1
|
Abdelmissih S, Hosny SA, Elwi HM, Sayed WM, Eshra MA, Shaker OG, Samir NF. Chronic Caffeine Consumption, Alone or Combined with Agomelatine or Quetiapine, Reduces the Maximum EEG Peak, As Linked to Cortical Neurodegeneration, Ovarian Estrogen Receptor Alpha, and Melatonin Receptor 2. Psychopharmacology (Berl) 2024; 241:2073-2101. [PMID: 38842700 PMCID: PMC11442587 DOI: 10.1007/s00213-024-06619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
RATIONALE Evidence of the effects of chronic caffeine (CAFF)-containing beverages, alone or in combination with agomelatine (AGO) or quetiapine (QUET), on electroencephalography (EEG), which is relevant to cognition, epileptogenesis, and ovarian function, remains lacking. Estrogenic, adenosinergic, and melatonergic signaling is possibly linked to the dynamics of these substances. OBJECTIVES The brain and ovarian effects of CAFF were compared with those of AGO + CAFF and QUET + CAFF. The implications of estrogenic, adenosinergic, and melatonergic signaling and the brain-ovarian crosstalk were investigated. METHODS Adult female rats were administered AGO (10 mg/kg), QUET (10 mg/kg), CAFF, AGO + CAFF, or QUET + CAFF, once daily for 8 weeks. EEG, estrous cycle progression, and microstructure of the brain and ovaries were examined. Brain and ovarian 17β-estradiol (E2), antimullerian hormone (AMH), estrogen receptor alpha (E2Rα), adenosine receptor 2A (A2AR), and melatonin receptor 2 (MT2R) were assessed. RESULTS CAFF, alone or combined with AGO or QUET, reduced the maximum EEG peak, which was positively linked to ovarian E2Rα, negatively correlated to cortical neurodegeneration and ovarian MT2R, and associated with cystic ovaries. A large corpus luteum emerged with AGO + CAFF and QUET + CAFF, antagonizing the CAFF-mediated increased ovarian A2AR and reduced cortical E2Rα. AGO + CAFF provoked TTP delay and increased ovarian AMH, while QUET + CAFF slowed source EEG frequency to δ range and increased brain E2. CONCLUSIONS CAFF treatment triggered brain and ovarian derangements partially antagonized with concurrent AGO or QUET administration but with no overt affection of estrus cycle progression. Estrogenic, adenosinergic, and melatonergic signaling and brain-ovarian crosstalk may explain these effects.
Collapse
Affiliation(s)
- Sherine Abdelmissih
- Department of Medical Pharmacology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt.
| | - Sara Adel Hosny
- Department of Medical Histology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Heba M Elwi
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Walaa Mohamed Sayed
- Department of Anatomy and Embryology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Mohamed Ali Eshra
- Department of Medical Physiology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Olfat Gamil Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Nancy F Samir
- Department of Medical Physiology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
García-Rosales F, Schaworonkow N, Hechavarria JC. Oscillatory Waveform Shape and Temporal Spike Correlations Differ across Bat Frontal and Auditory Cortex. J Neurosci 2024; 44:e1236232023. [PMID: 38262724 PMCID: PMC10919256 DOI: 10.1523/jneurosci.1236-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 01/25/2024] Open
Abstract
Neural oscillations are associated with diverse computations in the mammalian brain. The waveform shape of oscillatory activity measured in the cortex relates to local physiology and can be informative about aberrant or dynamically changing states. However, how waveform shape differs across distant yet functionally and anatomically related cortical regions is largely unknown. In this study, we capitalize on simultaneous recordings of local field potentials (LFPs) in the auditory and frontal cortices of awake, male Carollia perspicillata bats to examine, on a cycle-by-cycle basis, waveform shape differences across cortical regions. We find that waveform shape differs markedly in the fronto-auditory circuit even for temporally correlated rhythmic activity in comparable frequency ranges (i.e., in the delta and gamma bands) during spontaneous activity. In addition, we report consistent differences between areas in the variability of waveform shape across individual cycles. A conceptual model predicts higher spike-spike and spike-LFP correlations in regions with more asymmetric shapes, a phenomenon that was observed in the data: spike-spike and spike-LFP correlations were higher in the frontal cortex. The model suggests a relationship between waveform shape differences and differences in spike correlations across cortical areas. Altogether, these results indicate that oscillatory activity in the frontal and auditory cortex possesses distinct dynamics related to the anatomical and functional diversity of the fronto-auditory circuit.
Collapse
Affiliation(s)
- Francisco García-Rosales
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany
| | - Natalie Schaworonkow
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany
| | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| |
Collapse
|
3
|
Mockevičius A, Šveistytė K, Griškova-Bulanova I. Individual/Peak Gamma Frequency: What Do We Know? Brain Sci 2023; 13:792. [PMID: 37239264 PMCID: PMC10216206 DOI: 10.3390/brainsci13050792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, the concept of individualized measures of electroencephalographic (EEG) activity has emerged. Gamma-band activity plays an important role in many sensory and cognitive processes. Thus, peak frequency in the gamma range has received considerable attention. However, peak or individual gamma frequency (IGF) is rarely used as a primary measure of interest; consequently, little is known about its nature and functional significance. With this review, we attempt to comprehensively overview available information on the functional properties of peak gamma frequency, addressing its relationship with certain processes and/or modulation by various factors. Here, we show that IGFs seem to be related to various endogenous and exogenous factors. Broad functional aspects that are related to IGF might point to the differences in underlying mechanisms. Therefore, research utilizing different types of stimulation for IGF estimation and covering several functional aspects in the same population is required. Moreover, IGFs span a wide range of frequencies (30-100 Hz). This could be partly due to the variability of methods used to extract the measures of IGF. In order to overcome this issue, further studies aiming at the optimization of IGF extraction would be greatly beneficial.
Collapse
Affiliation(s)
| | | | - Inga Griškova-Bulanova
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Shen HY, Baer SB, Gesese R, Cook JM, Weltha L, Coffman SQ, Wu J, Chen JF, Gao M, Ji T. Adenosine-A 2A Receptor Signaling Plays a Crucial Role in Sudden Unexpected Death in Epilepsy. Front Pharmacol 2022; 13:910535. [PMID: 35754505 PMCID: PMC9218562 DOI: 10.3389/fphar.2022.910535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Adenosinergic activities are suggested to participate in SUDEP pathophysiology; this study aimed to evaluate the adenosine hypothesis of SUDEP and specifically the role of adenosine A2A receptor (A2AR) in the development of a SUDEP mouse model with relevant clinical features. Using a combined paradigm of intrahippocampal and intraperitoneal administration of kainic acid (KA), we developed a boosted-KA model of SUDEP in genetically modified adenosine kinase (ADK) knockdown (Adk+/-) mice, which has reduced ADK in the brain. Seizure activity was monitored using video-EEG methods, and in vivo recording of local field potential (LFP) was used to evaluate neuronal activity within the nucleus tractus solitarius (NTS). Our boosted-KA model of SUDEP was characterized by a delayed, postictal sudden death in epileptic mice. We demonstrated a higher incidence of SUDEP in Adk+/- mice (34.8%) vs. WTs (8.0%), and the ADK inhibitor, 5-Iodotubercidin, further increased SUDEP in Adk+/- mice (46.7%). We revealed that the NTS level of ADK was significantly increased in epileptic WTs, but not in epileptic Adk+/- mutants, while the A2AR level in NTS was increased in epileptic (WT and Adk+/-) mice vs. non-epileptic controls. The A2AR antagonist, SCH58261, significantly reduced SUDEP events in Adk+/- mice. LFP data showed that SCH58261 partially restored KA injection-induced suppression of gamma oscillation in the NTS of epileptic WT mice, whereas SCH58261 increased theta and beta oscillations in Adk+/- mutants after KA injection, albeit with no change in gamma oscillations. These LFP findings suggest that SCH58261 and KA induced changes in local neuronal activities in the NTS of epileptic mice. We revealed a crucial role for NTS A2AR in SUDEP pathophysiology suggesting A2AR as a potential therapeutic target for SUDEP risk prevention.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Sadie B Baer
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Raey Gesese
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - John M Cook
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Landen Weltha
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Shayla Q Coffman
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Jie Wu
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ming Gao
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Teng Ji
- Department of Pediatric Neurology, Randall Children's Hospital, Legacy Emanuel Medical Center, Portland, OR, United States
| |
Collapse
|
5
|
Crown LM, Gray DT, Schimanski LA, Barnes CA, Cowen SL. Aged Rats Exhibit Altered Behavior-Induced Oscillatory Activity, Place Cell Firing Rates, and Spatial Information Content in the CA1 Region of the Hippocampus. J Neurosci 2022; 42:4505-4516. [PMID: 35477900 PMCID: PMC9172068 DOI: 10.1523/jneurosci.1855-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/18/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Hippocampal gamma and theta oscillations are associated with mnemonic and navigational processes and adapt to changes in the behavioral state of an animal to optimize spatial information processing. It has been shown that locomotor activity modulates gamma and theta frequencies in rats, although how age alters this modulation has not been well studied. Here, we examine gamma and theta local-field potential and place cell activity in the hippocampus CA1 region of young and old male rats as they performed a spatial eye-blink conditioning task across 31 d. Although mean gamma frequency was similar in both groups, gamma frequency increased with running speed at a slower rate in old animals. By contrast, theta frequencies scaled with speed similarly in both groups but were lower across speeds in old animals. Although these frequencies scaled equally well with deceleration and speed, acceleration was less correlated with gamma frequency in both age groups. Additionally, spike phase-locking to gamma, but not theta, was greater in older animals. Finally, aged rats had reduced within-field firing rates but greater spatial information per spike within the field. These data support a strong relationship between locomotor behavior and local-field potential activity and suggest that age significantly affects this relationship. Furthermore, observed changes in CA1 place cell firing rates and information content lend support to the hypothesis that age may result in more general and context-invariant hippocampal representations over more detailed information. These results may explain the observation that older adults tend to recall the gist of an experience rather than the details.SIGNIFICANCE STATEMENT Hippocampal oscillations and place cell activity are sensitive to sensorimotor input generated from active locomotion, yet studies of aged hippocampal function often do not account for this. By considering locomotion and spatial location, we identify novel age-associated differences in the scaling of oscillatory activity with speed, spike-field coherence, spatial information content, and within-field firing rates of CA1 place cells. These results indicate that age has an impact on the relationship between locomotion and hippocampal oscillatory activity, perhaps indicative of alterations to afferent input. These data also support the hypothesis that aged hippocampal place cells, compared with young, may more often represent more general spatial information. If true, these results may help explain why older humans tend to recall less specific and more gist-like information.
Collapse
Affiliation(s)
- Lindsey M Crown
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724
- Department of Psychology, University of Arizona, Tucson, Arizona 85721
| | - Daniel T Gray
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724
- Departments of Neurology and Neuroscience, University of Arizona, Tucson, Arizona 85724
| | - Lesley A Schimanski
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724
- Department of Psychology, University of Arizona, Tucson, Arizona 85721
- Departments of Neurology and Neuroscience, University of Arizona, Tucson, Arizona 85724
| | - Stephen L Cowen
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona 85724
- Department of Psychology, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
6
|
Turner MP, Zhao Y, Abdelkarim D, Liu P, Spence JS, Hutchison JL, Sivakolundu DK, Thomas BP, Hubbard NA, Xu C, Taneja K, Lu H, Rypma B. Altered linear coupling between stimulus-evoked blood flow and oxygen metabolism in the aging human brain. Cereb Cortex 2022; 33:135-151. [PMID: 35388407 PMCID: PMC9758587 DOI: 10.1093/cercor/bhac057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Neural-vascular coupling (NVC) is the process by which oxygen and nutrients are delivered to metabolically active neurons by blood vessels. Murine models of NVC disruption have revealed its critical role in healthy neural function. We hypothesized that, in humans, aging exerts detrimental effects upon the integrity of the neural-glial-vascular system that underlies NVC. To test this hypothesis, calibrated functional magnetic resonance imaging (cfMRI) was used to characterize age-related changes in cerebral blood flow (CBF) and oxygen metabolism during visual cortex stimulation. Thirty-three younger and 27 older participants underwent cfMRI scanning during both an attention-controlled visual stimulation task and a hypercapnia paradigm used to calibrate the blood-oxygen-level-dependent signal. Measurement of stimulus-evoked blood flow and oxygen metabolism permitted calculation of the NVC ratio to assess the integrity of neural-vascular communication. Consistent with our hypothesis, we observed monotonic NVC ratio increases with increasing visual stimulation frequency in younger adults but not in older adults. Age-related changes in stimulus-evoked cerebrovascular and neurometabolic signal could not fully explain this disruption; increases in stimulus-evoked neurometabolic activity elicited corresponding increases in stimulus-evoked CBF in younger but not in older adults. These results implicate age-related, demand-dependent failures of the neural-glial-vascular structures that comprise the NVC system.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Peiying Liu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jeffrey S Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Binu P Thomas
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Nicholas A Hubbard
- Department of Psychology, Center for Brain, Biology, and Behavior, University of Nebraska, Lincoln, NE 68588, USA
| | - Cuimei Xu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kamil Taneja
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Hanzhang Lu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Bart Rypma
- Corresponding author: School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
| |
Collapse
|
7
|
Liu Y, Yang Q, Yin Y. Intracranial electroencephalography features of young and old mice under midazolam administration. Neuroreport 2021; 32:1192-1197. [PMID: 34406993 PMCID: PMC8389352 DOI: 10.1097/wnr.0000000000001714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022]
Abstract
Understanding the electroencephalography features of young and old patients treated with anesthetic drugs is important to allow accurate drug use in elderly patients. This study aimed to monitor the intracranial electroencephalography (in the cortex and hippocampus) in free-moving young and old mice under midazolam administration. Behavioral assessment revealed that compared with young mice, old mice had a longer immobility time with a similar midazolam dose. In both young and old mice, midazolam significantly suppressed the total, δ (0.5-4 Hz), θ (4-8 Hz), and α (8-12 Hz) power, and thus induced an increase in the relative β (12-30 Hz) and γ (30-140 Hz) power. Age had a main effect on the γ frequency; specifically, under normal conditions, old mice had a lower γ power than young mice. After midazolam administration, the relative power of high γ frequency (50-140 Hz) remained lower in old mice than in young mice. Our findings suggest that a lower γ power is indicative of an aging brain.
Collapse
Affiliation(s)
- Yue Liu
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing
| | - Quanyong Yang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
8
|
Yu XT, Yu J, Choi A, Takehara-Nishiuchi K. Lateral entorhinal cortex supports the development of prefrontal network activity that bridges temporally discontiguous stimuli. Hippocampus 2021; 31:1285-1299. [PMID: 34606152 DOI: 10.1002/hipo.23389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 01/16/2023]
Abstract
The lateral entorhinal cortex (LEC) is an essential component of the brain circuitry supporting long-term memory by serving as an interface between the hippocampus and neocortex. Dysfunction of the LEC affects sensory coding in the hippocampus, leading to a view that the LEC provides the hippocampus with highly processed sensory information. It remains unclear, however, how the LEC modulates neural processing in the neocortical regions. To address this point, we pharmacologically inactivated the LEC of male rats during a temporal associative learning task and examined its impact on local network activity in one of the LEC's efferent targets, the prelimbic region of the medial prefrontal cortex (mPFC). Rats were exposed to two neutral stimuli, one of which was paired with an aversive eyelid shock over a short temporal delay. The LEC inhibition reduced the expression of anticipatory blinking responses to the reinforced stimuli without increasing responses to nonreinforced stimuli. In control rats, both the reinforced and nonreinforced stimuli evoked a short-lived, wide-band increase in the prelimbic network activity. With learning, the initial increase of gamma-band activity started to extend into the interval between the reinforced neutral stimulus and the eyelid shock. LEC inhibition attenuated the learning-induced sustained activity, without affecting the initial transient activity. These results suggest that the integrity of LEC is necessary for the formation of temporal stimulus associations and its neural correlates in the mPFC. Given the minimal effects on the innate network responses to sensory stimuli, the LEC appears not to be the main source of sensory inputs to the mPFC; rather it may provide a framework that shapes the mPFC network response to behaviorally relevant cues.
Collapse
Affiliation(s)
- Xiaotian Tag Yu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Jessica Yu
- Human Biology Program, University of Toronto, Toronto, Canada
| | - Allison Choi
- Human Biology Program, University of Toronto, Toronto, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Psychology, University of Toronto, Toronto, Canada.,Collaborative Program in Neuroscience, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Burke SN, Maurer DP. Floating ideas on theta waves. Behav Neurosci 2021; 134:471-474. [PMID: 33570990 DOI: 10.1037/bne0000438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This special issue on the theta rhythm highlights recent experiments aimed at understanding the relationship between this slow, large amplitude oscillation and plasticity, fast oscillations, cellular activity and disease in both animals and humans. The articles in this issue of Behavioral Neuroscience use a number of approaches across different model systems and behavioral paradigms to provide an up-to-date account of recent progress in understanding how the theta rhythm coordinates neural activity in the service of cognition. Prominent themes that emerge are how theta is tightly related to movement in humans and rodents and how this rhythm could be leveraged as a biomarker for understanding and testing therapeutic approaches to treat psychiatric and neurological diseases. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
10
|
McQuail JA, Beas BS, Kelly KB, Hernandez CM, Bizon JL, Frazier CJ. Attenuated NMDAR signaling on fast-spiking interneurons in prefrontal cortex contributes to age-related decline of cognitive flexibility. Neuropharmacology 2021; 197:108720. [PMID: 34273386 DOI: 10.1016/j.neuropharm.2021.108720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/01/2023]
Abstract
Ionotropic glutamate receptors of the NMDA and AMPA subtypes transduce excitatory signaling on neurons in the prefrontal cortex (PFC) in support of cognitive flexibility. Cognitive flexibility is reliably observed to decline at advanced ages, coinciding with changes in PFC glutamate receptor expression and neuronal physiology. However, the relationship between age-related impairment of cognitive flexibility and changes to excitatory signaling on distinct classes of PFC neurons is not known. In this study, one cohort of young adult (4 months) and aged (20 months) male F344 rats were characterized for cognitive flexibility on an operant set-shifting task. Expression of the essential NMDAR subunit, NR1, was correlated with individual differences in set-shifting abilities such that lower NR1 in the aged PFC was associated with worse set-shifting. In contrast, lower expression of two AMPAR subunits, GluR1 and GluR2, was not associated with set-shift abilities in aging. As NMDARs are expressed by both pyramidal cells and fast-spiking interneurons (FSI) in PFC, whole-cell patch clamp recordings were performed in a second cohort of age-matched rats to compare age-associated changes on these neuronal subtypes. Evoked excitatory postsynaptic currents were generated using a bipolar stimulator while AMPAR vs. NMDAR-mediated components were isolated using pharmacological tools. The results revealed a clear increase in AMPA/NMDA ratio in FSIs that was not present in pyramidal neurons. Together, these data indicate that loss of NMDARs on interneurons in PFC contributes to age-related impairment of cognitive flexibility.
Collapse
Affiliation(s)
- Joseph A McQuail
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA.
| | - B Sofia Beas
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA; Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, 20892, USA
| | - Kyle B Kelly
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, 32610, USA
| | - Caesar M Hernandez
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA; Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Charles J Frazier
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, 32610, USA; Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, 32610, USA.
| |
Collapse
|
11
|
Ji MH, He X, Shen JC, Yang JJ. Aging-Related Neural Disruption Might Predispose to Postoperative Cognitive Impairment Following Surgical Trauma. J Alzheimers Dis 2021; 81:1685-1699. [PMID: 33967044 DOI: 10.3233/jad-201590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Accumulating evidence has demonstrated that aging is associated with an exaggerated response to surgical trauma together with cognitive impairments. This has significant implications for the development of clinical phenotype such as perioperative neurocognitive disorders (PND), which is a common complication following surgery, especially for the elderly. However, the mechanism by which aging brain is vulnerable to surgical trauma remains to be elucidated. OBJECTIVE To test whether age-related alterations in hippocampal network activities contribute to increased risk of PND following surgery. METHODS Thirty-two adult and seventy-two aged male C57BL/6 mice undergone sevoflurane anesthesia and exploratory laparotomy were used to mimic human abdominal surgery. For the interventional study, mice were treated with minocycline. Behavioral tests were performed post-surgery with open field, novel object recognition and fear conditioning tests, respectively. The brain tissues were then harvested and subjected to biochemistry studies. Local field potential (LFP) recording was performed in another separate experiment. RESULTS Aged mice displayed signs of neuroinflammation, as reflected by significantly increased proinflammatory mediators in the hippocampus. Also, aged mice displayed persistently decreased oscillation activities under different conditions, both before and after surgery. Further correlation analysis suggested that theta power was positively associated with time with novel object, while γ oscillation activity was positively associated with freezing time to context. Of note, downregulation of neuroinflammation by microglia inhibitor minocycline reversed some of these abnormities. CONCLUSION Our study highlights that age-related hippocampal oscillation dysregulation increases the risk of PND incidence, which might provide diagnostic/prognostic biomarkers for PND and possible other neurodegenerative diseases.
Collapse
Affiliation(s)
- Mu-Huo Ji
- Department of Anesthesiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue He
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jin-Chun Shen
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Hernandez AR, Winesett SP, Federico QP, Williams SA, Burke SN, Clark DJ. A Cross-species Model of Dual-Task Walking in Young and Older Humans and Rats. Front Aging Neurosci 2020; 12:276. [PMID: 32982717 PMCID: PMC7492995 DOI: 10.3389/fnagi.2020.00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/11/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Dual-task walking is common in daily life but becomes more difficult with aging. Little is known about the neurobiological mechanisms affecting competing cognitive demands. Translational studies with human and animal models are needed to address this gap. This pilot study investigated the feasibility of implementing a novel cross-species dual-task model in humans and rats and aimed to establish preliminary evidence that the model induces a dual-task cost. Methods: Young and older humans and rats performed an object discrimination task (OD), a baseline task of typical walking (baseline), an alternation turning task on a Figure 8 walking course (Alt), and a dual-task combining object discrimination with the alternation task (AltOD). Primary behavioral assessments including walking speed and correct selections for object discrimination and turning direction. In humans, left prefrontal cortex activity was measured with functional near-infrared spectroscopy (fNIRS). Results: Human subjects generally performed well on all tasks, but the older adults exhibited a trend for a slowing of walking speed immediately before the turning decision for Alt and AltOD compared to baseline. Older adults also had heightened prefrontal activity relative to young adults for the Alt and AltOD tasks. Older rodents required more training than young rodents to learn the alternation task. When tested on AltOD with and without a 15-s delay between trials, older rodents exhibited a substantial performance deficit for the delayed version on the initial day of testing. Old rats, however, did not show a significant slowing in walking speed with increasing task demand, as was evident in the young rats. Discussion: This study demonstrates the feasibility and challenges associated with implementing a cross-species dual-task model. While there was preliminary evidence of dual-task cost in both humans and rats, the magnitude of effects was small and not consistent across species. This is likely due to the relative ease of each task in humans and the walking component in rats not being sufficiently challenging. Future versions of this test should make the cognitive tasks more challenging and the motor task in rats more complex.
Collapse
Affiliation(s)
- Abbi R Hernandez
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Steven P Winesett
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Quinten P Federico
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Sonora A Williams
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Sara N Burke
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - David J Clark
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, United States.,Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| |
Collapse
|
13
|
Aging Alters Olfactory Bulb Network Oscillations and Connectivity: Relevance for Aging-Related Neurodegeneration Studies. Neural Plast 2020; 2020:1703969. [PMID: 32774353 PMCID: PMC7396091 DOI: 10.1155/2020/1703969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 11/18/2022] Open
Abstract
The aging process eventually cause a breakdown in critical synaptic plasticity and connectivity leading to deficits in memory function. The olfactory bulb (OB) and the hippocampus, both regions of the brain considered critical for the processing of odors and spatial memory, are commonly affected by aging. Using an aged wild-type C57B/6 mouse model, we sought to define the effects of aging on hippocampal plasticity and the integrity of cortical circuits. Specifically, we measured the long-term potentiation of high-frequency stimulation (HFS-LTP) at the Shaffer-Collateral CA1 pyramidal synapses. Next, local field potential (LFP) spectra, phase-amplitude theta-gamma coupling (PAC), and connectivity through coherence were assessed in the olfactory bulb, frontal and entorhinal cortices, CA1, and amygdala circuits. The OB of aged mice showed a significant increase in the number of histone H2AX-positive neurons, a marker of DNA damage. While the input-output relationship measure of basal synaptic activity was found not to differ between young and aged mice, a pronounced decline in the slope of field excitatory postsynaptic potential (fEPSP) and the population spike amplitude (PSA) were found in aged mice. Furthermore, aging was accompanied by deficits in gamma network oscillations, a shift to slow oscillations, reduced coherence and theta-gamma PAC in the OB circuit. Thus, while the basal synaptic activity was unaltered in older mice, impairment in hippocampal synaptic transmission was observed only in response to HFS. However, age-dependent alterations in neural network appeared spontaneously in the OB circuit, suggesting the neurophysiological basis of synaptic deficits underlying olfactory processing. Taken together, the results highlight the sensitivity and therefore potential use of LFP quantitative network oscillations and connectivity at the OB level as objective electrophysiological markers that will help reveal specific dysfunctional circuits in aging-related neurodegeneration studies.
Collapse
|
14
|
Colon-Perez LM, Turner SM, Lubke KN, Pompilus M, Febo M, Burke SN. Multiscale Imaging Reveals Aberrant Functional Connectome Organization and Elevated Dorsal Striatal Arc Expression in Advanced Age. eNeuro 2019; 6:ENEURO.0047-19.2019. [PMID: 31826916 PMCID: PMC6978920 DOI: 10.1523/eneuro.0047-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
The functional connectome reflects a network architecture enabling adaptive behavior that becomes vulnerable in advanced age. The cellular mechanisms that contribute to altered functional connectivity in old age, however, are not known. Here we used a multiscale imaging approach to link age-related changes in the functional connectome to altered expression of the activity-dependent immediate-early gene Arc as a function of training to multitask on a working memory (WM)/biconditional association task (BAT). Resting-state fMRI data were collected from young and aged rats longitudinally at three different timepoints during cognitive training. After imaging, rats performed the WM/BAT and were immediately sacrificed to examine expression levels of Arc during task performance. Aged behaviorally impaired, but not young, rats had a subnetwork of increased connectivity between the anterior cingulate cortex (ACC) and dorsal striatum (DS) that was correlated with the use of a suboptimal response-based strategy during cognitive testing. Moreover, while young rats had stable rich-club organization across three scanning sessions, the rich-club organization of old rats increased with cognitive training. In a control group of young and aged rats that were longitudinally scanned at similar time intervals, but without cognitive training, ACC-DS connectivity and rich-club organization did not change between scans in either age group. These findings suggest that aberrant large-scale functional connectivity in aged animals is associated with altered cellular activity patterns within individual brain regions.
Collapse
Affiliation(s)
- Luis M Colon-Perez
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697
| | - Sean M Turner
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Katelyn N Lubke
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Marjory Pompilus
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Marcelo Febo
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- Department of McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- Department of McKnight Brain Institute and College of Medicine, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
15
|
Methodological Considerations on the Use of Different Spectral Decomposition Algorithms to Study Hippocampal Rhythms. eNeuro 2019; 6:ENEURO.0142-19.2019. [PMID: 31324673 PMCID: PMC6709234 DOI: 10.1523/eneuro.0142-19.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022] Open
Abstract
Local field potential (LFP) oscillations are primarily shaped by the superposition of postsynaptic currents. Hippocampal LFP oscillations in the 25- to 50-Hz range (“slow γ”) are proposed to support memory retrieval independent of other frequencies. However, θ harmonics extend up to 48 Hz, necessitating a study to determine whether these oscillations are fundamentally the same. We compared the spectral analysis methods of wavelet, ensemble empirical-mode decomposition (EEMD), and Fourier transform. EEMD, as previously applied, failed to account for the θ harmonics. Depending on analytical parameters selected, wavelet may convolve over high-order θ harmonics due to the variable time-frequency atoms, creating the appearance of a broad 25- to 50-Hz rhythm. As an illustration of this issue, wavelet and EEMD depicted slow γ in a synthetic dataset that only contained θ and its harmonics. Oscillatory transience cannot explain the difference in approaches as Fourier decomposition identifies ripples triggered to epochs of high-power, 120- to 250-Hz events. When Fourier is applied to high power, 25- to 50-Hz events, only θ harmonics are resolved. This analysis challenges the identification of the slow γ rhythm as a unique fundamental hippocampal oscillation. While there may be instances in which slow γ is present in the rat hippocampus, the analysis presented here shows that unless care is exerted in the application of EEMD and wavelet techniques, the results may be misleading, in this case misrepresenting θ harmonics. Moreover, it is necessary to reconsider the characteristics that define a fundamental hippocampal oscillation as well as theories based on multiple independent γ bands.
Collapse
|
16
|
Alaiyed S, Conant K. A Role for Matrix Metalloproteases in Antidepressant Efficacy. Front Mol Neurosci 2019; 12:117. [PMID: 31133801 PMCID: PMC6517485 DOI: 10.3389/fnmol.2019.00117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/24/2019] [Indexed: 01/10/2023] Open
Abstract
Major depressive disorder is a debilitating condition that affects approximately 15% of the United States population. Though the neurophysiological mechanisms that underlie this disorder are not completely understood, both human and rodent studies suggest that excitatory/inhibitory (E/I) balance is reduced with the depressive phenotype. In contrast, antidepressant efficacy in responsive individuals correlates with increased excitatory neurotransmission in select brain regions, suggesting that the restoration of E/I balance may improve mood. Enhanced excitatory transmission can occur through mechanisms including increased dendritic arborization and synapse formation in pyramidal neurons. Reduced activity of inhibitory neurons may also contribute to antidepressant efficacy. Consistent with this possibility, the fast-acting antidepressant ketamine may act by selective inhibition of glutamatergic input to GABA releasing parvalbumin (PV)-expressing interneurons. Recent work has also shown that a negative allosteric modulator of the GABA-A receptor α subunit can improve depression-related behavior. PV-expressing interneurons are thought to represent critical pacemakers for synchronous network events. These neurons also represent the predominant GABAergic neuronal population that is enveloped by the perineuronal net (PNN), a lattice-like structure that is thought to stabilize glutamatergic input to this cell type. Disruption of the PNN reduces PV excitability and increases pyramidal cell excitability. Various antidepressant medications increase the expression of matrix metalloproteinases (MMPs), enzymes that can increase pyramidal cell dendritic arborization and spine formation. MMPs can also cleave PNN proteins to reduce PV neuron-mediated inhibition. The present review will focus on mechanisms that may underlie antidepressant efficacy, with a focus on monoamines as facilitators of increased matrix metalloprotease (MMP) expression and activation. Discussion will include MMP-dependent effects on pyramidal cell structure and function, as well as MMP-dependent effects on PV expressing interneurons. We conclude with discussion of antidepressant use for those at risk for Alzheimer’s disease, and we also highlight areas for further study.
Collapse
Affiliation(s)
- Seham Alaiyed
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC, United States
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
17
|
Santarnecchi E, Sprugnoli G, Bricolo E, Costantini G, Liew SL, Musaeus CS, Salvi C, Pascual-Leone A, Rossi A, Rossi S. Gamma tACS over the temporal lobe increases the occurrence of Eureka! moments. Sci Rep 2019; 9:5778. [PMID: 30962465 PMCID: PMC6453961 DOI: 10.1038/s41598-019-42192-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/22/2019] [Indexed: 01/05/2023] Open
Abstract
The solution to a problem might manifest itself as a burst of unexpected, unpredictable clarity. Such Eureka! events, or Insight moments, are among the most fascinating mysteries of human cognition, whose neurophysiological substrate seems to include a role for oscillatory activity within the α and γ bands in the right parietal and temporal brain regions. We tested this hypothesis on thirty-one healthy participants using transcranial Alternating Current Stimulation (tACS) to externally amplify α (10 Hz) and γ (40 Hz) activity in the right parietal and temporal lobes, respectively. During γ-tACS over the right temporal lobe, we observed an increase in accuracy on a verbal insight task. Furthermore, electroencephalography (EEG) data revealed an increase in γ spectral power over bilateral temporal lobes after stimulation. Additionally, resting-state functional MRI data acquired before the stimulation session suggested a correlation between behavioral response to right temporal lobe tACS and functional connectivity of bilateral temporal lobes, in line with the bilateral increase in γ band revealed by EEG. Overall, results suggest the possibility of enhancing the probability of generating Eureka! moments in humans by means of frequency-specific noninvasive brain stimulation.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. .,Brain Investigation & Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, University of Siena, Siena, Italy.
| | - Giulia Sprugnoli
- Brain Investigation & Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, University of Siena, Siena, Italy
| | - Emanuela Bricolo
- Psychology Department, University of Milano-Bicocca, Milan, Italy.,Milan Center for Neuroscience, Milan, Italy
| | | | - Sook-Lei Liew
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - Christian S Musaeus
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Carola Salvi
- Northwestern University, Psychology department, Evanston, IL, USA.,Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alessandro Rossi
- Brain Investigation & Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, University of Siena, Siena, Italy.,Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Simone Rossi
- Brain Investigation & Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, University of Siena, Siena, Italy.,Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
18
|
Jarovi J, Volle J, Yu X, Guan L, Takehara-Nishiuchi K. Prefrontal Theta Oscillations Promote Selective Encoding of Behaviorally Relevant Events. eNeuro 2018; 5:ENEURO.0407-18.2018. [PMID: 30693310 PMCID: PMC6348453 DOI: 10.1523/eneuro.0407-18.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 11/21/2022] Open
Abstract
The ability to capture the most relevant information from everyday experiences without constantly learning unimportant details is vital to survival and mental health. While decreased activity of the medial prefrontal cortex (mPFC) is associated with failed or inflexible encoding of relevant events in the hippocampus, mechanisms used by the mPFC to discern behavioral relevance of events are not clear. To address this question, we chemogenetically activated excitatory neurons in the mPFC of male rats and examined its impact on local network activity and differential associative learning dependent on the hippocampus. Rats were exposed to two neutral stimuli in two environments whose contingency with an aversive stimulus changed systematically across days. Over 2 weeks of differential and reversal learning, theta band activity began to ramp up toward the expected onset of the aversive stimulus, and this ramping activity tracked the subsequent shift of the set (stimulus modality to environment) predictive of the aversive stimulus. With chemogenetic mPFC activation, the ramping activity emerged within a few sessions of differential learning, which paralleled faster learning and stronger correlations between the ramping activity and conditioned responses. Chemogenetic mPFC activity, however, did not affect the adjustment of ramping activity or behavior during reversal learning or set-shifting, suggesting that the faster learning was not because of a general enhancement of attention, sensory, or motor processing. Thus, the dynamics of the mPFC network activation during events provide a relevance-signaling mechanism through which the mPFC exerts executive control over the encoding of those events in the hippocampus.
Collapse
Affiliation(s)
| | | | | | | | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology
- Department of Psychology
- Neuroscience Program, University of Toronto, Toronto M5S 3G3, Canada
| |
Collapse
|
19
|
Hernandez AR, Reasor JE, Truckenbrod LM, Campos KT, Federico QP, Fertal KE, Lubke KN, Johnson SA, Clark BJ, Maurer AP, Burke SN. Dissociable effects of advanced age on prefrontal cortical and medial temporal lobe ensemble activity. Neurobiol Aging 2018; 70:217-232. [PMID: 30031931 PMCID: PMC6829909 DOI: 10.1016/j.neurobiolaging.2018.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022]
Abstract
The link between age-related cellular changes within brain regions and larger scale neuronal ensemble dynamics critical for cognition has not been fully elucidated. The present study measured neuron activity within medial prefrontal cortex (PFC), perirhinal cortex (PER), and hippocampal subregion CA1 of young and aged rats by labeling expression of the immediate-early gene Arc. The proportion of cells expressing Arc was quantified at baseline and after a behavior that requires these regions. In addition, PER and CA1 projection neurons to PFC were identified with retrograde labeling. Within CA1, no age-related differences in neuronal activity were observed in the entire neuron population or within CA1 pyramidal cells that project to PFC. Although behavior was comparable across age groups, behaviorally driven Arc expression was higher in the deep layers of both PER and PFC and lower in the superficial layers of these regions. Moreover, age-related changes in activity levels were most evident within PER cells that project to PFC. These data suggest that the PER-PFC circuit is particularly vulnerable in advanced age.
Collapse
Affiliation(s)
- Abbi R Hernandez
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Jordan E Reasor
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Leah M Truckenbrod
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Keila T Campos
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Quinten P Federico
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Kaeli E Fertal
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Katelyn N Lubke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Sarah A Johnson
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Andrew P Maurer
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL; Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Sara N Burke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL; Institute on Aging, University of Florida, Gainesville, FL.
| |
Collapse
|
20
|
Attenuated Activity across Multiple Cell Types and Reduced Monosynaptic Connectivity in the Aged Perirhinal Cortex. J Neurosci 2017; 37:8965-8974. [PMID: 28821661 DOI: 10.1523/jneurosci.0531-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/25/2017] [Accepted: 08/04/2017] [Indexed: 01/25/2023] Open
Abstract
The perirhinal cortex (PER), which is critical for associative memory and stimulus discrimination, has been described as a wall of inhibition between the neocortex and hippocampus. With advanced age, rats show deficits on PER-dependent behavioral tasks and fewer PER principal neurons are activated by stimuli, but the role of PER interneurons in these altered circuit properties in old age has not been characterized. In the present study, PER neurons were recorded while rats traversed a circular track bidirectionally in which the track was either empty or contained eight novel objects evenly spaced around the track. Putative interneurons were discriminated from principal cells based on the autocorrelogram, waveform parameters, and firing rate. While object modulation of interneuron firing was observed in both young and aged rats, PER interneurons recorded from old animals had lower firing rates compared with those from young animals. This difference could not be accounted for by differences in running speed, as the firing rates of PER interneurons did not show significant velocity modulation. Finally, in the aged rats, relative to young rats, there was a significant reduction in detected excitatory and inhibitory monosynaptic connections. Together these data suggest that with advanced age there may be reduced afferent drive from excitatory cells onto interneurons that may compromise the wall of inhibition between the hippocampus and cortex. This circuit dysfunction could erode the function of temporal lobe networks and ultimately contribute to cognitive aging.SIGNIFICANCE STATEMENT We report that lower firing rates observed in aged perirhinal cortical principal cells are associated with weaker interneuron activity and reduced monosynaptic coupling between excitatory and inhibitory cells. This is likely to affect feedforward inhibition from the perirhinal to the entorhinal cortex that gates the flow of information to the hippocampus. This is significant because cognitive dysfunction in normative and pathological aging has been linked to hyperexcitability in the aged CA3 subregion of the hippocampus in rats, monkeys, and humans. The reduced inhibition in the perirhinal cortex reported here could contribute to this circuit imbalance, and may be a key point to consider for therapeutic interventions aimed at restoring network function to optimize cognition.
Collapse
|
21
|
Abstract
UNLABELLED This paper reviews some of the evidence that bears on the existence of a mental high-speed serial exhaustive scanning process (SES) used by humans to interrogate the active memory of a set of items to determine whether it contains a test item. First proposed in the 1960s, based on patterns of reaction times (RTs), numerous later studies supported, elaborated, extended, and limited the generality of SES, while critics claimed that SES never occurred, that predictions from SES were violated, and that other mechanisms produced the RT patterns that led to the idea. I show that some of these claims result from ignoring variations in experimental procedure that produce superficially similar but quantitatively different RT patterns and that, for the original procedures, the most frequently repeated claims that predictions are violated are false. I also discuss evidence against the generality of competing theories of active-memory interrogation, especially those that depend on discrimination of directly accessible "memory-strength". Some of this evidence has been available since the 1960s but has been ignored by some proponents of alternative theories. Other evidence presented herein is derived from results of one relevant experiment described for the first time, results of another described in more detail than heretofore, and new analyses of old data. Knowledge of brain function acquired during the past half century has increased the plausibility of SES. THE CONCLUSION SES is alive and well, but many associated puzzles merit further investigation, suggestions for which are offered.
Collapse
Affiliation(s)
- Saul Sternberg
- a Department of Psychology , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
22
|
Yin YQ, Wang LF, Chen C, Gao T, Zhao ZF, Li CH. In vivo field recordings effectively monitor the mouse cortex and hippocampus under isoflurane anesthesia. Neural Regen Res 2016; 11:1951-1955. [PMID: 28197191 PMCID: PMC5270433 DOI: 10.4103/1673-5374.197136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2016] [Indexed: 02/05/2023] Open
Abstract
Isoflurane is a widely used inhaled anesthetic in the clinical setting. However, the mechanism underlying its effect on consciousness is under discussion. Therefore, we investigated the effect of isoflurane on the hippocampus and cortex using an in vivo field recording approach. Our results showed that 1.3%, 0.8%, and 0.4% isoflurane exerted an inhibitory influence on the mouse hippocampus and cortex. Further, high frequency bands in the cortex and hippocampus showed greater suppression with increasing isoflurane concentration. Our findings suggest that in vivo field recordings can monitor the effect of isoflurane anesthesia on the mouse cortex and hippocampus.
Collapse
Affiliation(s)
- Yi-qing Yin
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Li-fang Wang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Chao Chen
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Teng Gao
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Zi-fang Zhao
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Cheng-hui Li
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
23
|
Liu T, Bai W, Wang J, Tian X. An aberrant link between gamma oscillation and functional connectivity in Aβ1–42-mediated memory deficits in rats. Behav Brain Res 2016; 297:51-8. [DOI: 10.1016/j.bbr.2015.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 02/02/2023]
|
24
|
Effects of memantine on hippocampal long-term potentiation, gamma activity, and sensorimotor gating in freely moving rats. Neurobiol Aging 2015; 36:2544-54. [DOI: 10.1016/j.neurobiolaging.2015.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 12/20/2022]
|
25
|
Leiser SC, Pehrson AL, Robichaud PJ, Sanchez C. Multimodal antidepressant vortioxetine increases frontal cortical oscillations unlike escitalopram and duloxetine--a quantitative EEG study in rats. Br J Pharmacol 2015; 171:4255-72. [PMID: 24846338 PMCID: PMC4241092 DOI: 10.1111/bph.12782] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/27/2014] [Accepted: 05/03/2014] [Indexed: 12/28/2022] Open
Abstract
Background and Purpose EEG studies show that 5-HT is involved in regulation of sleep–wake state and modulates cortical oscillations. Vortioxetine is a 5-HT3, 5-HT7, and 5-HT1D receptor antagonist, 5-HT1B partial agonist, 5-HT1A agonist, and 5-HT transporter inhibitor. Preclinical (animal) and clinical studies with vortioxetine show positive impact on cognitive metrics involving cortical function. Here we assess vortioxetine's effect on cortical neuronal oscillations in actively awake rats. Experimental Approach Telemetric EEG recordings were obtained with the following treatments (mg·kg−1, s.c.): vehicle, vortioxetine (0.1, 1.0, 3.0, 10), 5-HT1A agonist flesinoxan (2.5), 5-HT3 antagonist ondansetron (0.30), 5-HT7 antagonist SB-269970-A (10), escitalopram (2.0), duloxetine (10) and vortioxetine plus flesinoxan. Target occupancies were determined by ex vivo autoradiography. Key Results Vortioxetine dose-dependently increased wakefulness. Flesinoxan, duloxetine, ondansetron, but not escitalopram or SB-269970-A increased wakefulness. Quantitative spectral analyses showed vortioxetine alone and with flesinoxan increased θ (4–8 Hz), α (8–12 Hz) and γ (30–50 Hz) power. Duloxetine had no effect on θ and γ, but decreased α power, while escitalopram produced no changes. Ondansetron and SB-269970 (≈31–35% occupancy) increased θ power. Flesinoxan (≈41% occupancy) increased θ and γ power. Conclusions and Implications Vortioxetine increased wakefulness and increased frontal cortical activity, most likely because of its 5-HT7 and 5-HT3 antagonism and 5-HT1A agonism. Vortioxetine differs from escitalopram and duloxetine by increasing cortical θ, α and γ oscillations. These preclinical findings suggest a role of vortioxetine in modulating cortical circuits known to be recruited during cognitive behaviours and warrant further investigation as to their clinical impact.
Collapse
Affiliation(s)
- S C Leiser
- Department of BioAnalysis & Physiology, Lundbeck Research USA, Inc., Paramus, NJ, USA
| | | | | | | |
Collapse
|
26
|
Samson RD, Venkatesh A, Patel DH, Lipa P, Barnes CA. Enhanced performance of aged rats in contingency degradation and instrumental extinction tasks. Behav Neurosci 2014; 128:122-33. [PMID: 24773433 DOI: 10.1037/a0035986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Normal aging in rats affects behavioral performance on a variety of associative learning tasks under Pavlovian conditions. There is little information, however, on whether aging also impacts performance of instrumental tasks. Young (9-12 months) and aged (24-27 months) Fisher 344 rats were trained to press distinct levers associated with either maltodextrin or sucrose. The rats in both age groups increased their lever press frequency at a similar rate, suggesting that the initial acquisition of this instrumental task is not affected by aging. Using a contingency degradation procedure, we then addressed whether aged rats could adapt their behavior to changes in action-outcome contingencies. We found that young and aged rats do adapt, but that a different schedule of reinforcement is necessary to optimize performance in each age group. Finally, we also addressed whether aged rats can extinguish a lever press action as well as young rats, using 2 40-min extinction sessions on consecutive days. While extinction profiles were similar in young and aged rats on the first day of training, aged rats were faster to extinguish their lever presses on the second day, in spite of their performance levels being similar at the beginning of the session. Together these data support the finding that acquisition of instrumental lever press behaviors is preserved in aged rats and suggest that they have a different threshold for switching strategies in response to changes in action-outcome associations. This pattern of result implies that age-related changes in the brain are heterogeneous and widespread across structures.
Collapse
Affiliation(s)
| | - Anu Venkatesh
- Evelyn F. McKnight Brain Institute, University of Arizona
| | - Dhara H Patel
- Evelyn F. McKnight Brain Institute, University of Arizona
| | - Peter Lipa
- Evelyn F. McKnight Brain Institute, University of Arizona
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona
| |
Collapse
|
27
|
Insel N, Barnes CA. Differential Activation of Fast-Spiking and Regular-Firing Neuron Populations During Movement and Reward in the Dorsal Medial Frontal Cortex. Cereb Cortex 2014; 25:2631-47. [PMID: 24700585 DOI: 10.1093/cercor/bhu062] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The medial prefrontal cortex is thought to be important for guiding behavior according to an animal's expectations. Efforts to decode the region have focused not only on the question of what information it computes, but also how distinct circuit components become engaged during behavior. We find that the activity of regular-firing, putative projection neurons contains rich information about behavioral context and firing fields cluster around reward sites, while activity among putative inhibitory and fast-spiking neurons is most associated with movement and accompanying sensory stimulation. These dissociations were observed even between adjacent neurons with apparently reciprocal, inhibitory-excitatory connections. A smaller population of projection neurons with burst-firing patterns did not show clustered firing fields around rewards; these neurons, although heterogeneous, were generally less selective for behavioral context than regular-firing cells. The data suggest a network that tracks an animal's behavioral situation while, at the same time, regulating excitation levels to emphasize high valued positions. In this scenario, the function of fast-spiking inhibitory neurons is to constrain network output relative to incoming sensory flow. This scheme could serve as a bridge between abstract sensorimotor information and single-dimensional codes for value, providing a neural framework to generate expectations from behavioral state.
Collapse
Affiliation(s)
- Nathan Insel
- Evelyn F. McKnight Brain Institute and ARL Division of Neural Systems, Memory and Aging
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute and ARL Division of Neural Systems, Memory and Aging Departments of Psychology, Neurology, and Neuroscience, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
28
|
Abstract
The perirhinal cortex (PRC) is proposed to both represent high-order sensory information and maintain those representations across delays. These cognitive processes are required for recognition memory, which declines during normal aging. Whether or not advanced age affects the ability of PRC principal cells to support these dual roles, however, is not known. The current experiment recorded PRC neurons as young and aged rats traversed a track. When objects were placed on the track, a subset of the neurons became active at discrete locations adjacent to objects. Importantly, the aged rats had a lower proportion of neurons that were activated by objects. Once PRC activity patterns in the presence of objects were established, however, both age groups maintained these representations across delays up to 2 h. These data support the hypothesis that age-associated deficits in stimulus recognition arise from impairments in high-order stimulus representation rather than difficulty in sustaining stable activity patterns over time.
Collapse
|
29
|
Molina LA, Skelin I, Gruber AJ. Acute NMDA receptor antagonism disrupts synchronization of action potential firing in rat prefrontal cortex. PLoS One 2014; 9:e85842. [PMID: 24465743 PMCID: PMC3895008 DOI: 10.1371/journal.pone.0085842] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022] Open
Abstract
Antagonists of N-methyl-D-aspartate receptors (NMDAR) have psychotomimetic effects in humans and are used to model schizophrenia in animals. We used high-density electrophysiological recordings to assess the effects of acute systemic injection of an NMDAR antagonist (MK-801) on ensemble neural processing in the medial prefrontal cortex of freely moving rats. Although MK-801 increased neuron firing rates and the amplitude of gamma-frequency oscillations in field potentials, the synchronization of action potential firing decreased and spike trains became more Poisson-like. This disorganization of action potential firing following MK-801 administration is consistent with changes in simulated cortical networks as the functional connections among pyramidal neurons become less clustered. Such loss of functional heterogeneity of the cortical microcircuit may disrupt information processing dependent on spike timing or the activation of discrete cortical neural ensembles, and thereby contribute to hallucinations and other features of psychosis induced by NMDAR antagonists.
Collapse
Affiliation(s)
- Leonardo A. Molina
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ivan Skelin
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Aaron J. Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
30
|
Khan ZU, Martín-Montañez E, Navarro-Lobato I, Muly EC. Memory deficits in aging and neurological diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:1-29. [PMID: 24484696 DOI: 10.1016/b978-0-12-420170-5.00001-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Memory is central to our ability to perform daily life activities and correctly function in society. Improvements in public health and medical treatment for a variety of diseases have resulted in longer life spans; however, age-related memory impairments have been significant sources of morbidity. Loss in memory function is not only associated with aging population but is also a feature of neurodegenerative diseases such as Alzheimer's disease and other psychiatric and neurological disorders. Here, we focus on current understanding of the impact of normal aging on memory and what is known about its mechanisms, and further review pathological mechanisms behind the cause of dementia in Alzheimer's disease. Finally, we discuss schizophrenia and look into abnormalities in circuit function and neurotransmitter systems that contribute to memory impairment in this illness.
Collapse
Affiliation(s)
- Zafar U Khan
- Laboratory of Neurobiology at CIMES, University of Málaga, Málaga, Spain; Department of Medicine at Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Elisa Martín-Montañez
- Laboratory of Neurobiology at CIMES, University of Málaga, Málaga, Spain; Department of Pharmacology at Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Irene Navarro-Lobato
- Laboratory of Neurobiology at CIMES, University of Málaga, Málaga, Spain; Department of Medicine at Faculty of Medicine, University of Málaga, Málaga, Spain
| | - E Chris Muly
- Atlanta Department of Veterans Affairs Medical Center, Decatur, Georgia, USA; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, USA; Division of Neuropharmacology and Neurological Diseases, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| |
Collapse
|
31
|
Samson RD, Barnes CA. Impact of aging brain circuits on cognition. Eur J Neurosci 2013; 37:1903-15. [PMID: 23773059 DOI: 10.1111/ejn.12183] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 01/01/2023]
Abstract
Brain networks that engage the hippocampus and prefrontal cortex are central for enabling effective interactions with our environment. Some of the cognitive processes that these structures mediate, such as encoding and retrieving episodic experience, wayfinding, working memory and attention are known to be altered across the lifespan. As illustrated by examples given below, there is remarkable consistency across species in the pattern of age-related neural and cognitive change observed in healthy humans and other animals. These include changes in cognitive operations that are known to be dependent on the hippocampus, as well as those requiring intact prefrontal cortical circuits. Certain cognitive constructs that reflect the function of these areas lend themselves to investigation across species, allowing brain mechanisms at different levels of analysis to be studied in greater depth.
Collapse
Affiliation(s)
- Rachel D Samson
- Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
32
|
Santarnecchi E, Polizzotto NR, Godone M, Giovannelli F, Feurra M, Matzen L, Rossi A, Rossi S. Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. Curr Biol 2013; 23:1449-53. [PMID: 23891115 DOI: 10.1016/j.cub.2013.06.022] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/03/2013] [Accepted: 06/10/2013] [Indexed: 11/25/2022]
Abstract
Everyday problem solving requires the ability to go beyond experience by efficiently encoding and manipulating new information, i.e., fluid intelligence (Gf) [1]. Performance in tasks involving Gf, such as logical and abstract reasoning, has been shown to rely on distributed neural networks, with a crucial role played by prefrontal regions [2]. Synchronization of neuronal activity in the gamma band is a ubiquitous phenomenon within the brain; however, no evidence of its causal involvement in cognition exists to date [3]. Here, we show an enhancement of Gf ability in a cognitive task induced by exogenous rhythmic stimulation within the gamma band. Imperceptible alternating current [4] delivered through the scalp over the left middle frontal gyrus resulted in a frequency-specific shortening of the time required to find the correct solution in a visuospatial abstract reasoning task classically employed to measure Gf abilities (i.e., Raven's matrices) [5]. Crucially, gamma-band stimulation (γ-tACS) selectively enhanced performance only on more complex trials involving conditional/logical reasoning. The present finding supports a direct involvement of gamma oscillatory activity in the mechanisms underlying higher-order human cognition.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|