1
|
Zhang QQ, Qu Y. Brain-derived neurotrophic factor in degenerative retinal diseases: Update and novel perspective. J Neurosci Res 2023; 101:1624-1632. [PMID: 37334646 DOI: 10.1002/jnr.25226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
Dysfunction and death of neuronal cells are cardinal features of degenerative retinal diseases that are known to arise as the disease progresses. Increasingly evidence suggests that abnormal expression of brain-derived neurotrophic factor (BDNF) may serve as an obligatory relay of the dysfunction and death of neuronal cells in degenerative retinal diseases. Although disorder of BDNF, whether depletion or augmentation, has been connected with neuronal apoptosis and neuroinflammation, the exact mechanisms underlying the effect of impaired BDNF expression on degenerative retinal diseases remain unclear. Here, we present an overview of how BDNF is linked to pathological mechanism of retinal degenerative diseases, summarize BDNF-based treatment strategies, and discuss possible research perspectives in the future.
Collapse
Affiliation(s)
- Qing-Qing Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Qu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Mattern L, Otten K, Miskey C, Fuest M, Izsvák Z, Ivics Z, Walter P, Thumann G, Johnen S. Molecular and Functional Characterization of BDNF-Overexpressing Human Retinal Pigment Epithelial Cells Established by Sleeping Beauty Transposon-Mediated Gene Transfer. Int J Mol Sci 2022; 23:12982. [PMID: 36361771 PMCID: PMC9656812 DOI: 10.3390/ijms232112982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 04/12/2024] Open
Abstract
More and more patients suffer from multifactorial neurodegenerative diseases, such as age-related macular degeneration (AMD). However, their pathological mechanisms are still poorly understood, which complicates the development of effective therapies. To improve treatment of multifactorial diseases, cell-based gene therapy can be used to increase the expression of therapeutic factors. To date, there is no approved therapy for dry AMD, including late-stage geographic atrophy. We present a treatment option for dry AMD that transfers the brain-derived neurotrophic factor (BDNF) gene into retinal pigment epithelial (RPE) cells by electroporation using the plasmid-based Sleeping Beauty (SB) transposon system. ARPE-19 cells and primary human RPE cells were co-transfected with two plasmids encoding the SB100X transposase and the transposon carrying a BDNF transcription cassette. We demonstrated efficient expression and secretion of BDNF in both RPE cell types, which were further increased in ARPE-19 cell cultures exposed to hydrogen peroxide. BDNF-transfected cells exhibited lower apoptosis rates and stimulated neurite outgrowth in human SH-SY5Y cells. This study is an important step in the development of a cell-based BDNF gene therapy that could be applied as an advanced therapy medicinal product to treat dry AMD or other degenerative retinal diseases.
Collapse
Affiliation(s)
- Larissa Mattern
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Katrin Otten
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Matthias Fuest
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Peter Walter
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Gabriele Thumann
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
3
|
Dieguez HH, Calanni JS, Romeo HE, Alaimo A, González Fleitas MF, Iaquinandi A, Chianelli MS, Keller Sarmiento MI, Sande PH, Rosenstein RE, Dorfman D. Enriched environment and visual stimuli protect the retinal pigment epithelium and photoreceptors in a mouse model of non-exudative age-related macular degeneration. Cell Death Dis 2021; 12:1128. [PMID: 34864827 PMCID: PMC9632251 DOI: 10.1038/s41419-021-04412-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
Non-exudative age-related macular degeneration (NE-AMD), the main cause of blindness in people above 50 years old, lacks effective treatments at the moment. We have developed a new NE-AMD model through unilateral superior cervical ganglionectomy (SCGx), which elicits the disease main features in C57Bl/6J mice. The involvement of oxidative stress in the damage induced by NE-AMD to the retinal pigment epithelium (RPE) and outer retina has been strongly supported by evidence. We analysed the effect of enriched environment (EE) and visual stimulation (VS) in the RPE/outer retina damage within experimental NE-AMD. Exposure to EE starting 48 h post-SCGx, which had no effect on the choriocapillaris ubiquitous thickness increase, protected visual functions, prevented the thickness increase of the Bruch’s membrane, and the loss of the melanin of the RPE, number of melanosomes, and retinoid isomerohydrolase (RPE65) immunoreactivity, as well as the ultrastructural damage of the RPE and photoreceptors, exclusively circumscribed to the central temporal (but not nasal) region, induced by experimental NE-AMD. EE also prevented the increase in outer retina/RPE oxidative stress markers and decrease in mitochondrial mass at 6 weeks post-SCGx. Moreover, EE increased RPE and retinal brain-derived neurotrophic factor (BDNF) levels, particularly in Müller cells. When EE exposure was delayed (dEE), starting at 4 weeks post-SCGx, it restored visual functions, reversed the RPE melanin content and RPE65-immunoreactivity decrease. Exposing animals to VS protected visual functions and prevented the decrease in RPE melanin content and RPE65 immunoreactivity. These findings suggest that EE housing and VS could become an NE-AMD promising therapeutic strategy.
Collapse
Affiliation(s)
- Hernán H Dieguez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Juan S Calanni
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Horacio E Romeo
- School of Engineering and Agrarian Sciences, Pontifical Catholic University of Argentina, BIOMED/UCA/CONICET, Buenos Aires, Argentina
| | - Agustina Alaimo
- Interdisciplinary Laboratory of Cellular Dynamics and Nanotools, Department of Biological Chemistry, School of Exact and Natural Sciences/IQUIBICEN, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Agustina Iaquinandi
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Mónica S Chianelli
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María I Keller Sarmiento
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Pablo H Sande
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Emili M, Guidi S, Uguagliati B, Giacomini A, Bartesaghi R, Stagni F. Treatment with the flavonoid 7,8-Dihydroxyflavone: a promising strategy for a constellation of body and brain disorders. Crit Rev Food Sci Nutr 2020; 62:13-50. [DOI: 10.1080/10408398.2020.1810625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| |
Collapse
|
5
|
Khan AZ, Utheim TP, Moe MC, Aass HCD, Sapkota D, Vallenari EM, Eidet JR. The Silk Protein Sericin Promotes Viability of ARPE-19 and Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelial Cells in vitro. Curr Eye Res 2020; 46:504-514. [PMID: 32777180 DOI: 10.1080/02713683.2020.1809001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Maintaining mature and viable retinal pigment epithelial cells (RPE) in vitro has proven challenging. Investigating compounds that can promote RPE-viability and maturation is motivated by RPE transplantation research, the quest to understand RPE physiology, and a desire to modulate RPE in pathological states. We have previously reported that the silk protein sericin promotes viability, maturation, and pigmentation of human fetal RPE. In the present study, our aim was to uncover whether these effects can be seen in adult retinal pigment epithelial cell line-19 (ARPE-19) and induced pluripotent stem cell-derived RPE (iPSC-RPE). METHODS ARPE-19 and iPSC-RPE were cultured with or without 10 mg/mL sericin. After 7 days, viability was assessed with calcein-acetoxymethyl ester (CAM) and ethidium homodimer-1 (EH-1) assays, flow cytometry, and morphometric analysis. Expression levels of RPE65, tyrosinase, and Pmel17 were quantified to compare maturation between the sericin-treated and control cultures. Light microscopy and staining of the tight junction protein zonula occludens protein 1 (ZO-1) were employed to study sericin's effects on RPE morphology. We also measured culture medium pH, glucose, lactate, and extracellular ion content. RESULTS Sericin-supplemented RPE cultures demonstrated significantly better viability compared to control cultures. Sericin appeared to improve ARPE-19 maturation and morphology in vitro. No effects were seen on RPE pigmentation with the concentration of sericin and duration of cell culture herein reported. CONCLUSIONS This is the first study to demonstrate that supplementing the culture media with sericin promotes the viability of iPSC-RPE and ARPE-19. Sericin's viability-promoting effects may have important implications for retinal therapeutics and regenerative medicine research.
Collapse
Affiliation(s)
- Ayyad Zartasht Khan
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.,Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway
| | - Morten Carstens Moe
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | | | - Dipak Sapkota
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | - Jon Roger Eidet
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Yan BJ, Wu ZZ, Chong WH, Li GL. Construction of a plasmid for human brain-derived neurotrophic factor and its effect on retinal pigment epithelial cell viability. Neural Regen Res 2016; 11:1981-1989. [PMID: 28197196 PMCID: PMC5270438 DOI: 10.4103/1673-5374.197142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several studies have investigated the protective functions of brain-derived neurotrophic factor (BDNF) in retinitis pigmentosa. However, a BDNF-based therapy for retinitis pigmentosa is not yet available. To develop an efficient treatment for fundus disease, an eukaryotic expression plasmid was generated and used to transfect human 293T cells to assess the expression and bioactivity of BDNF on acute retinal pigment epithelial-19 (ARPE-19) cells, a human retinal epithelial cell line. After 96 hours of co-culture in a Transwell chamber, ARPE-19 cells exposed to BDNF secreted by 293T cells were more viable than ARPE-19 cells not exposed to secreted BDNF. Western blot assay showed that Bax levels were downregulated and that Bcl-2 levels were upregulated in human ARPE-19 cells exposed to BDNF. Furthermore, 293T cells transfected with the BDNF gene steadily secreted the protein. The powerful anti-apoptotic function of this BDNF may be useful for the treatment of retinitis pigmentosa and other retinal degenerative diseases.
Collapse
Affiliation(s)
- Bo-Jing Yan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Zhi-Zhong Wu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Wei-Hua Chong
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Gen-Lin Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| |
Collapse
|
7
|
Machalińska A, Kawa MP, Pius-Sadowska E, Rogińska D, Kłos P, Baumert B, Wiszniewska B, Machaliński B. Endogenous regeneration of damaged retinal pigment epithelium following low dose sodium iodate administration: An insight into the role of glial cells in retinal repair. Exp Eye Res 2013; 112:68-78. [DOI: 10.1016/j.exer.2013.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 03/19/2013] [Accepted: 04/08/2013] [Indexed: 12/19/2022]
|
8
|
TrkB receptor signalling: implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 2013; 14:10122-42. [PMID: 23670594 PMCID: PMC3676832 DOI: 10.3390/ijms140510122] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/27/2013] [Accepted: 04/28/2013] [Indexed: 02/06/2023] Open
Abstract
The Trk family of receptors play a wide variety of roles in physiological and disease processes in both neuronal and non-neuronal tissues. Amongst these the TrkB receptor in particular has attracted major attention due to its critical role in signalling for brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and neurotrophin-4 (NT4). TrkB signalling is indispensable for the survival, development and synaptic plasticity of several subtypes of neurons in the nervous system. Substantial evidence has emerged over the last decade about the involvement of aberrant TrkB signalling and its compromise in various neuropsychiatric and degenerative conditions. Unusual changes in TrkB signalling pathway have also been observed and implicated in a range of cancers. Variations in TrkB pathway have been observed in obesity and hyperphagia related disorders as well. Both BDNF and TrkB have been shown to play critical roles in the survival of retinal ganglion cells in the retina. The ability to specifically modulate TrkB signalling can be critical in various pathological scenarios associated with this pathway. In this review, we discuss the mechanisms underlying TrkB signalling, disease implications and explore plausible ameliorative or preventive approaches.
Collapse
|
9
|
NeuroD1 regulates survival and migration of neuroendocrine lung carcinomas via signaling molecules TrkB and NCAM. Proc Natl Acad Sci U S A 2013; 110:6524-9. [PMID: 23553831 DOI: 10.1073/pnas.1303932110] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Small-cell lung cancer and other aggressive neuroendocrine cancers are often associated with early dissemination and frequent metastases. We demonstrate that neurogenic differentiation 1 (NeuroD1) is a regulatory hub securing cross talk among survival and migratory-inducing signaling pathways in neuroendocrine lung carcinomas. We find that NeuroD1 promotes tumor cell survival and metastasis in aggressive neuroendocrine lung tumors through regulation of the receptor tyrosine kinase tropomyosin-related kinase B (TrkB). Like TrkB, the prometastatic signaling molecule neural cell adhesion molecule (NCAM) is a downstream target of NeuroD1, whose impaired expression mirrors loss of NeuroD1. TrkB and NCAM may be therapeutic targets for aggressive neuroendocrine cancers that express NeuroD1.
Collapse
|
10
|
Vetrivel U, Ravichandran SB, Kuppan K, Mohanlal J, Das UN, Narayanasamy A. Agonistic effect of polyunsaturated fatty acids (PUFAs) and its metabolites on brain-derived neurotrophic factor (BDNF) through molecular docking simulation. Lipids Health Dis 2012; 11:109. [PMID: 22943296 PMCID: PMC3477081 DOI: 10.1186/1476-511x-11-109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/27/2012] [Indexed: 01/19/2023] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF) is a potent neurotrophic factor that is implicated in the regulation of food intake and body weight. Polyunsaturated fatty acids (PUFAs) localised in cell membranes have been shown to alter the levels of BDNF in the brain, suggesting that PUFAs and BDNF could have physical interaction with each other. To decipher the molecular mechanism through which PUFAs modulates BDNF’s activity, molecular docking was performed for BDNF with PUFAs and its metabolites, with 4-Methyl Catechol as a control. Results Inferring from molecular docking studies, lipoxin A4 (LXA4), and a known anti-inflammatory bioactive metabolite derived from PUFAs, with a binding energy of −3.98 Kcal/mol and dissociation constant of 1.2mM showed highest binding affinity for BDNF in comparison to other PUFAs and metabolites considered in the study. Further, the residues Lys 18, Thr 20, Ala 21, Val 22, Phe 46, Glu 48, Lys 50, Lys 58, Thr 75, Gln 77, Arg 97 and Ile 98 form hot point motif, which on interaction enhances BDNF’s function. Conclusion These results suggest that PUFAs and their metabolites especially, LXA4, modulate insulin resistance by establishing a physical interaction with BDNF. Similar interaction(s) was noted between BDNF and resolvins and protectins but were of lesser intensity compared to LXA4.
Collapse
Affiliation(s)
- Umashankar Vetrivel
- Department of Bioinformatics, Vision Research Foundation, Chennai 600006, India
| | | | | | | | | | | |
Collapse
|
11
|
Mizuno N, Shiba H, Inui T, Takeda K, Kajiya M, Hasegawa N, Kawaguchi H, Kurihara H. Effect of Neurotrophin-4/5 on Bone/Cementum-Related Protein Expressions and DNA Synthesis in Cultures of Human Periodontal Ligament Cells. J Periodontol 2008; 79:2182-9. [DOI: 10.1902/jop.2008.070402] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Stephan H, Zakrzewski JL, Bölöni R, Grasemann C, Lohmann DR, Eggert A. Neurotrophin receptor expression in human primary retinoblastomas and retinoblastoma cell lines. Pediatr Blood Cancer 2008; 50:218-22. [PMID: 17973327 DOI: 10.1002/pbc.21369] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Neurotrophin receptor signaling regulates proliferation, differentiation and death of neuronal cells. Expression of Trk receptors has been implicated in the pathogenesis and prognosis of embryonal tumors, including neuroblastoma, nephroblastoma, and medulloblastoma. PROCEDURE We analyzed TrkA, TrkB, TrkC, and p75 expression using semi-quantitative RT-PCR in 23 retinoblastomas and 8 retinoblastoma cell lines. Comparison of mRNA expression with clinical variables as well as the proliferation (PI) and apoptotic index (AI) of the tumor, was performed by Pearson correlation analysis and two-sample t-test. RESULTS Almost all tumor samples and cell lines demonstrated high expression of all Trk receptors. Expression of TrkB and its ligand, BDNF, was most pronounced, suggesting TrkB to be the major Trk receptor involved in retinoblastoma biology. In contrast, p75 expression was substantially reduced in a subset of tumors and cell lines, in particular compared to its expression in normal retina. Tumors with infiltrative growth demonstrated significantly lower relative levels of TrkC expression than localized tumors (P = 0.004). High expression of TrkA was associated with a higher AI (P = 0.04), and high expression of TrkC was associated with a younger age of the patients (P = 0.03). Inhibition of Trk signaling by K252a resulted in marked growth inhibition of retinoblastoma cells in vitro. CONCLUSIONS Our findings suggest a role for neurotrophin signaling in the biology of retinoblastoma. General Trk inhibitors are effective in decreasing growth rates of retinoblastoma cells in vitro, and should be evaluated in in vivo studies.
Collapse
Affiliation(s)
- Harald Stephan
- Department of Pediatric Hematology, Oncology and Endocrinology, University Hospital of Essen, Essen, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Iwabe S, Moreno-Mendoza NA, Trigo-Tavera F, Crowder C, García-Sánchez GA. Retrograde axonal transport obstruction of brain-derived neurotrophic factor (BDNF) and its TrkB receptor in the retina and optic nerve of American Cocker Spaniel dogs with spontaneous glaucoma. Vet Ophthalmol 2008; 10 Suppl 1:12-9. [PMID: 17973830 DOI: 10.1111/j.1463-5224.2007.00504.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the degree of retrograde optic nerve axonal transport obstruction at the scleral lamina cribosa level by examining levels of brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor type B (TrkB) in dogs presenting with high intraocular pressure. ANIMALS STUDIED A total of 10 eyes, four normal and six glaucomatous eyes, from normal and affected American Cocker Spaniels with primary glaucoma were studied. All eyes were assessed by neuro-ophthalmic examination, tonometry, gonioscopy, slit-lamp biomicroscopy, and indirect ophthalmoscopy prior to enucleation. METHODS Immunocytochemistry analysis was performed to evaluate BDNF and TrkB receptor expression in retina and optic nerve in normal and glaucomatous dogs. RESULTS In all normal eyes BDNF immunostaining was detected in the cytoplasm of retinal ganglion cells (RGC), inner plexiform layer (IPL), inner nuclear layer (INL), nerve fiber layer (NFL), optic nerve head cells, and lamina cribosa cells. In all glaucomatous eyes BDNF was more evident in RGC, NFL and lamina cribosa cells. TrkB receptor was detected in the cytoplasm of RGC, NFL and ONH bundles in all normal eyes, and in a more intense pattern in all glaucomatous eyes. CONCLUSIONS BDNF retrograde axonal transport is substantially inhibited by intraocular pressure elevation. TrkB accumulation at the ONH in glaucoma suggests a role for neurotrophin deprivation in the pathogenesis of RGC death in canine glaucoma, as well as a possible paracrine and/or autocrine signaling within the lamina cribosa. Neurotrophin signaling may regulate more than neuronal development, survival and differentiation. BDNF neurotrophin and its TrkB receptor expression by lamina cribosa cells and ONH astrocytes in glaucomatous eyes may help to determine the role of these cells as a paracrine source in terms of retinal ganglion cell survival, during episodes of elevated intraocular pressure.
Collapse
Affiliation(s)
- Simone Iwabe
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, DF, México
| | | | | | | | | |
Collapse
|
14
|
Chen X, Agate RJ, Itoh Y, Arnold AP. Sexually dimorphic expression of trkB, a Z-linked gene, in early posthatch zebra finch brain. Proc Natl Acad Sci U S A 2005; 102:7730-5. [PMID: 15894627 PMCID: PMC1140405 DOI: 10.1073/pnas.0408350102] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Indexed: 12/23/2022] Open
Abstract
Sexual differentiation of the zebra finch (Taeniopygia guttata) neural song circuit is thought to be initiated by sex differences in sex chromosome gene expression in brain cells. One theory is that Z-linked genes, present in the male's ZZ genome at double the dose of females' (ZW), are expressed at higher levels and trigger masculine patterns of development. We report here that trkB (tyrosine kinase receptor B) is Z-linked in zebra finches. trkB is the receptor for neurotrophic factors BDNF and neurotrophin 4, and mediates their influence on neuronal survival, migration, and specification. trkB mRNA is expressed at a higher level in the male telencephalon or whole brain than in corresponding regions of the female in adulthood, and at posthatch day (P) 6, when the song circuit is undergoing sexual differentiation. Moreover, this expression is higher in the song nucleus high vocal center (HVC) than in the surrounding telencephalon at P6, and in males relative to females. In addition, trkB protein is expressed more highly in male than female whole brain at P6. These results establish trkB as a candidate factor that contributes to masculine differentiation of HVC because of its Z-linkage, which leads to sex differences in expression. BDNF is known to be stimulated by estrogen and to be expressed at higher levels in males than females at later ages in HVC. Thus, the trkB-BDNF system may be a focal point for convergent masculinizing influences of Z-linked factors and hormones.
Collapse
Affiliation(s)
- Xuqi Chen
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
15
|
Martínez-Morales JR, Rodrigo I, Bovolenta P. Eye development: a view from the retina pigmented epithelium. Bioessays 2004; 26:766-77. [PMID: 15221858 DOI: 10.1002/bies.20064] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retina pigment epithelium (RPE) is a highly specialised epithelium that serves as a multifunctional and indispensable component of the vertebrate eye. Although a great deal of attention has been paid to its transdifferentiation capabilities and its ancillary functions in neural retina development, little is known about the molecular mechanisms that specify the RPE itself. Recent advances in our understanding of the genetic network that controls the progressive specification of the eye anlage in vertebrates have provided some of the initial cues to the mechanisms responsible for RPE patterning. Here, we have outlined many recent findings that suggest that a limited number of transcription factors, including Otx2, Mitf and Pax6 and a few signalling cascades, are the elements required for the onset of RPE specification in vertebrates. Furthermore, using this information and the data available on the specification of the pigmented cells of primitive chordates, we have ventured some hypotheses on the origin of RPE cells during evolution.
Collapse
|
16
|
Walder S, Zhang F, Ferretti P. Up-regulation of neural stem cell markers suggests the occurrence of dedifferentiation in regenerating spinal cord. Dev Genes Evol 2003; 213:625-30. [PMID: 14608505 DOI: 10.1007/s00427-003-0364-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 10/10/2003] [Indexed: 11/28/2022]
Abstract
Following tail amputation in urodele amphibians, an ependymal tube, that resembles a developing neural tube, forms from ependymal cells that migrate from the cord stump and elongates by cell proliferation. Expression of the keratin pair 8 and 18 has been observed in the developing urodele nervous system and is maintained in the ependymal cells of the mature cord. We show here that expression of these keratins is not unique to urodeles, but is also observed in the radial glia of the human spinal cord, suggesting that these proteins might play a role both in neural development and regeneration. Analysis of their expression in the regenerating spinal cord following tail amputation shows that their expression, as well as that of glial fibrillary acidic protein (GFAP), is maintained in the ependymal tube during regeneration, though differences in their levels of expression are observed along the anteroposterior axis and appear to be related to the progression of morphogenesis. In addition, we show that following tail amputation the ependymal tube expresses the neural stem cell markers nestin and vimentin, which are undetectable in normal urodele spinal cord. This up-regulation of neural stem cell markers shows that the ependymal cells undergo a phenotypic change. Whereas maintenance of keratin and GFAP expression in the adult ependyma may reflect a higher plasticity of these cells in adult urodeles than in other vertebrates, re-expression of markers of early neural development suggests the occurrence of a dedifferentiation process in the spinal cord in response to injury.
Collapse
Affiliation(s)
- Sally Walder
- Developmental Biology Unit, Institute of Child Health, UCL, London WC1N 1EH, UK
| | | | | |
Collapse
|
17
|
Hisatomi T, Sakamoto T, Murata T, Yamanaka I, Oshima Y, Hata Y, Ishibashi T, Inomata H, Susin SA, Kroemer G. Relocalization of apoptosis-inducing factor in photoreceptor apoptosis induced by retinal detachment in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1271-8. [PMID: 11290545 PMCID: PMC1891920 DOI: 10.1016/s0002-9440(10)64078-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/21/2000] [Indexed: 11/23/2022]
Abstract
Apoptosis-inducing factor (AIF) is a novel mediator in apoptosis. AIF is a flavoprotein that is normally confined to the mitochondrial intermembrane space, yet translocates to the nucleus in several in vitro models of apoptosis. To investigate the role of AIF in the apoptotic process in vivo, we induced retinal detachment (RD) by subretinal injection of sodium hyaluronate, either in Brown Norway rats or in C3H mice. Apoptotic DNA fragmentation, as determined by terminal nick-end labeling, was most prominent 3 days after RD. The subcellular localization of AIF was examined by immunohistochemistry and immunoelectron microscopy. In normal photoreceptor cells, AIF was present in the mitochondrion-rich inner segment. However, AIF was found in the nucleus after RD. Photoreceptor apoptosis developed similarly in C3H control mice, and in mice bearing the gld or lpr mutations, indicating that cell death occurs independently from the CD95/CD95 ligand system. Both the mitochondrio-nuclear transition of AIF localization and the nuclear DNA fragmentation were inhibited by subretinal application of brain-derived neurotrophic factor. To our knowledge, this is the first description of AIF relocalization occurring in a clinically relevant, in vivo model of apoptosis.
Collapse
Affiliation(s)
- T Hisatomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yamashiro T, Fukunaga T, Yamashita K, Kobashi N, Takano-Yamamoto T. Gene and protein expression of brain-derived neurotrophic factor and TrkB in bone and cartilage. Bone 2001; 28:404-9. [PMID: 11336921 DOI: 10.1016/s8756-3282(01)00405-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gene and protein expressions of brain-derived neurotrophic factor (BDNF) and TrkB, the high-affinity receptor of BDNF, were investigated in the femur and mandibular condyle of rats by in situ hybridization and immunohistochemistry. BDNF and TrkB mRNA showed overlapped expression in chondrocytes in proliferating and mature zones of the epiphyseal growth plate cartilage and mandibular condylar cartilage, and in cuboidal-shaped active osteoblasts at the site of endochondral and intramembranous ossification and in trabecular bone. Expression of BDNF protein also showed a similar localization. The present study suggests that BDNF may participate in regulating the development and remodeling of bony tissue in the developing rat.
Collapse
Affiliation(s)
- T Yamashiro
- Department of Orthodontics, Okayama University Dental School, Okayama, Japan
| | | | | | | | | |
Collapse
|
19
|
Eide FF, Eisenberg SR, Sanders TA. Electroporation-mediated gene transfer in free-swimming embryonic Xenopus laevis. FEBS Lett 2000; 486:29-32. [PMID: 11108837 DOI: 10.1016/s0014-5793(00)02124-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Xenopus laevis are a rich resource for vertebrate embryology and cell biology. Transplantation and transgenesis have provided much information about the developmental mechanisms of embryogenesis and molecule function, however existing methods have faced limitations regarding either the precise localization of gene expression or flexibility in the timing of gene transfer. Here we have found that electroporation of tailbud (stage 29/30) embryos is a rapid and efficient method of combining cell-specific expression with variation in temporal delivery. At the low voltages required for electroporation, embryos resumed normal swimming behavior and development. We conclude that electroporation has wide experimental application to Xenopus developmental and cell biology.
Collapse
Affiliation(s)
- F F Eide
- Department of Neurology, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
20
|
Rohrer B, Korenbrot JI, LaVail MM, Reichardt LF, Xu B. Role of neurotrophin receptor TrkB in the maturation of rod photoreceptors and establishment of synaptic transmission to the inner retina. J Neurosci 1999; 19:8919-30. [PMID: 10516311 PMCID: PMC2757409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) acts through TrkB, a receptor with kinase activity, and mitigates light-induced apoptosis in adult mouse rod photoreceptors. To determine whether TrkB signaling is necessary for rod development and function, we examined the retinas of mice lacking all isoforms of the TrkB receptor. Rod migration and differentiation occur in the mutant retina, but proceed at slower rates than in wild-type mice. In postnatal day 16 (P16) mutants, rod outer segment dimensions and rhodopsin content are comparable with those of photoreceptors in P12 wild type (WT). Quantitative analyses of the photoreceptor component in the electroretinogram (ERG) indicate that the gain and kinetics of the rod phototransduction signal in dark-adapted P16 mutant and P12 WT retinas are similar. In contrast to P12 WT, however, the ERG in mutant mice entirely lacks a b-wave, indicating a failure of signal transmission in the retinal rod pathway. In the inner retina of mutant mice, although cells appear anatomically and immunohistochemically normal, they fail to respond to prolonged stroboscopic illumination with the normal expression of c-fos. Absence of the b-wave and failure of c-fos expression, in view of anatomically normal inner retinal cells, suggest that lack of TrkB signaling causes a defect in synaptic signaling between rods and inner retinal cells. Retinal pigment epithelial cells and cells in the inner retina, including Müller, amacrine, and retinal ganglion cells, express the TrkB receptor, but rod photoreceptors do not. Moreover, inner retinal cells respond to exogenous BDNF with c-fos expression and extracellular signal-regulated kinase phosphorylation. Thus, interactions of rods with TrkB-expressing cells must be required for normal rod development.
Collapse
Affiliation(s)
- B Rohrer
- Howard Hughes Medical Institute, School of Medicine, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
21
|
Martínez A, Alcántara S, Borrell V, Del Río JA, Blasi J, Otal R, Campos N, Boronat A, Barbacid M, Silos-Santiago I, Soriano E. TrkB and TrkC signaling are required for maturation and synaptogenesis of hippocampal connections. J Neurosci 1998; 18:7336-50. [PMID: 9736654 PMCID: PMC6793248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Recent studies have suggested a role for neurotrophins in the growth and refinement of neural connections, in dendritic growth, and in activity-dependent adult plasticity. To unravel the role of endogenous neurotrophins in the development of neural connections in the CNS, we studied the ontogeny of hippocampal afferents in trkB (-/-) and trkC (-/-) mice. Injections of lipophilic tracers in the entorhinal cortex and hippocampus of newborn mutant mice showed that the ingrowth of entorhinal and commissural/associational afferents to the hippocampus was not affected by these mutations. Similarly, injections of biocytin in postnatal mutant mice (P10-P16) did not reveal major differences in the topographic patterns of hippocampal connections. In contrast, quantification of biocytin-filled axons showed that commissural and entorhinal afferents have a reduced number of axon collaterals (21-49%) and decreased densities of axonal varicosities (8-17%) in both trkB (-/-) and trkC (-/-) mice. In addition, electron microscopic analyses showed that trkB (-/-) and trkC (-/-) mice have lower densities of synaptic contacts and important structural alterations of presynaptic boutons, such as decreased density of synaptic vesicles. Finally, immunocytochemical studies revealed a reduced expression of the synaptic-associated proteins responsible for synaptic vesicle exocytosis and neurotransmitter release (v-SNAREs and t-SNAREs), especially in trkB (-/-) mice. We conclude that neither trkB nor trkC genes are essential for the ingrowth or layer-specific targeting of hippocampal connections, although the lack of these receptors results in reduced axonal arborization and synaptic density, which indicates a role for TrkB and TrkC receptors in the developmental regulation of synaptic inputs in the CNS in vivo. The data also suggest that the genes encoding for synaptic proteins may be targets of TrkB and TrkC signaling pathways.
Collapse
Affiliation(s)
- A Martínez
- Department of Animal and Plant Cell Biology, University of Barcelona, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Development of the eye can be subdivided into three phases. The first phase is the formation of the major structures of the eye by the processes of induction and regional specification. The second is the maturation of these structures to form the functional eye, and the third phase is the formation of neuronal connections between retina and the optic tectum. These processes are tightly regulated by signalling cascades that direct axonal outgrowth, cellular proliferation and differentiation. Some members of these signalling cascades have been identified in recent studies. These include secreted factors which transmit signals extracellularly, and receptors and transcription factors which are members of intracellular signalling pathways that respond to extracellular signals. This review summarizes the recent research that has implicated these factors in playing a role in eye development on the basis of functional or expression criteria.
Collapse
Affiliation(s)
- D Jean
- Department of Molecular Cell Biology, Max Planck Institute of Biophysical Chemistry, Am Fassberg, 37 077, Göttingen, Germany
| | | | | |
Collapse
|