1
|
Siebert JR, Kennedy K, Osterhout DJ. Neurons Are Not All the Same: Diversity in Neuronal Populations and Their Intrinsic Responses to Spinal Cord Injury. ASN Neuro 2025; 17:2440299. [PMID: 39819292 DOI: 10.1080/17590914.2024.2440299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Functional recovery following spinal cord injury will require the regeneration and repair of damaged neuronal pathways. It is well known that the tissue response to injury involves inflammation and the formation of a glial scar at the lesion site, which significantly impairs the capacity for neuronal regeneration and functional recovery. There are initial attempts by both supraspinal and intraspinal neurons to regenerate damaged axons, often influenced by the neighboring tissue pathology. Many experimental therapeutic strategies are targeted to further stimulate the initial axonal regrowth, with little consideration for the diversity of the affected neuronal populations. Notably, recent studies reveal that the neuronal response to injury is variable, based on multiple factors, including the location of the injury with respect to the neuronal cell bodies and the affected neuronal populations. New insights into regenerative mechanisms have shown that neurons are not homogenous but instead exhibit a wide array of diversity in their gene expression, physiology, and intrinsic responses to injury. Understanding this diverse intrinsic response is crucial, as complete functional recovery requires the successful coordinated regeneration and reorganization of various neuron pathways.
Collapse
Affiliation(s)
- Justin R Siebert
- Physician Assistant Studies Program, Department of Health Care and Administration, Slippery Rock University of Pennsylvania, Slippery Rock, PA, USA
| | - Kiersten Kennedy
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Donna J Osterhout
- Department of Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
2
|
Involvement of Scratch2 in GalR1-mediated depression-like behaviors in the rat ventral periaqueductal gray. Proc Natl Acad Sci U S A 2021; 118:1922586118. [PMID: 34108238 DOI: 10.1073/pnas.1922586118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galanin receptor1 (GalR1) transcript levels are elevated in the rat ventral periaqueductal gray (vPAG) after chronic mild stress (CMS) and are related to depression-like behavior. To explore the mechanisms underlying the elevated GalR1 expression, we carried out molecular biological experiments in vitro and in animal behavioral experiments in vivo. It was found that a restricted upstream region of the GalR1 gene, from -250 to -220, harbors an E-box and plays a negative role in the GalR1 promoter activity. The transcription factor Scratch2 bound to the E-box to down-regulate GalR1 promoter activity and lower expression levels of the GalR1 gene. The expression of Scratch2 was significantly decreased in the vPAG of CMS rats. Importantly, local knockdown of Scratch2 in the vPAG caused elevated expression of GalR1 in the same region, as well as depression-like behaviors. RNAscope analysis revealed that GalR1 mRNA is expressed together with Scratch2 in both GABA and glutamate neurons. Taking these data together, our study further supports the involvement of GalR1 in mood control and suggests a role for Scratch2 as a regulator of depression-like behavior by repressing the GalR1 gene in the vPAG.
Collapse
|
3
|
Gölzenleuchter M, Kanwar R, Zaibak M, Al Saiegh F, Hartung T, Klukas J, Smalley RL, Cunningham JM, Figueroa ME, Schroth GP, Therneau TM, Banck MS, Beutler AS. Plasticity of DNA methylation in a nerve injury model of pain. Epigenetics 2015; 10:200-12. [PMID: 25621511 DOI: 10.1080/15592294.2015.1006493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The response of the peripheral nervous system (PNS) to injury may go together with alterations in epigenetics, a conjecture that has not been subjected to a comprehensive, genome-wide test. Using reduced representation bisulfite sequencing, we report widespread remodeling of DNA methylation in the rat dorsal root ganglion (DRG) occurring within 24 h of peripheral nerve ligation, a neuropathy model of allodynia. Significant (P < 10(-4)) cytosine hyper- and hypo-methylation was found at thousands of CpG sites. Remodeling occurred outside of CpG islands. Changes affected genes with known roles in the PNS, yet methylome remodeling also involved genes that were not linked to neuroplasticity by prior evidence. Consistent with emerging models relying on genome-wide methylation and RNA-seq analysis of promoter regions and gene bodies, variation of methylation was not tightly linked with variation of gene expression. Furthermore, approximately 44% of the dynamically changed CpGs were located outside of genes. We compared their positions with the intergenic, tissue-specific differentially methylated CpGs (tDMCs) of an independent experimental set consisting of liver, spleen, L4 control DRG, and muscle. Dynamic changes affected those intergenic CpGs that were different between tissues (P < 10(-15)) and almost never the invariant portion of the methylome (those CpGs that were identical across all tissues). Our findings-obtained in mixed tissue-show that peripheral nerve injury leads to methylome remodeling in the DRG. Future studies may address which of the cell types found in the DRG, such as specific groups of neurons or non-neuronal cells are affected by which aspect of the observed methylome remodeling.
Collapse
Affiliation(s)
- Meike Gölzenleuchter
- a Departments of Anesthesiology; Oncology; and Biostatistics and Bioinformatics; Mayo Clinic , Rochester , MN USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D, Hökfelt T, Kofler B. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol Rev 2015; 67:118-75. [PMID: 25428932 DOI: 10.1124/pr.112.006536] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galanin was first identified 30 years ago as a "classic neuropeptide," with actions primarily as a modulator of neurotransmission in the brain and peripheral nervous system. Other structurally-related peptides-galanin-like peptide and alarin-with diverse biologic actions in brain and other tissues have since been identified, although, unlike galanin, their cognate receptors are currently unknown. Over the last two decades, in addition to many neuronal actions, a number of nonneuronal actions of galanin and other galanin family peptides have been described. These include actions associated with neural stem cells, nonneuronal cells in the brain such as glia, endocrine functions, effects on metabolism, energy homeostasis, and paracrine effects in bone. Substantial new data also indicate an emerging role for galanin in innate immunity, inflammation, and cancer. Galanin has been shown to regulate its numerous physiologic and pathophysiological processes through interactions with three G protein-coupled receptors, GAL1, GAL2, and GAL3, and signaling via multiple transduction pathways, including inhibition of cAMP/PKA (GAL1, GAL3) and stimulation of phospholipase C (GAL2). In this review, we emphasize the importance of novel galanin receptor-specific agonists and antagonists. Also, other approaches, including new transgenic mouse lines (such as a recently characterized GAL3 knockout mouse) represent, in combination with viral-based techniques, critical tools required to better evaluate galanin system physiology. These in turn will help identify potential targets of the galanin/galanin-receptor systems in a diverse range of human diseases, including pain, mood disorders, epilepsy, neurodegenerative conditions, diabetes, and cancer.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Andrew L Gundlach
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Fiona E Holmes
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Sally A Hobson
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - David Wynick
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Tomas Hökfelt
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Barbara Kofler
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| |
Collapse
|
5
|
Injury-specific promoters enhance herpes simplex virus-mediated gene therapy for treating neuropathic pain in rodents. THE JOURNAL OF PAIN 2015; 16:283-90. [PMID: 25576797 DOI: 10.1016/j.jpain.2014.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 12/13/2014] [Accepted: 12/13/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Chronic neuropathic pain is often difficult to treat with current pain medications. Gene therapy is presently being explored as a therapeutic approach for the treatment of neuropathic and cancer pain. In this study, we sought to use an injury-specific promoter to deliver the mu-opioid receptor (MOR) transgene such that expression would occur during the injured state only in response to release of injury-specific galanin. To determine whether an injury-specific promoter can produce neuron-specific MOR expression and enhanced antinociception, we compared animals infected with a galanin promoter virus (galMOR) or a human cytomegalovirus promoter virus (cmvMOR). In behavioral assays, we found an earlier onset and a larger magnitude of antinociception in animals infected with galMOR compared with cmvMOR. Immunohistochemical analysis of dorsal root ganglion neurons revealed a significant increase in MOR-positive staining in cmvMOR- and galMOR-treated mice. Spinal cord sections from galMOR-treated mice showed a greater increase in density but not area of MOR-positive staining. These results suggest that using injury-specific promoters to drive gene expression in primary afferent neurons can influence the onset and magnitude of antinociception in a rodent model of neuropathic pain and can be used to upregulate MOR expression in populations of neurons that are potentially injury specific. PERSPECTIVE An injury-specific promoter (galMOR) was used to drive MOR expression in a population- and injury-specific manner. GalMOR increased antinociception and density of MOR staining in the spinal cord. This article presents evidence that promoter selection is an important component in successful gene expression in an injury- and population-specific manner.
Collapse
|
6
|
Gonzalez S, Binato R, Guida L, Mencalha AL, Abdelhay E. Conserved transcription factor binding sites suggest an activator basal promoter and a distal inhibitor in the galanin gene promoter in mouse ES cells. Gene 2014; 538:228-34. [PMID: 24487089 DOI: 10.1016/j.gene.2014.01.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Galanin and its receptors have been shown to be expressed in undifferentiated mouse embryonic stem (ES) cells through transcriptome and proteomic analyses. Although transcriptional regulation of galanin has been extensively studied, the regulatory proteins that mediate galanin expression in mouse ES cells have not yet been determined. Through sequence alignments, we have found a high degree of similarity between mouse and human galanin upstream sequences at -146 bp/+69 bp (proximal region) and -2,408 bp/-2,186 bp (distal region). These regions could be recognized by ES cell nuclear proteins, and EMSA analysis suggests a specific functionality. Analysis of the proximal region (PR) using EMSA and ChIP assays showed that the CREB protein interacts with the galanin promoter both in vitro and in vivo. Additional EMSA analysis revealed that an SP1 consensus site mediated protein-DNA complex formation. Reporter assays showed that CREB is an activator of galanin expression and works cooperatively with SP1. Furthermore, analysis of the distal region (DR) using EMSA assays demonstrated that both HOX-F and PAX 4/6 consensus sites mediated protein-DNA complex formation, and both sites inhibited luciferase activity in reporter assays. These data together suggest that CRE and SP1 act as activators at the basal promoter, while HOX-F and PAX 4/6 act as silencers of transcription. The interplay of these transcription factors (TF) may drive regulated galanin expression in mouse ES cells.
Collapse
Affiliation(s)
- Sayonara Gonzalez
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, RJ, Brazil; Departamento de Genética Médica, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, RJ, Brazil.
| | - Renata Binato
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, RJ, Brazil.
| | - Letícia Guida
- Departamento de Genética Médica, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, RJ, Brazil
| | - André Luiz Mencalha
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, RJ, Brazil
| | - Eliana Abdelhay
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, RJ, Brazil
| |
Collapse
|
7
|
Xu X, Liu Z, Liu H, Yang X, Li Z. The effects of galanin on neuropathic pain in streptozotocin-induced diabetic rats. Eur J Pharmacol 2012; 680:28-33. [DOI: 10.1016/j.ejphar.2012.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 01/07/2012] [Accepted: 01/13/2012] [Indexed: 01/20/2023]
|
8
|
Holmes FE, Armenaki A, Iismaa TP, Einstein EB, Shine J, Picciotto MR, Wynick D, Zachariou V. Galanin negatively modulates opiate withdrawal via galanin receptor 1. Psychopharmacology (Berl) 2012; 220:619-25. [PMID: 21969124 PMCID: PMC3324978 DOI: 10.1007/s00213-011-2515-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 09/15/2011] [Indexed: 12/15/2022]
Abstract
RATIONALE The neuropeptide galanin has been shown to modulate opiate dependence and withdrawal. These effects could be mediated via activation of one or more of the three distinct G protein-coupled receptors, namely galanin receptors 1 (GalR1), 2 (GalR2), and 3 (GalR3). OBJECTIVES In this study, we used several transgenic mouse lines to further define the mechanisms underlying the role played by galanin and its receptors in the modulation of morphine dependence. First, transgenic mice expressing β-galactosidase under the control of the galanin promoter were used to assess the regulation of galanin expression in response to chronic morphine administration and withdrawal. Next, the behavioral responses to chronic morphine administration and withdrawal were tested in mice that over-express galanin, lack the GalR1 gene, or lack the GalR2 gene. METHODS Transgenic and matched wild-type mice were given increasing doses of morphine followed by precipitation of withdrawal by naloxone and behavioral responses to withdrawal were assessed. RESULTS Both morphine administration and withdrawal increased galanin gene transcription in the locus coeruleus (LC). Increasing galanin levels in the brain reduced signs of opiate withdrawal. Mice lacking GalR1 undergo more severe opiate withdrawal, whereas mice lacking GalR2 show no significant difference in withdrawal signs, compare with matched wild-type controls. CONCLUSIONS Opiate administration and withdrawal increase galanin expression in the LC. Galanin opposes the actions of morphine which leads to opiate dependence and withdrawal, an effect that is mediated via GalR1.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Galanin/metabolism
- Gene Expression Regulation
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Morphine/administration & dosage
- Morphine/adverse effects
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Opioid-Related Disorders/physiopathology
- Receptor, Galanin, Type 1/genetics
- Receptor, Galanin, Type 1/metabolism
- Receptor, Galanin, Type 2/genetics
- Receptor, Galanin, Type 2/metabolism
- Receptor, Galanin, Type 3/genetics
- Receptor, Galanin, Type 3/metabolism
- Substance Withdrawal Syndrome/physiopathology
Collapse
Affiliation(s)
- Fiona E Holmes
- Schools of Physiology and Pharmacology and Clinical Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Patodia S, Raivich G. Role of transcription factors in peripheral nerve regeneration. Front Mol Neurosci 2012; 5:8. [PMID: 22363260 PMCID: PMC3277281 DOI: 10.3389/fnmol.2012.00008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 01/24/2012] [Indexed: 11/13/2022] Open
Abstract
Following axotomy, the activation of multiple intracellular signaling cascades causes the expression of a cocktail of regeneration-associated transcription factors which interact with each other to determine the fate of the injured neurons. The nerve injury response is channeled through manifold and parallel pathways, integrating diverse inputs, and controlling a complex transcriptional output. Transcription factors form a vital link in the chain of regeneration, converting injury-induced stress signals into downstream protein expression via gene regulation. They can regulate the intrinsic ability of axons to grow, by controlling expression of whole cassettes of gene targets. In this review, we have investigated the functional roles of a number of different transcription factors - c-Jun, activating transcription factor 3, cAMP response element binding protein, signal transducer, and activator of transcription-3, CCAAT/enhancer binding proteins β and δ, Oct-6, Sox11, p53, nuclear factor kappa-light-chain-enhancer of activated B cell, and ELK3 - in peripheral nerve regeneration. Studies involving use of conditional mutants, microarrays, promoter region mapping, and different injury paradigms, have enabled us to understand their distinct as well as overlapping roles in achieving anatomical and functional regeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- Smriti Patodia
- Centre for Perinatal Brain Protection and Repair, University College London London, UK
| | | |
Collapse
|
10
|
Zigmond RE. gp130 cytokines are positive signals triggering changes in gene expression and axon outgrowth in peripheral neurons following injury. Front Mol Neurosci 2012; 4:62. [PMID: 22319466 PMCID: PMC3262188 DOI: 10.3389/fnmol.2011.00062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/28/2011] [Indexed: 01/24/2023] Open
Abstract
Adult peripheral neurons, in contrast to adult central neurons, are capable of regeneration after axonal damage. Much attention has focused on the changes that accompany this regeneration in two places, the distal nerve segment (where phagocytosis of axonal debris, changes in the surface properties of Schwann cells, and induction of growth factors and cytokines occur) and the neuronal cell body (where dramatic changes in cell morphology and gene expression occur). The changes in the axotomized cell body are often referred to as the "cell body response." The focus of the current review is a family of cytokines, the glycoprotein 130 (gp130) cytokines, which produce their actions through a common gp130 signaling receptor and which function as injury signals for axotomized peripheral neurons, triggering changes in gene expression and in neurite outgrowth. These cytokines play important roles in the responses of sympathetic, sensory, and motor neurons to injury. The best studied of these cytokines in this context are leukemia inhibitory factor (LIF) and interleukin (IL)-6, but experiments with conditional gp130 knockout animals suggest that other members of this family, not yet determined, are also involved. The primary gp130 signaling pathway shown to be involved is the activation of Janus kinase (JAK) and the transcription factors Signal Transducers and Activators of Transcription (STAT), though other downstream pathways such as mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) may also play a role. gp130 signaling may involve paracrine, retrograde, and autocrine actions of these cytokines. Recent studies suggest that manipulation of this cytokine system can also stimulate regeneration by injured central neurons.
Collapse
Affiliation(s)
- Richard E. Zigmond
- Department of Neurosciences, Case Western Reserve University, ClevelandOH, USA
| |
Collapse
|
11
|
Davidson S, Lear M, Shanley L, Hing B, Baizan-Edge A, Herwig A, Quinn JP, Breen G, McGuffin P, Starkey A, Barrett P, MacKenzie A. Differential activity by polymorphic variants of a remote enhancer that supports galanin expression in the hypothalamus and amygdala: implications for obesity, depression and alcoholism. Neuropsychopharmacology 2011; 36:2211-21. [PMID: 21716262 PMCID: PMC3176579 DOI: 10.1038/npp.2011.93] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expression of the galanin gene (GAL) in the paraventricular nucleus (PVN) and in the amygdala of higher vertebrates suggests the requirement for highly conserved, but unidentified, regulatory sequences that are critical to allow the galanin gene to control alcohol and fat intake and modulate mood. We used comparative genomics to identify a highly conserved sequence that lay 42 kb 5' of the human GAL transcriptional start site that we called GAL5.1. GAL5.1 activated promoter activity in neurones of the PVN, arcuate nucleus and amygdala that also expressed the galanin peptide. Analysis in neuroblastoma cells demonstrated that GAL5.1 acted as an enhancer of promoter activity after PKC activation. GAL5.1 contained two polymorphisms; rs2513280(C/G) and rs2513281(A/G), that occurred in two allelic combinations (GG or CA) where the dominant GG alelle occurred in 70-83 % of the human population. Intriguingly, both SNPs were found to be in LD (R(2) of 0.687) with another SNP (rs2156464) previously associated with major depressive disorder (MDD). Recreation of these alleles in reporter constructs and subsequent magnetofection into primary rat hypothalamic neurones showed that the CA allele was 40 % less active than the GG allele. This is consistent with the hypothesis that the weaker allele may affect food and alcohol preference. The linkage of the SNPs analysed in this study with a SNP previously associated with MDD together with the functioning of GAL5.1 as a PVN and amygdala specific enhancer represent a significant advance in our ability to understand alcoholism, obesity and major depressive disorder.
Collapse
Affiliation(s)
- Scott Davidson
- School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Marissa Lear
- School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Lynne Shanley
- School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Benjamin Hing
- School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Amanda Baizan-Edge
- School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK
| | - Annika Herwig
- The Rowett Institute of Nutrition and Health, Aberdeen, Scotland, UK
| | - John P Quinn
- The Physiological Laboratory, School of Biomedical Sciences, Crown Street, University of Liverpool, Liverpool, UK
| | - Gerome Breen
- MRC SGDP Centre, Institute of Psychiatry, King's College London, DeCrespigny Park, London, UK
| | - Peter McGuffin
- MRC SGDP Centre, Institute of Psychiatry, King's College London, DeCrespigny Park, London, UK
| | - Andrew Starkey
- School of Engineering, Fraser Noble Building, Kings College, University of Aberdeen, Aberdeen, Scotland, UK
| | - Perry Barrett
- The Rowett Institute of Nutrition and Health, Aberdeen, Scotland, UK
| | - Alasdair MacKenzie
- School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK,School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, Scotland, UK, Tel: +44 (0)1224 437380, Fax: +44 (0)1224 555719, E-mail:
| |
Collapse
|
12
|
Read ML, Lewy GD, Fong JCW, Sharma N, Seed RI, Smith VE, Gentilin E, Warfield A, Eggo MC, Knauf JA, Leadbeater WE, Watkinson JC, Franklyn JA, Boelaert K, McCabe CJ. Proto-oncogene PBF/PTTG1IP regulates thyroid cell growth and represses radioiodide treatment. Cancer Res 2011; 71:6153-64. [PMID: 21844185 PMCID: PMC3184940 DOI: 10.1158/0008-5472.can-11-0720] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pituitary tumor transforming gene (PTTG)-binding factor (PBF or PTTG1IP) is a little characterized proto-oncogene that has been implicated in the etiology of breast and thyroid tumors. In this study, we created a murine transgenic model to target PBF expression to the thyroid gland (PBF-Tg mice) and found that these mice exhibited normal thyroid function, but a striking enlargement of the thyroid gland associated with hyperplastic and macrofollicular lesions. Expression of the sodium iodide symporter (NIS), a gene essential to the radioiodine ablation of thyroid hyperplasia, neoplasia, and metastasis, was also potently inhibited in PBF-Tg mice. Critically, iodide uptake was repressed in primary thyroid cultures from PBF-Tg mice, which could be rescued by PBF depletion. PBF-Tg thyroids exhibited upregulation of Akt and the TSH receptor (TSHR), each known regulators of thyrocyte proliferation, along with upregulation of the downstream proliferative marker cyclin D1. We extended and confirmed findings from the mouse model by examining PBF expression in human multinodular goiters (MNG), a hyperproliferative thyroid disorder, where PBF and TSHR was strongly upregulated relative to normal thyroid tissue. Furthermore, we showed that depleting PBF in human primary thyrocytes was sufficient to increase radioiodine uptake. Together, our findings indicate that overexpression of PBF causes thyroid cell proliferation, macrofollicular lesions, and hyperplasia, as well as repression of the critical therapeutic route for radioiodide uptake.
Collapse
Affiliation(s)
- Martin L Read
- School of Clinical and Experimental Medicine, Institute of Biomedical Research, University of Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pope RJP, Holmes FE, Kerr NC, Wynick D. Characterisation of the nociceptive phenotype of suppressible galanin overexpressing transgenic mice. Mol Pain 2010; 6:67. [PMID: 20964829 PMCID: PMC2978139 DOI: 10.1186/1744-8069-6-67] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/21/2010] [Indexed: 12/16/2022] Open
Abstract
The neuropeptide galanin is widely expressed in both the central and peripheral nervous systems and is involved in many diverse biological functions. There is a substantial data set that demonstrates galanin is upregulated after injury in the DRG, spinal cord and in many brain regions where it plays a predominantly antinociceptive role in addition to being neuroprotective and pro-regenerative. To further characterise the role of galanin following nerve injury, a novel transgenic line was created using the binary transgenic tet-off system, to overexpress galanin in galaninergic tissue in a suppressible manner. The double transgenic mice express significantly more galanin in the DRG one week after sciatic nerve section (axotomy) compared to WT mice and this overexpression is suppressible upon administration of doxycycline. Phenotypic analysis revealed markedly attenuated allodynia when galanin is overexpressed and an increase in allodynia following galanin suppression. This novel transgenic line demonstrates that whether galanin expression is increased at the time of nerve injury or only after allodynia is established, the neuropeptide is able to reduce neuropathic pain behaviour. These new findings imply that administration of a galanin agonist to patients with established allodynia would be an effective treatment for neuropathic pain.
Collapse
Affiliation(s)
- Robert J P Pope
- Department of Physiology and Pharmacology and Clinical Sciences at South Bristol, School of Medical Sciences, University Walk, University of Bristol, Clifton, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
14
|
Kusik BW, Hammond DR, Udvadia AJ. Transcriptional regulatory regions of gap43 needed in developing and regenerating retinal ganglion cells. Dev Dyn 2010; 239:482-95. [PMID: 20034105 DOI: 10.1002/dvdy.22190] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammals and fish differ in their ability to express axon growth-associated genes in response to CNS injury, which contributes to the differences in their ability for CNS regeneration. Previously we demonstrated that for the axon growth-associated gene, gap43, regions of the rat promoter that are sufficient to promote reporter gene expression in the developing zebrafish nervous system are not sufficient to promote expression in regenerating retinal ganglion cells in zebrafish. Recently, we identified a 3.6-kb gap43 promoter fragment from the pufferfish, Takifugu rubripes (fugu), that can promote reporter gene expression during both development and regeneration. Using promoter deletion analysis, we have found regions of the 3.6-kb fugu gap43 promoter that are necessary for expression in regenerating, but not developing, retinal ganglion cells. Within the 3.6-kb promoter, we have identified elements that are highly conserved among fish, as well as elements conserved among fish, mammals, and birds.
Collapse
Affiliation(s)
- Brandon W Kusik
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | | |
Collapse
|
15
|
Kerr N, Pintzas A, Holmes F, Hobson SA, Pope R, Wallace M, Wasylyk C, Wasylyk B, Wynick D. The expression of ELK transcription factors in adult DRG: Novel isoforms, antisense transcripts and upregulation by nerve damage. Mol Cell Neurosci 2010; 44:165-77. [PMID: 20304071 DOI: 10.1016/j.mcn.2010.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/27/2010] [Accepted: 03/10/2010] [Indexed: 01/31/2023] Open
Abstract
ELK transcription factors are known to be expressed in a number of regions in the nervous system. We show by RT-PCR that the previously described Elk1, Elk3/Elk3b/Elk3c and Elk4 mRNAs are expressed in adult dorsal root ganglia (DRG), together with the novel alternatively spliced isoforms Elk1b, Elk3d and Elk4c/Elk4d/Elk4e. These isoforms are also expressed in brain, heart, kidney and testis. In contrast to Elk3 protein, the novel Elk3d isoform is cytoplasmic, fails to bind ETS binding sites and yet can activate transcription by an indirect mechanism. The Elk3 and Elk4 genes are overlapped by co-expressed Pctk2 (Cdk17) and Mfsd4 genes, respectively, with the potential formation of Elk3/Pctaire2 and Elk4/Mfsd4 sense-antisense mRNA heteroduplexes. After peripheral nerve injury the Elk3 mRNA isoforms are each upregulated approximately 2.3-fold in DRG (P<0.005), whereas the natural antisense Pctaire2 isoforms show only a small increase (21%, P<0.01) and Elk1 and Elk4 mRNAs are unchanged.
Collapse
Affiliation(s)
- Niall Kerr
- Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS81TD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
How do the satellite glia cells of the dorsal root ganglia respond to stressed neurons? – nitric oxide saga from embryonic development to axonal injury in adulthood. ACTA ACUST UNITED AC 2010; 6:11-7. [DOI: 10.1017/s1740925x09990494] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dorsal root ganglia (DRG) respond to peripheral nerve injury by up-regulating nitric oxide (NO) production by neurons and glia in addition to local fibroblasts, endothelium and macrophages. We hypothesise that NO produced from these cells has specific roles. We have shown that when neuronal NO synthase (nNOS) is blocked in axotomised DRG, neurons undergo degenerative changes (Thippeswamy et al., 2001, 2007a). Further, we demonstrated that increased neuronal NO production, in response to axotomy/growth factor-deprivation in vitro, signals glial cells to produce trophic factors to support neuronal survival (Thippeswamy et al., 2005a). Recently, we found that treating satellite glia–neuron co-cultures with nNOS inhibitor, 7-nitroindazole (7NI), decreases the number of nestin+ cells that show neuron-like morphology. Cultured/axotomised DRG also upregulate inducible NOS (iNOS) in non-neuronal cells. Therefore, it is plausible that degenerative changes following nNOS inhibition are also due to iNOS-mediated excessive NO production by non-neuronal cells, which indeed is cytotoxic. NG-nitro-l-arginine methylester (L-NAME), the pan NOS inhibitor did not significantly change nNOS+ neuron number in axotomised DRG compared to 7NI suggesting that iNOS-mediated NO contributes to the degenerative process. In this paper, these findings from our and others' past work on NO-mediated neuron–glia signalling in axotomised DRG are discussed.
Collapse
|
17
|
Hobson SA, Bacon A, Elliot-Hunt CR, Holmes FE, Kerr NCH, Pope R, Vanderplank P, Wynick D. Galanin acts as a trophic factor to the central and peripheral nervous systems. EXPERIENTIA SUPPLEMENTUM (2012) 2010; 102:25-38. [PMID: 21299059 DOI: 10.1007/978-3-0346-0228-0_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The neuropeptide galanin is widely, but not ubiquitously, expressed in the adult nervous system. Its expression is markedly up-regulated in many neuronal tissues after nerve injury or disease. Over the last 10 years, we have demonstrated that the peptide plays a developmental survival role to subsets of neurons in the peripheral and central nervous systems with resulting phenotypic changes in neuropathic pain and cognition. Galanin also appears to play a trophic role to adult sensory neurons following injury, via activation of GalR2, by stimulating neurite outgrowth. Furthermore, galanin also plays a neuroprotective role to the hippocampus following excitotoxic injury, again mediated by activation of GalR2. Most recently, we have shown that galanin expression is markedly up-regulated in multiple sclerosis (MS) lesions and in the experimental autoimmune encephalomyelitis (EAE) model of MS. Over-expression of galanin in transgenic mice abolishes disease in the EAE model, whilst loss-of-function mutations in galanin or GalR2 increase disease severity. In summary, these studies demonstrate that a GalR2 agonist might have clinical utility in a variety of human diseases that affect the nervous system.
Collapse
Affiliation(s)
- S A Hobson
- Department of Physiology, South Bristol, School of Medical Sciences, University Walk, Bristol University, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Mature neurons have diminished intrinsic regenerative capacity. Axotomy of the peripheral branch of adult dorsal root ganglia (a "conditioning" lesion) triggers a transcription-dependent axon growth program. Here, we show that this growth program requires the function of the transcription factor Smad1. After peripheral axotomy, neuronal Smad1 is upregulated, and phosphorylated Smad1 accumulates in the nucleus. Both events precede the onset of axonal extension. Reducing Smad1 by RNA interference in vitro impairs axonal growth, and the continued presence of Smad1 is required to maintain the growth program. Furthermore, intraganglionic injection of BMP2 or 4, which activates Smad1, markedly enhances axonal growth capacity, mimicking the effect of a conditioning lesion. Thus, activation of Smad1 by axotomy is a key component of the transcriptional switch that promotes an enhanced growth state of adult sensory neurons.
Collapse
|
19
|
Yang X, Liu Z, Li Z. Effects of norepinephrine on galanin expression in dorsal root ganglion neurons in vitro. Curr Ther Res Clin Exp 2009; 70:19-28. [PMID: 24692829 DOI: 10.1016/j.curtheres.2009.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2008] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Norepinephrine (NE) is a key neurotransmitter that functionally activates adrenoreceptors expressed in sympathetic neurons. Functional α1-adrenoreceptors are also expressed in dorsal root ganglion (DRG) primary sensory neurons and regulate neurogenic inflammation and nociceptive responses. Galanin is involved in inflammation and nociception. It has been suggested that galanin receptor (GalR) 1 and GalR3 activation induces analgesia at the level of the spinal cord, while activation of GalR2 has a pronociceptive role in the periphery. Whether activation or inhibition of α-adrenoreceptors influences galanin expression remains unknown. OBJECTIVE The aim of the present study was to investigate whether the α-adrenoreceptor agonist NE, the α1-adrenoreceptor antagonist prazosin, and the α2-adrenoreceptor antagonist yohimbine affect galanin expression in primary cultured DRG neurons. METHODS DRG was dissected from 240 embryonic 15-day-old Wistar rats, cultured as dissociated cells for 2 days, and then exposed to NE (10(-4) mol/L) for another 4 days. In the NE + prazosin group and the NE + yohimbine group, DRG neurons were pretreated with prazosin (10(-6) mol/L) and yohimbine (10(-5) mol/L), respectively, 10 minutes prior to the NE challenge. The neurons cultured continuously in media served as the controls. All of the cultured samples were processed to detect galanin mRNA and galanin peptide expression by reverse transcriptase-polymerase chain reaction and Western blot, respectively. Five samples were tested for each procedure. RESULTS Forty samples were prepared for this study and included in the analysis. After 4 days of incubation, mean (SD) galanin mRNA/β-actin mRNA concentration ratio was significantly increased with NE compared with controls (0.3349 [0.0413] vs 0.2411 [0.0519]; P < 0.05). Pretreatment with prazosin seemed to block the effects of NE (0.2522 [0.0496]; P < 0.05 vs NE), while yohimbine did not appear to significantly alter the effects of NE on elevation of galanin mRNA/β-actin mRNA concentration (0.3154 [0.0239]; P < 0.05 vs controls). After 4 days of incubation, galanin/β-actin concentration ratio was significantly higher with NE compared with controls (0.4406 [0.0655] vs 0.2295 [0.0794]; P < 0.01). Pretreatment with prazosin appeared to inhibit NE-induced galanin peptide expression (0.3156 [0.0942]; P < 0.05 vs NE), while yohimbine did not appear to alter the effects of NE on elevation of galanin peptide concentration (0.3700 [0.0533]; P < 0.05 vs controls). Coclusions: In this small in vitro study, NE, likely due to action on α1-adrenoreceptors but not α2-adrenoreceptors, was associated with an increase in galanin mRNA concentration and galanin peptide expression in these DRG neurons. These findings might be relevant to noradrenergic pain modulation.
Collapse
Affiliation(s)
- Xiangdong Yang
- Department of Nephrology, Shandong University Qilu Hospital, Jinan, People's Republic of China
| | - Zhen Liu
- Department of Anatomy, Shandong University School of Medicine, Jinan, People's Republic of China
| | - Zhenzhong Li
- Department of Anatomy, Shandong University School of Medicine, Jinan, People's Republic of China
| |
Collapse
|
20
|
Kiryu-Seo S, Kato R, Ogawa T, Nakagomi S, Nagata K, Kiyama H. Neuronal injury-inducible gene is synergistically regulated by ATF3, c-Jun, and STAT3 through the interaction with Sp1 in damaged neurons. J Biol Chem 2008; 283:6988-96. [PMID: 18192274 DOI: 10.1074/jbc.m707514200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nerve injury requires the expression of large ensembles of genes. The key molecular mechanism for this gene transcription regulation in injured neurons is poorly understood. Among many nerve injury-inducible genes, the gene encoding damage-induced neuronal endopeptidase (DINE) showed most marked expression response to various kinds of nerve injuries in central and peripheral nervous system neurons. This unique feature led us to examine the promoter region of the DINE gene and clarify both the injury-responsive element within the promoter and its related transcriptional machinery. This study showed that DINE promoter was activated by leukemia inhibitory factor and nerve growth factor withdrawal, which were pivotal for the up-regulation of DINE mRNA after nerve injury. The injury-inducible transcription factors such as activating transcription factor 3 (ATF3), c-Jun, and STAT3, which were located at the downstream of leukemia inhibitory factor and nerve growth factor withdrawal, seemed to be involved in the activation of the DINE promoter. Surprisingly, these transcription factors did not bind to the DINE promoter directly. Instead, the general transcription factor, Sp1, bound to a GC box within the promoter. ATF3, c-Jun, and STAT3 interacted with Sp1 and are associated with the GC box region of the DINE gene in injured neurons. These findings suggested that Sp1 recruit ATF3, c-Jun, and STAT3 to obtain the requisite synergistic effect. Of these transcription factors, ATF3 may be the most critical, because ATF3 is specifically expressed after nerve injury.
Collapse
Affiliation(s)
- Sumiko Kiryu-Seo
- Department of Anatomy and Neurobiology, Osaka City University, Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | |
Collapse
|