1
|
Yamada T, Watanabe T, Sasaki Y. Plasticity-stability dynamics during post-training processing of learning. Trends Cogn Sci 2024; 28:72-83. [PMID: 37858389 PMCID: PMC10842181 DOI: 10.1016/j.tics.2023.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Learning continues beyond the end of training. Post-training learning is supported by changes in plasticity and stability in the brain during both wakefulness and sleep. However, the lack of a unified measure for assessing plasticity and stability dynamics during training and post-training periods has limited our understanding of how these dynamics shape learning. Focusing primarily on procedural learning, we integrate work using behavioral paradigms and a recently developed measure, the excitatory-to-inhibitory (E/I) ratio, to explore the delicate balance between plasticity and stability and its relationship to post-training learning. This reveals plasticity-stability cycles during both wakefulness and sleep that enhance learning and protect it from new learning during post-training processing.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Bufacchi RJ, Battaglia-Mayer A, Iannetti GD, Caminiti R. Cortico-spinal modularity in the parieto-frontal system: A new perspective on action control. Prog Neurobiol 2023; 231:102537. [PMID: 37832714 DOI: 10.1016/j.pneurobio.2023.102537] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Classical neurophysiology suggests that the motor cortex (MI) has a unique role in action control. In contrast, this review presents evidence for multiple parieto-frontal spinal command modules that can bypass MI. Five observations support this modular perspective: (i) the statistics of cortical connectivity demonstrate functionally-related clusters of cortical areas, defining functional modules in the premotor, cingulate, and parietal cortices; (ii) different corticospinal pathways originate from the above areas, each with a distinct range of conduction velocities; (iii) the activation time of each module varies depending on task, and different modules can be activated simultaneously; (iv) a modular architecture with direct motor output is faster and less metabolically expensive than an architecture that relies on MI, given the slow connections between MI and other cortical areas; (v) lesions of the areas composing parieto-frontal modules have different effects from lesions of MI. Here we provide examples of six cortico-spinal modules and functions they subserve: module 1) arm reaching, tool use and object construction; module 2) spatial navigation and locomotion; module 3) grasping and observation of hand and mouth actions; module 4) action initiation, motor sequences, time encoding; module 5) conditional motor association and learning, action plan switching and action inhibition; module 6) planning defensive actions. These modules can serve as a library of tools to be recombined when faced with novel tasks, and MI might serve as a recombinatory hub. In conclusion, the availability of locally-stored information and multiple outflow paths supports the physiological plausibility of the proposed modular perspective.
Collapse
Affiliation(s)
- R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai, China
| | - A Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - R Caminiti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
3
|
Di Rienzo F, Debarnot U, Daligault S, Delpuech C, Doyon J, Guillot A. Brain plasticity underlying sleep-dependent motor consolidation after motor imagery. Cereb Cortex 2023; 33:11431-11445. [PMID: 37814365 DOI: 10.1093/cercor/bhad379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Motor imagery can, similarly to physical practice, improve motor performance through experience-based plasticity. Using magnetoencephalography, we investigated changes in brain activity associated with offline consolidation of motor sequence learning through physical practice or motor imagery. After an initial training session with either physical practice or motor imagery, participants underwent overnight consolidation. As control condition, participants underwent wake-related consolidation after training with motor imagery. Behavioral analyses revealed that overnight consolidation of motor learning through motor imagery outperformed wake-related consolidation (95% CI [0.02, 0.07], P < 0.001, RP2 = 0.05). As regions of interest, we selected the generators of event-related synchronization/desynchronization of alpha (8-12 Hz) and beta (15-30 Hz) oscillations, which predicted the level of performance on the motor sequence. This yielded a primary sensorimotor-premotor network for alpha oscillations and a cortico-cerebellar network for beta oscillations. The alpha network exhibited increased neural desynchronization after overnight consolidation compared to wake-related consolidation. By contrast, the beta network exhibited an increase in neural synchronization after wake-related consolidation compared to overnight consolidation. We provide the first evidence of parallel brain plasticity underlying behavioral changes associated with sleep-dependent consolidation of motor skill learning through motor imagery and physical practice.
Collapse
Affiliation(s)
- Franck Di Rienzo
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Ursula Debarnot
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
- Institut Universitaire de France, 1 Rue Descartes 75005 Paris, France
| | | | - Claude Delpuech
- CERMEP - Imagerie du Vivant, MEG Departement, Lyon, Bron 69677, France
| | - Julien Doyon
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Aymeric Guillot
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
- Institut Universitaire de France, 1 Rue Descartes 75005 Paris, France
| |
Collapse
|
4
|
Apinis-Deshaies A, Tremblay J, Trempe M. Temporal and Spatial Accuracy of Reaching Movements do not Improve Off-line. J Mot Behav 2023; 56:241-252. [PMID: 38008910 DOI: 10.1080/00222895.2023.2284786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/25/2023] [Indexed: 11/28/2023]
Abstract
Consolidation has been associated with performance gains without additional practice (i.e., off-line learning). However, the movement characteristics improving off-line remain poorly understood. To investigate this question, participants were trained to produce a sequence of planar reaching movements toward four different visual targets. The training session with feedback required them to learn the relative time of the movements, the total movement time and aim accurately at each target. The retention test was performed either 10-min or 24-h after. Results revealed that a 24-h consolidation interval did not result in better temporal or spatial accuracy. This finding suggests that off-line learning may be restricted to sequence production tasks in which the different segments must be regrouped ("chunked") together to accelerate their execution.
Collapse
Affiliation(s)
- Amélie Apinis-Deshaies
- School of Kinesiology and Exercise Science, Faculty of Medecine, Université de Montréal, Canada
| | - Jonathan Tremblay
- School of Kinesiology and Exercise Science, Faculty of Medecine, Université de Montréal, Canada
| | - Maxime Trempe
- Sport Studies Department, Bishop's University, Sherbrooke, Canada
| |
Collapse
|
5
|
Baxter BS, Mylonas D, Kwok KS, Talbot CE, Patel R, Zhu L, Vangel M, Stickgold R, Manoach DS. The effects of closed-loop auditory stimulation on sleep oscillatory dynamics in relation to motor procedural memory consolidation. Sleep 2023; 46:zsad206. [PMID: 37531587 PMCID: PMC11009689 DOI: 10.1093/sleep/zsad206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/13/2023] [Indexed: 08/04/2023] Open
Abstract
STUDY OBJECTIVES Healthy aging and many disorders show reduced sleep-dependent memory consolidation and corresponding alterations in non-rapid eye movement sleep oscillations. Yet sleep physiology remains a relatively neglected target for improving memory. We evaluated the effects of closed-loop auditory stimulation during sleep (CLASS) on slow oscillations (SOs), sleep spindles, and their coupling, all in relation to motor procedural memory consolidation. METHODS Twenty healthy young adults had two afternoon naps: one with auditory stimulation during SO upstates and another with no stimulation. Twelve returned for a third nap with stimulation at variable times in relation to SO upstates. In all sessions, participants trained on the motor sequence task prior to napping and were tested afterward. RESULTS Relative to epochs with no stimulation, upstate stimuli disrupted sleep and evoked SOs, spindles, and SO-coupled spindles. Stimuli that successfully evoked oscillations were delivered closer to the peak of the SO upstate and when spindle power was lower than stimuli that failed to evoke oscillations. Across conditions, participants showed similar significant post-nap performance improvement that correlated with the density of SO-coupled spindles. CONCLUSIONS Despite its strong effects on sleep physiology, CLASS failed to enhance motor procedural memory. Our findings suggest methods to overcome this failure, including better sound calibration to preserve sleep continuity and the use of real-time predictive algorithms to more precisely target SO upstates and to avoid disrupting endogenous SO-coupled spindles and their mnemonic function. They motivate continued development of CLASS as an intervention to manipulate sleep oscillatory dynamics and improve memory.
Collapse
Affiliation(s)
- Bryan S Baxter
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Kristi S Kwok
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine E Talbot
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rudra Patel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Vangel
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
6
|
Johnson BP, Iturrate I, Fakhreddine RY, Bönstrup M, Buch ER, Robertson EM, Cohen LG. Generalization of procedural motor sequence learning after a single practice trial. NPJ SCIENCE OF LEARNING 2023; 8:45. [PMID: 37803003 PMCID: PMC10558563 DOI: 10.1038/s41539-023-00194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 09/14/2023] [Indexed: 10/08/2023]
Abstract
When humans begin learning new motor skills, they typically display early rapid performance improvements. It is not well understood how knowledge acquired during this early skill learning period generalizes to new, related skills. Here, we addressed this question by investigating factors influencing generalization of early learning from a skill A to a different, but related skill B. Early skill generalization was tested over four experiments (N = 2095). Subjects successively learned two related motor sequence skills (skills A and B) over different practice schedules. Skill A and B sequences shared ordinal (i.e., matching keypress locations), transitional (i.e., ordered keypress pairs), parsing rule (i.e., distinct sequence events like repeated keypresses that can be used as a breakpoint for segmenting the sequence into smaller units) structures, or possessed no structure similarities. Results showed generalization for shared parsing rule structure between skills A and B after only a single 10-second practice trial of skill A. Manipulating the initial practice exposure to skill A (1 to 12 trials) and inter-practice rest interval (0-30 s) between skills A and B had no impact on parsing rule structure generalization. Furthermore, this generalization was not explained by stronger sensorimotor mapping between individual keypress actions and their symbolic representations. In contrast, learning from skill A did not generalize to skill B during early learning when the sequences shared only ordinal or transitional structure features. These results document sequence structure that can be very rapidly generalized during initial learning to facilitate generalization of skill.
Collapse
Affiliation(s)
- B P Johnson
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, USA
- Washington University in St Louis, St. Louis, USA
| | - I Iturrate
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, USA
- Amazon EU, Barcelona, Spain
| | - R Y Fakhreddine
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, USA
- UT Austin, Austin, USA
| | | | - E R Buch
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, USA.
| | - E M Robertson
- Center for Cognitive Neuroimaging, University of Glasgow, Glasgow, Scotland, UK
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, USA.
| |
Collapse
|
7
|
Ben-Zion D, Gabitov E, Bitan T, Prior A. Impaired extraction and consolidation of morphological regularities in developmental dyslexia: A domain general deficit? Neuropsychologia 2023; 188:108652. [PMID: 37527734 DOI: 10.1016/j.neuropsychologia.2023.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
The current study examined whether adults with Developmental Dyslexia are impaired in learning linguistic regularities in a novel language, and whether this may be explained by a domain general deficit in the effect of sleep on consolidation. We compared online learning and offline consolidation of morphological regularities in individuals with Developmental Dyslexia (N = 40) and typical readers (N = 38). Participants learned to apply plural inflections to novel words based on morpho-phonological rules embedded in the input and learned to execute a finger motor sequence task. To test the effects of time and sleep on consolidation, participants were assigned into one of two sleep-schedule groups, trained in the evening or in the morning and tested 12 and 24 h later. Unlike typical readers, Dyslexic readers did not extract the morpho-phonological regularities during training and as a group they did not show offline gains in inflecting trained items 24 h after training, suggesting that the deficit in extraction of regularities during training may be related to the deficit in consolidation. The offline gains in dyslexic readers, were correlated with their prior phonological abilities, and were less affected by sleep than those of typical readers. Although no deficit was found in the consolidation of the motor task, dyslexic readers were again less successful in generating an abstract representation of the motor sequence, reflected in a difficulty to generalize the motor sequence knowledge acquired using one hand to the untrained hand. The results suggest that individuals with Developmental Dyslexia have a domain general deficit in extracting statistical regularities from an input. Within the language domain this deficit is reflected in reduced benefits of consolidation, particularly during sleep, perhaps due to reduced prior phonological abilities, which may impede the individual's ability to extract the linguistic regularities during and after training and thus constrain the consolidation process.
Collapse
Affiliation(s)
- Dafna Ben-Zion
- Department of Learning Disabilities, University of Haifa, Haifa, Israel; Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel; Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| | - Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada.
| | - Tali Bitan
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel; Department of Psychology, University of Haifa, Haifa, Israel; Department of Speech Language Pathology, University of Toronto, Toronto, ON, Canada.
| | - Anat Prior
- Department of Learning Disabilities, University of Haifa, Haifa, Israel; Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel.
| |
Collapse
|
8
|
Zhang W, Xin M, Song G, Liang J. Childhood absence epilepsy patients with cognitive impairment have decreased sleep spindle density. Sleep Med 2023; 103:89-97. [PMID: 36773472 DOI: 10.1016/j.sleep.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To explore the differences in sleep spindle (SS) characteristics during stage N2 sleep between children with childhood absence epilepsy and healthy controls, and between children with childhood absence epilepsy with or without cognitive impairment. METHODS We recruited 29 children (14 females, 15 males, mean age: 8 (2.5) years) with childhood absence epilepsy who did not undergone antiseizure treatments previously and 30 age-matched controls (14 females, 16 males, mean age: 9 (3.0) years). For all patients, data on medical history were collected. Each child was monitored overnight by long-term video electroencephalography and was evaluated by the Wechsler Intelligence Scale for Children-Fourth Edition. Next, we compared anterior SS characteristics, including density, frequency, cycle length, duration, amplitude, and percentage of sleep stages. RESULTS The childhood absence epilepsy group exhibited lower spindle density and duration in the first 37.5 min of stage N2 sleep than the control group (P < 0.01). A decrease in spindle density could be observed in the childhood absence epilepsy group with aggravated cognition impairment. The spindle density was substantially lower in the cognitively impaired group than in the cognitively unimpaired group (P < 0.01). No significant differences were observed in SS amplitude, SS frequency, SS cycle length, and the distribution of sleep stages. CONCLUSIONS Reduction in spindle density and duration is associated with the mechanisms underlying childhood absence epilepsy. The deficit in SS density is related with impaired cognition. This deficiency in SSs may be a useful predictive indicator of cognitive impairment in children with absence epilepsy, indicating that SSs may become a useful biomarker and potential adjuvant anti-seizure target for cognitive impairment caused by childhood absence epilepsy.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China.
| | - Meiying Xin
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China.
| | - Ge Song
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jianmin Liang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China.
| |
Collapse
|
9
|
Li Y, Ma M, Shao Y, Wang W. Enhanced effective connectivity from the middle frontal gyrus to the parietal lobe is associated with impaired mental rotation after total sleep deprivation: An electroencephalogram study. Front Neurosci 2022; 16:910618. [PMID: 36248651 PMCID: PMC9566834 DOI: 10.3389/fnins.2022.910618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep deprivation impairs cognitive functions, including attention, memory, and decision-making. Studies on the neuro-electro-physiological mechanisms underlying total sleep deprivation (TSD) that impairs spatial cognition are limited. Based on electroencephalogram (EEG) and Exact Low Resolution Brain Electromagnetic Tomography (eLORETA), this study focused on the effects of TSD on mental rotation and the cognitive neural mechanisms underlying its damage. Twenty-four healthy college students completed mental rotation tasks while resting and after 36 h of TSD; their EEG data were simultaneously recorded. The amplitude of P300 component associated with mental rotation was observed and localized through source reconstruction, while changes in effective connectivity between multiple brain regions associated with mental rotation cognitive processing were calculated using isolated effective coherence (iCoh) of eLORETA. Compared with the baseline before TSD, the amplitude of the P300 component related to mental rotation decreased. The task-state data of P300 were localized to the source of the difference in ERP current density, and it was found that the brain regions related to the difference in the decrease in P300 amplitude included the superior parietal lobule, precuneus, prefrontal lobe, and other related regions. Effective connectivity analysis found that TSD enhanced the effective connectivity from the left middle frontal gyrus to the left superior parietal lobule, left inferior parietal lobule, and left precuneus under the identical condition. Pearson correlation analysis showed a positive correlation between the decrease in accuracy of mental rotation and increase in effective connectivity. Thus, our study suggests that TSD impairs the ability of the mental rotation, showing a decrease in P300 amplitude and an enhanced effective connectivity between the middle frontal gyrus and the parietal lobe in the task state.
Collapse
Affiliation(s)
- Yutong Li
- School of Psychology, Beijing Sport University, Beijing, China
| | - Mengke Ma
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
- *Correspondence: Yongcong Shao,
| | - Wei Wang
- Department of Criminal Psychology, Northwest University of Political Science and Law, Xi’an, China
- Wei Wang,
| |
Collapse
|
10
|
Ben-Zion D, Gabitov E, Prior A, Bitan T. Effects of Sleep on Language and Motor Consolidation: Evidence of Domain General and Specific Mechanisms. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:180-213. [PMID: 37215556 PMCID: PMC10158628 DOI: 10.1162/nol_a_00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/21/2021] [Indexed: 05/24/2023]
Abstract
The current study explores the effects of time and sleep on the consolidation of a novel language learning task containing both item-specific knowledge and the extraction of grammatical regularities. We also compare consolidation effects in language and motor sequence learning tasks, to ask whether consolidation mechanisms are domain general. Young adults learned to apply plural inflections to novel words based on morphophonological rules embedded in the input, and learned to type a motor sequence using a keyboard. Participants were randomly assigned into one of two groups, practicing each task during either the morning or evening hours. Both groups were retested 12 and 24 hours post-training. Performance on frequent trained items in the language task stabilized only following sleep, consistent with a hippocampal mechanism for item-specific learning. However, regularity extraction, indicated by generalization to untrained items in the linguistic task, as well as performance on motor sequence learning, improved 24 hours post-training, irrespective of the timing of sleep. This consolidation process is consistent with a frontostriatal skill-learning mechanism, common across the language and motor domains. This conclusion is further reinforced by cross-domain correlations at the individual level between improvement across 24 hours in the motor task and in the low-frequency trained items in the linguistic task, which involve regularity extraction. Taken together, our results at the group and individual levels suggest that some aspects of consolidation are shared across the motor and language domains, and more specifically, between motor sequence learning and grammar learning.
Collapse
Affiliation(s)
- Dafna Ben-Zion
- Department of Learning Disabilities, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Anat Prior
- Department of Learning Disabilities, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Tali Bitan
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
- Department of Psychology, University of Haifa, Haifa, Israel
- Department of Speech Language Pathology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Gann MA, King BR, Dolfen N, Veldman MP, Davare M, Swinnen SP, Mantini D, Robertson EM, Albouy G. Prefrontal stimulation prior to motor sequence learning alters multivoxel patterns in the striatum and the hippocampus. Sci Rep 2021; 11:20572. [PMID: 34663890 PMCID: PMC8523553 DOI: 10.1038/s41598-021-99926-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022] Open
Abstract
Motor sequence learning (MSL) is supported by dynamical interactions between hippocampal and striatal networks that are thought to be orchestrated by the prefrontal cortex. In the present study, we tested whether individually-tailored theta-burst stimulation of the dorsolateral prefrontal cortex (DLPFC) prior to MSL can modulate multivoxel response patterns in the stimulated cortical area, the hippocampus and the striatum. Response patterns were assessed with multivoxel correlation structure analyses of functional magnetic resonance imaging data acquired during task practice and during resting-state scans before and after learning/stimulation. Results revealed that, across stimulation conditions, MSL induced greater modulation of task-related DLPFC multivoxel patterns than random practice. A similar learning-related modulatory effect was observed on sensorimotor putamen patterns under inhibitory stimulation. Furthermore, MSL as well as inhibitory stimulation affected (posterior) hippocampal multivoxel patterns at post-intervention rest. Exploratory analyses showed that MSL-related brain patterns in the posterior hippocampus persisted into post-learning rest preferentially after inhibitory stimulation. These results collectively show that prefrontal stimulation can alter multivoxel brain patterns in deep brain regions that are critical for the MSL process. They also suggest that stimulation influenced early offline consolidation processes as evidenced by a stimulation-induced modulation of the reinstatement of task pattern into post-learning wakeful rest.
Collapse
Affiliation(s)
- Mareike A Gann
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
- LBI - KU Leuven Brain Institute, KU Leuven, 3001, Leuven, Belgium
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Nina Dolfen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
- LBI - KU Leuven Brain Institute, KU Leuven, 3001, Leuven, Belgium
| | - Menno P Veldman
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
- LBI - KU Leuven Brain Institute, KU Leuven, 3001, Leuven, Belgium
| | - Marco Davare
- Department of Clinical Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PN, UK
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
- LBI - KU Leuven Brain Institute, KU Leuven, 3001, Leuven, Belgium
| | - Dante Mantini
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126, Venice, Italy
| | - Edwin M Robertson
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
| | - Geneviève Albouy
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium.
- LBI - KU Leuven Brain Institute, KU Leuven, 3001, Leuven, Belgium.
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
12
|
Cognitive control affects motor learning through local variations in GABA within the primary motor cortex. Sci Rep 2021; 11:18566. [PMID: 34535725 PMCID: PMC8448760 DOI: 10.1038/s41598-021-97974-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
The primary motor cortex (M1) is crucial for motor learning; however, its interaction with other brain areas during motor learning remains unclear. We hypothesized that the fronto-parietal execution network (FPN) provides learning-related information critical for the flexible cognitive control that is required for practice. We assessed network-level changes during sequential finger tapping learning under speed pressure by combining magnetic resonance spectroscopy and task and resting-state functional magnetic resonance imaging. There was a motor learning-related increase in preparatory activity in the fronto-parietal regions, including the right M1, overlapping the FPN and sensorimotor network (SMN). Learning-related increases in M1-seeded functional connectivity with the FPN, but not the SMN, were associated with decreased GABA/glutamate ratio in the M1, which were more prominent in the parietal than the frontal region. A decrease in the GABA/glutamate ratio in the right M1 was positively correlated with improvements in task performance (p = 0.042). Our findings indicate that motor learning driven by cognitive control is associated with local variations in the GABA/glutamate ratio in the M1 that reflects remote connectivity with the FPN, representing network-level motor sequence learning formations.
Collapse
|
13
|
Quentin R, Fanuel L, Kiss M, Vernet M, Vékony T, Janacsek K, Cohen LG, Nemeth D. Statistical learning occurs during practice while high-order rule learning during rest period. NPJ SCIENCE OF LEARNING 2021; 6:14. [PMID: 34210989 PMCID: PMC8249495 DOI: 10.1038/s41539-021-00093-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Knowing when the brain learns is crucial for both the comprehension of memory formation and consolidation and for developing new training and neurorehabilitation strategies in healthy and patient populations. Recently, a rapid form of offline learning developing during short rest periods has been shown to account for most of procedural learning, leading to the hypothesis that the brain mainly learns during rest between practice periods. Nonetheless, procedural learning has several subcomponents not disentangled in previous studies investigating learning dynamics, such as acquiring the statistical regularities of the task, or else the high-order rules that regulate its organization. Here we analyzed 506 behavioral sessions of implicit visuomotor deterministic and probabilistic sequence learning tasks, allowing the distinction between general skill learning, statistical learning, and high-order rule learning. Our results show that the temporal dynamics of apparently simultaneous learning processes differ. While high-order rule learning is acquired offline, statistical learning is evidenced online. These findings open new avenues on the short-scale temporal dynamics of learning and memory consolidation and reveal a fundamental distinction between statistical and high-order rule learning, the former benefiting from online evidence accumulation and the latter requiring short rest periods for rapid consolidation.
Collapse
Affiliation(s)
- Romain Quentin
- MEMO Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France.
- COPHY Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France.
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA.
| | - Lison Fanuel
- MEMO Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Mariann Kiss
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Marine Vernet
- IMPACT Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Teodóra Vékony
- MEMO Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, UK
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Dezso Nemeth
- MEMO Team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France.
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
14
|
Johnson BP, Cohen LG, Westlake KP. The Intersection of Offline Learning and Rehabilitation. Front Hum Neurosci 2021; 15:667574. [PMID: 33967725 PMCID: PMC8098688 DOI: 10.3389/fnhum.2021.667574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brian P Johnson
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States.,Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Kelly P Westlake
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
15
|
Deantoni M, Villemonteix T, Balteau E, Schmidt C, Peigneux P. Post-Training Sleep Modulates Topographical Relearning-Dependent Resting State Activity. Brain Sci 2021; 11:brainsci11040476. [PMID: 33918574 PMCID: PMC8069225 DOI: 10.3390/brainsci11040476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Continuation of experience-dependent neural activity during offline sleep and wakefulness episodes is a critical component of memory consolidation. Using functional magnetic resonance imaging (fMRI), offline consolidation effects have been evidenced probing behavioural and neurophysiological changes during memory retrieval, i.e., in the context of task practice. Resting state fMRI (rsfMRI) further allows investigating the offline evolution of recently learned information without the confounds of online task-related effects. We used rsfMRI to investigate sleep-related changes in seed-based resting functional connectivity (FC) and amplitude of low frequency fluctuations (ALFF) after spatial navigation learning and relearning. On Day 1, offline resting state activity was measured immediately before and after topographical learning in a virtual town. On Day 4, it was measured again before and after relearning in an extended version of the town. Navigation-related activity was also recorded during target retrieval, i.e., online. Participants spent the first post-training night under regular sleep (RS) or sleep deprivation (SD) conditions. Results evidence FC and ALFF changes in task-related neural networks, indicating the continuation of navigation-related activity in the resting state. Although post-training sleep did not modulate behavioural performance, connectivity analyses evidenced increased FC after post-training SD between navigation-related brain structures during relearning in the extended environment. These results suggest that memory traces were less efficiently consolidated after post-learning SD, eventually resulting in the use of compensatory brain resources to link previously stored spatial elements with the newly presented information.
Collapse
Affiliation(s)
- Michele Deantoni
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF) at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), CP191 Av. F. Roosevelt 50, 1050 Bruxelles, Belgium; (M.D.); (T.V.)
- CRC-GIGA In Vivo Imaging, Université de Liège, Allée du 6 Août, Bâtiment B30, Sart Tilman, 4000 Liège, Belgium; (E.B.); (C.S.)
| | - Thomas Villemonteix
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF) at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), CP191 Av. F. Roosevelt 50, 1050 Bruxelles, Belgium; (M.D.); (T.V.)
- Psychopathology and Neuropsychology Lab, Paris 8 University, Rue de la Liberté 2, 93,526 Saint-Denis, France
| | - Evelyne Balteau
- CRC-GIGA In Vivo Imaging, Université de Liège, Allée du 6 Août, Bâtiment B30, Sart Tilman, 4000 Liège, Belgium; (E.B.); (C.S.)
| | - Christina Schmidt
- CRC-GIGA In Vivo Imaging, Université de Liège, Allée du 6 Août, Bâtiment B30, Sart Tilman, 4000 Liège, Belgium; (E.B.); (C.S.)
- Psychology and Neurosciences of Cognition (PsyNCog), Université de Liège, Quartier Agora, Place des Orateurs, 3, Bâtiment B33, 4000 Liège, Belgium
| | - Philippe Peigneux
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF) at CRCN—Centre for Research in Cognition and Neurosciences and UNI—ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), CP191 Av. F. Roosevelt 50, 1050 Bruxelles, Belgium; (M.D.); (T.V.)
- CRC-GIGA In Vivo Imaging, Université de Liège, Allée du 6 Août, Bâtiment B30, Sart Tilman, 4000 Liège, Belgium; (E.B.); (C.S.)
- Correspondence:
| |
Collapse
|
16
|
Veldman MP, Dolfen N, Gann MA, Carrier J, King BR, Albouy G. Somatosensory Targeted Memory Reactivation Modulates Oscillatory Brain Activity but not Motor Memory Consolidation. Neuroscience 2021; 465:203-218. [PMID: 33823218 DOI: 10.1016/j.neuroscience.2021.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
Previous research has shown that targeted memory reactivation (TMR) protocols using acoustic or olfactory stimuli can boost motor memory consolidation. While somatosensory information is crucial for motor control and learning, the effects of somatosensory TMR on motor memory consolidation remain elusive. Here, healthy young adults (n = 28) were trained on a sequential serial reaction time task and received, during the offline consolidation period that followed, sequential electrical stimulation of the fingers involved in the task. This somatosensory TMR procedure was applied during either a 90-minute diurnal sleep (NAP) or wake (NONAP) interval that was monitored with electroencephalography. Consolidation was assessed with a retest following the NAP/NONAP episode. Behavioral results revealed no effect of TMR on motor performance in either of the groups. At the brain level, somatosensory stimulation elicited changes in oscillatory activity in both groups. Specifically, TMR induced an increase in power in the mu band in the NONAP group and in the beta band in both the NAP and NONAP groups. Additionally, TMR elicited an increase in sigma power and a decrease in delta oscillations in the NAP group. None of these TMR-induced modulations of oscillatory activity, however, were correlated with measures of motor memory consolidation. The present results collectively suggest that while somatosensory TMR modulates oscillatory brain activity during post-learning sleep and wakefulness, it does not influence motor performance in an immediate retest.
Collapse
Affiliation(s)
- Menno P Veldman
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium.
| | - Nina Dolfen
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Mareike A Gann
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Ile de Montréal, Montreal, QC, Canada; Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Bradley R King
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Geneviève Albouy
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
17
|
Pollok B, Schmitz-Justen C, Krause V. Cathodal Transcranial Direct Current Stimulation (tDCS) Applied to the Left Premotor Cortex Interferes with Explicit Reproduction of a Motor Sequence. Brain Sci 2021; 11:207. [PMID: 33572164 PMCID: PMC7914983 DOI: 10.3390/brainsci11020207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability. TDCS effects can outlast the stimulation period presumably due to changes of GABA concentration which play a critical role in use-dependent plasticity. Consequently, tDCS and learning-related synaptic plasticity are assumed to share common mechanisms. Motor sequence learning has been related to activation changes within a cortico-subcortical network and findings from a meta-analysis point towards a core network comprising the cerebellum as well as the primary motor (M1) and the dorsolateral premotor cortex (dPMC). The latter has been particularly related to explicit motor learning by means of brain imaging techniques. We here test whether tDCS applied to the left dPMC affects the acquisition and reproduction of an explicitly learned motor sequence. To this end, 18 healthy volunteers received anodal, cathodal and sham tDCS to the left dPMC and were then trained on a serial reaction time task (SRTT) with their right hand. Immediately after the training and after overnight sleep, reproduction of the learned sequence was tested by means of reaction times as well as explicit recall. Regression analyses suggest that following cathodal tDCS reaction times at the end of the SRTT training-block explained a significant proportion of the number of correctly reported sequence items after overnight sleep. The present data suggest the left premotor cortex as one possible target for the application of non-invasive brain stimulation techniques in explicit motor sequence learning with the right hand.
Collapse
Affiliation(s)
- Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; (C.S.-J.); (V.K.)
| | - Claire Schmitz-Justen
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; (C.S.-J.); (V.K.)
| | - Vanessa Krause
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; (C.S.-J.); (V.K.)
- Department of Neuropsychology, Mauritius Hospital and Neurorehabilitation Center Meerbusch, 40670 Meerbusch, Germany
| |
Collapse
|
18
|
King BR, Rumpf JJ, Heise KF, Veldman MP, Peeters R, Doyon J, Classen J, Albouy G, Swinnen SP. Lateralized effects of post-learning transcranial direct current stimulation on motor memory consolidation in older adults: An fMRI investigation. Neuroimage 2020; 223:117323. [PMID: 32882377 DOI: 10.1016/j.neuroimage.2020.117323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023] Open
Abstract
Previous research has consistently demonstrated that older adults have difficulties transforming recently learned movements into robust, long-lasting memories (i.e., motor memory consolidation). One potential avenue to enhance consolidation in older individuals is the administration of transcranial direct current stimulation (tDCS) to task-relevant brain regions after initial learning. Although this approach has shown promise, the underlying cerebral correlates have yet to be revealed. Moreover, it is unknown whether the effects of tDCS are lateralized, an open question with implications for rehabilitative approaches following predominantly unilateral neurological injuries. In this research, healthy older adults completed a sequential motor task before and 6 h after receiving anodal or sham stimulation to right or left primary motor cortex (M1) while functional magnetic resonance images were acquired. Unexpectedly, anodal stimulation to right M1 following left-hand sequence learning significantly hindered consolidation as compared to a sham control, whereas no differences were observed with left M1 stimulation following right-hand learning. Impaired performance following right M1 stimulation was paralleled by sustained engagement of regions known to be critical for early learning stages, including the caudate nucleus and the premotor and parietal cortices. Thus, post-learning tDCS in older adults not only exerts heterogenous effects across the two hemispheres but can also disrupt ongoing memory processing.
Collapse
Affiliation(s)
- Bradley R King
- Department of Movement Sciences, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, Leuven, Belgium.
| | | | - Kirstin-Friederike Heise
- Department of Movement Sciences, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Menno P Veldman
- Department of Movement Sciences, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium; Department of Imaging and Pathology, Biomedical Sciences Group, Leuven, Belgium
| | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Genevieve Albouy
- Department of Movement Sciences, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
19
|
Korzeczek A, Cholin J, Jorschick A, Hewitt M, Sommer M. Finger Sequence Learning in Adults Who Stutter. Front Psychol 2020; 11:1543. [PMID: 32848984 PMCID: PMC7396483 DOI: 10.3389/fpsyg.2020.01543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Originary neurogenic, non-syndromatic stuttering has been linked to a dysfunctional sensorimotor system. Studies have demonstrated that adults who stutter (AWS) perform poorly at speech and finger motor tasks and learning (e.g., Smits-Bandstra et al., 2006b; Namasivayam and van Lieshout, 2008). The high relapse rate after stuttering treatment could be a further hint for deficient motor learning and, in particular, for the limited generalization of the learned technique in daily communication. In this study, we tested generalization of finger sequence skills in AWS using an effector-dependent transfer task after a 24-h retention period. Additionally, we wanted to corroborate previous motor learning results in AWS for practice and retention: 16 AWS and 16 age-, sex-, and education-matched controls performed the task during four test sessions. Our results indicate that generalization performance in AWS was not inferior to that of fluent controls. In addition, we found, contrary to previous results, that AWS showed a steeper learning progress after practice and consolidation compared with controls. We suggest that with sufficient practice and a 24-h consolidation phase, AWS are able to retain the learned performance of tapping a five-item finger sequence as well as fluent controls in terms of speed and accuracy.
Collapse
Affiliation(s)
- Alexandra Korzeczek
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Joana Cholin
- Faculty of Linguistics and Literary Studies, Bielefeld University, Bielefeld, Germany
| | - Annett Jorschick
- Faculty of Linguistics and Literary Studies, Bielefeld University, Bielefeld, Germany
| | - Manuel Hewitt
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Sommer
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
20
|
Bönstrup M, Iturrate I, Hebart MN, Censor N, Cohen LG. Mechanisms of offline motor learning at a microscale of seconds in large-scale crowdsourced data. NPJ SCIENCE OF LEARNING 2020; 5:7. [PMID: 32550003 PMCID: PMC7272649 DOI: 10.1038/s41539-020-0066-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/17/2020] [Indexed: 05/25/2023]
Abstract
Performance improvements during early human motor skill learning are suggested to be driven by short periods of rest during practice, at the scale of seconds. To reveal the unknown mechanisms behind these "micro-offline" gains, we leveraged the sampling power offered by online crowdsourcing (cumulative N over all experiments = 951). First, we replicated the original in-lab findings, demonstrating generalizability to subjects learning the task in their daily living environment (N = 389). Second, we show that offline improvements during rest are equivalent when significantly shortening practice period duration, thus confirming that they are not a result of recovery from performance fatigue (N = 118). Third, retroactive interference immediately after each practice period reduced the learning rate relative to interference after passage of time (N = 373), indicating stabilization of the motor memory at a microscale of several seconds. Finally, we show that random termination of practice periods did not impact offline gains, ruling out a contribution of predictive motor slowing (N = 71). Altogether, these results demonstrate that micro-offline gains indicate rapid, within-seconds consolidation accounting for early skill learning.
Collapse
Affiliation(s)
- Marlene Bönstrup
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20814 USA
| | - Iñaki Iturrate
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20814 USA
| | - Martin N. Hebart
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20814 USA
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Leonardo G. Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20814 USA
| |
Collapse
|
21
|
Miyaguchi S, Inukai Y, Matsumoto Y, Miyashita M, Takahashi R, Otsuru N, Onishi H. Effects on motor learning of transcranial alternating current stimulation applied over the primary motor cortex and cerebellar hemisphere. J Clin Neurosci 2020; 78:296-300. [PMID: 32402616 DOI: 10.1016/j.jocn.2020.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive method of brain stimulation that modulates oscillatory neural activity in the cortical area under the electrodes. Gamma (γ)-tACS applied over the primary motor cortex (M1) and cerebellar hemisphere is known to improve motor performance; however, it is not yet known whether it affects motor learning. Thus, here we investigated whether γ-tACS applied over the M1 and cerebellar hemisphere affects motor learning. This study involved 30 healthy subjects (14 females, 16 males) performing a visuomotor control task (eight trials) during an administration of either γ-tACS or a sham stimulation (15 subjects per condition) over their right M1 and left cerebellar hemisphere. Each subject performed five trials after 24 h. The motor learning efficiency, motor learning retention and re-motor learning efficiency in each condition were compared. The motor learning retention in the γ-tACS condition was significantly higher than that in the sham condition (p = 0.031). Thus, subjects who were administered γ-tACS maintained their motor performance the next day better than sham-stimulated subjects. There was no significant difference between the conditions in the motor learning efficiency and those in the re-motor learning efficiency. Our results demonstrate that γ-tACS administered over the M1 and cerebellar hemisphere during a motor learning task can enhance motor learning retention.
Collapse
Affiliation(s)
- Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan.
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Yuya Matsumoto
- Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| | - Mai Miyashita
- Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| | - Ryo Takahashi
- Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| |
Collapse
|
22
|
Sensorimotor performance is improved by targeted memory reactivation during a daytime nap in healthy older adults. Neurosci Lett 2020; 731:134973. [PMID: 32305379 DOI: 10.1016/j.neulet.2020.134973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/20/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022]
Abstract
Sensorimotor consolidation occurs during sleep. However, the benefit of sleep-based consolidation decreases with age due to decreased sleep quality and quantity. This study aimed to enhance sensorimotor performance through repetitive delivery of task-based auditory cues during sleep, known as targeted memory reactivation (TMR). Healthy older adults performed a non-dominant arm throwing task before and after a 1 h nap. While napping, half of participants received TMR throughout the hour. Participants who received TMR during sleep demonstrated a greater overall change in throwing accuracy from the start of the first to the end of the second throwing task session. However, there was no generalization of throwing accuracy to variants of the task or to a novel dart throwing task. Findings support the use of TMR during sleep to enhance task-specific sensorimotor performance in healthy older adults despite age-related decreases in sleep quality and quantity. Future research is needed to evaluate the effects of TMR on rehabilitation protocols.
Collapse
|
23
|
The motor engram as a dynamic change of the cortical network during early sequence learning: An fMRI study. Neurosci Res 2020; 153:27-39. [DOI: 10.1016/j.neures.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/19/2022]
|
24
|
Cox R, Mylonas DS, Manoach DS, Stickgold R. Large-scale structure and individual fingerprints of locally coupled sleep oscillations. Sleep 2019; 41:5089926. [PMID: 30184179 DOI: 10.1093/sleep/zsy175] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 11/14/2022] Open
Abstract
Slow oscillations and sleep spindles, the canonical electrophysiological oscillations of nonrapid eye movement sleep, are thought to gate incoming sensory information, underlie processes of sleep-dependent memory consolidation, and are altered in various neuropsychiatric disorders. Accumulating evidence of the predominantly local expression of these individual oscillatory rhythms suggests that their cross-frequency interactions may have a similar local component. However, it is unclear whether locally coordinated sleep oscillations exist across the cortex, and whether and how these dynamics differ between fast and slow spindles, and sleep stages. Moreover, substantial individual variability in the expression of both spindles and slow oscillations raises the possibility that their temporal organization shows similar individual differences. Using two nights of multichannel electroencephalography recordings from 24 healthy individuals, we characterized the topography of slow oscillation-spindle coupling. We found that while slow oscillations are highly restricted in spatial extent, the phase of the local slow oscillation modulates local spindle activity at virtually every cortical site. However, coupling dynamics varied with spindle class, sleep stage, and cortical region. Moreover, the slow oscillation phase at which spindles were maximally expressed differed markedly across individuals while remaining stable across nights. These findings both add an important spatial aspect to our understanding of the temporal coupling of sleep oscillations and demonstrate the heterogeneity of coupling dynamics, which must be taken into account when formulating mechanistic accounts of sleep-related memory processing.
Collapse
Affiliation(s)
- Roy Cox
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Psychiatry, Harvard Medical School, Boston, MA.,Department of Epileptology, University of Bonn, Germany
| | - Dimitris S Mylonas
- Department of Psychiatry, Harvard Medical School, Boston, MA.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
| | - Dara S Manoach
- Department of Psychiatry, Harvard Medical School, Boston, MA.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Ferretti A, Rattenborg NC, Ruf T, McWilliams SR, Cardinale M, Fusani L. Sleeping Unsafely Tucked in to Conserve Energy in a Nocturnal Migratory Songbird. Curr Biol 2019; 29:2766-2772.e4. [PMID: 31430467 DOI: 10.1016/j.cub.2019.07.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 01/19/2023]
Abstract
Each spring and fall, millions of normally diurnal birds switch to migrating at night. Most of these are small songbirds (passerine) migrating long distances that need to alternate their migratory flights with refueling stopovers [1, 2], which can account for up to 80% of the total migratory period [3]. After a long nocturnal flight, these birds face the contrasting needs to recover sleep and refill depleted energy stores, all while vulnerable to predation [4, 5]. Here, we investigated how garden warblers at a Mediterranean stopover site modulate their sleep behavior in relation to their metabolic state. At night, garden warblers in poor metabolic condition sleep more and exhibit less migratory restlessness than birds in good condition do. In addition, rather than sleeping with their head facing forward, birds in poor condition prefer to sleep with their head turned and tucked in their feathers. We further show that sleep with the head tucked is associated with lower respiratory and metabolic rates and reduced heat loss mediated by hiding the head-the body part with the highest heat dissipation-under the feathers. However, the benefit of conserving energy while sleeping with the head tucked was countered by reduced anti-predator vigilance. Birds presented with a sound simulating the approach of a predator responded more slowly when the head was tucked than when it was untucked. Consequently, our study demonstrates that through changing their sleep position and intensity, migrating songbirds can negotiate a previously unknown trade-off between sleep-mediated energy conservation and anti-predatory vigilance.
Collapse
Affiliation(s)
- Andrea Ferretti
- University of Vienna, Department of Cognitive Biology, Althanstr. 14, 1090 Vienna, Austria; University of Veterinary Medicine, Vienna, Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, Savoyenstr. 1, Vienna 1160, Austria.
| | - Niels C Rattenborg
- Max Planck Institute for Ornithology, Avian Sleep Group, Haus 5, Seewiesen 82319, Germany
| | - Thomas Ruf
- University of Veterinary Medicine Vienna, Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Savoyenstr. 1, Vienna 1160, Austria
| | - Scott R McWilliams
- University of Rhode Island, Department of Natural Resources Science, 102 Coastal Institute, Kingston, RI02881, USA
| | - Massimiliano Cardinale
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Marine Research Institute, Turistgatan 5, Lysekil 45330, Sweden
| | - Leonida Fusani
- University of Vienna, Department of Cognitive Biology, Althanstr. 14, 1090 Vienna, Austria; University of Veterinary Medicine, Vienna, Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, Savoyenstr. 1, Vienna 1160, Austria
| |
Collapse
|
26
|
Gehringer JE, Arpin DJ, Heinrichs-Graham E, Wilson TW, Kurz MJ. Practice modulates motor-related beta oscillations differently in adolescents and adults. J Physiol 2019; 597:3203-3216. [PMID: 31045245 PMCID: PMC7105901 DOI: 10.1113/jp277326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/18/2019] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS Magnetoencephalography data were acquired during a leg force task in pre-/post-practice sessions in adolescents and adults. Strong peri-movement alpha and beta oscillations were mapped to the cortex. Following practice, performance improved and beta oscillations were altered. Beta oscillations decreased in the sensorimotor cortex in adolescents after practice, but increased in adults. No pre-/post-practice differences were detected for alpha oscillations. ABSTRACT There is considerable evidence that there are motor performance and practice differences between adolescents and adults. Behavioural studies have suggested that these motor performance differences are simply due to experience. However, the neurophysiological nexus for these motor performance differences remains unknown. The present study investigates the short-term changes (e.g. fast motor learning) in the alpha and beta event-related desynchronizations (ERDs) associated with practising an ankle plantarflexion motor action. To this end, we utilized magnetoencephalography to identify changes in the alpha and beta ERDs in healthy adolescents (n = 21; age = 14 ± 2.1 years) and middle-aged adults (n = 22; age = 36.6 ± 5 years) after practising an isometric ankle plantarflexion target-matching task. After practice, all of the participants matched more targets and matched the targets faster, and had improved accuracy, faster reaction times and faster force production. However, the motor performance of the adults exceeded what was seen in the adolescents regardless of practice. In conjunction with the behavioural results, the strength of the beta ERDs across the motor planning and execution stages was reduced after practice in the sensorimotor cortices of the adolescents, but was stronger in the adults. No pre-/post-practice changes were found in the alpha ERDs. These outcomes suggest that there are age-dependent changes in the sensorimotor cortical oscillations after practising a motor task. We suspect that these noted differences might be related to familiarity with the motor task, GABA levels and/or maturational differences in the integrity of the white matter fibre tracts that comprise the respective cortical areas.
Collapse
Affiliation(s)
- James E Gehringer
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - David J Arpin
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Max J Kurz
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
27
|
Verma K, Kashyap N. Sleep deprivation enhances false memory on the Deese-Roediger-McDermott (DRM) task. PSYCHOLOGICAL THOUGHT 2019. [DOI: 10.5964/psyct.v12i1.339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
False memories are memories that people report to be true with high confidence, even though they had never encountered the fact behind the memory in reality. Such memories possess strong semantic association with already existing encoded memories which hence appear to be familiar. Sleep is known to provide optimal conditions for the consolidation of long-term memories whereas the deprivation of sleep is known to hinder memory’s consolidation process. The role of sleep in the formation and enhancement of false memories was tested. The Deese-Roediger-McDermott (DRM) task was used to induce false memory in thirty-nine male volunteers who either slept or remained awake following learning. Following a night of recovery sleep both groups returned for retrieval of memory. It was found that sleep deprivation in comparison to sleep led to higher false memory.
Collapse
|
28
|
Transcranial static magnetic stimulation over the primary motor cortex alters sequential implicit motor learning. Neurosci Lett 2018; 696:33-37. [PMID: 30552943 DOI: 10.1016/j.neulet.2018.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 01/25/2023]
Abstract
Transcranial static magnetic stimulation (tSMS) is a recently introduced noninvasive brain stimulation technique that can modulate brain excitability. Here, we investigated a hypothesis that motor learning would be altered by tSMS applied to the primary motor cortex (M1). For motor task, we chose a serial reaction time task consisting of sequential trials and random trials in which the visual cue doesn't play out a repeating pattern of positions to evaluate an implicit motor learning, where the M1 is a key structure for skill acquisition and early consolidation. Forty-four healthy right-handed volunteers participated in the present study. TSMS was placed over the right M1 or dorsolateral prefrontal cortex (DLPFC). The control group received Sham stimulation over the right M1. Reaction times (RTs) of left hand were analyzed before (Pre session) and after (Post session) practice to examine online learning, and were also assessed 24 h later to examine offline learning (Cons session). The results showed that the RTs became faster in Post than Pre session regardless of the stimulation location. Interestingly, the RTs were significantly faster with the M1 stimulation than the DLPFC or Sham stimulation in Cons session. There was not significant difference in error rate among sessions or stimulation locations. These findings suggest that the modulation of the M1 using tSMS can enhance offline motor learning in an implicit task.
Collapse
|
29
|
Resting-state connectivity after visuo-motor skill learning is inversely associated with offline consolidation in Parkinson's disease and healthy controls. Cortex 2018; 106:237-247. [DOI: 10.1016/j.cortex.2018.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/02/2018] [Accepted: 06/08/2018] [Indexed: 01/22/2023]
|
30
|
Brawn TP, Nusbaum HC, Margoliash D. Sleep-dependent reconsolidation after memory destabilization in starlings. Nat Commun 2018; 9:3093. [PMID: 30082791 PMCID: PMC6079047 DOI: 10.1038/s41467-018-05518-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Reconsolidation theory describes memory formation as an ongoing process that cycles between labile and stable states. Though sleep is critical for the initial consolidation of a memory, there has been little evidence that sleep facilitates reconsolidation. We now demonstrate in two experiments that a sleep-consolidated memory can be destabilized if the memory is reactivated by retrieval. The destabilized memory, which can be impaired if an interference task is encountered after, but not before, the memory is reactivated, is then reconsolidated after sleep. In two additional experiments, we provide evidence suggesting that the learning of the interference task promotes the subsequent sleep-dependent enhancement of the original memory. These results provide novel insight into the complex mechanisms of memory processing, as well as critical evidence supporting the view that long-term memory formation involves a dynamic process of sleep-dependent consolidation, use-dependent destabilization, and sleep-dependent reconsolidation.
Collapse
Affiliation(s)
- Timothy P Brawn
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA.
- Department of Psychology, University of Chicago, Chicago, IL, 60637, USA.
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Howard C Nusbaum
- Department of Psychology, University of Chicago, Chicago, IL, 60637, USA
| | - Daniel Margoliash
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
- Department of Psychology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
31
|
Gehringer JE, Arpin DJ, Heinrichs-Graham E, Wilson TW, Kurz MJ. Neurophysiological changes in the visuomotor network after practicing a motor task. J Neurophysiol 2018; 120:239-249. [PMID: 29589817 PMCID: PMC6093962 DOI: 10.1152/jn.00020.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/09/2018] [Accepted: 03/23/2018] [Indexed: 01/25/2023] Open
Abstract
Although it is well appreciated that practicing a motor task updates the associated internal model, it is still unknown how the cortical oscillations linked with the motor action change with practice. The present study investigates the short-term changes (e.g., fast motor learning) in the α- and β-event-related desynchronizations (ERD) associated with the production of a motor action. To this end, we used magnetoencephalography to identify changes in the α- and β-ERD in healthy adults after participants practiced a novel isometric ankle plantarflexion target-matching task. After practicing, the participants matched the targets faster and had improved accuracy, faster force production, and a reduced amount of variability in the force output when trying to match the target. Parallel with the behavioral results, the strength of the β-ERD across the motor-planning and execution stages was reduced after practice in the sensorimotor and occipital cortexes. No pre/postpractice changes were found in the α-ERD during motor planning or execution. Together, these outcomes suggest that fast motor learning is associated with a decrease in β-ERD power. The decreased strength likely reflects a more refined motor plan, a reduction in neural resources needed to perform the task, and/or an enhancement of the processes that are involved in the visuomotor transformations that occur before the onset of the motor action. These results may augment the development of neurologically based practice strategies and/or lead to new practice strategies that increase motor learning. NEW & NOTEWORTHY We aimed to determine the effects of practice on the movement-related cortical oscillatory activity. Following practice, we found that the performance of the ankle plantarflexion target-matching task improved and the power of the β-oscillations decreased in the sensorimotor and occipital cortexes. These novel findings capture the β-oscillatory activity changes in the sensorimotor and occipital cortexes that are coupled with behavioral changes to demonstrate the effects of motor learning.
Collapse
Affiliation(s)
- James E Gehringer
- Center for Magnetoencephalography, University of Nebraska Medical Center , Omaha, Nebraska
- Department of Physical Therapy, Munroe Meyer Institute, University of Nebraska Medical Center , Omaha, Nebraska
| | - David J Arpin
- Center for Magnetoencephalography, University of Nebraska Medical Center , Omaha, Nebraska
- Department of Physical Therapy, Munroe Meyer Institute, University of Nebraska Medical Center , Omaha, Nebraska
| | - Elizabeth Heinrichs-Graham
- Center for Magnetoencephalography, University of Nebraska Medical Center , Omaha, Nebraska
- Department of Neurological Sciences, University of Nebraska Medical Center , Omaha, Nebraska
| | - Tony W Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center , Omaha, Nebraska
- Department of Neurological Sciences, University of Nebraska Medical Center , Omaha, Nebraska
| | - Max J Kurz
- Center for Magnetoencephalography, University of Nebraska Medical Center , Omaha, Nebraska
- Department of Physical Therapy, Munroe Meyer Institute, University of Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|
32
|
Rothkirch I, Wolff S, Margraf NG, Pedersen A, Witt K. Does Post-task Declarative Learning Have an Influence on Early Motor Memory Consolidation Over Day? An fMRI Study. Front Neurosci 2018; 12:280. [PMID: 29755315 PMCID: PMC5932143 DOI: 10.3389/fnins.2018.00280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/10/2018] [Indexed: 12/02/2022] Open
Abstract
Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence – random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation.
Collapse
Affiliation(s)
- Inken Rothkirch
- Department of Neurology, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stephan Wolff
- Department of Radiology, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nils G Margraf
- Department of Neurology, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anya Pedersen
- Department of Psychology, Kiel University, Kiel, Germany
| | - Karsten Witt
- Department of Neurology, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany.,European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
33
|
Foerster Á, Dutta A, Kuo M, Paulus W, Nitsche MA. Effects of anodal transcranial direct current stimulation over lower limb primary motor cortex on motor learning in healthy individuals. Eur J Neurosci 2018; 47:779-789. [DOI: 10.1111/ejn.13866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Águida Foerster
- Department of Clinical Neurophysiology Universitätsmedizin Göttingen Georg‐August Universität Göttingen Germany
- Deptartment Psychology and Neurosciences Leibniz Research Centre for Working Environment and Human Factors Leibniz‐Institut für Arbeitsforschung Ardeystr. 67 44139 Dortmund Germany
| | - Anirban Dutta
- Department of Biomedical Engineering University at Buffalo Buffalo NY USA
| | - Min‐Fang Kuo
- Deptartment Psychology and Neurosciences Leibniz Research Centre for Working Environment and Human Factors Leibniz‐Institut für Arbeitsforschung Ardeystr. 67 44139 Dortmund Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology Universitätsmedizin Göttingen Georg‐August Universität Göttingen Germany
| | - Michael A. Nitsche
- Deptartment Psychology and Neurosciences Leibniz Research Centre for Working Environment and Human Factors Leibniz‐Institut für Arbeitsforschung Ardeystr. 67 44139 Dortmund Germany
- Department of Neurology University Medical Hospital Bergmannsheil Bochum Germany
| |
Collapse
|
34
|
King BR, Saucier P, Albouy G, Fogel SM, Rumpf JJ, Klann J, Buccino G, Binkofski F, Classen J, Karni A, Doyon J. Cerebral Activation During Initial Motor Learning Forecasts Subsequent Sleep-Facilitated Memory Consolidation in Older Adults. Cereb Cortex 2018; 27:1588-1601. [PMID: 26802074 DOI: 10.1093/cercor/bhv347] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Older adults exhibit deficits in motor memory consolidation; however, little is known about the cerebral correlates of this impairment. We thus employed fMRI to investigate the neural substrates underlying motor sequence memory consolidation, and the modulatory influence of post-learning sleep, in healthy older adults. Participants were trained on a motor sequence and retested following an 8-h interval including wake or diurnal sleep as well as a 22-h interval including a night of sleep. Results demonstrated that a post-learning nap improved offline consolidation across same- and next-day retests. This enhanced consolidation was reflected by increased activity in the putamen and the medial temporal lobe, including the hippocampus, regions that have previously been implicated in sleep-dependent neural plasticity in young adults. Moreover, for the first time in older adults, the neural substrates subserving initial motor learning, including the putamen, cerebellum, and parietal cortex, were shown to forecast subsequent consolidation depending on whether a post-learning nap was afforded. Specifically, sufficient activation in a motor-related network appears to be necessary to trigger sleep-facilitated consolidation in older adults. Our findings not only demonstrate that post-learning sleep can enhance motor memory consolidation in older adults, but also provide the system-level neural correlates of this beneficial effect.
Collapse
Affiliation(s)
- Bradley R King
- Functional Neuroimaging Unit, Department of Psychology, University of Montreal, Montreal, QC, Canada.,Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Philippe Saucier
- Functional Neuroimaging Unit, Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Genevieve Albouy
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Stuart M Fogel
- Brain and Mind Institute and Department of Psychology, Western University, London, Canada
| | | | - Juliane Klann
- Division of Clinical and Cognitive Neurosciences, Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Giovanni Buccino
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy and IRCCS Neuromed, Pozzilli, Italy
| | - Ferdinand Binkofski
- Division of Clinical and Cognitive Neurosciences, Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Avi Karni
- Sagol Department of Neurobiology, Department of Human Biology and The E.J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Julien Doyon
- Functional Neuroimaging Unit, Department of Psychology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
35
|
Pocivavsek A, Rowland LM. Basic Neuroscience Illuminates Causal Relationship Between Sleep and Memory: Translating to Schizophrenia. Schizophr Bull 2018; 44:7-14. [PMID: 29136236 PMCID: PMC5768044 DOI: 10.1093/schbul/sbx151] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Patients with schizophrenia are often plagued by sleep disturbances that can exacerbate the illness, including potentiating psychosis and cognitive impairments. Cognitive dysfunction is a core feature of schizophrenia with learning and memory being particularly impaired. Sleep disruptions often accompanying the illness and may be key mechanism that contribute to these core dysfunctions. In this special translational neuroscience feature, we highlight the role of sleep in mediating cognitive function, with a special focus on learning and memory. By defining dysfunctional sleep architecture and rhythms in schizophrenia, we focus on the disarray of mechanisms critical to learning and memory and postulate an association between sleep disturbances and cognitive impairments in the disorder. Lastly, we review preclinical models of schizophrenia and highlight exciting translational research that may lead to new therapeutic approaches to alleviating sleep disturbances and effectively improving cognitive function in schizophrenia.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
36
|
Tucker MA, Morris CJ, Morgan A, Yang J, Myers S, Pierce JG, Stickgold R, Scheer FAJL. The Relative Impact of Sleep and Circadian Drive on Motor Skill Acquisition and Memory Consolidation. Sleep 2017; 40:3765296. [PMID: 28460138 DOI: 10.1093/sleep/zsx036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Study Objectives Sleep during the biological night facilitates memory consolidation. Here we determined the impact of sleep and wake on motor skill learning (acquisition) and subsequent off-line skill improvement (memory consolidation), independent of circadian phase, and compared this to the impact of the endogenous circadian system, independent of whether sleep occurred during the biological night or day. Methods Participants completed two 8-day sleep laboratory visits, adhering on one visit to a circadian aligned ("normal") sleep schedule for the full duration of the protocol, and on the other to a circadian misaligned (12-hour inverted) schedule, with alignment during the first 3 days, a 12-hour 'slam shift' on Day 4, followed by circadian misalignment during the last 4 days of the protocol. Participants were repeatedly trained and tested on different versions of the finger-tapping motor sequence task across each visit. Results Sleep facilitated offline memory consolidation regardless of whether it occurred during the biological day or night, while circadian phase had no significant impact. These sleep-related benefits remained after accounting for general motor speed, measured in the absence of learning. In addition, motor skill acquisition was facilitated when the training session followed shortly after sleep, without significant impact of circadian phase (biological morning vs. evening). This effect was largely driven by heightened acquisition in participants who slept during the day and were trained shortly thereafter, that is, when acquisition occurred during the biological evening. These benefits were also retained after controlling for general motor speed. Conclusions Sleep benefits both the acquisition and consolidation of motor skill regardless of whether they occur during the biological day or night. After controlling for general motor speed, a critical adjustment that few studies perform, these sleep benefits remain intact. Our findings have clear implications for night shift workers who obtain their sleep during the day.
Collapse
Affiliation(s)
- Matthew A Tucker
- Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC
| | - Christopher J Morris
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | | | - Jessica Yang
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA
| | - Samantha Myers
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA
| | - Joanna Garcia Pierce
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA
| | - Robert Stickgold
- Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
37
|
Maier JG, Piosczyk H, Holz J, Landmann N, Deschler C, Frase L, Kuhn M, Klöppel S, Spiegelhalder K, Sterr A, Riemann D, Feige B, Voderholzer U, Nissen C. Brief periods of NREM sleep do not promote early offline gains but subsequent on-task performance in motor skill learning. Neurobiol Learn Mem 2017; 145:18-27. [DOI: 10.1016/j.nlm.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 07/11/2017] [Accepted: 08/18/2017] [Indexed: 12/27/2022]
|
38
|
White Matter Structure in Older Adults Moderates the Benefit of Sleep Spindles on Motor Memory Consolidation. J Neurosci 2017; 37:11675-11687. [PMID: 29084867 DOI: 10.1523/jneurosci.3033-16.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/16/2017] [Indexed: 11/21/2022] Open
Abstract
Sleep spindles promote the consolidation of motor skill memory in young adults. Older adults, however, exhibit impoverished sleep-dependent motor memory consolidation. The underlying pathophysiological mechanism(s) explaining why motor memory consolidation in older adults fails to benefit from sleep remains unclear. Here, we demonstrate that male and female older adults show impoverished overnight motor skill memory consolidation relative to young adults, with the extent of impairment being associated with the degree of reduced frontal fast sleep spindle density. The magnitude of the loss of frontal fast sleep spindles in older adults was predicted by the degree of reduced white matter integrity throughout multiple white matter tracts known to connect subcortical and cortical brain regions. We further demonstrate that the structural integrity of selective white matter fiber tracts, specifically within right posterior corona radiata, right tapetum, and bilateral corpus callosum, statistically moderates whether sleep spindles promoted overnight consolidation of motor skill memory. Therefore, white matter integrity within tracts known to connect cortical sensorimotor control regions dictates the functional influence of sleep spindles on motor skill memory consolidation in the elderly. The deterioration of white matter fiber tracts associated with human brain aging thus appears to be one pathophysiological mechanism influencing subcortical-cortical propagation of sleep spindles and their related memory benefits.SIGNIFICANCE STATEMENT Numerous studies have shown that sleep spindle expression is reduced and sleep-dependent motor memory is impaired in older adults. However, the mechanisms underlying these alterations have remained unknown. The present study reveals that age-related degeneration of white matter within select fiber tracts is associated with reduced sleep spindles in older adults. We further demonstrate that, within these same fiber tracts, the degree of degeneration determines whether sleep spindles can promote motor memory consolidation. Therefore, white matter integrity in the human brain, more than age per se, determines the magnitude of decline in sleep spindles in later life and, with it, the success (or lack thereof) of sleep-dependent motor memory consolidation in older adults.
Collapse
|
39
|
Cellini N. Memory consolidation in sleep disorders. Sleep Med Rev 2017; 35:101-112. [DOI: 10.1016/j.smrv.2016.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
|
40
|
Vahdat S, Fogel S, Benali H, Doyon J. Network-wide reorganization of procedural memory during NREM sleep revealed by fMRI. eLife 2017; 6. [PMID: 28892464 PMCID: PMC5593513 DOI: 10.7554/elife.24987] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/13/2017] [Indexed: 12/24/2022] Open
Abstract
Sleep is necessary for the optimal consolidation of newly acquired procedural memories. However, the mechanisms by which motor memory traces develop during sleep remain controversial in humans, as this process has been mainly investigated indirectly by comparing pre- and post-sleep conditions. Here, we used functional magnetic resonance imaging and electroencephalography during sleep following motor sequence learning to investigate how newly-formed memory traces evolve dynamically over time. We provide direct evidence for transient reactivation followed by downscaling of functional connectivity in a cortically-dominant pattern formed during learning, as well as gradual reorganization of this representation toward a subcortically-dominant consolidated trace during non-rapid eye movement (NREM) sleep. Importantly, the putamen functional connectivity within the consolidated network during NREM sleep was related to overnight behavioral gains. Our results demonstrate that NREM sleep is necessary for two complementary processes: the restoration and reorganization of newly-learned information during sleep, which underlie human motor memory consolidation. DOI:http://dx.doi.org/10.7554/eLife.24987.001 The idea that, while you sleep, you could be honing skills such as the ability to play a musical instrument may sound like science fiction. But studies have shown that sleep, in addition to being beneficial for physical and mental health, also enhances memories laid down during the day. The process by which the brain strengthens these memories is called consolidation, but exactly how this process works is unclear. Memories are thought to persist as altered connections between neurons, often referred to as memory traces. When we practice a skill, we activate the neurons encoding that skill over and over again, strengthening the connections between them. However, if this process were to continue unchecked, eventually the connections would become saturated and no further increases in strength could occur. One possible solution to this problem is that sleep enhances skill learning by downscaling connections across the brain as a whole, thereby freeing up capacity for further learning. Alternatively, sleep may reorganize an initially unstable memory trace into a more robust form with the potential to last a lifetime. To test these possibilities, Vahdat et al. asked healthy volunteers to practice a finger-tapping task while lying inside a brain scanner, and then to sleep inside that scanner for 2–3 hours. When the volunteers returned to the scanner the next morning and attempted the task again, they performed better than they had the previous night. Their brains also showed a different pattern of activity when performing the task after a night’s sleep. So what had happened overnight? As the volunteers lay awake inside the scanner, their brains reactivated the memory trace formed during learning. However, as they entered a stage of non-dreaming sleep called non-REM sleep, this activity became weaker. At the same time, a new pattern of activity – the one that would dominate the scan the next morning – began to emerge. Whereas the post-learning activity was mainly in the brain’s outer layer, the cortex, the new pattern included other areas that are deeper within the brain. The activity of one deeper region in particular, the putamen, predicted how well the volunteers would perform the task the next day. Non-REM sleep thus strengthens memories via two complementary processes. It suppresses the initial memory trace formed during learning, and reorganizes the newly-learned information into a more stable state. These results might explain why people who are sleep-deprived often have impaired motor skills and memories. The findings also open up the possibility of enhancing newly learned skills by manipulating brain circuits during non-REM sleep. DOI:http://dx.doi.org/10.7554/eLife.24987.002
Collapse
Affiliation(s)
- Shahabeddin Vahdat
- Functional Neuroimaging Unit, Cenre de recherche, Institut universitaire de gériatrie de Montréal, Université de Montreal, Québec, Canada
| | - Stuart Fogel
- School of Psychology, University of Ottawa, Ontario, Canada
| | - Habib Benali
- PERFORM Centre, University of Concordia, Montreal, Quebec, Canada.,INSERM/UPMC, Pitié-Salpêtrière Hospital, Paris, France
| | - Julien Doyon
- Functional Neuroimaging Unit, Cenre de recherche, Institut universitaire de gériatrie de Montréal, Université de Montreal, Québec, Canada
| |
Collapse
|
41
|
King BR, Hoedlmoser K, Hirschauer F, Dolfen N, Albouy G. Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation. Neurosci Biobehav Rev 2017; 80:1-22. [DOI: 10.1016/j.neubiorev.2017.04.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
|
42
|
Learning performance is linked to procedural memory consolidation across both sleep and wakefulness. Sci Rep 2017; 7:10234. [PMID: 28860592 PMCID: PMC5579258 DOI: 10.1038/s41598-017-09263-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/19/2017] [Indexed: 11/17/2022] Open
Abstract
We investigated whether learning performance in a procedural finger tapping task before nocturnal sleep would predict performance gains after sleep in 60 young adults. Gains were defined as change in correctly tapped digit sequences between learning (12 trials administered in the evening) and retesting (3 trials administered in the morning after sleep). The same task was also administered to a separate wake group (N = 54 young adults), which learned in the morning and was retested in the evening. Learning performance was determined by either using the average performance on the last three learning trials or the average performance on the best three learning trials. Our results demonstrated an inverse association between learning performance and gains in procedural skill, i.e., good learners exhibited smaller performance gains across both wakefulness and sleep than poor learners. Regardless of learning performance, gains in finger tapping skills were greater after sleep than daytime wakefulness. Importantly, some of our findings were influenced by how learning performance was estimated. Collectively, these results suggest that learning performance and the method through which it is estimated may influence performance gains in finger tapping skills across both sleep and wakefulness.
Collapse
|
43
|
A Meta-analysis of Voxel-based Brain Morphometry Studies in Obstructive Sleep Apnea. Sci Rep 2017; 7:10095. [PMID: 28855654 PMCID: PMC5577238 DOI: 10.1038/s41598-017-09319-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/18/2017] [Indexed: 02/05/2023] Open
Abstract
Gray matter (GM) anomalies may represent a critical pathology underlying obstructive sleep apnea (OSA). However, the evidence regarding their clinical relevance is inconsistent. We conducted a meta-analysis of voxel-based morphometry (VBM) studies of patients with OSA to identify their brain abnormalities. A systematic search was conducted based on PRISMA guidelines, and a meta-analysis was performed using the anisotropic effect-size-based algorithms (ASE-SDM) to quantitatively estimate regional GM changes in patients with OSA. Fifteen studies with 16 datasets comprising 353 untreated patients with OSA and 444 healthy controls were included. Our results revealed GM reductions in the bilateral anterior cingulate/paracingulate gyri (ACG/ApCG), left cerebellum (lobules IV/V and VIII), bilateral superior frontal gyrus (SFG, medial rostral part), right middle temporal gyrus (MTG), and right premotor cortex. Moreover, GM reductions in the bilateral ACG/ApCG were positively associated with body mass index (BMI) and age among patients with OSA, and GM reductions in the SFG (medial rostral part) were negatively associated with Epworth sleepiness scale (ESS) scores and sex (male). These abnormalities may represent structural brain underpinnings of neurocognitive abnormalities and respiratory-related abnormalities in OSA. In particular, this study adds to Psychoradiology, which is a promising subspecialty of clinical radiology mainly for psychiatric disorders.
Collapse
|
44
|
Schaefer N, Rotermund C, Blumrich EM, Lourenco MV, Joshi P, Hegemann RU, Jamwal S, Ali N, García Romero EM, Sharma S, Ghosh S, Sinha JK, Loke H, Jain V, Lepeta K, Salamian A, Sharma M, Golpich M, Nawrotek K, Paidi RK, Shahidzadeh SM, Piermartiri T, Amini E, Pastor V, Wilson Y, Adeniyi PA, Datusalia AK, Vafadari B, Saini V, Suárez-Pozos E, Kushwah N, Fontanet P, Turner AJ. The malleable brain: plasticity of neural circuits and behavior - a review from students to students. J Neurochem 2017. [PMID: 28632905 DOI: 10.1111/jnc.14107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation and long-term depression, respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by long-term potentiation and long-term depression, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity. Read the Editorial Highlight for this article on page 788. Cover Image for this issue: doi: 10.1111/jnc.13815.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Wuerzburg, Würzburg, Germany
| | - Carola Rotermund
- German Center of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Eva-Maria Blumrich
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pooja Joshi
- Inserm UMR 1141, Robert Debre Hospital, Paris, France
| | - Regina U Hegemann
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Sumit Jamwal
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Nilufar Ali
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | - Sorabh Sharma
- Neuropharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Shampa Ghosh
- National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Tarnaka, Hyderabad, India
| | - Jitendra K Sinha
- National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Tarnaka, Hyderabad, India
| | - Hannah Loke
- Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Vishal Jain
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Katarzyna Lepeta
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ahmad Salamian
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mahima Sharma
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mojtaba Golpich
- Department of Medicine, University Kebangsaan Malaysia Medical Centre (HUKM), Cheras, Kuala Lumpur, Malaysia
| | - Katarzyna Nawrotek
- Department of Process Thermodynamics, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Ramesh K Paidi
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Sheila M Shahidzadeh
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York, USA
| | - Tetsade Piermartiri
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Elham Amini
- Department of Medicine, University Kebangsaan Malaysia Medical Centre (HUKM), Cheras, Kuala Lumpur, Malaysia
| | - Veronica Pastor
- Instituto de Biología Celular y Neurociencia Prof. Eduardo De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yvette Wilson
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Philip A Adeniyi
- Cell Biology and Neurotoxicity Unit, Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado - Ekiti, Ekiti State, Nigeria
| | | | - Benham Vafadari
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Vedangana Saini
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Edna Suárez-Pozos
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Toxicología, México
| | - Neetu Kushwah
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Paula Fontanet
- Division of Molecular and Cellular Neuroscience, Institute of Cellular Biology and Neuroscience (IBCN), CONICET-UBA, School of Medicine, Buenos Aires, Argentina
| | - Anthony J Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
45
|
Blischke K, Malangré A. Task Complexity Modulates Sleep-Related Offline Learning in Sequential Motor Skills. Front Hum Neurosci 2017; 11:374. [PMID: 28790905 PMCID: PMC5525265 DOI: 10.3389/fnhum.2017.00374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 07/03/2017] [Indexed: 11/13/2022] Open
Abstract
Recently, a number of authors have advocated the introduction of gross motor tasks into research on sleep-related motor offline learning. Such tasks are often designed to be more complex than traditional key-pressing tasks. However, until now, little effort has been undertaken to scrutinize the role of task complexity in any systematic way. Therefore, the effect of task complexity on the consolidation of gross motor sequence memory was examined by our group in a series of three experiments. Criterion tasks always required participants to produce unrestrained arm movement sequences by successively fitting a small peg into target holes on a pegboard. The sequences always followed a certain spatial pattern in the horizontal plane. The targets were visualized prior to each transport movement on a computer screen. The tasks differed with respect to sequence length and structural complexity. In each experiment, half of the participants initially learned the task in the morning and were retested 12 h later following a wake retention interval. The other half of the subjects underwent practice in the evening and was retested 12 h later following a night of sleep. The dependent variables were the error rate and total sequence execution time (inverse to the sequence execution speed). Performance generally improved during acquisition. The error rate was always low and remained stable during retention. The sequence execution time significantly decreased again following sleep but not after waking when the sequence length was long and structural complexity was high. However, sleep-related offline improvements were absent when the sequence length was short or when subjects performed a highly regular movement pattern. It is assumed that the occurrence of sleep-related offline performance improvements in sequential motor tasks is associated with a sufficient amount of motor task complexity.
Collapse
Affiliation(s)
- Klaus Blischke
- Laboratory of Training Science, Department of Sport Science, Training Science, Saarland UniversitySaarbrüecken, Germany
| | - Andreas Malangré
- Laboratory of Training Science, Department of Sport Science, Training Science, Saarland UniversitySaarbrüecken, Germany
| |
Collapse
|
46
|
Johnson BP, Scharf SM, Westlake KP. Targeted Memory Reactivation During Sleep, But Not Wake, Enhances Sensorimotor Skill Performance: A Pilot Study. J Mot Behav 2017. [PMID: 28644921 DOI: 10.1080/00222895.2017.1327411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The benefits of sleep on memory consolidation have been enhanced for declarative and motor sequence learning through replaying classically conditioned auditory stimuli during sleep, known as targeted memory reactivation (TMR). However, it is unknown if TMR can influence performance of a sensorimotor skill, in the absence of the cognitive requirements of sequence learning. Here, young adults performed a nondominant arm throwing task separated by a full night of sleep or a full day of wake, with half of all participants receiving TMR between sessions. Participants who received TMR during sleep demonstrated enhanced sensorimotor performance relative to all other groups. In conclusion, this pilot study indicates that it is feasible to influence sensorimotor skill performance through TMR during sleep and may serve as a future adjunct to physical rehabilitation. Future studies will aim to confirm the present results with a larger sample size as well as investigate the effects of TMR during sleep on older adults both with and without a history of stroke.
Collapse
Affiliation(s)
- Brian P Johnson
- a Department of Physical Therapy & Rehabilitation Science , University of Maryland , Baltimore
| | - Steven M Scharf
- b Sleep Disorders Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Maryland Medical Center , Baltimore
| | - Kelly P Westlake
- a Department of Physical Therapy & Rehabilitation Science , University of Maryland , Baltimore
| |
Collapse
|
47
|
Breton J, Robertson EM. Dual enhancement mechanisms for overnight motor memory consolidation. Nat Hum Behav 2017; 1:0111. [PMID: 29520375 PMCID: PMC5839513 DOI: 10.1038/s41562-017-0111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/10/2017] [Indexed: 12/04/2022]
Abstract
Our brains are constantly processing past events [1]. These off-line processes consolidate memories, leading in the case of motor skill memories to an enhancement in performance between training sessions. A similar magnitude of enhancement develops over a night of sleep following an implicit task, when a sequence of movements is acquired unintentionally, or following an explicit task, when the same sequence is acquired intentionally [2]. What remains poorly understood, however, is whether these similar offline improvements are supported by similar circuits, or through distinct circuits. We set out to distinguish between these possibilities by applying Transcranial Magnetic Stimulation (TMS), over the primary motor cortex (M1) or the inferior parietal lobule (IPL) immediately after learning in either the explicit or implicit task. These brain areas have both been implicated in encoding aspects of a motor sequence, and subsequently supporting offline improvements over sleep [3-5]. Here we show that offline improvements following the explicit task are dependent upon a circuit that includes M1 but not IPL. By contrast, offline improvements following the implicit task are dependent upon a circuit that includes IPL but not M1. Our work establishes the critical contribution made by M1 and IPL circuits to offline memory processing, and reveals that distinct circuits support similar offline improvements.
Collapse
Affiliation(s)
- Jocelyn Breton
- Institute of Neuroscience & Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, G12 8QB, UK
| | - Edwin M Robertson
- Institute of Neuroscience & Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, G12 8QB, UK
| |
Collapse
|
48
|
Fogel S, Albouy G, King BR, Lungu O, Vien C, Bore A, Pinsard B, Benali H, Carrier J, Doyon J. Reactivation or transformation? Motor memory consolidation associated with cerebral activation time-locked to sleep spindles. PLoS One 2017; 12:e0174755. [PMID: 28422976 PMCID: PMC5396873 DOI: 10.1371/journal.pone.0174755] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/14/2017] [Indexed: 01/03/2023] Open
Abstract
Motor memory consolidation is thought to depend on sleep-dependent reactivation of brain areas recruited during learning. However, up to this point, there has been no direct evidence to support this assertion in humans, and the physiological processes supporting such reactivation are unknown. Here, simultaneous electroencephalographic and functional magnetic resonance imaging (EEG-fMRI) recordings were conducted during post-learning sleep to directly investigate the spindle-related reactivation of a memory trace formed during motor sequence learning (MSL), and its relationship to overnight enhancement in performance (reflecting consolidation). We show that brain regions within the striato-cerebello-cortical network recruited during training on the MSL task, and in particular the striatum, were also activated during sleep, time-locked to spindles. Interestingly, the consolidated trace in the striatum was not simply strengthened, but was transformed/reorganized from rostrodorsal (associative) to caudoventral (sensorimotor) subregions. Moreover, the degree of the reactivation was correlated with overnight improvements in performance. Altogether, the present findings demonstrate that striatal reactivation linked to sleep spindles in the post-learning night, is related to motor memory consolidation.
Collapse
Affiliation(s)
- Stuart Fogel
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain & Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Genevieve Albouy
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Bradley R. King
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Ovidiu Lungu
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
| | - Catherine Vien
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Arnaud Bore
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
| | - Basile Pinsard
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Habib Benali
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Functional Neuroimaging Laboratory, INSERM, Paris, France
| | - Julie Carrier
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Centre D’études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, Quebec, Canada
| | - Julien Doyon
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
49
|
Canto CB, Onuki Y, Bruinsma B, van der Werf YD, De Zeeuw CI. The Sleeping Cerebellum. Trends Neurosci 2017; 40:309-323. [PMID: 28431742 DOI: 10.1016/j.tins.2017.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 12/24/2022]
Abstract
We sleep almost one-third of our lives and sleep plays an important role in critical brain functions like memory formation and consolidation. The role of sleep in cerebellar processing, however, constitutes an enigma in the field of neuroscience; we know little about cerebellar sleep-physiology, cerebro-cerebellar interactions during sleep, or the contributions of sleep to cerebellum-dependent memory consolidation. Likewise, we do not understand why cerebellar malfunction can lead to changes in the sleep-wake cycle and sleep disorders. In this review, we evaluate how sleep and cerebellar processing may influence one another and highlight which scientific routes and technical approaches could be taken to uncover the mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Cathrin B Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Yoshiyuki Onuki
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Bastiaan Bruinsma
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, VU University Medical Center, 1007 MC, Amsterdam, The Netherlands
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands; Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| |
Collapse
|
50
|
Reduced sleep spindle activity point to a TRN-MD thalamus-PFC circuit dysfunction in schizophrenia. Schizophr Res 2017; 180:36-43. [PMID: 27269670 PMCID: PMC5423439 DOI: 10.1016/j.schres.2016.05.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/23/2022]
Abstract
Sleep disturbances have been reliably reported in patients with schizophrenia, thus suggesting that abnormal sleep may represent a core feature of this disorder. Traditional electroencephalographic studies investigating sleep architecture have found reduced deep non-rapid eye movement (NREM) sleep, or slow wave sleep (SWS), and increased REM density. However, these findings have been inconsistently observed, and have not survived meta-analysis. By contrast, several recent EEG studies exploring brain activity during sleep have established marked deficits in sleep spindles in schizophrenia, including first-episode and early-onset patients, compared to both healthy and psychiatric comparison subjects. Spindles are waxing and waning, 12-16Hz NREM sleep oscillations that are generated within the thalamus by the thalamic reticular nucleus (TRN), and are then synchronized and sustained in the cortex. While the functional role of sleep spindles still needs to be fully established, increasing evidence has shown that sleep spindles are implicated in learning and memory, including sleep dependent memory consolidation, and spindle parameters have been associated to general cognitive ability and IQ. In this article we will review the EEG studies demonstrating sleep spindle deficits in patients with schizophrenia, and show that spindle deficits can predict their reduced cognitive performance. We will then present data indicating that spindle impairments point to a TRN-MD thalamus-prefrontal cortex circuit deficit, and discuss about the possible molecular mechanisms underlying thalamo-cortical sleep spindle abnormalities in schizophrenia.
Collapse
|