1
|
Witter MP, Amaral DG. The entorhinal cortex of the monkey: VI. Organization of projections from the hippocampus, subiculum, presubiculum, and parasubiculum. J Comp Neurol 2020; 529:828-852. [DOI: 10.1002/cne.24983] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Menno P. Witter
- Department of Psychiatry and Behavioral Sciences The MIND Institute and the California National Primate Research Center Davis California USA
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences The MIND Institute and the California National Primate Research Center Davis California USA
| |
Collapse
|
2
|
McDonald AJ. Functional neuroanatomy of the basolateral amygdala: Neurons, neurotransmitters, and circuits. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:1-38. [PMID: 34220399 PMCID: PMC8248694 DOI: 10.1016/b978-0-12-815134-1.00001-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
3
|
Thalamocortical processing of the head-direction sense. Prog Neurobiol 2019; 183:101693. [DOI: 10.1016/j.pneurobio.2019.101693] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
|
4
|
Honda Y, Furuta T. Multiple Patterns of Axonal Collateralization of Single Layer III Neurons of the Rat Presubiculum. Front Neural Circuits 2019; 13:45. [PMID: 31354438 PMCID: PMC6639715 DOI: 10.3389/fncir.2019.00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/27/2019] [Indexed: 11/13/2022] Open
Abstract
The presubiculum plays a key role in processing and integrating spatial and head-directional information. Layer III neurons of the presubiculum provide strong projections to the superficial layers of the medial entorhinal cortex (MEC) in the rat. Our previous study revealed that the terminal distribution of efferents from layer III cells of the presubiculum was organized in a band-like fashion within the MEC, and the transverse axis of these zones ran parallel to the rhinal fissure. Identifying axonal branching patterns of layer III neurons of the presubiculum is important to further elucidate the functional roles of the presubiculum. In the present study, we visualized all axonal processes and terminal distributions of single presubicular layer III neurons in the rat, using in vivo injection of a viral vector expressing membrane-targeted palmitoylation site-attached green fluorescent protein (GFP). We found that layer III of the rat presubiculum comprised multiple types of neurons (n = 12) with characteristic patterns of axonal collateralization, including cortical projection neurons (n = 6) and several types of intrinsic connectional neurons (n = 6). Two of six cortical projection neurons provided two or three major axonal branches to the MEC and formed elaborate terminal arbors within the superficial layers of the MEC. The width and axis of the area of their terminal distribution resembled that of the band-like terminal field seen in our massive-scale observation. Two of the other four cortical projection neurons gave off axonal branches to the MEC and also to the subiculum, and each of the other two neurons sent axons to the subiculum or parasubiculum. Patterns of axonal arborization of six intrinsic connectional neurons were distinct from each other, with four neurons sending many axonal branches to both superficial and deep layers of the presubiculum and the other two neurons showing sparse axonal branches with terminations confined to layers III–V of the presubiculum. These data demonstrate that layer III of the rat presubiculum consists of multiple types of cortical projection neurons and interneurons, and also suggest that inputs from a single presubicular layer III neuron can directly affect a band-like zone of the MEC.
Collapse
Affiliation(s)
- Yoshiko Honda
- Department of Anatomy, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Dalton MA, McCormick C, Maguire EA. Differences in functional connectivity along the anterior-posterior axis of human hippocampal subfields. Neuroimage 2019; 192:38-51. [PMID: 30840906 PMCID: PMC6503073 DOI: 10.1016/j.neuroimage.2019.02.066] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022] Open
Abstract
There is a paucity of information about how human hippocampal subfields are functionally connected to each other and to neighbouring extra-hippocampal cortices. In particular, little is known about whether patterns of functional connectivity (FC) differ down the anterior-posterior axis of each subfield. Here, using high resolution structural MRI we delineated the hippocampal subfields in healthy young adults. This included the CA fields, separating DG/CA4 from CA3, separating the pre/parasubiculum from the subiculum, and also segmenting the uncus. We then used high resolution resting state functional MRI to interrogate FC. We first analysed the FC of each hippocampal subfield in its entirety, in terms of FC with other subfields and with the neighbouring regions, namely entorhinal, perirhinal, posterior parahippocampal and retrosplenial cortices. Next, we analysed FC for different portions of each hippocampal subfield along its anterior-posterior axis, in terms of FC between different parts of a subfield, FC with other subfield portions, and FC of each subfield portion with the neighbouring cortical regions of interest. We found that intrinsic functional connectivity between the subfields aligned generally with the tri-synaptic circuit but also extended beyond it. Our findings also revealed that patterns of functional connectivity between the subfields and neighbouring cortical areas differed markedly along the anterior-posterior axis of each hippocampal subfield. Overall, these results contribute to ongoing efforts to characterise human hippocampal subfield connectivity, with implications for understanding hippocampal function.
Collapse
Affiliation(s)
- Marshall A Dalton
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| | - Cornelia McCormick
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK.
| |
Collapse
|
6
|
Cellular components and circuitry of the presubiculum and its functional role in the head direction system. Cell Tissue Res 2018; 373:541-556. [PMID: 29789927 DOI: 10.1007/s00441-018-2841-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Orientation in space is a fundamental cognitive process relying on brain-wide neuronal circuits. Many neurons in the presubiculum in the parahippocampal region encode head direction and each head direction cell selectively discharges when the animal faces a specific direction. Here, we attempt to link the current knowledge of afferent and efferent connectivity of the presubiculum to the processing of the head direction signal. We describe the cytoarchitecture of the presubicular six-layered cortex and the morphological and electrophysiological intrinsic properties of principal neurons and interneurons. While the presubicular head direction signal depends on synaptic input from thalamus, the intra- and interlaminar information flow in the microcircuit of the presubiculum may contribute to refine directional tuning. The interaction of a specific interneuron type, the Martinotti cells, with the excitatory pyramidal cells may maintain the head direction signal in the presubiculum with attractor-like properties.
Collapse
|
7
|
Olsen GM, Ohara S, Iijima T, Witter MP. Parahippocampal and retrosplenial connections of rat posterior parietal cortex. Hippocampus 2017; 27:335-358. [PMID: 28032674 DOI: 10.1002/hipo.22701] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 11/09/2022]
Abstract
The posterior parietal cortex has been implicated in spatial functions, including navigation. The hippocampal and parahippocampal region and the retrosplenial cortex are crucially involved in navigational processes and connections between the parahippocampal/retrosplenial domain and the posterior parietal cortex have been described. However, an integrated account of the organization of these connections is lacking. Here, we investigated parahippocampal connections of each posterior parietal subdivision and the neighboring secondary visual cortex using conventional retrograde and anterograde tracers as well as transsynaptic retrograde tracing with a modified rabies virus. The results show that posterior parietal as well as secondary visual cortex entertain overall sparse connections with the parahippocampal region but not with the hippocampal formation. The medial and lateral dorsal subdivisions of posterior parietal cortex receive sparse input from deep layers of all parahippocampal areas. Conversely, all posterior parietal subdivisions project moderately to dorsal presubiculum, whereas rostral perirhinal cortex, postrhinal cortex, caudal entorhinal cortex and parasubiculum all receive sparse posterior parietal input. This indicated that the presubiculum might be a major liaison between parietal and parahippocampal domains. In view of the close association of the presubiculum with the retrosplenial cortex, we included the latter in our analysis. Our data indicate that posterior parietal cortex is moderately connected with the retrosplenial cortex, particularly with rostral area 30. The relative sparseness of the connectivity with the parahippocampal and retrosplenial domains suggests that posterior parietal cortex is only a modest actor in forming spatial representations underlying navigation and spatial memory in parahippocampal and retrosplenial cortex. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Grethe M Olsen
- The Faculty of Medicine, Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU - Norwegian University of Science and Technology, Postbox 8905, 7491, Trondheim, Norway
| | - Shinya Ohara
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Katahira 2-1-1, Aoba-Ku, Sendai, 980-8577, Japan
| | - Toshio Iijima
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Katahira 2-1-1, Aoba-Ku, Sendai, 980-8577, Japan
| | - Menno P Witter
- The Faculty of Medicine, Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU - Norwegian University of Science and Technology, Postbox 8905, 7491, Trondheim, Norway
| |
Collapse
|
8
|
McDonald AJ, Mott DD. Functional neuroanatomy of amygdalohippocampal interconnections and their role in learning and memory. J Neurosci Res 2016; 95:797-820. [PMID: 26876924 DOI: 10.1002/jnr.23709] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 01/31/2023]
Abstract
The amygdalar nuclear complex and hippocampal/parahippocampal region are key components of the limbic system that play a critical role in emotional learning and memory. This Review discusses what is currently known about the neuroanatomy and neurotransmitters involved in amygdalo-hippocampal interconnections, their functional roles in learning and memory, and their involvement in mnemonic dysfunctions associated with neuropsychiatric and neurological diseases. Tract tracing studies have shown that the interconnections between discrete amygdalar nuclei and distinct layers of individual hippocampal/parahippocampal regions are robust and complex. Although it is well established that glutamatergic pyramidal cells in the amygdala and hippocampal region are the major players mediating interconnections between these regions, recent studies suggest that long-range GABAergic projection neurons are also involved. Whereas neuroanatomical studies indicate that the amygdala only has direct interconnections with the ventral hippocampal region, electrophysiological studies and behavioral studies investigating fear conditioning and extinction, as well as amygdalar modulation of hippocampal-dependent mnemonic functions, suggest that the amygdala interacts with dorsal hippocampal regions via relays in the parahippocampal cortices. Possible pathways for these indirect interconnections, based on evidence from previous tract tracing studies, are discussed in this Review. Finally, memory disorders associated with dysfunction or damage to the amygdala, hippocampal region, and/or their interconnections are discussed in relation to Alzheimer's disease, posttraumatic stress disorder (PTSD), and temporal lobe epilepsy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - David D Mott
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
9
|
Abbasi S, Kumar SS. Layer-specific modulation of entorhinal cortical excitability by presubiculum in a rat model of temporal lobe epilepsy. J Neurophysiol 2015; 114:2854-66. [PMID: 26378210 DOI: 10.1152/jn.00823.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/09/2015] [Indexed: 11/22/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults and is often refractory to antiepileptic medications. The medial entorhinal area (MEA) is affected in TLE but mechanisms underlying hyperexcitability of MEA neurons require further elucidation. Previous studies suggest that inputs from the presubiculum (PrS) contribute to MEA pathophysiology. We assessed electrophysiologically how PrS influences MEA excitability using the rat pilocarpine model of TLE. PrS-MEA connectivity was confirmed by electrically stimulating PrS afferents while recording from neurons within superficial layers of MEA. Assessment of alterations in PrS-mediated synaptic drive to MEA neurons was made following focal application of either glutamate or NBQX to the PrS in control and epileptic animals. Here, we report that monosynaptic inputs to MEA from PrS neurons are conserved in epileptic rats, and that PrS modulation of MEA excitability is layer-specific. PrS contributes more to synaptic inhibition of LII stellate cells than excitation. Under epileptic conditions, stellate cell inhibition is significantly reduced while excitatory synaptic drive is maintained at levels similar to control. PrS contributes to both synaptic excitation and inhibition of LIII pyramidal cells in control animals. Under epileptic conditions, overall excitatory synaptic drive to these neurons is enhanced while inhibitory synaptic drive is maintained at control levels. Additionally, neither glutamate nor NBQX applied focally to PrS now affected EPSC and IPSC frequency of LIII pyramidal neurons. These layer-specific changes in PrS-MEA interactions are unexpected and of significance in unraveling pathophysiological mechanisms underlying TLE.
Collapse
Affiliation(s)
- Saad Abbasi
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
10
|
Nassar M, Simonnet J, Lofredi R, Cohen I, Savary E, Yanagawa Y, Miles R, Fricker D. Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum. Front Neural Circuits 2015; 9:20. [PMID: 26005406 PMCID: PMC4424818 DOI: 10.3389/fncir.2015.00020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/20/2015] [Indexed: 12/17/2022] Open
Abstract
The presubiculum, located between hippocampus and entorhinal cortex, plays a fundamental role in representing spatial information, notably head direction. Little is known about GABAergic interneurons of this region. Here, we used three transgenic mouse lines, Pvalb-Cre, Sst-Cre, and X98, to examine distinct interneurons labeled with tdTomato or green fluorescent protein. The distribution of interneurons in presubicular lamina for each animal line was compared to that in the GAD67-GFP knock-in animal line. Labeling was specific in the Pvalb-Cre line with 87% of labeled interneurons immunopositive for parvalbumin (PV). Immunostaining for somatostatin (SOM) revealed good specificity in the X98 line with 89% of fluorescent cells, but a lesser specificity in Sst-Cre animals where only 71% of labeled cells were immunopositive. A minority of ∼6% of interneurons co-expressed PV and SOM in the presubiculum of Sst-Cre animals. The electrophysiological and morphological properties of fluorescent interneurons from Pvalb-Cre, Sst-Cre, and X98 mice differed. Distinct physiological groups of presubicular interneurons were resolved by unsupervised cluster analysis of parameters describing passive properties, firing patterns and AP shapes. One group consisted of SOM-positive, Martinotti type neurons with a low firing threshold (cluster 1). Fast spiking basket cells, mainly from the Pvalb-Cre line, formed a distinct group (cluster 3). Another group (cluster 2) contained interneurons of intermediate electrical properties and basket-cell like morphologies. These labeled neurons were recorded from both Sst-Cre and Pvalb-Cre animals. Thus, our results reveal a wide variation in anatomical and physiological properties for these interneurons, a real overlap of interneurons immuno-positive for both PV and SOM as well as an off-target recombination in the Sst-Cre line, possibly linked to maternal cre inheritance.
Collapse
Affiliation(s)
- Mérie Nassar
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, UPMC Université Paris 06 UM 75, CHU Pitié-Salpêtrière INSERM U1127, CNRS UMR7225 Paris, France
| | - Jean Simonnet
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, UPMC Université Paris 06 UM 75, CHU Pitié-Salpêtrière INSERM U1127, CNRS UMR7225 Paris, France
| | - Roxanne Lofredi
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, UPMC Université Paris 06 UM 75, CHU Pitié-Salpêtrière INSERM U1127, CNRS UMR7225 Paris, France
| | - Ivan Cohen
- Neuroscience Paris Seine Paris, Sorbonne Universités, UPMC Université Paris 06 UM CR 18, CNRS UMR 8246, INSERM U1130 Paris, France
| | - Etienne Savary
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, UPMC Université Paris 06 UM 75, CHU Pitié-Salpêtrière INSERM U1127, CNRS UMR7225 Paris, France
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine Maebashi, Japan ; Japan Science and Technology Agency Tokyo, Japan
| | - Richard Miles
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, UPMC Université Paris 06 UM 75, CHU Pitié-Salpêtrière INSERM U1127, CNRS UMR7225 Paris, France
| | - Desdemona Fricker
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, UPMC Université Paris 06 UM 75, CHU Pitié-Salpêtrière INSERM U1127, CNRS UMR7225 Paris, France
| |
Collapse
|
11
|
McDonald AJ, Zaric V. Extrinsic origins of the somatostatin and neuropeptide Y innervation of the rat basolateral amygdala. Neuroscience 2015; 294:82-100. [PMID: 25769940 DOI: 10.1016/j.neuroscience.2015.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 01/05/2023]
Abstract
The amygdalar basolateral nuclear complex (BLC) is a cortex-like structure that receives inputs from many cortical areas. It has long been assumed that cortico-amygdalar projections, as well as inter-areal intracortical connections, arise from cortical pyramidal cells. However, recent studies have shown that GABAergic long-range nonpyramidal neurons (LRNP neurons) in the cortex also contribute to inter-areal connections. The present study combined Fluorogold (FG) retrograde tract tracing with immunohistochemistry for cortical nonpyramidal neuronal markers to determine if cortical LRNP neurons project to the BLC in the rat. Injections of FG into the BLC produced widespread retrograde labeling in the cerebral hemispheres and diencephalon. Triple-labeling for FG, somatostatin (SOM), and neuropeptide Y (NPY) revealed a small number of FG+/SOM+/NPY+ neurons and FG+/SOM+/NPY- neurons in the lateral entorhinal area, amygdalopiriform transition area, and piriform cortex, but not in the prefrontal and insular cortices, or in the diencephalon. In addition, FG+/SOM+/NPY+ neurons were observed in the amygdalostriatal transition area and in a zone surrounding the intercalated nuclei. About half of the SOM+ neurons in the lateral entorhinal area labeled by FG were GABA+. FG+ neurons containing parvalbumin were only seen in the basal forebrain, and no FG+ neurons containing vasoactive intestinal peptide were observed in any brain region. Since LRNP neurons involved in corticocortical connections are critical for synchronous oscillations that allow temporal coordination between distant cortical regions, the LRNP neurons identified in this study may play a role in the synchronous oscillations of the BLC and hippocampal region that are involved in the retrieval of fear memories.
Collapse
Affiliation(s)
- A J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States.
| | - V Zaric
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| |
Collapse
|
12
|
GABAergic somatostatin-immunoreactive neurons in the amygdala project to the entorhinal cortex. Neuroscience 2015; 290:227-42. [PMID: 25637800 DOI: 10.1016/j.neuroscience.2015.01.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 11/21/2022]
Abstract
The entorhinal cortex and other hippocampal and parahippocampal cortices are interconnected by a small number of GABAergic nonpyramidal neurons in addition to glutamatergic pyramidal cells. Since the cortical and basolateral amygdalar nuclei have cortex-like cell types and have robust projections to the entorhinal cortex, we hypothesized that a small number of amygdalar GABAergic nonpyramidal neurons might participate in amygdalo-entorhinal projections. To test this hypothesis we combined Fluorogold (FG) retrograde tract tracing with immunohistochemistry for the amygdalar nonpyramidal cell markers glutamic acid decarboxylase (GAD), parvalbumin (PV), somatostatin (SOM), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), and the m2 muscarinic cholinergic receptor (M2R). Injections of FG into the rat entorhinal cortex labeled numerous neurons that were mainly located in the cortical and basolateral nuclei of the amygdala. Although most of these amygdalar FG+ neurons labeled by entorhinal injections were large pyramidal cells, 1-5% were smaller long-range nonpyramidal neurons (LRNP neurons) that expressed SOM, or both SOM and NPY. No amygdalar FG+ neurons in these cases were PV+ or VIP+. Cell counts revealed that LRNP neurons labeled by injections into the entorhinal cortex constituted about 10-20% of the total SOM+ population, and 20-40% of the total NPY population in portions of the lateral amygdalar nucleus that exhibited a high density of FG+ neurons. Sixty-two percent of amygdalar FG+/SOM+ neurons were GAD+, and 51% were M2R+. Since GABAergic projection neurons typically have low perikaryal levels of GABAergic markers, it is actually possible that most or all of the amygdalar LRNP neurons are GABAergic. Like GABAergic LRNP neurons in hippocampal/parahippocampal regions, amygdalar LRNP neurons that project to the entorhinal cortex are most likely involved in synchronizing oscillatory activity between the two regions. These oscillations could entrain synchronous firing of amygdalar and entorhinal pyramidal neurons, thus facilitating functional interactions between them, including synaptic plasticity.
Collapse
|
13
|
Binicewicz FZM, van Strien NM, Wadman WJ, van den Heuvel MP, Cappaert NLM. Graph analysis of the anatomical network organization of the hippocampal formation and parahippocampal region in the rat. Brain Struct Funct 2015; 221:1607-21. [PMID: 25618022 PMCID: PMC4819791 DOI: 10.1007/s00429-015-0992-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/14/2015] [Indexed: 10/27/2022]
Abstract
Graph theory was used to analyze the anatomical network of the rat hippocampal formation and the parahippocampal region (van Strien et al., Nat Rev Neurosci 10(4):272-282, 2009). For this analysis, the full network was decomposed along the three anatomical axes, resulting in three networks that describe the connectivity within the rostrocaudal, dorsoventral and laminar dimensions. The rostrocaudal network had a connection density of 12% and a path length of 2.4. The dorsoventral network had a high cluster coefficient (0.53), a relatively high path length (1.62) and a rich club was identified. The modularity analysis revealed three modules in the dorsoventral network. The laminar network contained most information. The laminar dimension revealed a network with high clustering coefficient (0.47), a relatively high path length (2.11) and four significantly increased characteristic network building blocks (structural motifs). Thirteen rich club nodes were identified, almost all of them situated in the parahippocampal region. Six connector hubs were detected and all of them were located in the entorhinal cortex. Three large modules were revealed, indicating a close relationship between the perirhinal and postrhinal cortex as well as between the lateral and medial entorhinal cortex. These results confirmed the central position of the entorhinal cortex in the (para)hippocampal network and this possibly explains why pathology in this region has such profound impact on cognitive function, as seen in several brain diseases. The results also have implications for the idea of strict separation of the "spatial" and the "non-spatial" information stream into the hippocampus. This two-stream memory model suggests that the information influx from, respectively, the postrhinal-medial entorhinal cortex and the perirhinal-lateral entorhinal cortex is separate, but the current analysis shows that this apparent separation is not determined by anatomical constraints.
Collapse
Affiliation(s)
- F Z M Binicewicz
- Swammerdam Institute for Life Science, Center for Neuroscience, University of Amsterdam, Science Park 904, Room C3.266, 1098 XH, Amsterdam, The Netherlands
| | - N M van Strien
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - W J Wadman
- Swammerdam Institute for Life Science, Center for Neuroscience, University of Amsterdam, Science Park 904, Room C3.266, 1098 XH, Amsterdam, The Netherlands
| | - M P van den Heuvel
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands.,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N L M Cappaert
- Swammerdam Institute for Life Science, Center for Neuroscience, University of Amsterdam, Science Park 904, Room C3.266, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Abbasi S, Kumar SS. Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy. J Neurophysiol 2014; 112:2888-900. [PMID: 25210155 DOI: 10.1152/jn.00406.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy, characterized by recurrent seizures originating in the temporal lobes. Here, we examine TLE-related changes in the presubiculum (PrS), a less-studied parahippocampal structure that both receives inputs from and projects to regions affected by TLE. We assessed the state of PrS neurons in TLE electrophysiologically to determine which of the previously identified cell types were rendered hyperexcitable in epileptic rats and whether their intrinsic and/or synaptic properties were altered. Cell types were characterized based on action potential discharge profiles followed by unsupervised hierarchical clustering. PrS neurons in epileptic animals could be divided into three major groups comprising of regular-spiking (RS), irregular-spiking (IR), and fast-adapting (FA) cells. RS cells, the predominant cell type encountered in PrS, were the only cells that were hyperexcitable in TLE. These neurons were previously identified as sending long-range axonal projections to neighboring structures including medial entorhinal area (MEA), and alterations in intrinsic properties increased their propensity for sustained firing of action potentials. Frequency and amplitude of both spontaneous excitatory and inhibitory synaptic events were reduced. Further analysis of nonaction potential-dependent miniature currents (in tetrodotoxin) indicated that reduction in excitatory drive to these neurons was mediated by decreased activity of excitatory neurons that synapse with RS cells concomitant with reduced activity of inhibitory neurons. Alterations in physiological properties of PrS neurons and their ensuing hyperexcitability could entrain parahippocampal structures downstream of PrS, including the MEA, contributing to temporal lobe epileptogenesis.
Collapse
Affiliation(s)
- Saad Abbasi
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
15
|
Witter MP, Canto CB, Couey JJ, Koganezawa N, O'Reilly KC. Architecture of spatial circuits in the hippocampal region. Philos Trans R Soc Lond B Biol Sci 2013; 369:20120515. [PMID: 24366129 DOI: 10.1098/rstb.2012.0515] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The hippocampal region contains several principal neuron types, some of which show distinct spatial firing patterns. The region is also known for its diversity in neural circuits and many have attempted to causally relate network architecture within and between these unique circuits to functional outcome. Still, much is unknown about the mechanisms or network properties by which the functionally specific spatial firing profiles of neurons are generated, let alone how they are integrated into a coherently functioning meta-network. In this review, we explore the architecture of local networks and address how they may interact within the context of an overarching space circuit, aiming to provide directions for future successful explorations.
Collapse
Affiliation(s)
- Menno P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, , 7030 Trondheim, Norway
| | | | | | | | | |
Collapse
|
16
|
Unal G, Pare JF, Smith Y, Pare D. Differential connectivity of short- vs. long-range extrinsic and intrinsic cortical inputs to perirhinal neurons. J Comp Neurol 2013; 521:2538-50. [PMID: 23296922 PMCID: PMC3983957 DOI: 10.1002/cne.23297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/04/2012] [Accepted: 12/27/2012] [Indexed: 11/07/2022]
Abstract
The perirhinal cortex plays a critical role in recognition and associative memory. However, the network properties that support perirhinal contributions to memory are unclear. To shed light on this question, we compared the synaptic articulation of short- and long-range inputs from the perirhinal cortex or temporal neocortex with perirhinal neurons in rats. Iontophoretic injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHAL) were performed at different rostrocaudal levels of the ventral temporal neocortex or perirhinal cortex, and electron microscopic observations of anterogradely labeled (PHAL(+)) axon terminals found at perirhinal sites adjacent to or rostrocaudally distant from the injection sites were performed. After neocortical injections, the density of PHAL(+) axons in the perirhinal cortex decreased steeply with rostrocaudal distance from the injection sites, much more so than following perirhinal injections. Otherwise, similar results were obtained with neocortical and perirhinal injections. In both cases, most (76-86%) PHAL(+) axon terminals formed asymmetric synapses, typically with spines (type A, 83-89%) and less frequently with dendritic profiles (type B, 11-17%). The remaining terminals formed symmetric synapses with dendritic profiles (type C, 14-23%). Type B and C synapses were 2.4-2.6 times more frequent in short- than long-range connections. The postsynaptic elements in type A-C synapses were identified with immunocytochemistry for CAMKIIα, a marker of glutamatergic cortical neurons. Type A and C terminals contacted CAMKIIα-positive principal cells, whereas type B synapses contacted presumed inhibitory neurons. Overall, these results suggest that principal perirhinal neurons are subjected to significantly more inhibition from short- than from long-range cortical inputs, an organization that likely impacts perirhinal contributions to memory.
Collapse
Affiliation(s)
- Gunes Unal
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Jean-Francois Pare
- Yerkes National Primate Research Center and Department of Neurology, Emory University, Atlanta, Georgia 30329
| | - Yoland Smith
- Yerkes National Primate Research Center and Department of Neurology, Emory University, Atlanta, Georgia 30329
| | - Denis Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
17
|
Abbasi S, Kumar SS. Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum. J Comp Neurol 2013; 521:3116-32. [DOI: 10.1002/cne.23365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Saad Abbasi
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience; Florida State University; Tallahassee; Florida; 32306-4300
| | - Sanjay S. Kumar
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience; Florida State University; Tallahassee; Florida; 32306-4300
| |
Collapse
|
18
|
Depue BE. A neuroanatomical model of prefrontal inhibitory modulation of memory retrieval. Neurosci Biobehav Rev 2012; 36:1382-99. [PMID: 22374224 PMCID: PMC3354918 DOI: 10.1016/j.neubiorev.2012.02.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/07/2012] [Accepted: 02/16/2012] [Indexed: 11/30/2022]
Abstract
Memory of past experience is essential for guiding goal-related behavior. Being able to control accessibility of memory through modulation of retrieval enables humans to flexibly adapt to their environment. Understanding the specific neural pathways of how this control is achieved has largely eluded cognitive neuroscience. Accordingly, in the current paper I review literature that examines the overt control over retrieval in order to reduce accessibility. I first introduce three hypotheses of inhibition of retrieval. These hypotheses involve: (i) attending to other stimuli as a form of diversionary attention, (ii) inhibiting the specific individual neural representation of the memory, and (iii) inhibiting the hippocampus and retrieval process more generally to prevent reactivation of the representation. I then analyze literature taken from the White Bear Suppression, Directed Forgetting and Think/No-Think tasks to provide evidence for these hypotheses. Finally, a neuroanatomical model is developed to indicate three pathways from PFC to the hippocampal complex that support inhibition of memory retrieval. Describing these neural pathways increases our understanding of control over memory in general.
Collapse
Affiliation(s)
- Brendan E Depue
- Department of Psychology and Neuroscience, University of Colorado at Boulder, 345 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
19
|
Kisner A, Stockmann R, Jansen M, Yegin U, Offenhäusser A, Kubota LT, Mourzina Y. Sensing small neurotransmitter–enzyme interaction with nanoporous gated ion-sensitive field effect transistors. Biosens Bioelectron 2012; 31:157-63. [DOI: 10.1016/j.bios.2011.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/04/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
|
20
|
Kononenko NL, Witter MP. Presubiculum layer III conveys retrosplenial input to the medial entorhinal cortex. Hippocampus 2011; 22:881-95. [DOI: 10.1002/hipo.20949] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 12/17/2022]
|
21
|
van Strien NM, Cappaert NLM, Witter MP. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci 2009; 10:272-82. [PMID: 19300446 DOI: 10.1038/nrn2614] [Citation(s) in RCA: 663] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Converging evidence suggests that each parahippocampal and hippocampal subregion contributes uniquely to the encoding, consolidation and retrieval of declarative memories, but their precise roles remain elusive. Current functional thinking does not fully incorporate the intricately connected networks that link these subregions, owing to their organizational complexity; however, such detailed anatomical knowledge is of pivotal importance for comprehending the unique functional contribution of each subregion. We have therefore developed an interactive diagram with the aim to display all of the currently known anatomical connections of the rat parahippocampal-hippocampal network. In this Review, we integrate the existing anatomical knowledge into a concise description of this network and discuss the functional implications of some relatively underexposed connections.
Collapse
Affiliation(s)
- N M van Strien
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
22
|
What does the anatomical organization of the entorhinal cortex tell us? Neural Plast 2009; 2008:381243. [PMID: 18769556 PMCID: PMC2526269 DOI: 10.1155/2008/381243] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 05/23/2008] [Indexed: 12/28/2022] Open
Abstract
The entorhinal cortex is commonly perceived as a major input and output structure of the hippocampal formation, entertaining the role of the nodal point of cortico-hippocampal circuits. Superficial layers receive convergent cortical information, which is relayed to structures in the hippocampus, and hippocampal output reaches deep layers of entorhinal cortex, that project back to the cortex. The finding of the grid cells in all layers and reports on interactions between deep and superficial layers indicate that this rather simplistic perception may be at fault. Therefore, an integrative approach on the entorhinal cortex, that takes into account recent additions to our knowledge database on entorhinal connectivity, is timely. We argue that layers in entorhinal cortex show different functional characteristics most likely not on the basis of strikingly different inputs or outputs, but much more likely on the basis of differences in intrinsic organization, combined with very specific sets of inputs. Here, we aim to summarize recent anatomical data supporting the notion that the traditional description of the entorhinal cortex as a layered input-output structure for the hippocampal formation does not give the deserved credit to what this structure might be contributing to the overall functions of cortico-hippocampal networks.
Collapse
|
23
|
Abstract
Not all areas of neuronal systems investigation have matured to the stage where computation can be understood at the microcircuit level. In mammals, insights into cortical circuit functions have been obtained for the early stages of sensory systems, where signals can be followed through networks of increasing complexity from the receptors to the primary sensory cortices. These studies have suggested how neurons and neuronal networks extract features from the external world, but how the brain generates its own codes, in the higher-order nonsensory parts of the cortex, has remained deeply mysterious. In this terra incognita, a path was opened by the discovery of grid cells, place-modulated entorhinal neurons whose firing locations define a periodic triangular or hexagonal array covering the entirety of the animal's available environment. This array of firing is maintained in spite of ongoing changes in the animal's speed and direction, suggesting that grid cells are part of the brain's metric for representation of space. Because the crystal-like structure of the firing fields is created within the nervous system itself, grid cells may provide scientists with direct access to some of the most basic operational principles of cortical circuits.
Collapse
Affiliation(s)
- Edvard I Moser
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7489 Trondheim, Norway.
| | | |
Collapse
|
24
|
Miyashita T, Rockland KS. GABAergic projections from the hippocampus to the retrosplenial cortex in the rat. Eur J Neurosci 2007; 26:1193-204. [PMID: 17767498 DOI: 10.1111/j.1460-9568.2007.05745.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The retrosplenial cortex (RS) in rats has been implicated in a wide range of behaviors, including spatial navigation and memory. Relevant to this, the RS is closely interconnected with the hippocampus by multiple direct and indirect routes. Here, by injecting the retrograde tracer cholera toxin subunit B conjugated with Alexa488 (CTB-Alexa488) in the granular retrosplenial cortex (GRS), we demonstrate a moderately dense non-pyramidal projection from CA1. Neurons are in several layers, but mainly (about 65%) at the border of the stratum radiatum (SR) and stratum lacunosum moleculare (SLM). In particular, by double-labeling with GAD67 or gamma-aminobutyric acid (GABA), we establish that these neurons are GABAergic. Further immunocytochemical screening for calcium-binding proteins, somatostatin (SS) or cholecystokinin (CCK) failed to identify additional neurochemical subgroups; but a small subset (about 14%) is positive for the m2 muscarinic acetylcholine receptor (M2R). Terminations target layer 1 of the GRS, as shown by biotinylated dextran amine (BDA) injections into CA1 and confirmed by a very superficial injection of CTB-Alexa488 in GRS. The superficial injection shows that there is a sparse GABAergic projection from the subiculum to layer 1 of the GRS, in addition to the dense excitatory connections to layer 3. The role of these dual inhibitory-excitatory pathways - within the subiculum, and in parallel from CA1 and the subiculum - remains to be determined, but may be related to synchronized oscillatory activity in the hippocampal complex and GRS, or to the generation of rhythmic activity within the GRS.
Collapse
Affiliation(s)
- Toshio Miyashita
- Laboratory for Cortical Organization and Systematics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | | |
Collapse
|
25
|
Labyt E, Frogerais P, Uva L, Bellanger JJ, Wendling F. Modeling of Entorhinal Cortex and Simulation of Epileptic Activity: Insights Into the Role of Inhibition-Related Parameters. ACTA ACUST UNITED AC 2007; 11:450-61. [PMID: 17674628 PMCID: PMC2230631 DOI: 10.1109/titb.2006.889680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper describes a macroscopic neurophysiologically relevant model of the entorhinal cortex (EC), a brain structure largely involved in human mesio-temporal lobe epilepsy. This model is intervalidated in the experimental framework of ictogenesis animal model (isolated guinea-pig brain perfused with bicuculline). Using sensitivity and stability analysis, an investigation of model parameters related to GABA neurotransmission (recognized to be involved in epileptic activity generation) was performed. Based on spectral and statistical features, simulated signals generated from the model for multiple GABAergic inhibition-related parameter values were classified into eight classes of activity. Simulated activities showed striking agreement (in terms of realism) with typical epileptic activities identified in field potential recordings performed in the experimental model. From this combined computational/experimental approach, hypotheses are suggested about the role of different types of GABAergic neurotransmission in the generation of epileptic activities in EC.
Collapse
Affiliation(s)
- Etienne Labyt
- Inserm U642, Laboratoire Traitement du Signal et de L'Image, University of Rennes 1, 35042 Rennes, France.
| | | | | | | | | |
Collapse
|
26
|
Tolner EA, Frahm C, Metzger R, Gorter JA, Witte OW, Lopes da Silva FH, Heinemann U. Synaptic responses in superficial layers of medial entorhinal cortex from rats with kainate-induced epilepsy. Neurobiol Dis 2007; 26:419-38. [PMID: 17350275 DOI: 10.1016/j.nbd.2007.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 01/10/2007] [Accepted: 01/28/2007] [Indexed: 11/20/2022] Open
Abstract
Mesial temporal lobe epilepsy patients often display shrinkage of the entorhinal cortex, which has been attributed to neuronal loss in medial entorhinal cortex layer III (MEC-III). MEC-III neuronal loss is reproduced in chronic epileptic rats after kainate-induced (KA) status epilepticus. Here we examined, in vitro, functional changes in superficial entorhinal cortex layers. Alterations in superficial layer circuitry were suggested by showing that presubiculum, parasubiculum and deep MEC stimulation evoked 100-300 Hz field potential transients and prolonged EPSPs (superimposed on IPSPs) in superficial MEC which were partially blocked by APV (in contrast to control) and fully blocked by CNQX. Contrary to controls, bicuculline (5 and 30 microM) had minor effects on evoked field potentials in KA rats. GAD65/67 in situ hybridization revealed preserved interneurons in MEC-III. In conclusion, hyperexcitability in superficial MEC neurons is not due to loss of GABAergic interneurons and probably results from alterations in synaptic connectivity within superficial MEC.
Collapse
Affiliation(s)
- Else A Tolner
- Johannes-Müller-Institute of Physiology at the Charité, Humboldt University Berlin, Tucholskystr. 2, 10117 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Honda Y, Umitsu Y, Ishizuka N. Organization of connectivity of the rat presubiculum: II. Associational and commissural connections. J Comp Neurol 2007; 506:640-58. [DOI: 10.1002/cne.21572] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Witter MP, Moser EI. Spatial representation and the architecture of the entorhinal cortex. Trends Neurosci 2006; 29:671-8. [PMID: 17069897 DOI: 10.1016/j.tins.2006.10.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 09/28/2006] [Accepted: 10/12/2006] [Indexed: 12/01/2022]
Abstract
It has recently been recognized that the entorhinal cortex has a crucial role in spatial representation and navigation. How the position of an animal is computed within the entorhinal circuitry remains to be determined, but the architectural organization of this brain area might provide some clues. Here, we review three organizational principles--recurrent connectivity, interlaminar connectivity and modular organization--and propose how each of them might contribute to the emergence and maintenance of positional representations in entorhinal neural networks.
Collapse
Affiliation(s)
- Menno P Witter
- Research Institute Neurosciences, Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
29
|
McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB. Path integration and the neural basis of the 'cognitive map'. Nat Rev Neurosci 2006; 7:663-78. [PMID: 16858394 DOI: 10.1038/nrn1932] [Citation(s) in RCA: 1163] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hippocampal formation can encode relative spatial location, without reference to external cues, by the integration of linear and angular self-motion (path integration). Theoretical studies, in conjunction with recent empirical discoveries, suggest that the medial entorhinal cortex (MEC) might perform some of the essential underlying computations by means of a unique, periodic synaptic matrix that could be self-organized in early development through a simple, symmetry-breaking operation. The scale at which space is represented increases systematically along the dorsoventral axis in both the hippocampus and the MEC, apparently because of systematic variation in the gain of a movement-speed signal. Convergence of spatially periodic input at multiple scales, from so-called grid cells in the entorhinal cortex, might result in non-periodic spatial firing patterns (place fields) in the hippocampus.
Collapse
Affiliation(s)
- Bruce L McNaughton
- Arizona Research Laboratories Division of Neural Systems, Memory & Aging, and Department of Psychology, University of Arizona, Tucson 85724, USA.
| | | | | | | | | |
Collapse
|
30
|
Pinto A, Fuentes C, Paré D. Feedforward inhibition regulates perirhinal transmission of neocortical inputs to the entorhinal cortex: ultrastructural study in guinea pigs. J Comp Neurol 2006; 495:722-34. [PMID: 16506192 PMCID: PMC4425285 DOI: 10.1002/cne.20905] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The rhinal cortices constitute the main route for impulse traffic to and from the hippocampus. Tracing studies have revealed that the perirhinal cortex forms strong reciprocal connections with the neo- and entorhinal cortex (EC). However, physiological investigations indicate that perirhinal transmission of neocortical and EC inputs occurs with a low probability. In search of an explanation for these contradictory findings, we have analyzed synaptic connections in this network by combining injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHAL) into the neocortex, area 36, or area 35 with gamma-aminobutyric acid (GABA) immunocytochemistry and electron microscopic observations. Within area 36, neocortical axon terminals formed only asymmetric synapses, usually with GABA-negative spines (87%), and less frequently with GABA-immunopositive (GABA+) dendrites (13%). A similar synaptic distribution was observed within area 35 except that asymmetric synapses onto GABA+ dendrites were more frequent (23% of synapses). Examination of the projections from area 36 to area 35 and from both regions to the EC revealed an even higher incidence of asymmetric synapses onto GABA+ dendrites (35 and 32%, respectively) than what was observed in the neocortical projection to areas 36 and 35. Furthermore, some of the neocortical and perirhinal terminals containing PHAL and GABA immunolabeling formed symmetric synapses onto GABA-negative dendrites in their projection sites (neocortex to area 35, 16%; area 36 to 35, 7%; areas 36-35 to EC, 12%). Taken together, these findings suggest that impulse transmission through the rhinal circuit is subjected to strong inhibitory influences, reconciling anatomical and physiological data about this network.
Collapse
Affiliation(s)
- Aline Pinto
- Center for Molecular & Behavioral Neuroscience, Rutgers State University, Newark, New Jersey 07102, USA
| | | | | |
Collapse
|
31
|
Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 2006; 312:758-62. [PMID: 16675704 DOI: 10.1126/science.1125572] [Citation(s) in RCA: 870] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Grid cells in the medial entorhinal cortex (MEC) are part of an environment-independent spatial coordinate system. To determine how information about location, direction, and distance is integrated in the grid-cell network, we recorded from each principal cell layer of MEC in rats that explored two-dimensional environments. Whereas layer II was predominated by grid cells, grid cells colocalized with head-direction cells and conjunctive grid x head-direction cells in the deeper layers. All cell types were modulated by running speed. The conjunction of positional, directional, and translational information in a single MEC cell type may enable grid coordinates to be updated during self-motion-based navigation.
Collapse
Affiliation(s)
- Francesca Sargolini
- Centre for the Biology of Memory, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | | | | | | | | | | | | |
Collapse
|
32
|
Labyt E, Uva L, De Curtis M, Wendling F. Realistic modeling of entorhinal cortex field potentials and interpretation of epileptic activity in the guinea pig isolated brain preparation. J Neurophysiol 2006; 96:363-77. [PMID: 16598061 PMCID: PMC2486351 DOI: 10.1152/jn.01342.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms underlying epileptic activities recorded from entorhinal cortex (EC) were studied through a computational model based on review of cytoarchitectonic and neurobiological data about this structure. The purpose of this study is to describe and use this model to interpret epileptiform discharge patterns recorded in an experimental model of ictogenesis (guinea pig isolated brain perfused with bicuculline). A macroscopic modeling approach representing synaptic interactions between cells subpopulations in the EC was chosen for its adequacy to mimic field potentials reflecting overall dynamics rising from interconnected cells populations. Therefore intrinsic properties of neurons were not included in the modeling design. Model parameters were adjusted from an identification procedure based on quantitative comparison between real and simulated signals. For both EC deep and superficial layers, results show that the model generates very realistic signals regarding temporal dynamics, spectral features, and cross-correlation values. These simulations allowed us to infer information about the evolution of synaptic transmission between principal cell and interneuronal populations and about connectivity between deep and superficial layers during the transition from background to ictal activity. In the model, this transition was obtained for increased excitation in deep versus superficial layers. Transitions between epileptiform activities [interictal spikes, fast onset activity (25 Hz), ictal bursting activity] were explained by changes of parameters mainly related to GABAergic interactions. Notably, the model predicted an important role of GABAa,fast- and GABAb-receptor-mediated inhibition in the generation of ictal fast onset and burst activities, respectively. These findings are discussed with respect to experimental data.
Collapse
Affiliation(s)
- Etienne Labyt
- LTSI, Laboratoire Traitement du Signal et de l'Image
INSERM : U642Université Rennes ICampus de Beaulieu,
263 Avenue du Général Leclerc - CS 74205 - 35042 Rennes Cedex,FR
| | - Laura Uva
- Department Experimental Neurophysiology
Istituto Nazionale Neurologico C. Bestavia Celoria 11
20133 Milan,IT
| | - Marco De Curtis
- Department Experimental Neurophysiology
Istituto Nazionale Neurologico C. Bestavia Celoria 11
20133 Milan,IT
| | - Fabrice Wendling
- LTSI, Laboratoire Traitement du Signal et de l'Image
INSERM : U642Université Rennes ICampus de Beaulieu,
263 Avenue du Général Leclerc - CS 74205 - 35042 Rennes Cedex,FR
- * Correspondence should be adressed to: Fabrice Wendling
| |
Collapse
|
33
|
Leutgeb S, Leutgeb JK, Moser MB, Moser EI. Place cells, spatial maps and the population code for memory. Curr Opin Neurobiol 2005; 15:738-46. [PMID: 16263261 DOI: 10.1016/j.conb.2005.10.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
The study of population dynamics in hippocampal place cells has emerged as one of the most powerful tools for understanding the encoding, storage and retrieval of declarative memory. Recent work has laid out the contours of an attractor-based hippocampal population code for memory in recurrent circuits of the hippocampus. The code is based on inputs from a topographically organized, path-integration-dependent spatial map that lies upstream in the medial entorhinal cortex. The recurrent networks of the hippocampal formation enable these spatial inputs to be synthesized with nonspatial event-related information.
Collapse
Affiliation(s)
- Stefan Leutgeb
- Centre for the Biology of Memory, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | | | | | | |
Collapse
|
34
|
Bartesaghi R, Di Maio V, Gessi T. Topographic activation of the medial entorhinal cortex by presubicular commissural projections. J Comp Neurol 2005; 487:283-99. [PMID: 15892102 DOI: 10.1002/cne.20547] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous investigations have shown that presubicular commissural fibers traveling in the caudal part of the dorsal hippocampal commissure (PSD) selectively activated the dorsalmost portion of the entorhinal cortex (EC), where they discharged perforant path neurons to the dorsal dentate gyrus. The dentate activation was followed by that of the dorsal hippocampus. The aim of the present study was to ascertain whether presubiculum commissural projections traveling in the PSD can also activate ventral levels of the EC and, if so, whether this activation is followed by that of the dentate gyrus-hippocampal system in the ventral hippocampus. The experiments were carried out in adult, anesthetized guinea pigs by field potential analysis. The results showed that presubicular fibers traveling at different PSD loci selectively activated specific EC portions, with caudal fibers activating only the dorsal EC and more rostral fibers activating ventral EC points. The region activated by PSD projections corresponded to the medial EC. Current source-density (CSD) analysis revealed that at both dorsal and ventral EC levels excitatory synaptic potentials followed by neuron discharge were generated in layer II, site of origin of the perforant path to the dentate gyrus. Activation of either dorsal or ventral levels of the EC was followed by activation of the dentate gyrus-hippocampal system in corresponding hippocampal segments. The results provide physiological evidence that the commissural presubicular projections activate the EC in a topographic manner. The massive activation of perforant path neurons at all EC levels suggests that presubicular signals may strongly influence the functions played by the EC-dentate-hippocampal system.
Collapse
Affiliation(s)
- Renata Bartesaghi
- Dipartimento di Fisiologia Umana e Generale, Università di Bologna, Italy.
| | | | | |
Collapse
|
35
|
Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature 2005; 436:801-6. [PMID: 15965463 DOI: 10.1038/nature03721] [Citation(s) in RCA: 2153] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 05/05/2005] [Indexed: 11/09/2022]
Abstract
The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.
Collapse
Affiliation(s)
- Torkel Hafting
- Centre for the Biology of Memory, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | | | | | | | | |
Collapse
|
36
|
Vinkenoog M, van den Oever MC, Uylings HBM, Wouterlood FG. Random or selective neuroanatomical connectivity. Study of the distribution of fibers over two populations of identified interneurons in cerebral cortex. ACTA ACUST UNITED AC 2005; 14:67-76. [PMID: 15721812 DOI: 10.1016/j.brainresprot.2004.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2004] [Indexed: 11/21/2022]
Abstract
We present a neuroanatomical tracing method in a stereological approach to study the proportional distribution of fibers of a particular projection over two chemically different populations of neurons. The fiber projection from the presubiculum to the medial division of the entorhinal cortex of the rat serves as a model projection. Potential target interneurons express calcium binding proteins, either parvalbumin or calretinin. The three markers were simultaneously stained in one and the same histological section. The procedure is according to a three-phase procedure, i.e., in vivo tracer injection phase, histology phase, laserscanning phase. Steps involved are: (1) Surgical application to the presubiculum (injection) of the neuroanatomical tracer, biotinylated dextran amine (BDA), with the purpose of labeling fibers innervating the entorhinal cortex. After surgery, transport of the tracer takes place during the one-week survival period; (2) Fluorescence detection of the labeled fibers through staining with fluorochromated avidin (avidin-Alexa Fluor 488 [green fluorescence]); (3) Simultaneous Immunofluorescence detection of two interneuron markers (using the appropriate primary antibodies and secondary antibodies conjugated to the fluorochromes Alexa Fluor 594 [red fluorescence] and Alexa Fluor 633 [infrared fluorescence]); (4) Acquisition of low-magnification images in a confocal laserscanning microscope and the preparation on a computer of a montage image covering the entire entorhinal cortex; (5) Overlaying this montage with a sampling grid; (6) Acquisition at high magnification of Z-series of confocal images in a statistical valid way based on this grid. Each marker was visualized in its own laser excitation/emission channel: 488, 568 and 647 nm; (7) Image processing and 3D reconstruction followed by evaluation of the results. The present approach can be used to examine whether or not a particular class of chemically identified neurons receives preferential innervation by a particular fiber projection.
Collapse
Affiliation(s)
- Marjolein Vinkenoog
- Graduate School Neurosciences Amsterdam, Research Institute for Neurosciences Vrije Universiteit Medical Center, Department of Anatomy, MF-G-136, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
37
|
Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. Spatial representation in the entorhinal cortex. Science 2004; 305:1258-64. [PMID: 15333832 DOI: 10.1126/science.1099901] [Citation(s) in RCA: 796] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
As the interface between hippocampus and neocortex, the entorhinal cortex is likely to play a pivotal role in memory. To determine how information is represented in this area, we measured spatial modulation of neural activity in layers of medial entorhinal cortex projecting to the hippocampus. Close to the postrhinal-entorhinal border, entorhinal neurons had stable and discrete multipeaked place fields, predicting the rat's location as accurately as place cells in the hippocampus. Precise positional modulation was not observed more ventromedially in the entorhinal cortex or upstream in the postrhinal cortex, suggesting that sensory input is transformed into durable allocentric spatial representations internally in the dorsocaudal medial entorhinal cortex.
Collapse
Affiliation(s)
- Marianne Fyhn
- Centre for the Biology of Memory, Medical-Technical Research Centre, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | | | | | | | | |
Collapse
|
38
|
Wouterlood FG, Van Haeften T, Eijkhoudt M, Baks-Te-Bulte L, Goede PH, Witter MP. Input from the presubiculum to dendrites of layer-V neurons of the medial entorhinal cortex of the rat. Brain Res 2004; 1013:1-12. [PMID: 15196963 DOI: 10.1016/j.brainres.2004.03.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2004] [Indexed: 11/30/2022]
Abstract
The entorhinal cortex (EC) and the hippocampus are reciprocally connected. Neurons in the superficial layers of EC project to the hippocampus, whereas deep entorhinal layers receive return connections. In the deep layers of EC, pyramidal neurons in layer V possess apical dendrites that ascend towards the cortical surface through layers IIII and II. These dendrites ramify in layer I. By way of their apical dendrites, such layer-V pyramidal cells may be exposed to input destined for the superficial entorhinal neurons. A specific and dense fiber projection that typically ends in superficial entorhinal layers of the medial EC originates in the presubiculum. To investigate whether apical dendrites of deep entorhinal pyramidal neurons indeed receive input from this projection, we injected the anterograde tracer PHA-L in the presubiculum or we lesioned the presubiculum, and we applied in the same experiments the tracer Neurobiotin trade mark pericellularly in layer V of the medial EC of 17 rats. PHA-L labeled presubiculum axons in the superficial layers apposing apical segments of Neurobiotin labeled layer-V cell dendrites were studied with a confocal fluorescence laserscanning microscope. Axons and dendrites were 3D reconstructed from series of confocal images. In cases in which the presubiculum had been lesioned, material was investigated in the electron microscope. At the confocal fluorescence microscope level we found numerous close contacts, i.e. appositions of boutons on labeled presubiculum fibers with identified dendrites of layer-V neurons. In the electron microscope we observed synapses between degenerating axon terminals and spines on dendrites belonging to layer-V neurons. Hence we conclude that layer-V neurons receive synaptic contacts from presubiculum neurons. These findings indicate that entorhinal layer-V neurons have access to information destined for the superficial layers and eventually the hippocampal formation. At the same time, they have access to the hippocampally processed version of that information.
Collapse
Affiliation(s)
- Floris G Wouterlood
- Department of Anatomy, Graduate School of Neurosciences, Research Institute Neuroscience, Vrije Universiteit Medical Center, Rm MF-G-136, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Honda Y, Ishizuka N. Organization of connectivity of the rat presubiculum: I. Efferent projections to the medial entorhinal cortex. J Comp Neurol 2004; 473:463-84. [PMID: 15116384 DOI: 10.1002/cne.20093] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The organization of the laminar and topographical projections from the presubiculum to the entorhinal area was studied in the rat by anterograde labeling with Phaseolus vulgaris leucoagglutinin and retrograde labeling with horseradish peroxidase conjugated to wheat germ agglutinin. We found that the pattern of presubiculo-entorhinal projections differs between the superficial and deep layers of the presubiculum. The superficial layers (layers II and III) of the presubiculum gave rise to bilateral projections to layers I-VI of the medial entorhinal area (MEA). Many terminals were distributed in layer III, fewer in layer II and the deep portion of layer I, and many fewer terminals in the deep layers (layers V and VI) of MEA. In contrast, the deep layers (layers V and VI) of the presubiculum gave rise to ipsilateral projections to the entorhinal area. Many axon terminals were distributed in layers V and VI of MEA and the most superficial portion of layer I of MEA, but very few in layers II and III. In addition, the ramifications in layer I extended to the lateral entorhinal area (LEA). Using two-dimensional unfolded maps of parahippocampal cortices, we elucidated the distinct topographical relationship in the presubiculo-entorhinal projection: 1) The septotemporal or longitudinal axis of the presubiculum corresponded to the axis on the MEA/LEA boundary, where the septal presubiculum projected toward the rhinal fissure and the temporal presubiculum projected away from the fissure. 2) The proximodistal axis of the presubiculum corresponded to the axis from the MEA/LEA boundary to the MEA/parasubiculum boundary that was virtually perpendicular to the MEA/LEA boundary, where the proximal portion of the presubiculum (close to the subiculum) projected to the region near the MEA/LEA boundary.
Collapse
Affiliation(s)
- Yoshiko Honda
- Department of Brain Structure, Tokyo Metropolitan Institute for Neuroscience, Tokyo 183-8526, Japan
| | | |
Collapse
|
40
|
Künzle H. Distribution of perihippocampo-hippocampal projection neurons in the lesser hedgehog tenrec. Neurosci Res 2002; 44:405-19. [PMID: 12445628 DOI: 10.1016/s0168-0102(02)00158-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The entorhinal cortex in the Madagascan lesser hedgehog tenrec is thought to be part of the three-layered subrhinal paleocortex (PCx) but cyto- and chemoarchitectural studies have failed so far to identify the area. To reach this goal tracer injections were made into the tenrec's hippocampus. Retrogradely labeled cells were found in dorsal portion of the posterior PCx, the adjacent rhinal cortex (RCx) and the so-called area XCx. The main paleocortical portion in the ventral PCx, however, remained unlabeled with the exception of a caudal region possibly equivalent to the amygdalo-piriform transition area. The labeled neurons showed a bilaminar distribution with the cells in the layer 2A giving rise to fibers to predominantly the dentate area and the cells in the layer 3A mainly projecting to the cornu ammonis and the subiculum. The latter regions, in addition, gave rise to a feedback projection to the layer 3B of especially the caudal RCx and the XCx. The analysis of the terminal projections, however, was hampered by the fact, that under certain conditions retrogradely transported biotinylated dextran was also transported in anterograde direction via collaterals of the entorhino-dentate fibers. The findings are compared with equivalent regions in more differentiated mammals particularly with regard to the perirhinal area showing little if any connections with the dentate gyrus.
Collapse
Affiliation(s)
- Heinz Künzle
- Institute of Anatomy, University of Munich, Pettenkoferstrasse 11, 80336 Munich, Germany.
| |
Collapse
|
41
|
Abstract
Temporal lobe epilepsy (TLE) patients are frequently afflicted with deficits in spatial and other forms of declarative memory. This impairment is likely associated with the medial temporal lobe, which suffers widespread damage in the disease. Physiological and lesion studies, as well as examinations of the complex connectivity of the medial temporal lobe in animals and humans, have identified the entorhinal cortex (EC) as a key structure in the function and dysfunction of this brain region. Lesions in EC layer III, which normally provides monosynaptic input to area CA1 of the hippocampus, frequently occur in TLE and may be causally related to the memory impairments seen in the disease. Lesions that are initially largely restricted to EC layer III can be produced in rats by focal intra-entorhinal injections of 'indirect excitotoxins' such as aminooxyacetic acid or gamma-acetylenic GABA. These animals eventually show more extensive neurodegeneration in temporal lobe structures and, after a latent period, exhibit spontaneously recurring seizure activity. These progressive features, which may mimic events that occur in TLE, provide new opportunities to explore the role of the EC in memory deficits associated with TLE. These animals will also be useful for evaluating new treatment strategies that focus on the prevention of pathological events in the EC.
Collapse
Affiliation(s)
- Robert Schwarcz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA.
| | | |
Collapse
|
42
|
Wouterlood FG, van Haeften T, Blijleven N, Pérez-Templado P, Pérez-Templado H. Double-label confocal laser-scanning microscopy, image restoration, and real-time three-dimensional reconstruction to study axons in the central nervous system and their contacts with target neurons. Appl Immunohistochem Mol Morphol 2002; 10:85-95. [PMID: 11893043 DOI: 10.1097/00129039-200203000-00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The current double tracing-double confocal laser-scanning method was developed to reconstruct identified nerve fibers and their contacts with identified target neurons in the rat brain in three dimensions. It intends to fill the gap between conventional light microscopic and electron microscopic neuroanatomic tracing. The steps involved are as follows: (1) injection of two neuroanatomic tracers--Phaseolus vulgaris leucoagglutinin (PHA-L) to label fibers innervating a particular brain area and Neurobiotin to label prospective target neurons in that area; (2) immunofluorescence detection of the labeled fibers (fluorophore Cy5, infrared emission), together with fluorochromated avidin detection of the taken-up Neurobiotin (Cy2 or Alexa 488; green emission); (3) acquisition of Z-series of confocal images at high magnification with a laser-scanning microscope using the laser lines 488 nm and 647 nm; and (4) computer-processing and three-dimensional reconstruction of the labeled fibers and the presumed target dendrites. Rotation on the computer of the three-dimensional reconstructed fibers and dendrites along all three spatial axes enabled the authors to determine whether "true" or "false" contacts occur. In a true contact no space was present between the apposing structures, whereas a false contact consisted of two differently stained structures close to each other but separated by a narrow, optically empty space. One important phenomenon in the three-dimensional reconstruction of double-stained structures that needed correction was "twin image mismatch"--i.e., the observation that a three-dimensional reconstruction of a small test object (double-stained on purpose) produced two slightly shifted objects, each associated with its particular fluorochrome. To measure the actual twin image mismatch of the confocal instrument and to obtain accurate correction factors the authors took in each session in which they obtained image series of the real experiments, with both laser wavelengths Z-series of images of multifluorescent microspheres (500-nm diameter) and of thin, double-stained fibers. Given the small dimensions of the structures of interest, i.e., synaptic contacts, it is necessary in this type of research that the optical characteristics of the imaging system--e.g., the alignment errors and chromatic aberration that produce twin image mismatch--be precisely known.
Collapse
Affiliation(s)
- Floris G Wouterlood
- Graduate School Neurosciences Amsterdam, Research Institute for Neurosciences Vrije Universiteit, Department of Anatomy, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Eid T, Du F, Schwarcz R. Ibotenate injections into the pre- and parasubiculum provide partial protection against kainate-induced epileptic damage in layer III of rat entorhinal cortex. Epilepsia 2001; 42:817-24. [PMID: 11488878 DOI: 10.1046/j.1528-1157.2001.042007817.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE A loss of neurons in layer III of the entorhinal cortex (EC) is often observed in patients with temporal lobe epilepsy and in animal models of the disorder. We hypothesized that the susceptibility of layer III of the EC to prolonged seizure activity might be mediated by excitatory afferents originating in the presubiculum. METHODS Experiments were designed to ablate the presubiculum unilaterally by focal ibotenate injections and to evaluate the effect of this deafferentation on the vulnerability of EC layer III neurons to the chemoconvulsant kainate (injected systemically 5 days later). RESULTS After treatment with kainate, 11 of the 15 rats preinjected with ibotenate showed clear-cut, partial neuroprotection in layer III of the EC ipsilateral to the ibotenate lesion. Serial reconstruction of the ibotenate-induced primary lesion revealed that entorhinal neurons were protected only in animals that had lesions in the pre- and parasubiculum, especially in the deep layers (IV-VI). CONCLUSIONS The deep layers of the pre- and parasubiculum appear to control the seizure-induced damage of EC layer III. This phenomenon may be of relevance for epileptogenesis and for the pathogenesis of temporal lobe epilepsy.
Collapse
Affiliation(s)
- T Eid
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228, USA
| | | | | |
Collapse
|
44
|
Witter MP, Naber PA, van Haeften T, Machielsen WC, Rombouts SA, Barkhof F, Scheltens P, Lopes da Silva FH. Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways. Hippocampus 2001; 10:398-410. [PMID: 10985279 DOI: 10.1002/1098-1063(2000)10:4<398::aid-hipo6>3.0.co;2-k] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hippocampal memory system, consisting of the hippocampal formation and the adjacent parahippocampal region, is known to play an important role in learning and memory processes. In recent years, evidence from a variety of experimental approaches indicates that each of the constituting fields of the hippocampal memory system may serve functionally different, yet complementary roles. Understanding the anatomical organization of cortico-parahippocampal-hippocampal connectivity may lead to a further understanding of these potential functional differences. In the present paper we present the two main conclusions of experiments in which we studied the anatomical organization of the hippocampal memory system of the rat in detail, with a focus on the pivotal position of the entorhinal cortex. We first conclude that the simple traditional view of the entorhinal cortex as simply the input and output structure of the hippocampal formation needs to be modified. Second, our data indicate the existence of two parallel pathways through the hippocampal memory system, arising from the perirhinal and postrhinal cortex. These two parallel pathways may be involved in separately processing functionally different types of sensory information. This second proposition will be subsequently evaluated on the basis of series of electrophysiological studies we carried out in rats and some preliminary functional brain imaging studies in humans.
Collapse
Affiliation(s)
- M P Witter
- Graduate School Neurosciences Amsterdam, and Department of Anatomy, Research Institute Neurosciences, Faculty of Medicine, Vrije Universiteit, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Strauss KI, Barbe MF, Marshall RM, Raghupathi R, Mehta S, Narayan RK. Prolonged cyclooxygenase-2 induction in neurons and glia following traumatic brain injury in the rat. J Neurotrauma 2000; 17:695-711. [PMID: 10972245 PMCID: PMC1456323 DOI: 10.1089/089771500415436] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyclooxygenase-2 (COX2) is a primary inflammatory mediator that converts arachidonic acid into precursors of vasoactive prostaglandins, producing reactive oxygen species in the process. Under normal conditions COX2 is not detectable, except at low abundance in the brain. This study demonstrates a distinctive pattern of COX2 increases in the brain over time following traumatic brain injury (TBI). Quantitative lysate ribonuclease protection assays indicate acute and sustained increases in COX2 mRNA in two rat models of TBI. In the lateral fluid percussion model, COX2 mRNA is significantly elevated (>twofold, p < 0.05, Dunnett) at 1 day postinjury in the injured cortex and bilaterally in the hippocampus, compared to sham-injured controls. In the lateral cortical impact model (LCI), COX2 mRNA peaks around 6 h postinjury in the ipsilateral cerebral cortex (fivefold induction, p < 0.05, Dunnett) and in the ipsilateral and contralateral hippocampus (two- and six-fold induction, respectively, p < 0.05, Dunnett). Increases are sustained out to 3 days postinjury in the injured cortex in both models. Further analyses use the LCI model to evaluate COX2 induction. Immunoblot analyses confirm increased levels of COX2 protein in the cortex and hippocampus. Profound increases in COX2 protein are observed in the cortex at 1-3 days, that return to sham levels by 7 days postinjury (p < 0.05, Dunnett). The cellular pattern of COX2 induction following TBI has been characterized using immunohistochemistry. COX2-immunoreactivity (-ir) rises acutely (cell numbers and intensity) and remains elevated for several days following TBI. Increases in COX2-ir colocalize with neurons (MAP2-ir) and glia (GFAP-ir). Increases in COX2-ir are observed in cerebral cortex and hippocampus, ipsilateral and contralateral to injury as early as 2 h postinjury. Neurons in the ipsilateral parietal, perirhinal and piriform cortex become intensely COX2-ir from 2 h to at least 3 days postinjury. In agreement with the mRNA and immunoblot results, COX2-ir appears greatest in the contralateral hippocampus. Hippocampal COX2-ir progresses from the pyramidal cell layer of the CA1 and CA2 region at 2 h, to the CA3 pyramidal cells and dentate polymorphic and granule cell layers by 24 h postinjury. These increases are distinct from those observed following inflammatory challenge, and correspond to brain areas previously identified with the neurological and cognitive deficits associated with TBI. While COX2 induction following TBI may result in selective beneficial responses, chronic COX2 production may contribute to free radical mediated cellular damage, vascular dysfunction, and alterations in cellular metabolism. These may cause secondary injuries to the brain that promote neuropathology and worsen behavioral outcome.
Collapse
Affiliation(s)
- K I Strauss
- Department of Neurosurgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Schwarcz R, Eid T, Du F. Neurons in layer III of the entorhinal cortex. A role in epileptogenesis and epilepsy? Ann N Y Acad Sci 2000; 911:328-42. [PMID: 10911883 DOI: 10.1111/j.1749-6632.2000.tb06735.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A preferential lesion of neurons in layer III of the entorhinal cortex (EC) is often observed in patients suffering from temporal lobe epilepsy and in several animal models of the disease. This lesion is duplicated in rats by a focal, intra-entorhinal injection of the "indirect" excitotoxin aminooxyacetic acid (AOAA), providing a model that can be used to study the mechanisms underlying seizure-induced cell death and epilepsy. Doomed neurons in the EC and in several associated limbic structures show pathological changes within hours after the AOAA injection, but GABAergic neurons in layer III of the EC are quite resistant. This pattern of neuron loss eventually results in hippocampal and entorhinal hyperexcitability. Notably, the seizure-induced death of layer III neurons in the EC can be attenuated by eliminating the prominent excitatory input from the presubiculum. Taken together, these results suggest opportunities to target parahippocampal structures for the treatment of temporal lobe epilepsy.
Collapse
Affiliation(s)
- R Schwarcz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore 21228, USA.
| | | | | |
Collapse
|
47
|
van Haeften T, Wouterlood FG, Witter MP. Presubicular input to the dendrites of layer-V entorhinal neurons in the rat. Ann N Y Acad Sci 2000; 911:471-3. [PMID: 10911896 DOI: 10.1111/j.1749-6632.2000.tb06748.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- T van Haeften
- Department of Anatomy, Research Institute Neurosciences Vrije Universiteit, Faculty of Medicine, Vrije Universiteit Amsterdam, The Netherlands.
| | | | | |
Collapse
|
48
|
Chapter V Neuropeptide FF receptors. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
Jongen-R�lo AL, Pitk�nen A, Amaral DG. Distribution of GABAergic cells and fibers in the hippocampal formation of the Macaque monkey: An immunohistochemical and in situ hybridization study. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990531)408:2<237::aid-cne7>3.0.co;2-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Scharfman HE, Goodman JH, Du F, Schwarcz R. Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss. J Neurophysiol 1998; 80:3031-46. [PMID: 9862904 DOI: 10.1152/jn.1998.80.6.3031] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal neuron loss. J. Neurophysiol. 80: 3031-3046, 1998. Synaptic responses of entorhinal cortical and hippocampal neurons were examined in vivo and in vitro, 1 mo to 1.5 yr after a unilateral entorhinal lesion caused by a focal injection of amino-oxyacetic acid (AOAA). It has been shown previously that injection of AOAA into the medial entorhinal cortex produces cell loss in layer III preferentially. Although behavioral seizures stopped approximately 2 h after AOAA treatment, abnormal evoked responses were recorded as long as 1.5 yr later in the entorhinal cortex and hippocampus. In the majority of slices from AOAA-treated rats, responses recorded in the superficial layers of the medial entorhinal cortex to white matter, presubiculum, or parasubiculum stimulation were abnormal. Extracellularly recorded responses to white matter stimulation were prolonged and repetitive in the superficial layers. Intracellular recordings showed that residual principal cells in superficial layers produced prolonged, repetitive excitatory postsynaptic potentials (EPSPs) and discharges in response to white matter stimulation compared with brief EPSPs and a single discharge in controls. Responses of deep layer neurons of AOAA-treated rats did not differ from controls in their initial synaptic response. However, in a some of these neurons, additional periods of excitatory activity occurred after a delay. Abnormal responses were recorded from slices ipsilateral as well as contralateral to the lesioned hemisphere. Recordings from the entorhinal cortex in vivo were abnormal also, as demonstrated by prolonged and repetitive responses to stimulation of the area CA1/subiculum border. Evoked responses of hippocampal neurons, recorded in vitro or in vivo, demonstrated abnormalities in selected pathways, such as responses of CA3 neurons to hilar stimulation in vitro. There was a deficit in the duration of potentiation of CA1 population spikes in response to repetitive CA3 stimulation in AOAA-treated rats. Theta activity was reduced in amplitude in area CA1 and the dentate gyrus of AOAA-treated rats, although evoked responses to angular bundle stimulation could not be distinguished from controls. The results demonstrate that a preferential lesion of layer III of the entorhinal cortex produces a long-lasting change in evoked and spontaneous activity in parts of the entorhinal cortex and hippocampus. Given the similarity of the lesion produced by AOAA and entorhinal lesions in temporal lobe epileptics, these data support the hypothesis that preferential damage to the entorhinal cortex contributes to long-lasting changes in excitability, which could be relevant to the etiology of temporal lobe epilepsy.
Collapse
Affiliation(s)
- H E Scharfman
- Neurology Research Center, Helen Hayes Hospital, West Haverstraw, New York 10993-1195, USA
| | | | | | | |
Collapse
|