and remodeling during early "critical periods" can trigger hyperexcitability later in life. Further clarification of the developmental pathways to epilepsy has important implications for disease prevention and therapy.
Collapse
Affiliation(s)
- Yuri Bozzi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Trento, Italy
| | | | | |
Collapse
|
36
|
Perlini LE, Botti F, Fornasiero EF, Giannandrea M, Bonanomi D, Amendola M, Naldini L, Benfenati F, Valtorta F. Effects of phosphorylation and neuronal activity on the control of synapse formation by synapsin I. J Cell Sci 2011; 124:3643-53. [DOI: 10.1242/jcs.086223] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synapsins are synaptic vesicle (SV)-associated proteins that regulate synaptic transmission and neuronal differentiation. At early stages, Syn I and II phosphorylation at Ser9 by cAMP-dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase I/IV modulates axon elongation and SV-precursor dynamics. We evaluated the requirement of Syn I for synapse formation by siRNA-mediated knockdown as well as by overexpression of either its wild-type (WT) form or its phosphorylation mutants. Syn1 knockdown at 14 days in vitro caused a decrease in the number of synapses, accompanied by a reduction of SV recycling. Although overexpression of WT Syn I was ineffective, overexpression of its phosphorylation mutants resulted in a complex temporal regulation of synapse density. At early stages of synaptogenesis, phosphomimetic Syn I S9E significantly increased the number of synapses. Conversely, dephosphomimetic Syn I S9A decreased synapse number at more advanced stages. Overexpression of either WT Syn I or its phosphomimetic S9E mutant rescued the decrease in synapse number caused by chronic treatment with tetrodotoxin at early stages, suggesting that Syn I participates in an alternative PKA-dependent mechanism that can compensate for the impairment of the activity-dependent synaptogenic pathway. Altogether these results indicate that Syn I is an important regulator of synapse formation, which adjusts synapse number in response to extracellular signals.
Collapse
Affiliation(s)
- Laura E. Perlini
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Francesca Botti
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Eugenio F. Fornasiero
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Maila Giannandrea
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Dario Bonanomi
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
| | - Mario Amendola
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
- TIGET, Telethon Institute for Genetics and Medicine, Via Olgettina 58, 20132 Milano, Italy
| | - Luigi Naldini
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
- TIGET, Telethon Institute for Genetics and Medicine, Via Olgettina 58, 20132 Milano, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
- Department of Experimental Medicine, Section of Physiology, University of Genoa and National Institute of Neuroscience, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Flavia Valtorta
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
37
|
Valtorta F, Pozzi D, Benfenati F, Fornasiero EF. The synapsins: multitask modulators of neuronal development. Semin Cell Dev Biol 2011; 22:378-86. [PMID: 21798361 DOI: 10.1016/j.semcdb.2011.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/13/2011] [Indexed: 01/10/2023]
Abstract
Neurons are examples of specialized cells that evolved the extraordinary ability to transmit electrochemical information in complex networks of interconnected cells. During their development, neurons undergo precisely regulated processes that define their lineage, positioning, morphogenesis and pattern of activity. The events leading to the establishment of functional neuronal networks follow a number of key steps, including asymmetric cell division from neuronal precursors, migration, establishment of polarity, neurite outgrowth and synaptogenesis. Synapsins are a family of abundant neuronal phosphoproteins that have been extensively studied for their role in the regulation of neurotransmission in presynaptic terminals. Beside their implication in the homeostasis of adult cells, synapsins influence the development of young neurons, interacting with cytoskeletal and vesicular components and regulating their dynamics. Although the exact molecular mechanisms determining synapsin function in neuronal development are still largely unknown, in this review we summarize the most important literature on the subject, providing a conceptual framework for the progress of present and future research.
Collapse
Affiliation(s)
- Flavia Valtorta
- San Raffaele Scientific Institute and Vita-Salute University, Via Olgettina 58, Milano, Italy.
| | | | | | | |
Collapse
|
38
|
Humeau Y, Candiani S, Ghirardi M, Poulain B, Montarolo P. Functional roles of synapsin: Lessons from invertebrates. Semin Cell Dev Biol 2011; 22:425-33. [DOI: 10.1016/j.semcdb.2011.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/13/2011] [Indexed: 12/18/2022]
|
39
|
Itofusa R, Kamiguchi H. Polarizing membrane dynamics and adhesion for growth cone navigation. Mol Cell Neurosci 2011; 48:332-8. [PMID: 21459144 DOI: 10.1016/j.mcn.2011.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022] Open
Abstract
Neuronal network formation relies on the motile behavior of growth cones at the tip of navigating axons. Accumulating evidence indicates that growth cone motility requires spatially controlled endocytosis and exocytosis that can redistribute bulk membrane and functional cargos such as cell adhesion molecules. For axon elongation, the growth cone recycles cell adhesion molecules from its rear to its leading front through endosomes, thereby polarizing growth cone adhesiveness along the axis of migration direction. In response to extracellular guidance cues, the growth cone turns by retrieving membrane components from the retractive side or by supplying them to the side facing the new direction. We propose that polarized membrane trafficking creates adhesion gradients along and across the front-to-rear axis of growth cones that are essential for axon elongation and turning, respectively. This review will examine how growth cone adhesiveness can be patterned by spatially coordinated endocytosis and exocytosis of cell adhesion molecules. This article is part of a Special Issue entitled 'Neuronal Function'.
Collapse
Affiliation(s)
- Rurika Itofusa
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | | |
Collapse
|
40
|
Second messengers and membrane trafficking direct and organize growth cone steering. Nat Rev Neurosci 2011; 12:191-203. [PMID: 21386859 DOI: 10.1038/nrn2996] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graded distributions of extracellular cues guide developing axons toward their targets. A network of second messengers - Ca(2+) and cyclic nucleotides - shapes cue-derived information into either attractive or repulsive signals that steer growth cones bidirectionally. Emerging evidence suggests that such guidance signals create a localized imbalance between exocytosis and endocytosis, which in turn redirects membrane, adhesion and cytoskeletal components asymmetrically across the growth cone to bias the direction of axon extension. These recent advances allow us to propose a unifying model of how the growth cone translates shallow gradients of environmental information into polarized activity of the steering machinery for axon guidance.
Collapse
|
41
|
Cousin MA, Evans GJO. Activation of silent and weak synapses by cAMP-dependent protein kinase in cultured cerebellar granule neurons. J Physiol 2011; 589:1943-55. [PMID: 21486806 DOI: 10.1113/jphysiol.2010.200477] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Presynaptic long term potentiation of synaptic transmission activates silent synapses and potentiates existing active synapses. We sought to visualise these two processes by studying the cAMP-dependent protein kinase (PKA) potentiation of presynaptic vesicle cycling in cultured cerebellar granule neurons.Using FM dyes to label the pool of recycling synaptic vesicles,we found that trains of electrical stimulation which do not potentiate already active synapses are sufficient to rapidly activate a discrete population comprising silent and very low activity synapses. Silent synapse activation required PKA activity and conversely, active synapses could be silenced by PKA inhibition. Surprisingly, the recycling pool of synaptic vesicles in recently activated synapses was larger than in already active synapses and equivalent to synapses treated with forskolin. Imaging of synaptic vesicle cycling and cytosolic Ca(2+) in individual nerve terminals confirmed that silent synapses have evoked Ca(2+) transients comparable to those of active synapses. Furthermore, across populations of active synapses, changes in Ca(2+) influx did not correlate with changes in the size of the pool of recycling synaptic vesicles. Finally, we found that stimulation of synapsin phosphorylation, but not RIM1α, by PKA was frequency dependent and long lasting. These data are consistent with the idea that PKA regulates synaptic vesicle recycling downstream of Ca(2+) influx and that this pathway is highly active in recently activated synapses.
Collapse
Affiliation(s)
- Michael A Cousin
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
42
|
A novel form of presynaptic plasticity based on the fast reactivation of release sites switched off during low-frequency depression. J Neurosci 2011; 30:16679-91. [PMID: 21148007 DOI: 10.1523/jneurosci.3644-09.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repetitive firing of neurons at a low frequency often leads to a decrease in synaptic strength. The mechanism of this low-frequency depression (LFD) is poorly understood. Here, LFD was studied at Aplysia cholinergic synapses. The absence of a significant change in the paired-pulse ratio during LFD, together with the facts that neither the time course nor the extent of LFD were affected by the initial release probability, suggests that LFD is not related to a depletion of the ready-to-fuse synaptic vesicles (SVs) or to a decrease in the release probability, but results from the silencing of a subpopulation of release sites. A subset of SVs or release sites, which acquired a high release probability status during LFD, permits synapses to rapidly and temporarily recover the initial synaptic strength when the stimulation is stopped. However, the recovery of the full capacity of the synapse to sustain repetitive stimulations is slow and involves spontaneous reactivation of the silent release sites. Application of tetanic stimulations accelerates this recovery by immediately switching on the silent sites. This high-frequency-dependent phenomenon underlies a new form of synaptic plasticity that allows resetting of presynaptic efficiency independently of the recent history of the synapse. Microinjection of a mutated Aplysia synapsin that cannot be phosphorylated by cAMP-dependent protein kinase (PKA), or a PKA inhibitor both prevented high-frequency-dependent awakening of release sites. Changes in the firing pattern of neurons appear to be able to regulate the on-off status of release sites via a molecular cascade involving PKA-dependent phosphorylation of synapsin.
Collapse
|
43
|
De Franchi E, Schalon C, Messa M, Onofri F, Benfenati F, Rognan D. Binding of protein kinase inhibitors to synapsin I inferred from pair-wise binding site similarity measurements. PLoS One 2010; 5:e12214. [PMID: 20808948 PMCID: PMC2922380 DOI: 10.1371/journal.pone.0012214] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 07/26/2010] [Indexed: 11/18/2022] Open
Abstract
Predicting off-targets by computational methods is getting increasing importance in early drug discovery stages. We herewith present a computational method based on binding site three-dimensional comparisons, which prompted us to investigate the cross-reaction of protein kinase inhibitors with synapsin I, an ATP-binding protein regulating neurotransmitter release in the synapse. Systematic pair-wise comparison of the staurosporine-binding site of the proto-oncogene Pim-1 kinase with 6,412 druggable protein-ligand binding sites suggested that the ATP-binding site of synapsin I may recognize the pan-kinase inhibitor staurosporine. Biochemical validation of this hypothesis was realized by competition experiments of staurosporine with ATP-gamma(35)S for binding to synapsin I. Staurosporine, as well as three other inhibitors of protein kinases (cdk2, Pim-1 and casein kinase type 2), effectively bound to synapsin I with nanomolar affinities and promoted synapsin-induced F-actin bundling. The selective Pim-1 kinase inhibitor quercetagetin was shown to be the most potent synapsin I binder (IC50 = 0.15 microM), in agreement with the predicted binding site similarities between synapsin I and various protein kinases. Other protein kinase inhibitors (protein kinase A and chk1 inhibitor), kinase inhibitors (diacylglycerolkinase inhibitor) and various other ATP-competitors (DNA topoisomerase II and HSP-90alpha inhibitors) did not bind to synapsin I, as predicted from a lower similarity of their respective ATP-binding sites to that of synapsin I. The present data suggest that the observed downregulation of neurotransmitter release by some but not all protein kinase inhibitors may also be contributed by a direct binding to synapsin I and phosphorylation-independent perturbation of synapsin I function. More generally, the data also demonstrate that cross-reactivity with various targets may be detected by systematic pair-wise similarity measurement of ligand-annotated binding sites.
Collapse
Affiliation(s)
- Enrico De Franchi
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genova, Italy
| | - Claire Schalon
- Structural Chemogenomics, Laboratory of Therapeutic Innovation, CNRS UMR 7200, Université de Strasbourg, Illkirch, France
| | - Mirko Messa
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genova, Italy
| | - Franco Onofri
- Department of Experimental Medicine, University of Genova and Istituto Nazionale di Neuroscienze, Genova, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genova, Italy
- Department of Experimental Medicine, University of Genova and Istituto Nazionale di Neuroscienze, Genova, Italy
| | - Didier Rognan
- Structural Chemogenomics, Laboratory of Therapeutic Innovation, CNRS UMR 7200, Université de Strasbourg, Illkirch, France
- * E-mail:
| |
Collapse
|
44
|
Jung SR, Hille B, Nguyen TD, Koh DS. Cyclic AMP potentiates Ca2+-dependent exocytosis in pancreatic duct epithelial cells. ACTA ACUST UNITED AC 2010; 135:527-43. [PMID: 20421376 PMCID: PMC2860593 DOI: 10.1085/jgp.200910355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exocytosis is evoked by intracellular signals, including Ca2+ and protein kinases. We determined how such signals interact to promote exocytosis in exocrine pancreatic duct epithelial cells (PDECs). Exocytosis, detected using carbon-fiber microamperometry, was stimulated by [Ca2+]i increases induced either through Ca2+ influx using ionomycin or by activation of P2Y2 or protease-activated receptor 2 receptors. In each case, the exocytosis was strongly potentiated when cyclic AMP (cAMP) was elevated either by activating adenylyl cyclase with forskolin or by activating the endogenous vasoactive intestinal peptide receptor. This potentiation was completely inhibited by H-89 and partially blocked by Rp-8-Br-cAMPS, inhibitors of protein kinase A. Optical monitoring of fluorescently labeled secretory granules showed slow migration toward the plasma membrane during Ca2+ elevations. Neither this Ca2+-dependent granule movement nor the number of granules found near the plasma membrane were detectably changed by raising cAMP, suggesting that cAMP potentiates Ca2+-dependent exocytosis at a later stage. A kinetic model was made of the exocytosis stimulated by UTP, trypsin, and Ca2+ ionophores with and without cAMP increase. In the model, without a cAMP rise, receptor activation stimulates exocytosis both by Ca2+ elevation and by the action of another messenger(s). With cAMP elevation the docking/priming step for secretory granules was accelerated, augmenting the releasable granule pool size, and the Ca2+ sensitivity of the final fusion step was increased, augmenting the rate of exocytosis. Presumably both cAMP actions require cAMP-dependent phosphorylation of target proteins. cAMP-dependent potentiation of Ca2+-induced exocytosis has physiological implications for mucin secretion and, possibly, for membrane protein insertion in the pancreatic duct. In addition, mechanisms underlying this potentiation of slow exocytosis may also exist in other cell systems.
Collapse
Affiliation(s)
- Seung-Ryoung Jung
- Department of Physiology and Biophysics and 2 Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
45
|
Iwakura T, Iwafuchi M, Muraoka D, Yokosuka M, Shiga T, Watanabe C, Ohtani-Kaneko R. In vitro effects of bisphenol A on developing hypothalamic neurons. Toxicology 2010; 272:52-8. [DOI: 10.1016/j.tox.2010.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/03/2010] [Accepted: 04/09/2010] [Indexed: 12/29/2022]
|
46
|
Fornasiero EF, Bonanomi D, Benfenati F, Valtorta F. The role of synapsins in neuronal development. Cell Mol Life Sci 2010; 67:1383-96. [PMID: 20035364 PMCID: PMC11115787 DOI: 10.1007/s00018-009-0227-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/22/2009] [Accepted: 12/04/2009] [Indexed: 12/23/2022]
Abstract
The synapsins, the first identified synaptic vesicle-specific proteins, are phosphorylated on multiple sites by a number of protein kinases and are involved in neurite outgrowth and synapse formation as well as in synaptic transmission. In mammals, the synapsin family consists of at least 10 isoforms encoded by 3 distinct genes and composed by a mosaic of conserved and variable domains. The synapsins are highly conserved evolutionarily, and orthologues have been found in invertebrates and lower vertebrates. Within nerve terminals, synapsins are implicated in multiple interactions with presynaptic proteins and the actin cytoskeleton. Via these interactions, synapsins control several mechanisms important for neuronal homeostasis. In this review, we describe the main functional features of the synapsins, in relation to the complex role played by these phosphoproteins in neuronal development.
Collapse
Affiliation(s)
- Eugenio F. Fornasiero
- San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 58, 20132 Milan, Italy
- Unit of Molecular Neuroscience, The Italian Institute of Technology, Via Olgettina 58, 20132 Milan, Italy
| | - Dario Bonanomi
- San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 58, 20132 Milan, Italy
- Present Address: Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
- Unit of Molecular Neuroscience, The Italian Institute of Technology, Via Olgettina 58, 20132 Milan, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Via Morego 30, 16163 Genoa, Italy
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Flavia Valtorta
- San Raffaele Scientific Institute, Vita-Salute University, Via Olgettina 58, 20132 Milan, Italy
- Unit of Molecular Neuroscience, The Italian Institute of Technology, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
47
|
Sánchez-Soriano N, Gonçalves-Pimentel C, Beaven R, Haessler U, Ofner-Ziegenfuss L, Ballestrem C, Prokop A. Drosophila growth cones: a genetically tractable platform for the analysis of axonal growth dynamics. Dev Neurobiol 2010; 70:58-71. [PMID: 19937774 DOI: 10.1002/dneu.20762] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The formation of neuronal networks, during development and regeneration, requires outgrowth of axons along reproducible paths toward their appropriate postsynaptic target cells. Axonal extension occurs at growth cones (GCs) at the tips of axons. GC advance and navigation requires the activity of their cytoskeletal networks, comprising filamentous actin (F-actin) in lamellipodia and filopodia as well as dynamic microtubules (MTs) emanating from bundles of the axonal core. The molecular mechanisms governing these two cytoskeletal networks, their cross-talk, and their response to extracellular signaling cues are only partially understood, hindering our conceptual understanding of how regulated changes in GC behavior are controlled. Here, we introduce Drosophila GCs as a suitable model to address these mechanisms. Morphological and cytoskeletal readouts of Drosophila GCs are similar to those of other models, including mammals, as demonstrated here for MT and F-actin dynamics, axonal growth rates, filopodial structure and motility, organizational principles of MT networks, and subcellular marker localization. Therefore, we expect fundamental insights gained in Drosophila to be translatable into vertebrate biology. The advantage of the Drosophila model over others is its enormous amenability to combinatorial genetics as a powerful strategy to address the complexity of regulatory networks governing axonal growth. Thus, using pharmacological and genetic manipulations, we demonstrate a role of the actin cytoskeleton in a specific form of MT organization (loop formation), known to regulate GC pausing behavior. We demonstrate these events to be mediated by the actin-MT linking factor Short stop, thus identifying an essential molecular player in this context.
Collapse
Affiliation(s)
- Natalia Sánchez-Soriano
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
48
|
Effects of estrogen on synapsin I distribution in developing hypothalamic neurons. Neurosci Res 2010; 66:180-8. [DOI: 10.1016/j.neures.2009.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 09/28/2009] [Accepted: 10/28/2009] [Indexed: 01/08/2023]
|
49
|
John JPP, Sunyer B, Höger H, Pollak A, Lubec G. Hippocampal synapsin isoform levels are linked to spatial memory enhancement by SGS742. Hippocampus 2009; 19:731-8. [PMID: 19140176 DOI: 10.1002/hipo.20553] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synapsins are essential proteins for synaptic plasticity and there is no information available for their role in cognitive enhancement (CE) of spatial memory formation. It was therefore the aim of the study to link individual synapsin proteins and their isoforms to spatial memory formation enhanced by SGS742 in the mouse. Extracted hippocampal proteins from a cognitive study treating OF1 mice with the cognitive enhancer SGS742 and tested in the Morris water maze, were run on two-dimensional gel electrophoresis. Subsequently, protein spots were unambiguously identified by qQ-TOF mass spectrometry. Quantification of proteins from four groups (NaCl-treated mice, SGS742-treated mice, SGS742-treated yoked controls, and NaCl-treated yoked controls) was carried out according to an in-gel stable isotope labeling method. A total of 17 protein spots representing synapsin isoforms were identified and quantified. Using quantification of individual synapsin isoforms showed that these can be clearly assigned to CE by the GABAB antagonist SGS742. Quantitative determination of individual synapsin isoform showed an increase in SGS742-treated mice (mean+/-SD) of ratios between light and heavy stable isotope labeled synapsin protein (SGS742 vs. controls: 2.19+/-0.41 for synapsin Ia, and 1.41+/-0.81 for synapsin IIa). Synapsins Ib and IIb were not linked to CE. The NaCl-treated controls and the use of yoked controls that were ruling out swimming- and stress-mediated changes of synapsins, unequivocally allow to propose a role for synapsins Ia and IIa in the mechanism of CE of spatial memory formation.
Collapse
|
50
|
Tegenge MA, Stern M, Bicker G. Nitric oxide and cyclic nucleotide signal transduction modulates synaptic vesicle turnover in human model neurons. J Neurochem 2009; 111:1434-46. [PMID: 19807845 DOI: 10.1111/j.1471-4159.2009.06421.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human Ntera2 (NT2) teratocarcinoma cell line can be induced to differentiate into post-mitotic neurons. Here, we report that the human NT2 neurons generated by a spherical aggregate cell culture method express increasing levels of typical pre-synaptic proteins (synapsin and synaptotagmin I) along the neurite depending on the length of in vitro culture. By employing an antibody directed against the luminal domain of synaptotagmin I and the fluorescent dye N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide, we show that depolarized NT2 neurons display calcium-dependent exo-endocytotic synaptic vesicle recycling. NT2 neurons express the neuronal isoform of neuronal nitric oxide synthase and soluble guanylyl cyclase (sGC), the major receptor for nitric oxide (NO). We tested whether NO signal transduction modulates synaptic vesicle turnover in human NT2 neurons. NO donors and cylic guanosine-monophosphate analogs enhanced synaptic vesicle recycling while a sGC inhibitor blocked the effect of NO donors. Two NO donors, sodium nitroprusside, and and N-Ethyl-2-(1-ethyl-2-hydroxy-2-nitrosohydrazino) ethanamine evoked vesicle exocytosis which was partially blocked by the sGC inhibitor. The activator of adenylyl cyclase, forskolin, and a cAMP analog induced synaptic vesicle recycling and exocytosis via a parallel acting protein kinase A pathway. Our data from NT2 neurons suggest that NO/cyclic nucleotide signaling pathways may facilitate neurotransmitter release in human brain cells.
Collapse
Affiliation(s)
- Million Adane Tegenge
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | |
Collapse
|