1
|
Yates JR. Pharmacological Treatments for Methamphetamine Use Disorder: Current Status and Future Targets. Subst Abuse Rehabil 2024; 15:125-161. [PMID: 39228432 PMCID: PMC11370775 DOI: 10.2147/sar.s431273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The illicit use of the psychostimulant methamphetamine (METH) is a major concern, with overdose deaths increasing substantially since the mid-2010s. One challenge to treating METH use disorder (MUD), as with other psychostimulant use disorders, is that there are no available pharmacotherapies that can reduce cravings and help individuals achieve abstinence. The purpose of the current review is to discuss the molecular targets that have been tested in assays measuring the physiological, the cognitive, and the reinforcing effects of METH in both animals and humans. Several drugs show promise as potential pharmacotherapies for MUD when tested in animals, but fail to produce long-term changes in METH use in dependent individuals (eg, modafinil, antipsychotic medications, baclofen). However, these drugs, plus medications like atomoxetine and varenicline, may be better served as treatments to ameliorate the psychotomimetic effects of METH or to reverse METH-induced cognitive deficits. Preclinical studies show that vesicular monoamine transporter 2 inhibitors, metabotropic glutamate receptor ligands, and trace amine-associated receptor agonists are efficacious in attenuating the reinforcing effects of METH; however, clinical studies are needed to determine if these drugs effectively treat MUD. In addition to screening these compounds in individuals with MUD, potential future directions include increased emphasis on sex differences in preclinical studies and utilization of pharmacogenetic approaches to determine if genetic variances are predictive of treatment outcomes. These future directions can help lead to better interventions for treating MUD.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY, USA
| |
Collapse
|
2
|
Bai X, Zhang K, Ou C, Mu Y, Chi D, Zhang J, Huang J, Li X, Zhang Y, Huang W, Ouyang H. AKAP150 from nucleus accumbens dopamine D1 and D2 receptor-expressing medium spiny neurons regulates morphine withdrawal. iScience 2023; 26:108227. [PMID: 37953959 PMCID: PMC10637943 DOI: 10.1016/j.isci.2023.108227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Dopamine D1 receptor-expressing medium spiny neurons (D1R-MSNs) and dopamine D2 receptor-expressing MSNs (D2R-MSNs) in nucleus accumbens (NAc) have been demonstrated to show different effects on reward and memory of abstinence. A-kinase anchoring protein 150 (AKAP150) expression in NAc is significantly upregulated and contributes to the morphine withdrawal behavior. However, the underlying mechanism of AKAP150 under opioid withdrawal remains unclear. In this study, AKAP150 expression in NAc is upregulated in naloxone-precipitated morphine withdrawal model, and knockdown of AKAP150 alleviates morphine withdrawal somatic signs and improves the performance of conditioned place aversion (CPA) test. AKAP150 in NAc D1R-MSNs is related to modulation of the performance of morphine withdrawal CPA test, while AKAP150 in NAc D2R-MSNs is relevant to the severity of somatic responses. Our results suggest that AKAP150 from D1R-MSNs or D2R-MSNs in NAc contributes to the developmental process of morphine withdrawal but plays different roles in aspects of behavior or psychology.
Collapse
Affiliation(s)
- Xiaohui Bai
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Chaopeng Ou
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yanyu Mu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Dongmei Chi
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jianxing Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jingxiu Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xile Li
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yingjun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Wan Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Handong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
3
|
Murnane KS, Edinoff AN, Cornett EM, Kaye AD. Updated Perspectives on the Neurobiology of Substance Use Disorders Using Neuroimaging. Subst Abuse Rehabil 2023; 14:99-111. [PMID: 37583934 PMCID: PMC10424678 DOI: 10.2147/sar.s362861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/27/2023] [Indexed: 08/17/2023] Open
Abstract
Substance use problems impair social functioning, academic achievement, and employability. Psychological, biological, social, and environmental factors can contribute to substance use disorders. In recent years, neuroimaging breakthroughs have helped elucidate the mechanisms of substance misuse and its effects on the brain. Functional magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance spectroscopy (MRS) are all examples. Neuroimaging studies suggest substance misuse affects executive function, reward, memory, and stress systems. Recent neuroimaging research attempts have provided clinicians with improved tools to diagnose patients who misuse substances, comprehend the complicated neuroanatomy and neurobiology involved, and devise individually tailored and monitorable treatment regimens for individuals with substance use disorders. This review describes the most recent developments in drug misuse neuroimaging, including the neurobiology of substance use disorders, neuroimaging, and substance use disorders, established neuroimaging techniques, recent developments with established neuroimaging techniques and substance use disorders, and emerging clinical neuroimaging technology.
Collapse
Affiliation(s)
- Kevin S Murnane
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - Amber N Edinoff
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| |
Collapse
|
4
|
Pirino BE, Kelley AM, Karkhanis AN, Barson JR. A critical review of effects on ethanol intake of the dynorphin/kappa opioid receptor system in the extended amygdala: From inhibition to stimulation. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1027-1038. [PMID: 37042026 PMCID: PMC10289127 DOI: 10.1111/acer.15078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023]
Abstract
The dynorphin (DYN)/kappa opioid receptor (KOR) system has increasingly been investigated as a possible pharmacotherapeutic target for alcohol use disorder, but findings on the direction of its effects have been mixed. Activation of KORs by DYN has been shown to elicit dysphoric effects, and the DYN/KOR system has canonically been considered particularly important in driving alcohol intake through negative reinforcement in dependent states. However, this review also highlights its activity in opposing the positive reinforcement that drives alcohol intake at earlier stages. Both DYN and KORs are concentrated in the extended amygdala, a set of interconnected regions that includes the bed nucleus of the stria terminalis, central nucleus of the amygdala, and nucleus accumbens shell. This review focuses on the role of the DYN/KOR system in the extended amygdala in ethanol use. It begins by examining the effects of ethanol on the expression of DYN/KOR in the extended amygdala, expression of DYN/KOR in alcohol-preferring and alcohol-avoiding animals, and the effects of knocking out DYN/KOR genes on ethanol intake. Then, it examines the effects on ethanol use in both dependent and nondependent states from systemic pharmacological manipulations of DYN/KOR and from specific manipulation of this system in regions of the extended amygdala. We propose that greater expression and binding of DYN/KOR, by reducing the positive reinforcement that drives early stages of intake, initially acts to prevent the escalation of ethanol drinking. However, prolonged, binge-like, or intermittent ethanol intake enhances levels of DYN/KOR in the extended amygdala such that the system ultimately facilitates the negative reinforcement that drives later stages of ethanol drinking. This review highlights the potential of the DYN/KOR system as a target that can affect different outcomes across different stages of ethanol drinking and the development of alcohol use disorder.
Collapse
Affiliation(s)
- Breanne E. Pirino
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, P.A. 19129
| | - Abigail M. Kelley
- Department of Psychology, Binghamton University – SUNY, Binghamton, N.Y. 13902
| | | | - Jessica R. Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, P.A. 19129
| |
Collapse
|
5
|
Amaral IM, Scheffauer L, Hofer A, El Rawas R. Protein kinases in natural versus drug reward. Pharmacol Biochem Behav 2022; 221:173472. [PMID: 36244528 DOI: 10.1016/j.pbb.2022.173472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Natural and drug rewards act on the same neural pathway, the mesolimbic dopaminergic system. In brain regions such as the nucleus accumbens and ventral tegmental area, drugs of abuse-induced stimulation of signaling pathways can lead to synaptic reshaping within this system. This is believed to be underlying the maladaptive alterations in behaviors associated with addiction. In this review, we discuss animal studies disclosing the implication of several protein kinases, namely protein kinase A (PKA), extracellular signal regulated kinase (ERK) mitogen-activated protein kinases (MAPK), p38 MAPK, and calcium/calmodulin-dependent kinase II (CaMKII), in reward-related brain regions in drug and natural reward. Furthermore, we refer to studies that helped pave the way toward a better understanding of the neurobiology underlying non-drug and drug reward through genetic deletion or brain region-specific pharmacological inhibition of these kinases. Whereas the role of kinases in drug reward has been extensively studied, their implication in natural reward, such as positive social interaction, is less investigated. Discovering molecular candidates, recruited specifically by drug versus natural rewards, can promote the identification of novel targets for the pharmacological treatment of addiction with less off-target effects and being effective when used combined with behavioral-based therapies.
Collapse
Affiliation(s)
- Inês M Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| | - Laura Scheffauer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| |
Collapse
|
6
|
Amaral IM, Hofer A, El Rawas R. Implication of Extracellular Signal-Regulated Kinase in the Expression of Natural Reward: Evidence Not Found. Front Behav Neurosci 2022; 16:856675. [PMID: 35368299 PMCID: PMC8973696 DOI: 10.3389/fnbeh.2022.856675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies have implicated extracellular signal-regulated kinase (ERK) in drug-rewarding properties. Yet, only few investigated whether ERK also mediates the naturally rewarding stimuli. In this study, we compared ERK activation in the nucleus accumbens (NAc) after cocaine reward and after positive social interaction (SI) with a partner-reward in male rats. With our protocol, ERK phosphorylation in the NAc was not increased after cocaine reward. In addition, the interaction with a social partner did not alter ERK activation in the NAc. These results suggest that ERK in the NAc may not be involved in natural reward learning. SI in an alternative context to the one associated with drugs of abuse can abolish drug preference. Given that intra-NAc core ERK inhibition impaired the expression of cocaine preference, we wanted to investigate whether the protective effects of SI when an individual is allowed to interact with a social partner in an alternative context to the one associated with drugs during the learning phase are enhanced by ERK inhibition. For that, U0126 was bilaterally infused into the NAc core of rats conditioned with cocaine in one context and with SI in the opposite context before assessing the expression of reward-related learning. Intra-NAc core ERK inhibition was ineffective to impair the expression of drug reward as previously demonstrated, when a social partner was available in an alternative context. Thus, the effects of the pharmacological manipulations based on decreasing ERK activity are not cumulative to other treatments for drug addiction based on SI.
Collapse
Affiliation(s)
| | | | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Marrocu A, Giacobbe J, Pariante CM, Borsini A. The Molecular Neurobiology of Addiction. ENCYCLOPEDIA OF BEHAVIORAL NEUROSCIENCE, 2ND EDITION 2022:695-703. [DOI: 10.1016/b978-0-12-819641-0.00084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Amaral IM, Scheffauer L, Langeder AB, Hofer A, El Rawas R. Rewarding Social Interaction in Rats Increases CaMKII in the Nucleus Accumbens. Biomedicines 2021; 9:1886. [PMID: 34944702 PMCID: PMC8698734 DOI: 10.3390/biomedicines9121886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is known to be involved in the sensitized locomotor responses and drug-seeking behavior to psychostimulants. However, little is known about the contribution of CaMKII signaling in the nucleus accumbens (NAc) in natural rewards such as social interaction. The present experiments explored the implication of CaMKII signaling in drug versus natural reward. In the NAc of rats expressing cocaine or social interaction conditioned place preference (CPP), αCaMKII activation was induced in those expressing social interaction but not cocaine CPP. In order to investigate the role of NAc CaMKII in the expression of reward-related learning of drug versus non-drug stimuli, we inhibited CaMKII through an infusion of KN-93, a CaMKII inhibitor, directly into the NAc shell or core, before the CPP test in a concurrent paradigm in which social interaction was made available in the compartment alternative to the one associated with cocaine during conditioning. Whereas vehicle infusions led to equal preference to both stimuli, inhibition of CaMKII by a KN-93 infusion before the CPP test in the shell but not the core of the NAc shifted the rats' preference toward the cocaine-associated compartment. Altogether, these results suggest that social interaction reward engages CaMKII in the NAc.
Collapse
Affiliation(s)
| | | | | | | | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (L.S.); (A.B.L.); (A.H.)
| |
Collapse
|
9
|
Amaral IM, Lemos C, Cera I, Dechant G, Hofer A, El Rawas R. Involvement of cAMP-Dependent Protein Kinase in the Nucleus Accumbens in Cocaine Versus Social Interaction Reward. Int J Mol Sci 2020; 22:E345. [PMID: 33396297 PMCID: PMC7794935 DOI: 10.3390/ijms22010345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Evidence suggests that PKA activity in the nucleus accumbens (NAc) plays an essential role in reward-related learning. In this study, we investigated whether PKA is differentially involved in the expression of learning produced by either natural reinforcers or psychostimulants. For that purpose, we inhibited PKA through a bilateral infusion of Rp-cAMPS, a specific PKA inhibitor, directly into the NAc. The effects of PKA inhibition in the NAc on the expression of concurrent conditioned place preference (CPP) for cocaine (drug) and social interaction (natural reward) in rats were evaluated. We found that PKA inhibition increased the expression of cocaine preference. This effect was not due to altered stress levels or decreased social reward. PKA inhibition did not affect the expression of natural reward as intra-NAc Rp-cAMPS infusion did not affect expression of social preference. When rats were trained to express cocaine or social interaction CPP and tested for eventual persisting preference 7 and 14 days after CPP expression, cocaine preference was persistent, but social preference was abolished after the first test. These results suggest that PKA in the NAc is involved in drug reward learning that might lead to addiction and that only drug, but not natural, reward is persistent.
Collapse
Affiliation(s)
- Inês M. Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| | - Cristina Lemos
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| | - Isabella Cera
- Institute for Neuroscience, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.C.); (G.D.)
| | - Georg Dechant
- Institute for Neuroscience, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.C.); (G.D.)
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| |
Collapse
|
10
|
Wright WJ, Dong Y. Psychostimulant-Induced Adaptations in Nucleus Accumbens Glutamatergic Transmission. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a039255. [PMID: 31964644 DOI: 10.1101/cshperspect.a039255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Carrying different aspects of emotional and motivational signals, glutamatergic synaptic projections from multiple limbic and paralimbic brain regions converge to the nucleus accumbens (NAc), in which these arousing signals are processed and prioritized for behavioral output. In animal models of drug addiction, some key drug-induced alterations at NAc glutamatergic synapses underlie important cellular and circuit mechanisms that promote subsequent drug taking, seeking, and relapse. With the focus of cocaine, we review changes at NAc glutamatergic synapses that occur after different drug procedures and abstinence durations, and the behavioral impact of these changes.
Collapse
Affiliation(s)
- William J Wright
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
11
|
Brown RW, Bhide PG, Gill WD, Peeters LD. The adenosine A(2A) receptor agonist CGS 21680 alleviates auditory sensorimotor gating deficits and increases in accumbal CREB in rats neonatally treated with quinpirole. Psychopharmacology (Berl) 2020; 237:3519-3527. [PMID: 32772144 PMCID: PMC7686116 DOI: 10.1007/s00213-020-05631-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
RATIONALE AND OBJECTIVE The adenosine A(2A) receptor forms a mutually inhibitory heteromer with the dopamine D2 receptor, and A(2A) agonists decrease D2 signaling. This study analyzed whether an adenosine A(2A) agonist would alleviate deficits in sensorimotor gating and increases in cyclic-AMP response element binding protein (CREB) in the nucleus accumbens (NAc) in the neonatal quinpirole model of schizophrenia (SZ). METHODS Male and female Sprague-Dawley rats were neonatally treated with saline (NS) or quinpirole HCl (NQ; 1 mg/kg) from postnatal days (P) 1-21. Animals were raised to P44 and behaviorally tested on auditory sensorimotor gating as measured through prepulse inhibition (PPI) from P44 to P48. Approximately 15 min before each session, animals were given an ip administration of saline or the adenosine A(2A) agonist CGS 21680 (0.03 or 0.09 mg/kg). One day after PPI was complete on P49, animals were administered a locomotor activity test in the open field after saline or CGS 21680 treatment, respectively. On P50, the nucleus accumbens (NAc) was evaluated for CREB protein. RESULTS NQ-treated rats demonstrated a deficit in PPI that was alleviated to control levels by either dose of CGS 21680. The 0.03 mg/kg dose of CGS 21680 increased startle amplitude in males. The 0.09 mg/kg dose of CGS 21680 resulted in an overall decrease in locomotor activity. NQ treatment significantly increased NAc CREB that was attenuated to control levels by either dose of CGS 21680. CONCLUSIONS This study revealed that an adenosine A(2A) receptor agonist was effective to alleviate PPI deficits in the NQ model of SZ in both male and female rats.
Collapse
Affiliation(s)
- Russell W. Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine East Tennessee State University Johnson City, TN 37614
| | - Pradeep G. Bhide
- Department of Biomedical Sciences and Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306
| | - W. Drew Gill
- Department of Biomedical Sciences, James H. Quillen College of Medicine East Tennessee State University Johnson City, TN 37614
| | - Loren D. Peeters
- Department of Biomedical Sciences, James H. Quillen College of Medicine East Tennessee State University Johnson City, TN 37614
| |
Collapse
|
12
|
Grigsby KB, Childs TE, Booth FW. The role of nucleus accumbens CREB attenuation in rescuing low voluntary running behavior in female rats. J Neurosci Res 2020; 98:2302-2316. [PMID: 32725625 DOI: 10.1002/jnr.24698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 01/30/2023]
Abstract
Given the integral role of nucleus accumbens (NAc) cAMP response element binding protein (CREB) activity in motivational processes, the goal of the current study was to determine whether blunting chronic NAc CREB activity could rescue the low physical activity motivation of female, low voluntary running (LVR) rats. NAc CREB phosphorylation is elevated in these rats, a state previously attributed to deficits in reward valuation. It was recently shown that overexpression of the upstream CREB inhibitor, protein kinase inhibitor alpha (PKIα), increased LVR nightly running by ~threefold. Therefore, the current study addresses the extent to which NAc CREB attenuation influences female LVR and wild-type (WT) wheel-running behavior. Inducible reductions in NAc neuronal activity using Gi-coupled hM4Di DREADDs increased running behavior in LVR, but not in WT, rats. Similarly, site-directed pharmacological inhibition of NAc CREB activity significantly increased LVR nightly running distance and time by ~twofold, with no effect in WT rats. Finally, environmentally enriched LVR rats exhibit higher levels of running compared to socially isolated rats in what appeared to be a CREB-related manner. Considering the positive outcomes of upstream CREB modulation and environmental enrichment on LVR behavior, we believe that blunting NAc CREB activity has the neuromolecular potential to partially reverse low physical activity motivation, as exemplified by the LVR model. The positive physical activity outcome of early life enrichment adds translatable value to human childhood enrichment and highlights its importance on motivational processes later in life.
Collapse
Affiliation(s)
- Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
- Department of Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Allostatic Changes in the cAMP System Drive Opioid-Induced Adaptation in Striatal Dopamine Signaling. Cell Rep 2020; 29:946-960.e2. [PMID: 31644915 PMCID: PMC6871051 DOI: 10.1016/j.celrep.2019.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/29/2019] [Accepted: 09/12/2019] [Indexed: 01/06/2023] Open
Abstract
Opioids are powerful addictive agents that alter dopaminergic influence
on reward signaling in medium spiny neurons (MSNs) of the nucleus accumbens.
Repeated opioid exposure triggers adaptive changes, shifting reward valuation to
the allostatic state underlying tolerance. However, the cellular substrates and
molecular logic underlying such allostatic changes are not well understood.
Here, we report that the plasticity of dopamine-induced cyclic AMP (cAMP)
signaling in MSNs serves as a cellular substrate for drug-induced allostatic
adjustments. By recording cAMP responses to optically evoked dopamine in brain
slices from mice subjected to various opioid exposure paradigms, we define
profound neuronal-type-specific adaptations. We find that opioid exposure pivots
the initial hyper-responsiveness of D1-MSNs toward D2-MSN dominance as
dependence escalates. Presynaptic dopamine transporters and postsynaptic
phosphodiesterases critically enable cell-specific adjustments of cAMP that
control the balance between opponent D1-MSN and D2-MSN channels. We propose a
quantitative model of opioid-induced allostatic adjustments in cAMP signal
strength that balances circuit activity. Muntean et al. examine how opioid exposure influences cyclic AMP (cAMP)
responses to dopamine in striatal medium spiny neurons (MSNs). They describe
allostatic adaptations in the processing of dopaminergic signals by D1-MSN and
D2-MSN populations as opioid administration progresses from acute exposure to
chronic use, and they define molecular elements contributing to the process.
Collapse
|
14
|
Abstract
Drugs of abuse can modify gene expression in brain reward and motivation centers,
which contribute to the structural and functional remodeling of these circuits that
impacts the emergence of a state of addiction. Our understanding of how addictive drugs
induce transcriptomic plasticity in addiction-relevant brain regions, particularly in
the striatum, has increased dramatically in recent years. Intracellular signaling
machineries, transcription factors, chromatin modifications, and regulatory noncoding
RNAs have all been implicated in the mechanisms through which addictive drugs act in the
brain. Here, we briefly summarize some of the molecular mechanisms through which drugs
of abuse can exert their transcriptional effects in the brain region, with an emphasis
on the role for microRNAs in this process.
Collapse
Affiliation(s)
- Purva Bali
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
15
|
Domínguez-Ordóñez R, García-Juárez M, Lima-Hernández FJ, Gómora-Arrati P, Domínguez-Salazar E, Luna-Hernández A, Hoffman KL, Blaustein JD, Etgen AM, González-Flores O. Protein kinase inhibitors infused intraventricularly or into the ventromedial hypothalamus block short latency facilitation of lordosis by oestradiol. J Neuroendocrinol 2019; 31:e12809. [PMID: 31715031 DOI: 10.1111/jne.12809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/27/2022]
Abstract
An injection of unesterified oestradiol (E2 ) facilitates receptive behaviour in E2 benzoate (EB)-primed, ovariectomised female rats when it is administered i.c.v. or systemically. The present study tested the hypothesis that inhibitors of protein kinase A (PKA), protein kinase G (PKG) or the Src/mitogen-activated protein kinase (MAPK) complex interfere with E2 facilitation of receptive behaviour. In Experiment 1, lordosis induced by i.c.v. infusion of E2 was significantly reduced by i.c.v. administration of Rp-cAMPS, a PKA inhibitor, KT5823, a PKG inhibitor, and PP2 and PD98059, Src and MAPK inhibitors, respectively, between 30 and 240 minutes after infusion. In Experiment 2, we determined whether the ventromedial hypothalamus (VMH) is one of the neural sites at which those intracellular pathways participate in lordosis behaviour induced by E2 . Administration of each of the four protein kinase inhibitors into the VMH blocked facilitation of lordosis induced by infusion of E2 also into the VMH. These data support the hypothesis that activation of several protein kinase pathways is involved in the facilitation of lordosis by E2 in EB-primed rats.
Collapse
Affiliation(s)
- Raymundo Domínguez-Ordóñez
- Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Mexico
- Department of Psychological and Brain Sciences, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, USA
| | - Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Francisco J Lima-Hernández
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Porfirio Gómora-Arrati
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Emilio Domínguez-Salazar
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, México
| | - Ailyn Luna-Hernández
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Kurt L Hoffman
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Jeffrey D Blaustein
- Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Tecamachalco, Mexico
- Department of Psychological and Brain Sciences, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, USA
| | - Anne M Etgen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Iztapalapa, México
| |
Collapse
|
16
|
Khaleghzadeh-Ahangar H, Khodagholi F, Shaerzadeh F, Haghparast A. Modulatory role of the intra-accumbal CB1 receptor in protein level of the c-fos and pCREB/CREB ratio in the nucleus accumbens and ventral tegmental area in extinction and morphine seeking in the rats. Brain Res Bull 2018; 142:320-327. [PMID: 30170186 DOI: 10.1016/j.brainresbull.2018.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/26/2018] [Accepted: 08/25/2018] [Indexed: 11/30/2022]
Abstract
Brain reward and motivation circuit begin from the ventral tegmental area (VTA) that its dopaminergic terminals project to various regions of the brain including the nucleus accumbens (NAc). This reward circuit is influenced by drugs of abuse such as morphine and cannabinoid. The present study tried to investigate the role of the intra-accumbal CB1 receptor in the c-fos level and pCREB/CREB ratio in the NAc and the VTA during reinstatement phase of morphine-induced conditioned place preference (CPP) by western blotting. The present data reveals that intra-accumbal administration of CB1 agonist, WIN55,212-2 (0.5, 1 and 2 mM/0.5 μl DMSO) before/during extinction period of morphine-induced CPP, significantly decreased the NAc and the VTA c-fos protein level in the reinstatement phase; whereas the pre-reinstatement administration of the CB1 agonist, increased the c-fos protein level. Intra-accumbal administration of the CB1 agonist during the extinction period of morphine-induced CPP reduced the pCREB/CREB ratio in the NAc. Also, the present data show that intra-accumbal administration of CB1 antagonist, AM251 (15, 45 and 90 μM/0.5 μl DMSO) during/after extinction period of morphine-induced CPP affects the NAc and the VTA c-fos protein level in the reinstatement phase. Also, intra-NAc microinjection of AM251 during the extinction period reduced pCREB/CREB ratio in these regions. In conclusion, the results presented here provide compelling evidence of the modulation and involvement of the c-fos and the CREB molecules in the cannabinoid-opioid interaction of the brain reward system in the CPP paradigm.
Collapse
MESH Headings
- Animals
- Benzoxazines/pharmacology
- Cannabinoid Receptor Modulators/pharmacology
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dose-Response Relationship, Drug
- Drug-Seeking Behavior/drug effects
- Drug-Seeking Behavior/physiology
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- Male
- Morphine/pharmacology
- Morphine Dependence/metabolism
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Narcotics/pharmacology
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Phosphorylation
- Piperidines/pharmacology
- Proto-Oncogene Proteins c-fos/metabolism
- Pyrazoles/pharmacology
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- Hossein Khaleghzadeh-Ahangar
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran
| | - Fatemeh Shaerzadeh
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, 32610, USA
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
17
|
Cocker PJ, Lin MY, Tremblay M, Kaur S, Winstanley CA. The β-adrenoceptor blocker propranolol ameliorates compulsive-like gambling behaviour in a rodent slot machine task: implications for iatrogenic gambling disorder. Eur J Neurosci 2018; 50:2401-2414. [PMID: 30019362 DOI: 10.1111/ejn.14070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 01/22/2023]
Abstract
Previous work has shown that chronic administration of the dopamine D2/3 receptor agonist ropinirole invigorates performance on a rodent slot machine task (rSMT). This behavioural change appears superficially similar to the iatrogenic gambling disorder (GD) observed in a sub-set of patients with Parkinson's disease (PD), and has been associated with increased activation of the intra-cellular signalling proteins GSK3β and CREB in the striatum. Here, we wanted to determine whether this response to ropinirole could be attenuated by targeting these signalling proteins, and if the loss of dopaminergic innervation characteristic of PD would alter ropinirole's effects on the rSMT. Male Long Evans rats were trained on the rSMT. Dopaminergic terminals innervating the dorsolateral striatum were then lesioned bilaterally using the neurotoxin 6-hydroxydopamine hydrochloride (6-OHDA). Subsequently animals were implanted with osmotic mini-pumps delivering ropinirole. Lastly, animals were given dietary lithium (Li+ ), to inhibit the activation of GSK3β, or injections of the ß-adrenoceptor antagonist propranolol, which potently inhibits CREB as a secondary mechanism of action, and any changes in ropinirole-induced increases in compulsive-like engagement in the rSMT evaluated. Chronic ropinirole increased the number of trials animals completed, reproducing our original finding. This increase in task engagement was not altered in animals with 6-OHDA lesions, a putative model of early PD. In addition, the effects of ropinirole were not attenuated by administration of Li+ , but were ameliorated by propranolol. These data suggest that propranolol may represent a potential pharmacotherapy for the treatment of iatrogenic gambling.
Collapse
Affiliation(s)
- P J Cocker
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - M Y Lin
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - M Tremblay
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - S Kaur
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - C A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Somalwar AR, Choudhary AG, Sharma PR, B. N, Sagarkar S, Sakharkar AJ, Subhedar NK, Kokare DM. Cocaine- and amphetamine-regulated transcript peptide (CART) induced reward behavior is mediated via Gi/o dependent phosphorylation of PKA/ERK/CREB pathway. Behav Brain Res 2018; 348:9-21. [DOI: 10.1016/j.bbr.2018.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 12/28/2022]
|
19
|
Grigsby KB, Ruegsegger GN, Childs TE, Booth FW. Overexpression of Protein Kinase Inhibitor Alpha Reverses Rat Low Voluntary Running Behavior. Mol Neurobiol 2018; 56:1782-1797. [PMID: 29931508 DOI: 10.1007/s12035-018-1171-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022]
Abstract
A gene was sought that could reverse low voluntary running distances in a model of low voluntary wheel-running behavior. In order to confirm the low motivation to wheel-run in our model does not result from defects in reward valuation, we employed sucrose preference and conditioned place preference for voluntary wheel-access. We observed no differences between our model and wild-type rats regarding the aforementioned behavioral testing. Instead, low voluntary runners seemed to require less running to obtain similar rewards for low voluntary running levels compared to wild-type rats. Previous work in our lab identified protein kinase inhibitor alpha as being lower in low voluntary running than wild-type rats. Next, nucleus accumbens injections of an adenoviral-associated virus that overexpressed the protein kinase inhibitor alpha gene increased running distance in low voluntary running, but not wild-type rats. Endogenous mRNA levels for protein kinase inhibitor alpha, dopamine receptor D1, dopamine receptor D2, and Fos were all only lower in wild-type rats following overexpression compared to low voluntary runners, suggesting a potential molecular and behavioral resistance in wild-type rats. Utilizing a nucleus accumbens preparation, three intermediate early gene mRNAs increased in low voluntary running slices after dopamine receptor agonist SKF-38393 exposure, while wild-type had no response. In summary, the results suggest that protein kinase inhibitor alpha is a promising gene candidate to partially rescue physical activity in the polygenic model of low voluntary running. Importantly, there were divergent molecular responses to protein kinase inhibitor alpha overexpression in low voluntary runners compared to wild-type rats.
Collapse
Affiliation(s)
- Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA.,Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN, 55905, USA
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA. .,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA. .,Department of Physiology, University of Missouri, Columbia, MO, 65211, USA. .,Dalton Cardiovascular Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
20
|
Zhang L, Kibaly C, Wang YJ, Xu C, Song KY, McGarrah PW, Loh HH, Liu JG, Law PY. Src-dependent phosphorylation of μ-opioid receptor at Tyr 336 modulates opiate withdrawal. EMBO Mol Med 2018; 9:1521-1536. [PMID: 28818835 PMCID: PMC5666313 DOI: 10.15252/emmm.201607324] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Opiate withdrawal/negative reinforcement has been implicated as one of the mechanisms for the progression from impulsive to compulsive drug use. Increase in the intracellular cAMP level and protein kinase A (PKA) activities within the neurocircuitry of addiction has been a leading hypothesis for opiate addiction. This increase requires the phosphorylation of μ‐opioid receptor (MOR) at Tyr336 by Src after prolonged opiate treatment in vitro. Here, we report that the Src‐mediated MOR phosphorylation at Tyr336 is a prerequisite for opiate withdrawal in mice. We observed the recruitment of Src in the vicinity of MOR and an increase in phosphorylated Tyr336 (pY336) levels during naloxone‐precipitated withdrawal. The intracerebroventricular or stereotaxic injection of a Src inhibitor (AZD0530), or Src shRNA viruses attenuated pY336 levels, and several somatic withdrawal signs. This was also observed in Fyn−/− mice. The stereotaxic injection of wild‐type MOR, but not mutant (Y336F) MOR, lentiviruses into the locus coeruleus of MOR−/− mice restored somatic withdrawal jumping. Regulating pY336 levels during withdrawal might be a future target for drug development to prevent opiate addictive behaviors.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Cherkaouia Kibaly
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yu-Jun Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai, China
| | - Chi Xu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kyu Young Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Patrick W McGarrah
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jing-Gen Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai, China
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
21
|
Xiong L, Meng Q, Sun X, Lu X, Fu Q, Peng Q, Yang J, Oh KW, Hu Z. Cocaine- and amphetamine-regulated transcript peptide in the nucleus accumbens shell inhibits cocaine-induced locomotor sensitization to transient over-expression of α-Ca 2+ /calmodulin-dependent protein kinase II. J Neurochem 2018; 146:289-303. [PMID: 29313985 DOI: 10.1111/jnc.14289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 11/29/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter that attenuates cocaine-induced locomotor activity when injected into the nucleus accumbens (NAc). Our previous work first confirmed that the inhibitory mechanism of the CART peptide on cocaine-induced locomotor activity is related to a reduction in cocaine-enhanced phosphorylated Ca2+ /calmodulin-dependent protein kinaseIIα (pCaMKIIα) and the enhancement of cocaine-induced D3R function. This study investigated whether CART peptide inhibited cocaine-induced locomotor activity via inhibition of interactions between pCaMKIIα and the D3 dopamine receptor (D3R). We demonstrated that lentivirus-mediated gene transfer transiently increased pCaMKIIα expression, which peaked at 10 days after microinjection into the rat NAc shell, and induced a significant increase in Ca2+ influx along with greater behavioral sensitivity in the open field test after intraperitoneal injections of cocaine (15 mg/kg). However, western blot analysis and coimmunoprecipitation demonstrated that CART peptide treatment in lentivirus-transfected CaMKIIα-over-expressing NAc rat tissues or cells prior to cocaine administration inhibited the cocaine-induced Ca2+ influx and attenuated the cocaine-increased pCaMKIIα expression in lentivirus-transfected CaMKIIα-over-expressing cells. CART peptide decreased the cocaine-enhanced phosphorylated cAMP response element binding protein (pCREB) expression via inhibition of the pCaMKIIα-D3R interaction, which may account for the prolonged locomotor sensitization induced by repeated cocaine treatment in lentivirus-transfected CaMKIIα-over-expressing cells. These results provide strong evidence for the inhibitory modulation of CART peptide in cocaine-induced locomotor sensitization. Cover Image for this issue: doi: 10.1111/jnc.14187.
Collapse
Affiliation(s)
- Lixia Xiong
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Qing Meng
- Queen Mary Institute, School of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Xi Sun
- Anhui Sinobioway Cell Therapy CO., LTD, Hefei, Anhui, China
| | - Xiangtong Lu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Fu
- Department of Respiration, The Fourth Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.,Department of Respiration, Department Two, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Qinghua Peng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Yang
- Department of Physiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Zhenzhen Hu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Province Key laboratory of Tumor Pathogens and Molecular Pathology and the Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical College, Nanchang, China
| |
Collapse
|
22
|
Guercio LA, Hofmann ME, Swinford-Jackson SE, Sigman JS, Wimmer ME, Dell'Acqua ML, Schmidt HD, Pierce RC. A-Kinase Anchoring Protein 150 (AKAP150) Promotes Cocaine Reinstatement by Increasing AMPA Receptor Transmission in the Accumbens Shell. Neuropsychopharmacology 2018; 43:1395-1404. [PMID: 29317777 PMCID: PMC5916366 DOI: 10.1038/npp.2017.297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/08/2022]
Abstract
Previous work indicated that activation of D1-like dopamine receptors (D1DRs) in the nucleus accumbens shell promoted cocaine seeking through a process involving the activation of PKA and GluA1-containing AMPA receptors (AMPARs). A-kinase anchoring proteins (AKAPs) localize PKA to AMPARs leading to enhanced phosphorylation of GluA1. AKAP150, the most well-characterized isoform, plays an important role in several forms of neuronal plasticity. However, its involvement in drug addiction has been minimally explored. Here we examine the role of AKAP150 in cocaine reinstatement, an animal model of relapse. We show that blockade of PKA binding to AKAPs in the nucleus accumbens shell of Sprague-Dawley rats attenuates reinstatement induced by either cocaine or a D1DR agonist. Moreover, this effect is specific to AKAP150, as viral overexpression of a PKA-binding deficient mutant of AKAP150 also impairs cocaine reinstatement. This viral-mediated attenuation of cocaine reinstatement was accompanied by decreased phosphorylation of GluA1-containing AMPARs and attenuated AMPAR eEPSCs. Collectively, these results suggest that AKAP150 facilitates the reinstatement of cocaine-seeking behavior by amplifying D1DR/PKA-dependent AMPA transmission in the nucleus accumbens.
Collapse
Affiliation(s)
- Leonardo A Guercio
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mackenzie E Hofmann
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Swinford-Jackson
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia S Sigman
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathieu E Wimmer
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Heath D Schmidt
- Department for Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - R Christopher Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Smith ACW, Kenny PJ. MicroRNAs regulate synaptic plasticity underlying drug addiction. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12424. [PMID: 28873276 PMCID: PMC5837931 DOI: 10.1111/gbb.12424] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/11/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
Abstract
Chronic use of drugs of abuse results in neurochemical, morphological and behavioral plasticity that underlies the emergence of compulsive drug seeking and vulnerability to relapse during periods of attempted abstinence. Identifying and reversing addiction-relevant plasticity is seen as a potential point of pharmacotherapeutic intervention in drug-addicted individuals. Despite considerable advances in our understanding of the actions of drugs of abuse in the brain, this information has thus far yielded few novel treatment options addicted individuals. MicroRNAs are small noncoding RNAs that can each regulate the translation of hundreds to thousands of messenger RNAs. The highly pleiotropic nature of miRNAs has focused attention on their contribution to addiction-relevant structural and functional plasticity in the brain and their potential utility as targets for medications development. In this review, we discuss the roles of miRNAs in synaptic plasticity underlying the development of addiction and then briefly discuss the possibility of using circulating miRNA as biomarkers for addiction.
Collapse
Affiliation(s)
- A. C. W. Smith
- The Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P. J. Kenny
- The Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
24
|
In silico identification and in vivo validation of miR-495 as a novel regulator of motivation for cocaine that targets multiple addiction-related networks in the nucleus accumbens. Mol Psychiatry 2018; 23:434-443. [PMID: 28044061 PMCID: PMC5495632 DOI: 10.1038/mp.2016.238] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression and are implicated in the etiology of several neuropsychiatric disorders, including substance use disorders (SUDs). Using in silico genome-wide sequence analyses, we identified miR-495 as a miRNA whose predicted targets are significantly enriched in the Knowledgebase for Addiction Related Genes (ARG) database (KARG; http://karg.cbi.pku.edu.cn). This small non-coding RNA is also highly expressed within the nucleus accumbens (NAc), a pivotal brain region underlying reward and motivation. Using luciferase reporter assays, we found that miR-495 directly targeted the 3'UTRs of Bdnf, Camk2a and Arc. Furthermore, we measured miR-495 expression in response to acute cocaine in mice and found that it is downregulated rapidly and selectively in the NAc, along with concomitant increases in ARG expression. Lentiviral-mediated miR-495 overexpression in the NAc shell (NAcsh) not only reversed these cocaine-induced effects but also downregulated multiple ARG mRNAs in specific SUD-related biological pathways, including those that regulate synaptic plasticity. miR-495 expression was also downregulated in the NAcsh of rats following cocaine self-administration. Most importantly, we found that NAcsh miR-495 overexpression suppressed the motivation to self-administer and seek cocaine across progressive ratio, extinction and reinstatement testing, but had no effect on food reinforcement, suggesting that miR-495 selectively affects addiction-related behaviors. Overall, our in silico search for post-transcriptional regulators identified miR-495 as a novel regulator of multiple ARGs that have a role in modulating motivation for cocaine.
Collapse
|
25
|
Adams WK, Barrus MM, Zeeb FD, Cocker PJ, Benoit J, Winstanley CA. Dissociable effects of systemic and orbitofrontal administration of adrenoceptor antagonists on yohimbine-induced motor impulsivity. Behav Brain Res 2017; 328:19-27. [PMID: 28344096 DOI: 10.1016/j.bbr.2017.03.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 01/17/2023]
Abstract
The α2-adrenoceptor antagonist, yohimbine, is commonly used as a pharmacological stressor. Its behavioural effects are typically attributed to elevated noradrenaline release via blockade of central, inhibitory autoreceptors. We have previously reported that yohimbine increases motor impulsivity in rats on the five-choice serial reaction time task (5CSRTT), a cognitive behavioural assessment which measures motor impulsivity and visuospatial attention. Furthermore, this effect depended on cyclic adenomonophosphate (cAMP) signalling via cAMP response element binding (CREB) protein in the orbitofrontal cortex (OFC). However, the role of specific adrenoceptors in this effect is not well-characterised. We therefore investigated whether the pro-impulsive effects of systemic yohimbine could be reproduced by direct administration into the OFC, or attenuated by intra-OFC or systemic administration of prazosin and propranolol-antagonists at the α1- and β-adrenoceptor, respectively. Male Long-Evans rats were trained on the 5CSRTT and implanted with guide cannulae aimed at the OFC. Systemically administered α1- or β-adrenoceptor antagonists attenuated yohimbine-induced increases in premature responding. In contrast, local infusion of yohimbine into the OFC reduced such impulsive responding, while blockade of α1- or β-adrenoceptors within the OFC had no effect on either basal or yohimbine-stimulated motor impulsivity. Direct administration of selective antagonists at the α1-, α2- or β-adrenoceptor into the OFC therefore produce clearly dissociable effects from systemic administration. Collectively, these data suggest that the pro-impulsivity effect of yohimbine can be modulated by adrenergic signalling in brain areas outside of the OFC, in addition to non-adrenergic signalling pathways within the OFC.
Collapse
Affiliation(s)
- Wendy K Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; UBC Institute of Mental Health, University of British Columbia, Vancouver, BC, Canada
| | - Michael M Barrus
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Fiona D Zeeb
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Paul J Cocker
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - James Benoit
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; UBC Institute of Mental Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Crofton EJ, Nenov MN, Zhang Y, Scala F, Page SA, McCue DL, Li D, Hommel JD, Laezza F, Green TA. Glycogen synthase kinase 3 beta alters anxiety-, depression-, and addiction-related behaviors and neuronal activity in the nucleus accumbens shell. Neuropharmacology 2017; 117:49-60. [PMID: 28126496 DOI: 10.1016/j.neuropharm.2017.01.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/15/2017] [Accepted: 01/22/2017] [Indexed: 11/24/2022]
Abstract
Psychiatric disorders such as anxiety, depression and addiction are often comorbid brain pathologies thought to share common mechanistic biology. As part of the cortico-limbic circuit, the nucleus accumbens shell (NAcSh) plays a fundamental role in integrating information in the circuit, such that modulation of NAcSh circuitry alters anxiety, depression, and addiction-related behaviors. Intracellular kinase cascades in the NAcSh have proven important mediators of behavior. To investigate glycogen-synthase kinase 3 (GSK3) beta signaling in the NAcSh in vivo we knocked down GSK3beta expression with a novel adeno-associated viral vector (AAV2) and assessed changes in anxiety- and depression-like behavior and cocaine self-administration in GSK3beta knockdown rats. GSK3beta knockdown reduced anxiety-like behavior while increasing depression-like behavior and cocaine self-administration. Correlative electrophysiological recordings in acute brain slices were used to assess the effect of AAV-shGSK3beta on spontaneous firing and intrinsic excitability of tonically active interneurons (TANs), cells required for input and output signal integration in the NAcSh and for processing reward-related behaviors. Loose-patch recordings showed that TANs transduced by AAV-shGSK3beta exhibited reduction in tonic firing and increased spike half width. When assessed by whole-cell patch clamp recordings these changes were mirrored by reduction in action potential firing and accompanied by decreased hyperpolarization-induced depolarizing sag potentials, increased action potential current threshold, and decreased maximum rise time. These results suggest that silencing of GSK3beta in the NAcSh increases depression- and addiction-related behavior, possibly by decreasing intrinsic excitability of TANs. However, this study does not rule out contributions from other neuronal sub-types.
Collapse
Affiliation(s)
- Elizabeth J Crofton
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Miroslav N Nenov
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yafang Zhang
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Federico Scala
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA; Biophysics Graduate Program, Institute of Human Physiology, Universita Cattolica, Rome, Italy
| | - Sean A Page
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - David L McCue
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Dingge Li
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Jonathan D Hommel
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Fernanda Laezza
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas A Green
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
27
|
Hoffmann HM, Crouzin N, Moreno E, Raivio N, Fuentes S, McCormick PJ, Ortiz J, Vignes M. Long-Lasting Impairment of mGluR5-Activated Intracellular Pathways in the Striatum After Withdrawal of Cocaine Self-Administration. Int J Neuropsychopharmacol 2016; 20:72-82. [PMID: 27744406 PMCID: PMC5412585 DOI: 10.1093/ijnp/pyw086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/22/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Cocaine addiction continues to be a major heath concern, and despite public health intervention there is a lack of efficient pharmacological treatment options. A newly identified potential target are the group I metabotropic glutamate receptors, with allosteric modulators showing particular promise. METHODS We evaluated the capacity of group I metabotropic glutamate receptors to induce functional responses in ex vivo striatal slices from rats with (1) acute cocaine self-administration, (2) chronic cocaine self-administration, and (3) 60 days cocaine self-administration withdrawal by Western blot and extracellular recordings of synaptic transmission. RESULTS We found that striatal group I metabotropic glutamate receptors are the principal mediator of the mGluR1/5 agonist (RS)-3,5-dihydroxyphenylglycine-induced cAMP responsive-element binding protein phosphorylation. Both acute and chronic cocaine self-administration blunted group I metabotropic glutamate receptor effects on cAMP responsive-element binding protein phosphorylation in the striatum, which correlated with the capacity to induce long-term depression, an effect that was maintained 60 days after chronic cocaine self-administration withdrawal. In the nucleus accumbens, the principal brain region mediating the rewarding effects of drugs, chronic cocaine self-administration blunted group I metabotropic glutamate receptor stimulation of extracellular signal-regulated protein kinases 1/2 and cAMP responsive-element binding protein. Interestingly, the group I metabotropic glutamate receptor antagonist/inverse-agonist, 2-methyl-6-(phenylethynyl)pyridine hydrochloride, led to a specific increase in cAMP responsive-element binding protein phosphorylation after chronic cocaine self-administration, specifically in the nucleus accumbens, but not in the striatum. CONCLUSIONS Prolonged cocaine self-administration, through withdrawal, leads to a blunting of group I metabotropic glutamate receptor responses in the striatum. In addition, specifically in the accumbens, group I metabotropic glutamate receptor signaling to cAMP responsive-element binding protein shifts from an agonist-induced to an antagonist-induced cAMP responsive-element binding protein phosphorylation.
Collapse
Affiliation(s)
- Hanne Mette Hoffmann
- Oxidative Stress and Neuroprotection, IBMM, CNRS UMR-5247, University of Montpellier II, Montpellier, France (Drs Hoffmann, Crouzin, and Vignes); Neuroscience Institute and Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain (Dr Hoffmann, Ms Raivio, Dr Fuentes, and Dr Ortiz); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain (Drs Moreno and McCormick); University of East Anglia, School of Pharmacy, NR4 7TJ, Norwich, United Kingdom (Dr McCormick)
| | - Nadine Crouzin
- Oxidative Stress and Neuroprotection, IBMM, CNRS UMR-5247, University of Montpellier II, Montpellier, France (Drs Hoffmann, Crouzin, and Vignes); Neuroscience Institute and Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain (Dr Hoffmann, Ms Raivio, Dr Fuentes, and Dr Ortiz); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain (Drs Moreno and McCormick); University of East Anglia, School of Pharmacy, NR4 7TJ, Norwich, United Kingdom (Dr McCormick)
| | - Estefanía Moreno
- Oxidative Stress and Neuroprotection, IBMM, CNRS UMR-5247, University of Montpellier II, Montpellier, France (Drs Hoffmann, Crouzin, and Vignes); Neuroscience Institute and Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain (Dr Hoffmann, Ms Raivio, Dr Fuentes, and Dr Ortiz); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain (Drs Moreno and McCormick); University of East Anglia, School of Pharmacy, NR4 7TJ, Norwich, United Kingdom (Dr McCormick)
| | - Noora Raivio
- Oxidative Stress and Neuroprotection, IBMM, CNRS UMR-5247, University of Montpellier II, Montpellier, France (Drs Hoffmann, Crouzin, and Vignes); Neuroscience Institute and Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain (Dr Hoffmann, Ms Raivio, Dr Fuentes, and Dr Ortiz); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain (Drs Moreno and McCormick); University of East Anglia, School of Pharmacy, NR4 7TJ, Norwich, United Kingdom (Dr McCormick)
| | - Silvia Fuentes
- Oxidative Stress and Neuroprotection, IBMM, CNRS UMR-5247, University of Montpellier II, Montpellier, France (Drs Hoffmann, Crouzin, and Vignes); Neuroscience Institute and Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain (Dr Hoffmann, Ms Raivio, Dr Fuentes, and Dr Ortiz); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain (Drs Moreno and McCormick); University of East Anglia, School of Pharmacy, NR4 7TJ, Norwich, United Kingdom (Dr McCormick)
| | - Peter J. McCormick
- Oxidative Stress and Neuroprotection, IBMM, CNRS UMR-5247, University of Montpellier II, Montpellier, France (Drs Hoffmann, Crouzin, and Vignes); Neuroscience Institute and Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain (Dr Hoffmann, Ms Raivio, Dr Fuentes, and Dr Ortiz); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas. Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain (Drs Moreno and McCormick); University of East Anglia, School of Pharmacy, NR4 7TJ, Norwich, United Kingdom (Dr McCormick)
| | - Jordi Ortiz
- Present address (H.M.H.): Department of Reproductive Medicine, 349 Leichtag Biomedical Research Building, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0674
| | | |
Collapse
|
28
|
Peleg-Raibstein D, Sarker G, Litwan K, Krämer SD, Ametamey SM, Schibli R, Wolfrum C. Enhanced sensitivity to drugs of abuse and palatable foods following maternal overnutrition. Transl Psychiatry 2016; 6:e911. [PMID: 27701408 PMCID: PMC5315546 DOI: 10.1038/tp.2016.176] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies have shown an association between maternal overnutrition and increased risk of the progeny for the development of obesity as well as psychiatric disorders. Animal studies have shown results regarding maternal high-fat diet (HFD) and a greater risk of the offspring to develop obesity. However, it still remains unknown whether maternal HFD can program the central reward system in such a way that it will imprint long-term changes that will predispose the offspring to addictive-like behaviors that may lead to obesity. We exposed female dams to either laboratory chow or HFD for a period of 9 weeks: 3 weeks before conception, during gestation and lactation. Offspring born to either control or HFD-exposed dams were examined in behavioral, neurochemical, neuroanatomical, metabolic and positron emission tomography (PET) scan tests. Our results demonstrate that HFD offspring compared with controls consume more alcohol, exhibit increased sensitivity to amphetamine and show greater conditioned place preference to cocaine. In addition, maternal HFD leads to increased preference to sucrose as well as to HFD while leaving the general feeding behavior intact. The hedonic behavioral alterations are accompanied by reduction of striatal dopamine and by increased dopamine 2 receptors in the same brain region as evaluated by post-mortem neurochemical, immunohistochemical as well as PET analyses. Taken together, our data suggest that maternal overnutrition predisposes the offspring to develop hedonic-like behaviors to both drugs of abuse as well as palatable foods and that these types of behaviors may share common neuronal underlying mechanisms that can lead to obesity.
Collapse
Affiliation(s)
- D Peleg-Raibstein
- Department of Health Science and Technology, Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach, Switzerland,Department of Health Science and Technology, Laboratory of Translational Nutrition Biology, ETH Zurich, Schorenstrasse 16, Schwerzenbach 8603 Switzerland. E-mail:
| | - G Sarker
- Department of Health Science and Technology, Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach, Switzerland
| | - K Litwan
- Department of Health Science and Technology, Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach, Switzerland
| | - S D Krämer
- Center for Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - S M Ametamey
- Center for Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - R Schibli
- Center for Radiopharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - C Wolfrum
- Department of Health Science and Technology, Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
29
|
Nagai T, Yoshimoto J, Kannon T, Kuroda K, Kaibuchi K. Phosphorylation Signals in Striatal Medium Spiny Neurons. Trends Pharmacol Sci 2016; 37:858-871. [DOI: 10.1016/j.tips.2016.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022]
|
30
|
Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 2016; 3:760-773. [PMID: 27475769 PMCID: PMC6135092 DOI: 10.1016/s2215-0366(16)00104-8] [Citation(s) in RCA: 2033] [Impact Index Per Article: 225.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 12/17/2022]
Abstract
Drug addiction represents a dramatic dysregulation of motivational circuits that is caused by a combination of exaggerated incentive salience and habit formation, reward deficits and stress surfeits, and compromised executive function in three stages. The rewarding effects of drugs of abuse, development of incentive salience, and development of drug-seeking habits in the binge/intoxication stage involve changes in dopamine and opioid peptides in the basal ganglia. The increases in negative emotional states and dysphoric and stress-like responses in the withdrawal/negative affect stage involve decreases in the function of the dopamine component of the reward system and recruitment of brain stress neurotransmitters, such as corticotropin-releasing factor and dynorphin, in the neurocircuitry of the extended amygdala. The craving and deficits in executive function in the so-called preoccupation/anticipation stage involve the dysregulation of key afferent projections from the prefrontal cortex and insula, including glutamate, to the basal ganglia and extended amygdala. Molecular genetic studies have identified transduction and transcription factors that act in neurocircuitry associated with the development and maintenance of addiction that might mediate initial vulnerability, maintenance, and relapse associated with addiction.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA.
| | - Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
31
|
Fu Q, Zhou X, Dong Y, Huang Y, Yang J, Oh KW, Hu Z. Decreased Caffeine-Induced Locomotor Activity via Microinjection of CART Peptide into the Nucleus Accumbens Is Linked to Inhibition of the pCaMKIIa-D3R Interaction. PLoS One 2016; 11:e0159104. [PMID: 27404570 PMCID: PMC4942143 DOI: 10.1371/journal.pone.0159104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/27/2016] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to characterize the inhibitory modulation of cocaine- and amphetamine-regulated transcript (CART) peptides, particularly with respect to the function of the D3 dopamine receptor (D3R), which is activated by its interaction with phosphorylated CaMKIIα (pCaMKIIα) in the nucleus accumbens (NAc). After repeated oral administration of caffeine (30 mg/kg) for five days, microinjection of CART peptide (0.08 μM/0.5 μl/hemisphere) into the NAc affected locomotor behavior. The pCaMKIIα-D3R interaction, D3R phosphorylation and cAMP/PKA/phosphorylated CREB (pCREB) signaling pathway activity were measured in NAc tissues, and Ca2+ influx and pCaMKIIα levels were measured in cultured NAc neurons. We found that CART attenuated the caffeine-mediated enhancement of depolarization-induced Ca2+ influx and CaMKIIα phosphorylation in cultured NAc neurons. Repeated microinjection of CART peptides into the NAc decreased the caffeine-induced enhancement of Ca2+ channels activity, pCaMKIIα levels, the pCaMKIIα-D3R interaction, D3R phosphorylation, cAMP levels, PKA activity and pCREB levels in the NAc. Furthermore, behavioral sensitization was observed in rats that received five-day administration of caffeine following microinjection of saline but not in rats that were treated with caffeine following microinjection of CART peptide. These results suggest that caffeine-induced CREB phosphorylation in the NAc was ameliorated by CART peptide due to its inhibition of D3R phosphorylation. These effects of CART peptides may play a compensatory role by inhibiting locomotor behavior in rats.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Respiration, The Fourth Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Respiration, Department Two, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Xiaoyan Zhou
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yun Dong
- Department of Breast Surgery, Jiangxi Tumor Hospital, Nanchang, Jiangxi, China
| | - Yonghong Huang
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhenzhen Hu
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
- * E-mail: ;
| |
Collapse
|
32
|
Nagai T, Nakamuta S, Kuroda K, Nakauchi S, Nishioka T, Takano T, Zhang X, Tsuboi D, Funahashi Y, Nakano T, Yoshimoto J, Kobayashi K, Uchigashima M, Watanabe M, Miura M, Nishi A, Kobayashi K, Yamada K, Amano M, Kaibuchi K. Phosphoproteomics of the Dopamine Pathway Enables Discovery of Rap1 Activation as a Reward Signal In Vivo. Neuron 2016; 89:550-65. [DOI: 10.1016/j.neuron.2015.12.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/17/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022]
|
33
|
Belin-Rauscent A, Fouyssac M, Bonci A, Belin D. How Preclinical Models Evolved to Resemble the Diagnostic Criteria of Drug Addiction. Biol Psychiatry 2016; 79:39-46. [PMID: 25747744 PMCID: PMC4702261 DOI: 10.1016/j.biopsych.2015.01.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/17/2014] [Accepted: 01/12/2015] [Indexed: 02/04/2023]
Abstract
Drug addiction is a complex neuropsychiatric disorder that affects a subset of the individuals who take drugs. It is characterized by maladaptive drug-seeking habits that are maintained despite adverse consequences and intense drug craving. The pathophysiology and etiology of addiction is only partially understood despite extensive research because of the gap between current preclinical models of addiction and the clinical criteria of the disorder. This review presents a brief overview, based on selected methodologies, of how behavioral models have evolved over the last 50 years to the development of recent preclinical models of addiction that more closely mimic diagnostic criteria of addiction. It is hoped that these new models will increase our understanding of the complex neurobiological mechanisms whereby some individuals switch from controlled drug use to compulsive drug-seeking habits and relapse to these maladaptive habits. Additionally, by paving the way to bridge the gap that exists between biobehavioral research on addiction and the human situation, these models may provide new perspectives for the development of novel and effective therapeutic strategies for drug addiction.
Collapse
Affiliation(s)
- Aude Belin-Rauscent
- Department of Pharmacology and Behavioural, University of Cambridge, Cambridge, United Kingdom; Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
| | - Maxime Fouyssac
- Department of Pharmacology and Behavioural, University of Cambridge, Cambridge, United Kingdom; Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, U.S. Department of Health and Human Services, Baltimore, Maryland.
| | - David Belin
- Department of Pharmacology and Behavioural, University of Cambridge, Cambridge, United Kingdom; Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Wan D, Wang D, Sun Q, Song Y, Jiang Y, Li R, Ye J. Antinociception of spirocyclopiperazinium salt compound LXM-10-M targeting α7 nicotinic receptor and M4 muscarinic receptor and inhibiting CaMKIIα/CREB/CGRP signaling pathway in mice. Eur J Pharmacol 2015; 770:92-8. [PMID: 26658370 DOI: 10.1016/j.ejphar.2015.11.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
The present study was designed to investigate the antinociception of spirocyclopiperazinium salt compound LXM-10-M (2,4-dimethyl-9-β-m-hydroxyphenylethyl-3-oxo-6, 9-diazaspiro [5.5] undecane chloride) in thermal and chemical pain models, and further to explore the molecular target and potential signal pathway. We assessed the antinociception of LXM-10-M in hot-plate test, formalin test and acetic acid writhing test in mice. The possible changes of calcium/calmodulin-dependent protein kinase IIα (CaMKIIα)/cAMP response element-binding protein (CREB)/calcitonin gene related peptide (CGRP) signaling pathway were detected by Western Blot in mice. Administration of LXM-10-M produced significant antinociception in hot-plate test, formalin test and acetic acid writhing test in mice, with no obvious toxicity. The antinociceptive effects were blocked by pretreatment with methyllycaconitine citrate (MLA, α7 nicotinic receptor antagonist) or tropicamide (TRO, M4 muscarinic receptor antagonist). Western blot analysis showed that the upregulations of p-CaMKIIα, p-CREB and CGRP in the spinal cord were reduced by LXM-10-M in chemical pain model in mice, and the effects were blocked by MLA or TRO pretreatment. This is the first paper to report that LXM-10-M exerted significant antinociception, which may be attributed to the activation of α7 nicotinic receptor and M4 muscarinic receptor and thereby triggering the inhibition of CaMKIIα/CREB/CGRP signaling pathway in mice.
Collapse
Affiliation(s)
- Dan Wan
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ding Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qi Sun
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yan Song
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - YiMin Jiang
- Medical and Healthy Analysis Center, Peking University, Beijing, China
| | - RunTao Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jia Ye
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
35
|
Ubaldi M, Cannella N, Ciccocioppo R. Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics. PROGRESS IN BRAIN RESEARCH 2015; 224:251-84. [PMID: 26822362 DOI: 10.1016/bs.pbr.2015.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug abuse represents a considerable burden of disease and has enormous economic impacts on societies. Over the years, few medications have been developed for clinical use. Their utilization is endowed with several limitations, including partial efficacy or significant side effects. On the other hand, the successful advancement of these compounds provides an important proof of concept for the feasibility of drug development programs in addiction. In recent years, a wealth of information has been generated on the psychological mechanisms, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption that interact with each other to contribute to disease progression. It is now clear that addiction develops through phases, from initial recreational use to excessive consumption and compulsive drug seeking, with a shift from positive to negative reinforcement driving motivated behaviors. A greater understanding of these mechanisms has opened new vistas in drug development programs. Researchers' attention has been shifted from investigation of classical targets associated with reward to biological substrates responsible for negative reinforcement, impulse loss of control, and maladaptive mechanisms resulting from protracted drug use. From this research, several new biological targets for the development of innovative therapies have started to emerge. This chapter offers an overview of targets currently under scrutiny for the development of new medications for addiction. This work is not exhaustive but rather it provides a few examples of how this research has advanced in recent years by virtue of studies carried out in our laboratory.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Nazzareno Cannella
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| |
Collapse
|
36
|
Chan P, Lutfy K. Molecular Changes in Opioid Addiction: The Role of Adenylyl Cyclase and cAMP/PKA System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:203-27. [PMID: 26810003 DOI: 10.1016/bs.pmbts.2015.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
For centuries, opiate analgesics have had a considerable presence in the treatment of moderate to severe pain. While effective in providing analgesia, opiates are notorious in exerting many undesirable adverse reactions. The receptor targets and the intracellular effectors of opioids have largely been identified. Furthermore, much of the mechanisms underlying the development of tolerance, dependence, and withdrawal have been delineated. Thus, there is a focus on developing novel compounds or strategies in mitigating or avoiding the development of tolerance, dependence, and withdrawal. This review focuses on the adenylyl cyclase and cyclic adenosine 3,5-monophosphate (cAMP)/protein kinase A (AC/cAMP/PKA) system as the central player in mediating the acute and chronic effects of opioids. This chapter also reviews the neuronal adaptive changes in the locus coeruleus, amygdala, periaqueductal gray, and ventral tegmental area induced by acute and chronic actions of opioid because these neuronal adaptive changes in these regions may underlie the behavioral changes observed in opiate users and abusers.
Collapse
Affiliation(s)
- Patrick Chan
- Department of Pharmacy and Pharmacy Administration, Western University of Health Sciences, College of Pharmacy, Pomona, California, USA.
| | - Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
37
|
Womersley JS, Uys JD. S-Glutathionylation and Redox Protein Signaling in Drug Addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:87-121. [PMID: 26809999 DOI: 10.1016/bs.pmbts.2015.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug addiction is a chronic relapsing disorder that comes at a high cost to individuals and society. Therefore understanding the mechanisms by which drugs exert their effects is of prime importance. Drugs of abuse increase the production of reactive oxygen and nitrogen species resulting in oxidative stress. This change in redox homeostasis increases the conjugation of glutathione to protein cysteine residues; a process called S-glutathionylation. Although traditionally regarded as a protective mechanism against irreversible protein oxidation, accumulated evidence suggests a more nuanced role for S-glutathionylation, namely as a mediator in redox-sensitive protein signaling. The reversible modification of protein thiols leading to alteration in function under different physiologic/pathologic conditions provides a mechanism whereby change in redox status can be translated into a functional response. As such, S-glutathionylation represents an understudied means of post-translational protein modification that may be important in the mechanisms underlying drug addiction. This review will discuss the evidence for S-glutathionylation as a redox-sensing mechanism and how this may be involved in the response to drug-induced oxidative stress. The function of S-glutathionylated proteins involved in neurotransmission, dendritic spine structure, and drug-induced behavioral outputs will be reviewed with specific reference to alcohol, cocaine, and heroin.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joachim D Uys
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
38
|
Mano H, Ishimoto T, Okada T, Toyooka N, Mori H. Discovery of novel adenylyl cyclase inhibitor by cell-based screening. Biol Pharm Bull 2015; 37:1689-93. [PMID: 25273392 DOI: 10.1248/bpb.b14-00283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We screened 2400 compounds to find novel inhibitors of the adenylyl cyclase (AC)-protein kinase A (PKA)-cAMP response-element-binding protein (CREB) signaling pathway (AC/PKA/CREB pathway). Using a multistep cell-based screening system employing split luciferase technique, we narrowed down the candidates effectively from 2400 chemical compounds and identified a novel AC inhibitor (compound 1). Since dysregulation of the AC/PKA/CREB pathway is known to cause diseases not only in the nervous system but also in other organs, compound 1 is expected to be developed as a medicine for these diseases.
Collapse
Affiliation(s)
- Hiroki Mano
- Department of Molecular Neuroscience, Graduate School of Innovative Life Science, University of Toyama
| | | | | | | | | |
Collapse
|
39
|
Abstract
Drug withdrawal is often conceptualized as an aversive state that motivates drug-seeking and drug-taking behaviors in humans. Stress is more difficult to define, but is also frequently associated with aversive states. Here we describe evidence for the simple theory that drug withdrawal is a stress-like state, on the basis of common effects on behavioral, neurochemical, and molecular endpoints. We also describe data suggesting a more complex relationship between drug withdrawal and stress. As one example, we will highlight evidence that, depending on drug class, components of withdrawal can produce effects that have characteristics consistent with mood elevation. In addition, some stressors can act as positive reinforcers, defined as having the ability to increase the probability of a behavior that produces it. As such, accumulating evidence supports the general principles of opponent process theory, whereby processes that have an affective valence are followed in time by an opponent process that has the opposite valence. Throughout, we identify gaps in knowledge and propose future directions for research. A better understanding of the similarities, differences, and overlaps between drug withdrawal and stress will lead to the development of improved treatments for addiction, as well as for a vast array of neuropsychiatric conditions that are triggered or exacerbated by stress.
Collapse
|
40
|
Sun A, Zhuang D, Zhu H, Lai M, Chen W, Liu H, Zhang F, Zhou W. Decrease of phosphorylated CREB and ERK in nucleus accumbens is associated with the incubation of heroin seeking induced by cues after withdrawal. Neurosci Lett 2015; 591:166-170. [DOI: 10.1016/j.neulet.2015.02.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 11/26/2022]
|
41
|
Hamaguchi T, Nakamuta S, Funahashi Y, Takano T, Nishioka T, Shohag MH, Yura Y, Kaibuchi K, Amano M. In vivo screening for substrates of protein kinase A using a combination of proteomic approaches and pharmacological modulation of kinase activity. Cell Struct Funct 2014; 40:1-12. [PMID: 25399539 DOI: 10.1247/csf.14014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein kinase A (PKA) is a serine/threonine kinase whose activity depends on the levels of cyclic AMP (cAMP). PKA plays essential roles in numerous cell types such as myocytes and neurons. Numerous substrate screens have been attempted to clarify the entire scope of the PKA signaling cascade, but it is still underway. Here, we performed a comprehensive screen that consisted of immunoprecipitation and mass spectrometry, with a focus on the identification of PKA substrates. The lysate of HeLa cells treated with Forskolin (FSK)/3-isobutyl methyl xanthine (IBMX) and/or H-89 was subjected to immunoprecipitation using anti-phospho-PKA substrate antibody. The identity of the phosophoproteins and phosphorylation sites in the precipitants was determined using liquid chromatography tandem mass spectrometry (LC/MS/MS). We obtained 112 proteins as candidate substrates and 65 candidate sites overall. Among the candidate substrates, Rho-kinase/ROCK2 was confirmed to be a novel substrate of PKA both in vitro and in vivo. In addition to Rho-kinase, we found more than a hundred of novel candidate substrates of PKA using this screen, and these discoveries provide us with new insights into PKA signaling.
Collapse
Affiliation(s)
- Tomonari Hamaguchi
- Department of Cell Pharmacology, Nagoya University, Graduate School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
van de Wiel SMW, Verheij MM, Homberg JR. Designing modulators of 5-hydroxytryptamine signaling to treat abuse disorders. Expert Opin Drug Discov 2014; 9:1293-306. [DOI: 10.1517/17460441.2014.959925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Ramôa CP, Doyle SE, Lycas MD, Chernau AK, Lynch WJ. Diminished role of dopamine D1-receptor signaling with the development of an addicted phenotype in rats. Biol Psychiatry 2014; 76:8-14. [PMID: 24199666 PMCID: PMC3976474 DOI: 10.1016/j.biopsych.2013.09.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/29/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Although considerable evidence implicates dopamine D1-receptor signaling in the nucleus accumbens in motivation for cocaine during early stages of addiction, less is known with regard to its role after the development of addiction. Here, we examined its role in the development of an addicted phenotype in intact male and female rats, and in female rats that were either resistant or vulnerable to developing this phenotype. METHODS Intact males, females, and ovariectomized (OVX) females with and without estradiol (vulnerable, OVX+E; resistant, OVX+Veh) were given either short access (ShA) (three fixed-ratio 1 sessions, maximum of 20 infusions) or 24-hour extended access (ExA) to cocaine for 10 days (4 trials/hour). Motivation for cocaine was assessed after a 14-day abstinence period with a progressive-ratio schedule. Once responding stabilized, the effects of intra-accumbens infusion of the D1-receptor antagonist, SCH-23390 (0, .3, 1.0, 3.0 µg), were examined. RESULTS Motivation for cocaine was markedly higher after abstinence from ExA versus ShA self-administration in intact males and females, indicating the development of an addicted phenotype in these groups. Motivation for cocaine was also higher than ShA control subjects in OVX+E but not OVX+Veh females after ExA self-administration, confirming the categorization of these groups as vulnerable versus resistant. After ExA self-administration, intact males and females and OVX+E but not OVX+Veh females were less sensitive to the effects of D1-receptor antagonism as compared with their ShA counterparts. CONCLUSIONS These results suggest that the role of D1-receptor signaling, although critical in "nonaddicted" stages, becomes diminished once addiction has developed.
Collapse
Affiliation(s)
| | | | | | | | - Wendy J. Lynch
- Address correspondence to: Wendy J. Lynch, PhD Department of Psychiatry and Neurobehavioral Sciences University of Virginia, 1670 Discovery Drive, Charlottesville, VA 22911 Tel: (434) 243-0580 Fax: (434) 973-7031
| |
Collapse
|
44
|
Glutathione and redox signaling in substance abuse. Biomed Pharmacother 2014; 68:799-807. [PMID: 25027386 DOI: 10.1016/j.biopha.2014.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/12/2014] [Indexed: 01/04/2023] Open
Abstract
Throughout the last couple decades, the cause and consequences of substance abuse has expanded to identify the underlying neurobiological signaling mechanisms associated with addictive behavior. Chronic use of drugs, such as cocaine, methamphetamine and alcohol leads to the formation of oxidative or nitrosative stress (ROS/RNS) and changes in glutathione and redox homeostasis. Of importance, redox-sensitive post-translational modifications on cysteine residues, such as S-glutathionylation and S-nitrosylation could impact on the structure and function of addiction related signaling proteins. In this commentary, we evaluate the role of glutathione and redox signaling in cocaine-, methamphetamine- and alcohol addiction and conclude by discussing the possibility of targeting redox pathways for the therapeutic intervention of these substance abuse disorders.
Collapse
|
45
|
Sun WL, Coleman NT, Zelek-Molik A, Barry SM, Whitfield TW, McGinty JF. Relapse to cocaine-seeking after abstinence is regulated by cAMP-dependent protein kinase A in the prefrontal cortex. Addict Biol 2014; 19:77-86. [PMID: 23461423 PMCID: PMC4110897 DOI: 10.1111/adb.12043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstinence from cocaine self-administration (SA) is associated with neuroadaptations in the prefrontal cortex (PFC) and nucleus accumbens (NAc) that are implicated in cocaine-induced neuronal plasticity and relapse to drug-seeking. Alterations in cAMP-dependent protein kinase A (PKA) signaling are prominent in medium spiny neurons in the NAc after repeated cocaine exposure but it is unknown whether similar changes occur in the PFC. Because cocaine SA induces disturbances in glutamatergic transmission in the PFC-NAc pathway, we examined whether dysregulation of PKA-mediated molecular targets in PFC-NAc neurons occurs during abstinence and, if so, whether it contributes to cocaine-seeking. We measured the phosphorylation of cAMP response element binding protein (Ser133) and GluA1 (Ser845) in the dorsomedial (dm) PFC and the presynaptic marker, synapsin I (Ser9, Ser62/67, Ser603), in the NAc after 7 days of abstinence from cocaine SA with or without cue-induced cocaine-seeking. We also evaluated whether infusion of the PKA inhibitor, 8-bromo-Rp-cyclic adenosine 3', 5'-monophosphorothioate (Rp-cAMPs), into the dmPFC after abstinence would affect cue-induced cocaine-seeking and PKA-regulated phosphoprotein levels. Seven days of forced abstinence increased the phosphorylation of cAMP response element binding protein and GluA1 in the dmPFC and synapsin I (Ser9) in the NAc. Induction of these phosphoproteins was reversed by a cue-induced relapse test of cocaine-seeking. Bilateral intra-dmPFC Rp-cAMPs rescued abstinence-elevated PKA-mediated phosphoprotein levels in the dmPFC and NAc and suppressed cue-induced relapse. Thus, by inhibiting abstinence-induced PKA molecular targets, relapse reverses abstinence-induced neuroadaptations in the dmPFC that are responsible, in part, for the expression of cue-induced cocaine-seeking.
Collapse
Affiliation(s)
- Wei-Lun Sun
- Dept. of Neurosciences, Medical University of South Carolina, Charleston, SC 29425
| | | | | | - Sarah M. Barry
- Dept. of Neurosciences, Medical University of South Carolina, Charleston, SC 29425
| | - Timothy W. Whitfield
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037
| | | |
Collapse
|
46
|
Bossert JM, Marchant NJ, Calu DJ, Shaham Y. The reinstatement model of drug relapse: recent neurobiological findings, emerging research topics, and translational research. Psychopharmacology (Berl) 2013; 229:453-76. [PMID: 23685858 PMCID: PMC3770775 DOI: 10.1007/s00213-013-3120-y] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/13/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND RATIONALE Results from many clinical studies suggest that drug relapse and craving are often provoked by acute exposure to the self-administered drug or related drugs, drug-associated cues or contexts, or certain stressors. During the last two decades, this clinical scenario has been studied in laboratory animals by using the reinstatement model. In this model, reinstatement of drug seeking by drug priming, drug cues or contexts, or certain stressors is assessed following drug self-administration training and subsequent extinction of the drug-reinforced responding. OBJECTIVE In this review, we first summarize recent (2009-present) neurobiological findings from studies using the reinstatement model. We then discuss emerging research topics, including the impact of interfering with putative reconsolidation processes on cue- and context-induced reinstatement of drug seeking, and similarities and differences in mechanisms of reinstatement across drug classes. We conclude by discussing results from recent human studies that were inspired by results from rat studies using the reinstatement model. CONCLUSIONS Main conclusions from the studies reviewed highlight: (1) the ventral subiculum and lateral hypothalamus as emerging brain areas important for reinstatement of drug seeking, (2) the existence of differences in brain mechanisms controlling reinstatement of drug seeking across drug classes, (3) the utility of the reinstatement model for assessing the effect of reconsolidation-related manipulations on cue-induced drug seeking, and (4) the encouraging pharmacological concordance between results from rat studies using the reinstatement model and human laboratory studies on cue- and stress-induced drug craving.
Collapse
Affiliation(s)
- Jennifer M Bossert
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA,
| | | | | | | |
Collapse
|
47
|
Bocklisch C, Pascoli V, Wong JCY, House DRC, Yvon C, de Roo M, Tan KR, Luscher C. Cocaine Disinhibits Dopamine Neurons by Potentiation of GABA Transmission in the Ventral Tegmental Area. Science 2013; 341:1521-5. [DOI: 10.1126/science.1237059] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
48
|
Yuan WX, Heng LJ, Ma J, Wang XQ, Qu LJ, Duan L, Kang JJ, Chen LW, Gao GD. Increased expression of cannabinoid receptor 1 in the nucleus accumbens core in a rat model with morphine withdrawal. Brain Res 2013; 1531:102-12. [DOI: 10.1016/j.brainres.2013.07.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/25/2013] [Accepted: 07/27/2013] [Indexed: 01/28/2023]
|
49
|
Wang YC, Yeh YC, Wang CC, Hsiao S, Lee CC, Huang ACW. Neural substrates of amphetamine-induced behavioral sensitization: unconditioned (zero context) and conditioned (switch versus same context) components in c-fos overexpression. Neuropsychobiology 2013; 67:48-60. [PMID: 23222036 DOI: 10.1159/000343670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 09/24/2012] [Indexed: 11/19/2022]
Abstract
The neural substrates of the unconditioned and conditioned components of amphetamine (AMPH)-induced behavioral sensitization remain unknown. The present study examines the brain activation of rats in response to an AMPH challenge with augmented locomotion in groups receiving chronic AMPH under chloral hydrate anesthetization (i.e., the 'zero context') or when tested in the 'same context' as a chronic treatment, or when tested in a 'different context'. The neural activations of the three groups reveal fairly consistent patterns: (a) The substantia nigra is activated in the same context condition and the pure AMPH effect (i.e., the zero context with the unconditioned component), but not in the switch context condition. (b) The ventral pallidum showed Fos expression in the switch context and the same context, but not in the zero context condition. (c) The other nuclei, including the medial prefrontal cortex, nucleus accumbens, caudate putamen, medial thalamus, hippocampus, amygdala, and ventral tegmental area, are activated in all contextual conditions and the pure AMPH effect (the zero context). The context exerts definable effects on the mesocorticolimbic dopamine system on AMPH-induced behavioral sensitization. (d) The ventral pallidum and the substantia nigra activations dissociate the unconditioned component from the conditioned component in behavioral sensitization. Further studies are needed to determine how these two nuclei mediate the effect in terms of primary and conditioned rewards.
Collapse
Affiliation(s)
- Ying-Chou Wang
- Department of Clinical Psychology, Fu Jen Catholic University, New Taipei City, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
50
|
DBS of nucleus accumbens on heroin seeking behaviors in self-administering rats. Drug Alcohol Depend 2013; 129:70-81. [PMID: 23062870 DOI: 10.1016/j.drugalcdep.2012.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/09/2012] [Accepted: 09/16/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND Surgical ablation of select brain areas has been frequently used to alleviate psychological dependence on opiate drugs in certain countries. However, ablative brain surgery was stopped in China in 2004 due to the related ethical controversy and possible side effects. Deep brain stimulation (DBS), a less invasive, reversible and adjustable process of neuromodulation, was adopted to attenuate relapses in studies of drug addiction. METHODS Preclinical experiments were designed to assess the long-term effects of DBS of the nucleus accumbens (NAc) on cue- and heroin-induced reinstatement of drug seeking behaviors. After a rat self-administration model of heroin relapse was established, DBS was administered bilaterally or unilaterally to the NAc core through concentric bipolar electrodes. A 1-h long continuous stimulation (130 Hz, 100 μs, 0-150 μA) was given daily for 7 days during the abstinence session. Drug seeking behaviors were elicited by conditioned cues or a small dose of heroin. RESULTS 75 μA and 150 μA bilateral NAc DBS attenuated cue- and heroin-induced reinstatement of drug seeking, and unilateral DBS of the right NAc achieved effects almost equivalent to bilateral DBS. Additional experiments showed that DBS had no long-term influence on locomotor activity and spatial learning and retention capabilities in Morris water maze tasks. Subsequent immunohistochemistry measurements revealed that the behavioral consequences were associated with a significant increase in the expression of pCREB and a reduction in the expression of ΔFosB in the NAc. CONCLUSIONS These findings indicate that the NAc DBS could be an effective and safe therapeutic option for preventing relapse to heroin addiction.
Collapse
|