1
|
Perrier S, Gauquelin L, Bernard G. Inherited white matter disorders: Hypomyelination (myelin disorders). HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:197-223. [PMID: 39322379 DOI: 10.1016/b978-0-323-99209-1.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelinating leukodystrophies are a subset of genetic white matter diseases characterized by insufficient myelin deposition during development. MRI patterns are used to identify hypomyelinating disorders, and genetic testing is used to determine the causal genes implicated in individual disease forms. Clinical course can range from severe, with patients manifesting neurologic symptoms in infancy or early childhood, to mild, with onset in adolescence or adulthood. This chapter discusses the most common hypomyelinating leukodystrophies, including X-linked Pelizaeus-Merzbacher disease and other PLP1-related disorders, autosomal recessive Pelizaeus-Merzbacher-like disease, and POLR3-related leukodystrophy. PLP1-related disorders are caused by hemizygous pathogenic variants in the proteolipid protein 1 (PLP1) gene, and encompass classic Pelizaeus-Merzbacher disease, the severe connatal form, PLP1-null syndrome, spastic paraplegia type 2, and hypomyelination of early myelinating structures. Pelizaeus-Merzbacher-like disease presents a similar clinical picture to Pelizaeus-Merzbacher disease, however, it is caused by biallelic pathogenic variants in the GJC2 gene, which encodes for the gap junction protein Connexin-47. POLR3-related leukodystrophy, or 4H leukodystrophy (hypomyelination, hypodontia, and hypogonadotropic hypogonadism), is caused by biallelic pathogenic variants in genes encoding specific subunits of the transcription enzyme RNA polymerase III. In this chapter, the clinical features, disease pathophysiology and genetics, imaging patterns, as well as supportive and future therapies are discussed for each disorder.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Laurence Gauquelin
- Division of Pediatric Neurology, Department of Pediatrics, CHUL et Centre Mère-Enfant Soleil du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Guo S, Wang Y, Wang A. Identity and lineage fate of proteolipid protein 1 gene (Plp1)-expressing cells in the embryonic murine spinal cord. Dev Dyn 2020; 249:946-960. [PMID: 32353175 DOI: 10.1002/dvdy.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The proteolipid protein (PLP) is the most abundant protein in the myelin sheath of the central nervous system (CNS). The gene coding PLP, proteolipid protein 1 (Plp1) is highly expressed in oligodendrocytes, the myelin-forming cells in the CNS. Previous studies demonstrate that Plp1 gene is expressed in the embryonic CNS much earlier before the generation of oligodendrocytes. However, the progenitor identity and the fate of Plp1-expressing cells are still elusive. RESULTS We employed genetic approaches to permanently label Plp1-expressing cells with the reporter enhanced yellow fluorescence protein (EYFP) and used multicolored immunohistochemistry to characterize their identity and lineage fate. We found that Plp1-expressing cells were initially present without spatial restrictions and later confined to the ventral progenitor domains of the embryonic spinal cord. Our fate-mapping results showed that Plp1-expressing cells during early embryogenesis were multipotent neural progenitor cells that gave rise to not only neurons but also glial progenitor cells whereas they were bipotent glial progenitor cells during later neural development stages and generated oligodendroglial and astroglial lineage cells but not neurons. Intriguingly, postnatal astrocytes generated from embryonic Plp1-expressing glial progenitor cells were present only in the ventral spinal cord. CONCLUSION Our study reveals that Plp1-expressing cells during embryonic neural development display dynamic cellular identities and have a broader lineage fate than oligodendroglial lineage.
Collapse
Affiliation(s)
- Shujing Guo
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Mira Loma High School, Sacramento, California, USA
| | - Yan Wang
- Department of Neurology, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA.,Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| |
Collapse
|
3
|
Kim MJ, Petratos S. Oligodendroglial Lineage Cells in Thyroid Hormone-Deprived Conditions. Stem Cells Int 2019; 2019:5496891. [PMID: 31182964 PMCID: PMC6515029 DOI: 10.1155/2019/5496891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/20/2019] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocytes are supporting glial cells that ensure the metabolism and homeostasis of neurons with specific synaptic axoglial interactions in the central nervous system. These require key myelinating glial trophic signals important for growth and metabolism. Thyroid hormone (TH) is one such trophic signal that regulates oligodendrocyte maturation, myelination, and oligodendroglial synaptic dynamics via either genomic or nongenomic pathways. The intracellular and extracellular transport of TH is facilitated by a specific transmembrane transporter known as the monocarboxylate transporter 8 (MCT8). Dysfunction of the MCT8 due to mutation, inhibition, or downregulation during brain development leads to inherited hypomyelination, which manifests as psychomotor retardation in the X-linked inherited Allan-Herndon-Dudley syndrome (AHDS). In particular, oligodendroglial-specific MCT8 deficiency may restrict the intracellular T3 availability, culminating in deficient metabolic communication between the oligodendrocytes and the neurons they ensheath, potentially promulgating neurodegenerative adult diseases such as multiple sclerosis (MS). Based on the therapeutic effects exhibited by TH in various preclinical studies, particularly related to its remyelinating potential, TH has now entered the initial stages of a clinical trial to test the therapeutic efficacy in relapsing-remitting MS patients (NCT02506751). However, TH analogs, such as DITPA or Triac, may well serve as future therapeutic options to rescue mature oligodendrocytes and/or promote oligodendrocyte precursor cell differentiation in an environment of MCT8 deficiency within the CNS. This review outlines the therapeutic strategies to overcome the differentiation blockade of oligodendrocyte precursors and maintain mature axoglial interactions in TH-deprived conditions.
Collapse
Affiliation(s)
- Min Joung Kim
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| |
Collapse
|
4
|
Somayajulu M, Bessert DA, Hüttemann M, Sohi J, Kamholz J, Skoff RP. Insertion of proteolipid protein into mitochondria but not DM20 regulates metabolism of cells. Neurosci Lett 2018; 678:90-98. [PMID: 29729355 DOI: 10.1016/j.neulet.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/18/2018] [Accepted: 05/01/2018] [Indexed: 01/06/2023]
Abstract
Proteolipid protein (PLP), besides its adhesive role in myelin, has been postulated to have multiple cellular functions. One well-documented function of PLP is regulation of oligodendrocyte (Olg) apoptosis. In contrast, DM20, an alternatively spliced product of the PLP1/Plp1 gene, has been proposed to have functions that are unique from PLP but these functions have never been elucidated. Here, we compare metabolism of PLP and DM20, and show that oxidative phosphorylation (OxPhos) was significantly decreased in Plp1 but not DM20 or EGFP expressing cells. The reserve OxPhos capacity of Plp1 expressing cells was half of control cells, suggesting that they are very vulnerable to stress. ATP in media of Plp1 expressing cells is significantly increased more than two-fold compared to controls; markers of apoptosis are increased in cells over-expressing Plp1, indicating that abnormal metabolism of PLP is most likely the direct cause leading to Olg apoptosis. We hypothesize that abnormal metabolism, mediated by increased insertion of PLP into mitochondria, underlies demyelination in Pelizaeus-Merzbacher Disease (PMD) and in models of PMD. To understand why PLP and DM20 function differently, we mutated or deleted amino acids located in the PLP-specific region. All these mutations and deletions of the PLP-specific region prevented insertion of PLP into mitochondria. These findings demonstrate that the PLP-specific region is essential for PLP's import into mitochondria, and now offer an explanation for deciphering unique functions of PLP and DM20.
Collapse
Affiliation(s)
- Mallika Somayajulu
- Wayne State University School of Medicine Department of Anatomy and Cell Biology, Detroit, MI, 48201, USA; Wayne State University School of Medicine Center for Molecular Medicine and Genetics, Detroit, MI, 48201, USA
| | - Denise A Bessert
- Wayne State University School of Medicine Department of Anatomy and Cell Biology, Detroit, MI, 48201, USA
| | - Maik Hüttemann
- Wayne State University School of Medicine Center for Molecular Medicine and Genetics, Detroit, MI, 48201, USA
| | | | | | - Robert P Skoff
- Wayne State University School of Medicine Department of Anatomy and Cell Biology, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Abstract
Leukodystrophies comprise a broad group of progressive, inherited disorders affecting mainly myelin. They often present after a variable period of normalcy with a variety of neurologic problems. Though the ultimate diagnosis is not found in many patients with leukodystrophies, distinctive features unique to them aid in diagnosis, treatment and prognostication. The clinical characteristics, etiologies, diagnostic testing and treatment options are reviewed in detail for some of the major leukodystrophies: X-linked adrenoleukodystrophy, Krabbe disease, metachromatic leukodystrophy, Pelizaeus-Merzbacher disease, Alexander disease, Canavan disease, megalencephalic leukoencephalopathy with subcortical cysts and vanishing white matter disease.
Collapse
Affiliation(s)
- Seth J Perlman
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | | |
Collapse
|
6
|
Development and maturation of the spinal cord: implications of molecular and genetic defects. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:3-30. [PMID: 23098703 DOI: 10.1016/b978-0-444-52137-8.00001-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The human central nervous system (CNS) may be the most complex structure in the universe. Its development and appropriate specification into phenotypically and spatially distinct neural subpopulations involves a precisely orchestrated response, with thousands of transcriptional regulators combining with epigenetic controls and specific temporal cues in perfect synchrony. Understandably, our insight into the sophisticated molecular mechanisms which underlie spinal cord development are as yet limited. Even less is known about abnormalities of this process - putative genetic and molecular causes of well-described defects have only begun to emerge in recent years. Nonetheless, modern scientific techniques are beginning to demonstrate common patterns and principles amid the tremendous complexity of spinal cord development and maldevelopment. These advances are important, given that developmental anomalies of the spinal cord are an important cause of mortality and morbidity (Sadler, 2000); it is hoped that research advances will lead to better methods to detect, treat, and prevent these lesions.
Collapse
|
7
|
Tatar CL, Appikatla S, Bessert DA, Paintlia AS, Singh I, Skoff RP. Increased Plp1 gene expression leads to massive microglial cell activation and inflammation throughout the brain. ASN Neuro 2010; 2:e00043. [PMID: 20885931 PMCID: PMC2946597 DOI: 10.1042/an20100016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/11/2010] [Accepted: 08/19/2010] [Indexed: 02/06/2023] Open
Abstract
PMD (Pelizaeus-Merzbacher disease) is a rare neurodegenerative disorder that impairs motor and cognitive functions and is associated with a shortened lifespan. The cause of PMD is mutations of the PLP1 [proteolipid protein 1 gene (human)] gene. Transgenic mice with increased Plp1 [proteolipid protein 1 gene (non-human)] copy number model most aspects of PMD patients with duplications. Hypomyelination and demyelination are believed to cause the neurological abnormalities in mammals with PLP1 duplications. We show, for the first time, intense microglial reactivity throughout the grey and white matter of a transgenic mouse line with increased copy number of the native Plp1 gene. Activated microglia in the white and grey matter of transgenic mice are found as early as postnatal day 7, before myelin commences in normal cerebra. This finding indicates that degeneration of myelin does not cause the microglial response. Microglial numbers are doubled due to in situ proliferation. Compared with the jp (jimpy) mouse, which has much more oligodendrocyte death and hardly any myelin, microglia in the overexpressors show a more dramatic microglial reactivity than jp, especially in the grey matter. Predictably, many classical markers of an inflammatory response, including TNF-α (tumour necrosis factor-α) and IL-6, are significantly up-regulated manyfold. Because inflammation is believed to contribute to axonal degeneration in multiple sclerosis and other neurodegenerative diseases, inflammation in mammals with increased Plp1 gene dosage may also contribute to axonal degeneration described in patients and rodents with PLP1 increased gene dosage.
Collapse
Key Words
- BrdU, bromodeoxyuridine
- CCL3, CC chemokine ligand 3
- CCR1, CC chemokine receptor 1
- CD11b, cluster of differentiation molecule 11B
- CD8, cluster of differentiation 8
- CNS, central nervous system
- CRP, C-reactive protein
- CXCL, CXC chemokine ligand
- DAB, diaminobenzidine
- DPN, day postnatal
- EAE, experimental allergic encephalomyelitis
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- HRP, horseradish peroxidase
- IL-1β, interleukin-1β
- Iba1, ionized calcium-binding adaptor molecule 1
- MOG, myelin oligodendrocyte glycoprotein
- PLP1, proteolipid protein 1 gene (human)
- PMD, Pelizaeus–Merzbacher disease
- Pelizaeus–Merzbacher disease
- Plp1, proteolipid protein 1 gene (non-human)
- QPCR, quantitative PCR
- TNF-α, tumour necrosis factor-α
- Ta, Tabby
- iNOS, inducible nitric oxide synthase
- inflammation
- jp, jimpy
- microglia
- myelin
- oligodendrocyte
- proteolipid protein
- qRT–PCR, quantitative reverse transcription–PCR
Collapse
Affiliation(s)
- Carrie L Tatar
- *Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, U.S.A
| | - Sunita Appikatla
- *Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, U.S.A
| | - Denise A Bessert
- *Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, U.S.A
| | - Ajaib S Paintlia
- †Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Inderjit Singh
- †Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Robert P Skoff
- *Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, U.S.A
| |
Collapse
|
8
|
The multiple roles of myelin protein genes during the development of the oligodendrocyte. ASN Neuro 2010; 2:e00027. [PMID: 20017732 PMCID: PMC2814326 DOI: 10.1042/an20090051] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022] Open
Abstract
It has become clear that the products of several of the earliest identified myelin protein genes perform functions that extend beyond the myelin sheath. Interestingly, these myelin proteins, which comprise proteolipid protein, 2′,3′-cyclic nucleotide 3′-phosphodiesterase and the classic and golli MBPs (myelin basic proteins), play important roles during different stages of oligodendroglial development. These non-myelin-related functions are varied and include roles in the regulation of process outgrowth, migration, RNA transport, oligodendrocyte survival and ion channel modulation. However, despite the wide variety of cellular functions performed by the different myelin genes, the route by which they achieve these many functions seems to converge upon a common mechanism involving Ca2+ regulation, cytoskeletal rearrangements and signal transduction. In the present review, the newly emerging functions of these myelin proteins will be described, and these will then be discussed in the context of their contribution to oligodendroglial development.
Collapse
|
9
|
Swamydas M, Bessert D, Skoff R. Sexual dimorphism of oligodendrocytes is mediated by differential regulation of signaling pathways. J Neurosci Res 2010; 87:3306-19. [PMID: 19084904 DOI: 10.1002/jnr.21943] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sexual dimorphism of white matter has not been considered important, the assumption being that sex hormones are not essential for glial development. We recently showed exogenous hormones in vivo differentially regulate in male and female rodents the life span of oligodendrocytes (Olgs) and amount of myelin (Cerghet et al. [2006] J. Neurosci. 26:1439-1447). To determine which hormones regulate male and female Olg development, we prepared enriched Olg cultures grown in serum-free medium with estrogen (E2), progesterone (P2), and dihydrotestosterone (DHT) or their combinations. P2 significantly increased the number of Olgs in both sexes, but more so in females; E2 had minor effects on Olg numbers; and DHT reduced Olgs numbers in both sexes, but more so in females. Combinations of hormones affected Olg numbers differently from single hormones. The change in Olg numbers was due to changes not in proliferation but rather in survival. P2 increased pAKT by many-fold, but MAPK levels were unchanged, indicating that activation of the Akt pathway by P2 is sufficient to regulate Olg differentiation. DHT reduced pAkt in both sexes but differentially increased pMAPK in males and decreased it in females. Stressing Olgs reveals that both sexes are protected by P2, but females are slightly better protected than males. Females always showed greater differences than males regarding changes in Olg numbers and in signaling molecules. Given the greater fluctuation of neurosteroids in women than in men and the higher incidence of multiple sclerosis (MS) in women, these sexually dimorphic differences may contribute to differences in male and female MS lesions.
Collapse
Affiliation(s)
- Muthulekha Swamydas
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | |
Collapse
|
10
|
Abstract
PMD (Pelizaeus–Merzbacher disease), a CNS (central nervous system) disease characterized by shortened lifespan and severe neural dysfunction, is caused by mutations of the PLP1 (X-linked myelin proteolipid protein) gene. The majority of human PLP1 mutations are caused by duplications; almost all others are caused by missense mutations. The cellular events leading to the phenotype are unknown. The same mutations in non-humans make them ideal models to study the mechanisms that cause neurological sequelae. In the present study we show that mice with Plp1 duplications (Plp1tg) have major mitochondrial deficits with a 50% reduction in ATP, a drastically reduced mitochondrial membrane potential and increased numbers of mitochondria. In contrast, the jp (jimpy) mouse with a Plp1 missense mutation exhibits normal mitochondrial function. We show that PLP in the Plp1tg mice and in Plp1-transfected cells is targeted to mitochondria. PLP has motifs permissive for insertion into mitochondria and deletions near its N-terminus prevent its co-localization to mitochondria. These novel data show that Plp1 missense mutations and duplications of the native Plp1 gene initiate uniquely different cellular responses.
Collapse
|
11
|
Peroxisome proliferator-activated receptor-gamma agonists promote differentiation and antioxidant defenses of oligodendrocyte progenitor cells. J Neuropathol Exp Neurol 2009; 68:797-808. [PMID: 19535992 DOI: 10.1097/nen.0b013e3181aba2c1] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several lines of evidence suggest that peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists may control brain inflammation and, therefore, may be useful for the treatment of human CNS inflammatory conditions. The PPAR-gamma agonists delay the onset and ameliorate clinical manifestations in animal demyelinating disease models, in which the beneficial effects are thought to be mainly related to anti-inflammatory effects on peripheral and brain immune cells. Direct effects on neurons, oligodendrocytes, and other CNS resident cells cannot be excluded, however. To analyze potential direct actions of PPAR-gamma agonists on oligodendrocytes, we investigated the effects of both natural (15-deoxy Delta prostaglandin J2) and synthetic (pioglitazone) PPAR-gamma agonists in primary cultures of rat oligodendrocyte progenitor cells. The PPAR-gamma agonists promoted oligodendrocyte progenitor cell differentiation and enhanced their antioxidant defenses by increasing levels of catalase and copper-zinc superoxide dismutase while maintaining the overall homeostasis of the glutathione system. Protective effects were abolished in the presence of the specific PPAR-gamma antagonist GW9662, indicating that they are specifically dependent on PPAR-gamma. These observations suggest that in addition to their known anti-inflammatory effects, PPAR-gamma agonists may protect oligodendrocyte progenitor cells by preserving their integrity and favoring their differentiation into myelin-forming cells. Thus, PPAR-gamma may promote recovery from demyelination by direct effects on oligodendrocytes.
Collapse
|
12
|
Fernández ME, Alfonso J, Brocco MA, Frasch AC. Conserved cellular function and stress-mediated regulation among members of the proteolipid protein family. J Neurosci Res 2009; 88:1298-308. [DOI: 10.1002/jnr.22298] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Campagnoni AT, Skoff RP. The pathobiology of myelin mutants reveal novel biological functions of the MBP and PLP genes. Brain Pathol 2006; 11:74-91. [PMID: 11145205 PMCID: PMC8098301 DOI: 10.1111/j.1750-3639.2001.tb00383.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Substantial biological data indicate that the myelin basic protein (MBP) and myelin proteolipid protein (PLP/DM20) genes produce products with functions beyond that of serving as myelin structural proteins. Much of this evidence comes from studies on naturally-occurring and man-made mutations of these genes in mice and other species. This review focuses upon recent evidence showing the existence of other products of these genes that may account for some of these other functions, and recent studies providing evidence for alternative biological functions of PLP/DM20. The MBP and PLP/DM20 genes each encode the classic MBP and PLP isoforms, as well as a second family of proteins that are not involved in myelin structure. The biological roles of these other products of the genes are becoming clarified. The non-classic MBP gene products appear to be components of transcriptional complexes in the nucleus, and they also may be involved in signaling pathways in T-cells and in neural cells. The non-classic PLP/DM20 gene products appear to be components of intracellular transport vesicles in oligodendrocytes. There is evidence for other functions of the classic PLP/DM20 proteins, including a role in neural cell death mechanisms, autocrine and paracrine regulation of oligodendrocytes and neurons, intracellular transport and oligodendrocyte migration.
Collapse
Affiliation(s)
- A T Campagnoni
- Neuropsychiatric Institute, UCLA School of Medicine, 90024, USA.
| | | |
Collapse
|
14
|
Fowler JH, Edgar JM, Pringle A, McLaughlin M, McCulloch J, Griffiths IR, Garbern JY, Nave KA, Dewar D. α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid-mediated excitotoxic axonal damage is attenuated in the absence of myelin proteolipid protein. J Neurosci Res 2006; 84:68-77. [PMID: 16625661 DOI: 10.1002/jnr.20859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In vivo and in vitro studies have shown that alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-receptor-mediated excitotoxicity causes cytoskeletal damage to axons. AMPA/kainate receptors are present on oligodendrocytes and myelin, but currently there is no evidence to suggest that axon cylinders contain AMPA receptors. Proteolipid protein (PLP) and DM20 are integral membrane proteins expressed by CNS oligodendrocytes and located in compact myelin. Humans and mice lacking normal PLP/DM20 develop axonal swellings and degeneration, suggesting that local interactions between axons and the oligodendrocyte/myelin unit are important for the normal functioning of axons and that PLP/DM20 is involved in this process. To determine whether perturbed glial-axonal interaction affects AMPA-receptor-mediated axonal damage, AMPA (1.5 nmol) was injected into the caudate nucleus of anesthetized Plp knockout and wild-type male mice (n = 13). Twenty-four hours later, axonal damage was detected by using neurofilament 200 (NF 200) immunohistochemistry and neuronal damage detected via histology. AMPA-induced axonal damage, assessed with NF 200 immunohistochemistry, was significantly reduced in Plp knockout mice compared with wild-type mice (P = 0.015). There was no significant difference in the levels of neuronal perikaryal damage between the Plp knockout and wild-type mice. In addition, there was no significant difference in the levels of glutamate receptor subunits GluR1-4 or KA2 in Plp knockout compared with wild-type littermates. The present study suggests that PLP-mediated interactions among oligodendrocytes, myelin, and axons may be involved in AMPA-mediated axonal damage.
Collapse
Affiliation(s)
- J H Fowler
- Division of Clinical Neuroscience, University of Glasgow, Wellcome Surgical Institute, Glasgow G61 1QH, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Skoff RP, Bessert DA, Cerghet M, Franklin MJ, Rout UK, Nave KA, Carlock L, Ghandour MS, Armant DR. The myelin proteolipid protein gene modulates apoptosis in neural and non-neural tissues. Cell Death Differ 2005; 11:1247-57. [PMID: 15375385 DOI: 10.1038/sj.cdd.4401498] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mutations of the myelin proteolipid protein gene (Plp) are associated with excessive programmed cell death (PCD) of oligodendrocytes. We show for the first time that PLP is a molecule ubiquitously expressed in non-neural tissues during normal development, and that the level of native PLP modulates the level of PCD. We analyze three non-neural tissues, and show that native PLP is expressed in trophoblasts, spermatogonia, and cells of interdigital webbing. The non-neural cells that express high levels of native PLP also undergo PCD. The level of PLP expression modulates the level of PCD because mice that overexpress native PLP have increased PCD and mice deficient in PLP have decreased PCD. We show that overexpression of native PLP causes a dramatic acidification of extracellular fluid that, in turn, causes increased PCD. These studies show that the level of native PLP modulates the amount of PCD during normal development via a pH-dependent mechanism.
Collapse
Affiliation(s)
- R P Skoff
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang Z, Cerghet M, Mullins C, Williamson M, Bessert D, Skoff R. Comparison of in vivo and in vitro subcellular localization of estrogen receptors alpha and beta in oligodendrocytes. J Neurochem 2004; 89:674-84. [PMID: 15086524 DOI: 10.1111/j.1471-4159.2004.02388.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The existence of estrogen receptors (ERs) in oligodendrocytes (OLGs) in vivo and in vitro is unresolved, as their presence has been reported in some studies and their absence in others. Using molecular and immunocytochemical techniques, we describe the subcellular localization of ERalpha and ERbeta in OLGs in vivo and in vitro. Both ERalpha and ERbeta are detected in an immortalized OLG cell line and in enriched OLG cultures by RT-PCR and western blot. Immunocytochemistry of OLGs from enriched cultures shows ERalpha receptors are nuclear, whereas ERbeta receptors are cytoplasmic. Confocal and deconvolution microscopy of enriched OLG cultures reveals ERbeta immunoreactivity is concentrated in perikarya and veins of OLG membrane sheets; lesser reactivity is present in their plasma membranes and nuclei. In vivo, we readily detect ERalpha in neurons but not in OLGs, even though we used different fixation procedures and different ERalpha antibodies. The presence of ERalpha in cultured OLGs may be due to culture media that contains factors stimulating ERalpha expression but are reduced in normal brain. In vivo, ERbeta immunoreactivity is readily detectable in OLG cytoplasm and in myelin sheaths. Incubation of glial cultures without or with increasing concentrations of 17beta-estradiol (E2) shows that E2 significantly accelerates OLG process formation.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | |
Collapse
|
17
|
Cimini A, Bernardo A, Cifone MG, Di Marzio L, Di Loreto S, Cifone G, Di Muzio L. TNFalpha downregulates PPARdelta expression in oligodendrocyte progenitor cells: implications for demyelinating diseases. Glia 2003; 41:3-14. [PMID: 12465041 DOI: 10.1002/glia.10143] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
TNFalpha has been implicated in several demyelinating disorders, including multiple sclerosis (MS) and X-adrenoleukodystrophy (X-ALD). TNFalpha abundance is greatly increased in the areas surrounding damaged regions of the central nervous system of patients with MS and X-ALD, but its role in the observed demyelination remains to be elucidated. A class of nuclear receptors, the peroxisome proliferator-activated receptors (PPARs), has been implicated in several physiological and pathological processes. In particular, PPARdelta has been shown to promote oligodendrocyte (OL) survival and differentiation and PPARgamma has been implicated in inflammation. In the present study, we investigate on the effects of TNFalpha on OLs during differentiation in vitro. The results obtained show that TNFalpha treatment impairs PPARdelta expression with concomitant decrease of lignocerolyl-CoA synthase and very-long-chain fatty acid beta-oxidation as well as plasmalogen biosynthesis. We propose a hypothetical model possibly explaining the perturbation effects of proinflammatory cytokines on myelin synthesis, maturation, and turnover.
Collapse
Affiliation(s)
- Annamaria Cimini
- Department of Basic and Applied Biology, Università di L'Aquila, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Baracskay KL, Duchala CS, Miller RH, Macklin WB, Trapp BD. Oligodendrogenesis is differentially regulated in gray and white matter of jimpy mice. J Neurosci Res 2002; 70:645-54. [PMID: 12424732 DOI: 10.1002/jnr.10418] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The factors that regulate oligodendrogenesis have been studied extensively in optic nerve, where oligodendrocyte production and myelination quickly follow colonization of the nerve by progenitor cells. In contrast, oligodendrocyte production in the cerebral cortex begins approximately 1 week after progenitor cell colonization and continues for 3-4 weeks. This and other observations raise the possibility that oligodendrogenesis is regulated by different mechanisms in white and gray matter. The present study examined oligodendrocyte production in the developing cerebral cortex of jimpy (jp) and jimpy(msd) (msd) mice, which exhibit hypomyelination and oligodendrocyte death due to mutations in and toxic accumulations of proteolipid protein, the major structural protein of CNS myelin. Proliferation of oligodendrocyte progenitors and production of myelinating oligodendrocytes was reduced in jp cerebral cortex when compared to wild-type (wt) and msd mice. The incidence of oligodendrocyte cell death was similar in jp and msd cortex, but total dying oligodendrocytes were greater in msd. We confirm previous reports of increased oligodendrocyte production in white matter of both jp and msd mice. The jp mutation, therefore, reduces oligodendrocyte production in cerebral cortex but not in white matter. These data provide additional evidence that oligodendrogenesis is differentially regulated in white matter and gray matter and implicate PLP/DM20 as a modulator of these differences.
Collapse
Affiliation(s)
- Karen L Baracskay
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
19
|
Suslov ON, Kukekov VG, Ignatova TN, Steindler DA. Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc Natl Acad Sci U S A 2002; 99:14506-11. [PMID: 12381788 PMCID: PMC137913 DOI: 10.1073/pnas.212525299] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2002] [Accepted: 08/29/2002] [Indexed: 12/30/2022] Open
Abstract
Neural stem cells (NSCs) in vitro are able to generate clonal structures, "neurospheres," that exhibit intra-clonal neural cell-lineage diversity; i.e., they contain, in addition to NSCs, neuronal and glial progenitors in different states of differentiation. The present study focuses on a subset of neurospheres derived from fresh clinical specimens of human brain by using an in vitro system that relies on particular growth factors, serum, and anchorage withdrawal. Thirty individual and exemplary cDNA libraries from these neurosphere clones were clustered and rearranged within a panel after characterization of differentially expressed transcripts. The molecular phenotypes that were obtained indicate that clonogenic NSCs in our in vitro system are heterogeneous, with subsets reflecting distinct neural developmental commitments. This approach is useful for the sorting and expansion of NSCs and facilitates the discovery of genes involved in cell proliferation, communication, fate control, and differentiation.
Collapse
Affiliation(s)
- Oleg N Suslov
- Department of Neuroscience, The McKnight Brain Institute, University of Florida Shands Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Judith Grinspan
- Children's Hospital of Philadelphia, University of Pennsylvania, 19104, USA
| |
Collapse
|
21
|
Boucher SEM, Cypher MA, Carlock LR, Skoff RP. Proteolipid protein gene modulates viability and phenotype of neurons. J Neurosci 2002; 22:1772-83. [PMID: 11880506 PMCID: PMC6758887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Overexpression or lack of expression of proteolipid protein (PLP) gene by oligodendrocytes causes axonal pathology. It is unclear whether dysfunction of the PLP gene mediates its effects directly on neurons or indirectly by abnormal formation of myelin sheaths. We performed experiments using cocultures and conditioned media (CM) to test the direct effect of PLP gene expression on neurons. Non-glial cell lines were stably transfected with PLP or DM20 (an alternate splice variant of PLP) cDNAs. Immunocytochemistry and enhanced green fluorescent protein expression showed that translated products were synthesized and inserted into the plasma membrane in proper conformation. The number of surviving dorsal root ganglion (DRG) neurons was significantly less than controls when cocultured for 5 d with PLP-expressing cells. The number of degenerating neurons increased in a dose-dependent manner corresponding to increasing numbers of PLP-expressing cells. However, the number of surviving DRG neurons cocultured with DM20-expressing cells was comparable to that of controls, indicating that PLP-specific products contributed to decreased neuron survival. When DRG neurons were cultured with CM from PLP- or DM20-expressing cells, significantly fewer neurons survived with CM of PLP- but not DM20-expressing cells. This suggests that secreted factors from PLP-expressing cells contribute to neuronal death. Increased neuronal death found with PLP-expressing cells cannot be attributed to density-dependent artifacts, because in each experiment the density of different cell lines was similar. This effect of CM may be mediated by a negative pH shift elicited from PLP but not DM20 expression. These results indicate that PLP gene products directly modulate neuron viability.
Collapse
Affiliation(s)
- Shayne E M Boucher
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
22
|
Bongarzone ER, Jacobs E, Schonmann V, Kampf K, Campagnoni CW, Campagnoni AT. Differential sensitivity in the survival of oligodendrocyte cell lines to overexpression of myelin proteolipid protein gene products. J Neurosci Res 2001; 65:485-92. [PMID: 11550216 DOI: 10.1002/jnr.1178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The proteolipid (PLP) gene encodes at least four proteins, including the classic PLP and DM20, which are important components of the myelin sheath, and the recently identified soma-restricted (sr) isoforms, srPLP and srDM20. The classic PLP and DM20 gene products have been implicated in oligodendrocyte survival by overexpression studies in vitro and in vivo. The classic and sr proteolipids are targeted to different cellular compartments in the oligodendrocyte, suggesting different cellular functions. Accordingly, we examined the effects of in vitro overexpression of the sr-PLP/DM20 isoforms on the survival of stably transfected, conditionally immortalized, oligodendroglial cell lines and compared this to overexpression of the classic and the jimpy-mutated proteolipids. The results indicate that overexpression of either normal or jimpy classic PLP/DM20 resulted in a dramatic reduction in the survival of the oligodendrocyte cell lines at the nonpermissive temperature, but not the COS-7 cell line, a cell line expressing the same oncogene constitutively. Survival of the oligodendrocyte cell lines was significantly less affected when either the sr-PLP/DM20 or the dopamine D-2 receptor, another cell membrane protein, was overexpressed in the cell lines. These results suggest that overexpression of the "classic" PLP or DM20 can compromise the survival of oligodendrocytes whether or not they are mutated. Furthermore, they suggest that the internal mechanisms for normal targeting of the PLP/DM20 isoforms of either the "classic" or the "sr" types influence the oligodendrocyte's ability to survive when these proteolipids are overexpressed.
Collapse
Affiliation(s)
- E R Bongarzone
- Mental Retardation Research Center, School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
23
|
Herrera J, Yang H, Zhang SC, Proschel C, Tresco P, Duncan ID, Luskin M, Mayer-Proschel M. Embryonic-derived glial-restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo. Exp Neurol 2001; 171:11-21. [PMID: 11520117 DOI: 10.1006/exnr.2001.7729] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have isolated and characterized a unique glial-restricted precursor cell (GRP) from the embryonic spinal cord. Clonal analysis demonstrated that these cells are able to generate oligodendrocytes and two distinct type of astrocytes (type 1 and type 2) when exposed to appropriate signals in vitro. We now show that many aspects of these cells are retained in vivo. GRP cells are restricted to the glial lineage in vivo as they seem to be unable to generate neuronal phenotypes in an in vivo neurogenic environment. GRP cells survive and migrate in the neonatal and adult brain. Transplanted GRP cells differentiate into myelin-forming oligodendrocytes in a myelin-deficient background and also generate immature oligodendrocytes in the normal neonatal brain. In addition, GRP cells also consistently generated glial fibrillary protein-expressing cells in the neonatal and adult brain, a property not consistently expressed by other glial precursor cells like the O-2A/OPC cells. We suggest that the lineage restriction of GRP cells and their ability to generate both oligodendrocytes and astrocytes in vivo together with their embryonic character that allows for extensive in vitro expansion of the population makes the cell useful for clinical application.
Collapse
Affiliation(s)
- J Herrera
- Keck Center for Tissue Engineering, University of Utah, Salt Lake City, Utah
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Neusch C, Rozengurt N, Jacobs RE, Lester HA, Kofuji P. Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci 2001; 21:5429-38. [PMID: 11466414 PMCID: PMC6762664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2001] [Revised: 05/08/2001] [Accepted: 05/09/2001] [Indexed: 02/20/2023] Open
Abstract
To understand the cellular and in vivo functions of specific K(+) channels in glia, we have studied mice with a null mutation in the weakly inwardly rectifying K(+) channel subunit Kir4.1. Kir4.1-/- mice display marked motor impairment, and the cellular basis is hypomyelination in the spinal cord, accompanied by severe spongiform vacuolation, axonal swellings, and degeneration. Immunostaining in the spinal cord of wild-type mice up to postnatal day 18 reveals that Kir4.1 is expressed in myelin-synthesizing oligodendrocytes, but probably not in neurons or glial fibrillary acidic protein-positive (GFAP-positive) astrocytes. Cultured oligodendrocytes from developing spinal cord of Kir4.1-/- mice lack most of the wild-type K(+) conductance, have depolarized membrane potentials, and display immature morphology. By contrast, cultured neurons from spinal cord of Kir4.1-/- mice have normal physiological characteristics. We conclude that Kir4.1 forms the major K(+) conductance of oligodendrocytes and is therefore crucial for myelination. The Kir4.1 knock-out mouse is one of the few CNS dysmyelinating or demyelinating phenotypes that does not involve a gene directly involved in the structure, synthesis, degradation, or immune response to myelin. Therefore, this mouse shows how an ion channel mutation could contribute to the polygenic demyelinating diseases.
Collapse
Affiliation(s)
- C Neusch
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
25
|
Feutz AC, Pham-Dinh D, Allinquant B, Miehe M, Ghandour MS. An immortalized jimpy oligodendrocyte cell line: defects in cell cycle and cAMP pathway. Glia 2001; 34:241-52. [PMID: 11360297 DOI: 10.1002/glia.1058] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Normal and jimpy oligodendrocytes in secondary cultures were transfected with plasmids containing the SV40 T-antigen gene expressed under the control of the mouse metallothionein-I promoter. Two immortalized stable cell lines, a normal (158N) and jimpy (158JP) cell line, expressed transcripts and proteins of oligodendrocyte markers, including proteolipid protein (PLP), myelin basic protein (MBP), and carbonic anhydrase II (CAII). Galactocerebroside and sulfatide were also detected with immunocytochemistry. Immunoelectron microscopy using gold particles showed that the truncated endogenous jimpy PLP was distributed throughout the cytoplasm and in association with the plasma membrane of cell bodies and processes. The length of the cell cycle in the jimpy oligodendrocytes in the absence of zinc was 31 h, about a 4-h longer cell cycle than the normal line. In the presence of 100 microM zinc, the cell cycle became 3 h shorter for both cell lines, with the jimpy cell cycle duration remaining 4 h longer than the normal line. Interestingly, the jimpy cell line showed a significant deficiency in stimulation via the cAMP pathway. While the level of oligodendrocyte markers (PLP, MBP, and CAII) were significantly increased by dibutyryl cAMP (dbcAMP) treatment in the normal cell line, no changes were observed in the jimpy cell lines. This observation, together with previous results showing jimpy oligodendrocyte's failure to respond to basic fibroblast growth factor (bFGF), suggests a role for PLP in a signal transduction pathway. Jimpy and normal oligodendrocytes transfected with the SV40T antigen gene, driven by the wild-type promoter of mouse metallothionein-I, continue to express properties of oligodendrocytes and therefore provide a powerful model to explore the function of myelin proteins and to dissect the complexity of the jimpy phenotype.
Collapse
Affiliation(s)
- A C Feutz
- CNRS-ER 2072, Institut de Chimie Biologique, Faculté de Médecine, Strasbourg, France
| | | | | | | | | |
Collapse
|
26
|
Beesley JS, Lavy L, Eraydin NB, Siman R, Grinspan JB. Caspase-3 activation in oligodendrocytes from the myelin-deficient rat. J Neurosci Res 2001; 64:371-9. [PMID: 11340644 DOI: 10.1002/jnr.1088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The myelin-deficient (MD) rat has a point mutation in its proteolipid protein (PLP) gene that causes severe dysmyelination and oligodendrocyte cell death. Using an in vitro model, we have shown that MD oligodendrocytes initially differentiate similarly to wild-type cells, expressing galactocerebroside, 2',3'-cyclic nucleotide 3'-phosphodiesterase, and myelin basic protein. However, at the time when PLP expression would normally begin, the MD oligodendrocytes die via an apoptotic pathway involving caspase activation. The active form of caspase-3 was detected, along with the cleavage products of poly-(ADP-ribose) polymerase (PARP) and spectrin, major targets of caspase-mediated proteolysis. A specific inhibitor of casapse-3, Ac-DEVD-CMK, reduced apoptosis in MD oligodendrocytes, but the rescued cells did not mature fully or express myelin-oligodendrocyte glycoprotein. These results suggest that mutant PLP affects not only cell death but also oligodendrocyte differentiation.
Collapse
Affiliation(s)
- J S Beesley
- Department of Neurology Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
27
|
Yool DA, Klugmann M, McLaughlin M, Vouyiouklis DA, Dimou L, Barrie JA, McCulloch MC, Nave KA, Griffiths IR. Myelin proteolipid proteins promote the interaction of oligodendrocytes and axons. J Neurosci Res 2001; 63:151-64. [PMID: 11169625 DOI: 10.1002/1097-4547(20010115)63:2<151::aid-jnr1007>3.0.co;2-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although proteolipid protein (PLP) and its DM20 isoform are the major membrane proteins of CNS myelin, their absence causes surprisingly few developmental defects. In comparison, missense mutations of the X-linked Plp gene cause severe dysmyelination. Previous studies have established roles for PLP/DM20 in the formation of the intraperiod line and in maintaining axonal integrity. We now show that a normal number of oligodendrocytes are present in mice lacking PLP/DM20. However, in heterozygous females, which are natural chimeras for X-linked genes, oligodendrocytes lacking PLP/DM20 are in direct competition with wild-type oligodendrocytes that have a distinct advantage. PLP+ oligodendrocytes and PLP+ myelin sheaths make up the greater majority, and this feature is generalised in the CNS throughout life. Moreover, in the absence of PLP/DM20, a proportion of small-diameter axons fails to myelinate, remaining ensheathed but lacking a compact sheath, or show delayed myelination. These findings suggest that PLP/DM20 is also involved in the early stages of axon-oligodendrocyte interaction and wrapping of the axon.
Collapse
Affiliation(s)
- D A Yool
- Applied Neurobiology Group, Department of Veterinary Clinical Studies, University of Glasgow, Bearsden, Glasgow C61 1QH, Scotland
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Qiao M, Malisza KL, Del Bigio MR, Kozlowski P, Seshia SS, Tuor UI. Effect of long-term vigabatrin administration on the immature rat brain. Epilepsia 2000; 41:655-65. [PMID: 10840396 DOI: 10.1111/j.1528-1157.2000.tb00225.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To determine whether the neuropathologic changes produced by vigabatrin (VGB; gamma-vinyl GABA) administration in the developing rat brain are reversible. METHODS We injected rats daily with VGB (25-40 mg/kg/day, s.c.) from age 12 days for 2 weeks followed by 2 weeks of a drug-free period. Behavioral testing, magnetic resonance (MR) imaging, biochemical assays, and histologic technique were used to assess the adverse effect of VGB in developing brain and its reversibility. RESULTS At the end of 2 weeks' VGB administration: (a) there was a hyperactivity and a shortened latency to escape out of cool water; (b) white matter appeared hyperintense in T2 and diffusion-weighted MR images with 4-15% increases in T2; (c) microvacuolation, TUNEL-positive nuclei, and swollen axons were observed in the corpus callosum; (d) myelin staining indicated a reduction in myelination, as did the reduction in activities of myelin and oligodendrocyte-associated enzymes and the decrease in myelin basic protein on Western blots. Two weeks after stopping VGB administration: (a) MR images were normal, and microvacuolation was no longer in the white matter; (b) reduction in myelination reversed partially; (c) the T2 relaxation time remained elevated in the hypothalamus; and (d) the behavioral response remained abnormal. CONCLUSIONS Long-term VGB administration to young rats causes brain injury, which recovers partially on its cessation. The observed cell death, disrupted myelination, and alterations in behavior indicate a need for further safety assessment in infants and children.
Collapse
Affiliation(s)
- M Qiao
- Institute for Biodiagnostics, National Research Council of Canada, and Departments of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Hodes ME, Zimmerman AW, Aydanian A, Naidu S, Miller NR, Garcia Oller JL, Barker B, Aleck KA, Hurley TD, Dlouhy SR. Different mutations in the same codon of the proteolipid protein gene, PLP, may help in correlating genotype with phenotype in Pelizaeus-Merzbacher disease/X-linked spastic paraplegia (PMD/SPG2). AMERICAN JOURNAL OF MEDICAL GENETICS 1999; 82:132-9. [PMID: 9934976 DOI: 10.1002/(sici)1096-8628(19990115)82:2<132::aid-ajmg6>3.0.co;2-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pelizaeus-Merzbacher disease/X-linked spastic paraplegia (PMD/SPG2) comprises a spectrum of diseases that range from severe to quite mild. The reasons for the variation in severity are not obvious, but suggested explanations include the extent of disruption of the transmembrane portion of the proteolipid protein caused by certain amino acid substitutions and interference with the trafficking of the PLP molecule in oligodendrocytes. Four codons in which substitution of more than one amino acid has occurred are available for examination of clinical and potential structural manifestations: Valine165 to either glutamate or glycine, leucine 045 to either proline or arginine, aspartate 202 to asparagine or histidine, and leucine 223 to isoleucine or proline. Three of these mutations, Val165Gly, Leu045Pro, and Leu223Ile have not been described previously in humans. The altered amino acids appear in the A-B loop, C helix, and C-D loop, respectively. We describe clinically patients with the mutations T494G (Val165Gly), T134C (Leu045Pro), and C667A (Leu223Ile). We discuss also the previously reported mutations Asp202Asn and Asp202His. We have calculated the changes in hydrophobicity of short sequences surrounding some of these amino acids and compared the probable results of the changes in transmembrane structure of the proteolipid protein for the various mutations with the clinical data available on the patients. While the Val165Glu mutation, which is expected to produce disruption of a transmembrane loop of the protein, produces more severe disease than does Val165Gly, no particular correlation with hydrophobicity is found for the other mutations. As these are not in transmembrane domains, other factors such as intracellular transport or interaction between protein chains during myelin formation are probably at work.
Collapse
Affiliation(s)
- M E Hodes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis 46202-5251, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Hereditary peripheral neuropathies have traditionally been classified by the clinical disease pattern and mode of inheritance. It only recently became possible to provide a more precise subdivision of the diseases by the discovery of distinct genetic defects. Most inherited peripheral neuropathies are caused by distinct mutations in the genes of three well known myelin components, peripheral myelin protein 22, P0 and the gap junction protein connexin 32. The present review addresses the expression and functional roles of these myelin components, as well as the putative pathomechanisms caused by distinct mutations in the corresponding genes. Moreover, the suitability of mutant animals, such as knock-out mice and transgenic rodents, as artificial models for these diseases and their use in the study of possible treatment strategies are discussed.
Collapse
Affiliation(s)
- R Martini
- Department of Neurology, University of Würzburg, Germany.
| | | | | |
Collapse
|
32
|
Abstract
Proteolipid protein (PLP) and its smaller isoform DM20 constitute the major myelin proteins of the CNS. Mutations of the X-linked Plp gene cause the heterogeneous syndromes of Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia (SPG) in man and similar dysmyelinating disorders in a range of animal species. A variety of mutations including missense mutations, deletions, and duplications are responsible. Missense mutations cause a predicted alteration in primary structure of the encoded protein(s) and are generally associated with early onset of signs and generalised dysmyelination. The severity of the phenotype varies according to the particular codon involved and the influence of uncharacterised modifying genes. There is some evidence that the dysmyelination results from the altered protein acquiring a novel function deleterious to the oligodendrocyte's function. Transgenic mice carrying extra copies of the Plp gene provide a valid model of PMD/SPG due to gene duplication. Depending on the gene dosage, the phenotype can vary from early onset of severe and lethal dysmyelination through to a very late onset of a tract-specific demyelination and axonal degeneration. Mice with a null mutation of the Plp gene assemble and maintain normal amounts of myelin but develop a progressive axonopathy, again demonstrating tract specificity. The results indicate that the functions of PLP are far from clear. There is good evidence that it is involved in the formation of the intraperiod line of myelin, and the results from the knockout and transgenic mice suggest a role in the interaction of oligodendrocyte and axon.
Collapse
Affiliation(s)
- I Griffiths
- Department of Veterinary Clinical Studies, University of Glasgow, Bearsden, Scotland.
| | | | | | | | | | | |
Collapse
|
33
|
Gow A, Southwood CM, Lazzarini RA. Disrupted proteolipid protein trafficking results in oligodendrocyte apoptosis in an animal model of Pelizaeus-Merzbacher disease. J Cell Biol 1998; 140:925-34. [PMID: 9472043 PMCID: PMC2141744 DOI: 10.1083/jcb.140.4.925] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a dysmyelinating disease resulting from mutations, deletions, or duplications of the proteolipid protein (PLP) gene. Distinguishing features of PMD include pleiotropy and a range of disease severities among patients. Previously, we demonstrated that, when expressed in transfected fibroblasts, many naturally occurring mutant PLP alleles encode proteins that accumulate in the endoplasmic reticulum and are not transported to the cell surface. In the present communication, we show that oligodendrocytes in an animal model of PMD, the msd mouse, accumulate Plp gene products in the perinuclear region and are unable to transport them to the cell surface. Another important aspect of disease in msd mice is oligodendrocyte cell death, which is increased by two- to threefold. We demonstrate in msd mice that this death occurs by apoptosis and show that at the time oligodendrocytes die, they have differentiated, extended processes that frequently contact axons and are expressing myelin structural proteins. Finally, we define a hypothesis that accounts for pathogenesis in most PMD patients and animal models of this disease and, moreover, can be used to develop potential therapeutic strategies for ameliorating the disease phenotype.
Collapse
Affiliation(s)
- A Gow
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, New York 10029-6574, USA
| | | | | |
Collapse
|
34
|
Williams WC, Gard AL. In vitro death of jimpy oligodendrocytes: correlation with onset of DM-20/PLP expression and resistance to oligodendrogliotrophic factors. J Neurosci Res 1997; 50:177-89. [PMID: 9373028 DOI: 10.1002/(sici)1097-4547(19971015)50:2<177::aid-jnr7>3.0.co;2-c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Severe hypomyelination in the jimpy (jp) mouse mutation results from premature death of most oligodendrocytes (OCs). We have applied an immunopanning technique to successfully purify oligodendroblasts (OBs) directly from neonatal jp brainstem in order to determine if their death during differentiation into OCs is preventable in culture by diffusible oligodendrogliotrophic factors. No significant differences in the yield (0.9-1.1 x 10(5) cells/brainstem) or viability (approximately 90%) of OB populations from jp and wild-type (wt) littermates were observed, indicating that cell death occurs at a later stage in the mutant lineage. When cultured in a basally defined, insulin-containing medium, wt and jp OBs died 1-2 days later as their differentiation into GalC+ OCs began. Survival was not enhanced by known trophic factors (ciliary neurotrophic factor, leukemia inhibitory factor, neurotrophin-3) for differentiating rat OCs. In medium conditioned by neonatally derived rat or wt mouse astrocytes, however, wt OBs survived terminal OC differentiation, expressing first GalC, then DM-20/PLP on their surface 1-2 days later, before elaborating myelin-like membrane. By contrast, jp OBs in sister cultures survived differentiation initially as well as their normal counterparts did but rapidly died thereafter, beginning at the time when PLP/DM-20 immunoreactivity became detectable on premature wt GalC+ OCs. Additionally under these conditions, there survived a minor population (<5%) of jp cells, including mature OCs, which expressed stunted membranes and DM-20/PLP immunoreactivity in their cytoplasm, and undifferentiated progenitors. This model supports the concept that OC death in jp is effected by an intrinsic program, one mechanistically related to jp PLP/DM-20 gene expression and refractory to trophic cues in the environment.
Collapse
Affiliation(s)
- W C Williams
- Department of Structural and Cellular Biology, College of Medicine, University of South Alabama, Mobile 36688-0002, USA
| | | |
Collapse
|
35
|
Peyron F, Timsit S, Thomas JL, Kagawa T, Ikenaka K, Zalc B. In situ expression of PLP/DM-20, MBP, and CNP during embryonic and postnatal development of the jimpy mutant and of transgenic mice overexpressing PLP. J Neurosci Res 1997; 50:190-201. [PMID: 9373029 DOI: 10.1002/(sici)1097-4547(19971015)50:2<190::aid-jnr8>3.0.co;2-a] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We analyzed by in situ hybridization the spatiotemporal expression of dm-20, myelin basic protein (MBP) and 2'-3' cyclic nucleotide phosphodiesterase (CNP) during embryonic and postnatal development of the normal mouse and two plp/dm-20 mutants: the jimpy mouse and a transgenic mouse overexpressing the plp gene. In the central nervous system (CNS) of the normal mouse, dm-20 mRNA was detected at embryonic day (E)9.5 in the laterobasal plate of the diencephalon. The pattern of expression of CNP transcript was superimposable on that of dm-20, but appeared slightly later, at E12.5. MBP mRNA was detected even later (E14.5), and, in addition, only in the caudal (rhombencephalon and spinal cord) territories of expression of dm-20 and CNP. These observations support our previous proposals: (1) dm-20-expressing cells in the germinative neuroepithelium are precursors of oligodendrocytes, and (2) oligodendrocytes emerge from distinct pools of precursors along the neural tube (Timsit et al., 1995). In the jimpy mutant, despite the mutation in the plp gene, cells of the oligodendrocyte lineage developed normally. It is only at the time of myelin deposition that oligodendrocytes die. During embryonic development of the transgenic mutant overexpressing plp, there were no alterations in the spatiotemporal pattern or the level of expression of dm-20 in the CNS, in contrast to the higher levels of dm-20 observed in the peripheral nervous system (PNS).
Collapse
MESH Headings
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/genetics
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism
- Animals
- Animals, Newborn/metabolism
- Apoproteins/genetics
- Apoproteins/metabolism
- Embryo, Mammalian/metabolism
- Embryonic and Fetal Development/physiology
- Mice
- Mice, Jimpy/embryology
- Mice, Jimpy/genetics
- Mice, Jimpy/metabolism
- Mice, Transgenic/genetics
- Mice, Transgenic/metabolism
- Mutation
- Myelin Basic Protein/genetics
- Myelin Basic Protein/metabolism
- Myelin Proteolipid Protein/genetics
- Myelin Proteolipid Protein/metabolism
- Nerve Tissue Proteins
- RNA, Messenger/metabolism
- Reference Values
Collapse
Affiliation(s)
- F Peyron
- Laboratoire de Neurobiologie Cellulaire Moléculaire et Clinique, INSERM U-134, Université P & M. Curie, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | |
Collapse
|