1
|
Podlasz P, Wasowicz K. Effect of partial hysterectomy on the neurons of the paracervical ganglion (PCG) of the pig. PLoS One 2021; 16:e0245974. [PMID: 33497400 PMCID: PMC7837480 DOI: 10.1371/journal.pone.0245974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Autonomic neurons innervating uterine horn is probably the only nerve cell population capable of periodical physiological degeneration and regeneration. One of the main sources of innervation of the uterus is paracervical ganglion (PCG). PCG is a unique structure of the autonomic nervous system. It contains components of both the sympathetic and parasympathetic nervous system. The present study examines the response of neurons of PCG innervating uterine horn to axotomy caused by partial hysterectomy in the domestic pig animal model. The study was performed using a neuronal retrograde tracing and double immunofluorescent staining for tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DβH), choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), neuronal nictric oxide synthase (nNOS), galanin, neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), somatostatin and substance P (SP). Our study showed that virtually all neurons of the porcine PCG innervating uterine horn are adrenergic and we did not confirm that PCG is the source of cholinergic fibers innervating uterine horn of the pig. After axotomy there was a decrease in expression of catecholamine-synthesizing enzymes (TH, DβH) and a strong increase in the galanin expression. The increase of the number of NPY-IR neurons in the ganglia after axotomy was observed. There were no changes in the expression of other studied substances in the PCG neurons innervating the uterine horn, what was often found in rodents studies. This indicates that neurons can respond to damage in a species-specific way.
Collapse
Affiliation(s)
- Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- * E-mail:
| | - Krzysztof Wasowicz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
2
|
Palus K, Całka J. The Influence of Prolonged Acetylsalicylic Acid Supplementation-Induced Gastritis on the Neurochemistry of the Sympathetic Neurons Supplying Prepyloric Region of the Porcine Stomach. PLoS One 2015; 10:e0143661. [PMID: 26606050 PMCID: PMC4659606 DOI: 10.1371/journal.pone.0143661] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022] Open
Abstract
This experiment was designed to establish the localization and neurochemical phenotyping of sympathetic neurons supplying prepyloric area of the porcine stomach in a physiological state and during acetylsalicylic acid (ASA) induced gastritis. In order to localize the sympathetic perikarya the stomachs of both control and acetylsalicylic acid treated (ASA group) animals were injected with neuronal retrograde tracer Fast Blue (FB). Seven days post FB injection, animals were divided into a control and ASA supplementation group. The ASA group was given 100 mg/kg of b.w. ASA orally for 21 days. On the 28th day all pigs were euthanized with gradual overdose of anesthetic. Then fourteen-micrometer-thick cryostat sections were processed for routine double-labeling immunofluorescence, using primary antisera directed towards tyrosine hydroxylase (TH), dopamine β-hydroxylase (DβH), neuropeptide Y (NPY), galanin (GAL), neuronal nitric oxide synthase (nNOS), leu 5-enkephalin (LENK), cocaine- and amphetamine- regulated transcript peptide (CART), calcitonin gene-related peptide (CGRP), substance P (SP) and vasoactive intestinal peptide (VIP). The data obtained in this study indicate that postganglionic sympathetic nerve fibers supplying prepyloric area of the porcine stomach originate from the coeliac-cranial mesenteric ganglion complex (CCMG). In control animals, the FB-labelled neurons expressed TH (94.85 ± 1.01%), DβH (97.10 ± 0.97%), NPY (46.88 ± 2.53%) and GAL (8.40 ± 0.53%). In ASA group, TH- and DβH- positive nerve cells were reduced (85.78 ± 2.65% and 88.82 ± 1.63% respectively). Moreover, ASA- induced gastritis resulted in increased expression of NPY (76.59 ± 3.02%) and GAL (26.45 ± 2.75%) as well as the novo-synthesis of nNOS (6.13 ± 1.11%) and LENK (4.77 ± 0.42%) in traced CCMG neurons. Additionally, a network of CART-, CGRP-, SP-, VIP-, LENK-, nNOS- immunoreactive (IR) nerve fibers encircling the FB-positive perikarya were observed in both intact and ASA-treated animals. The results of this study indicate involvement of these neuropeptides in the development or presumably counteraction of gastric inflammation.
Collapse
Affiliation(s)
- Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- * E-mail:
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
3
|
Muslimov IA, Tuzhilin A, Tang TH, Wong RKS, Bianchi R, Tiedge H. Interactions of noncanonical motifs with hnRNP A2 promote activity-dependent RNA transport in neurons. ACTA ACUST UNITED AC 2014; 205:493-510. [PMID: 24841565 PMCID: PMC4033767 DOI: 10.1083/jcb.201310045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+-dependent RNA–protein interactions enable activity-inducible RNA transport in dendrites. A key determinant of neuronal functionality and plasticity is the targeted delivery of select ribonucleic acids (RNAs) to synaptodendritic sites of protein synthesis. In this paper, we ask how dendritic RNA transport can be regulated in a manner that is informed by the cell’s activity status. We describe a molecular mechanism in which inducible interactions of noncanonical RNA motif structures with targeting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 form the basis for activity-dependent dendritic RNA targeting. High-affinity interactions between hnRNP A2 and conditional GA-type RNA targeting motifs are critically dependent on elevated Ca2+ levels in a narrow concentration range. Dendritic transport of messenger RNAs that carry such GA motifs is inducible by influx of Ca2+ through voltage-dependent calcium channels upon β-adrenergic receptor activation. The combined data establish a functional correspondence between Ca2+-dependent RNA–protein interactions and activity-inducible RNA transport in dendrites. They also indicate a role of genomic retroposition in the phylogenetic development of RNA targeting competence.
Collapse
Affiliation(s)
- Ilham A Muslimov
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Aliya Tuzhilin
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Thean Hock Tang
- Advanced Medical and Dental Institute, Universiti Sains Malaysi, 13200 Kepala Batas, Penang, Malaysia
| | - Robert K S Wong
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Riccardo Bianchi
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Henri Tiedge
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| |
Collapse
|
4
|
Resch JM, Maunze B, Gerhardt AK, Magnuson SK, Phillips KA, Choi S. Intrahypothalamic pituitary adenylate cyclase-activating polypeptide regulates energy balance via site-specific actions on feeding and metabolism. Am J Physiol Endocrinol Metab 2013; 305:E1452-63. [PMID: 24148346 PMCID: PMC3882380 DOI: 10.1152/ajpendo.00293.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Numerous studies have demonstrated that both the hypothalamic paraventricular nuclei (PVN) and ventromedial nuclei (VMN) regulate energy homeostasis through behavioral and metabolic mechanisms. Receptors for pituitary adenylate cyclase-activating polypeptide (PACAP) are abundantly expressed in these nuclei, suggesting PACAP may be critical for the regulation of feeding behavior and body weight. To characterize the unique behavioral and physiological responses attributed to select hypothalamic cell groups, PACAP was site-specifically injected into the PVN or VMN. Overall food intake was significantly reduced by PACAP at both sites; however, meal pattern analysis revealed that only injections into the PVN produced significant reductions in meal size, duration, and total time spent eating. PACAP-mediated hypophagia in both the PVN and VMN was abolished by PAC1R antagonism, whereas pretreatment with a VPACR antagonist had no effect. PACAP injections into the VMN produced unique changes in metabolic parameters, including significant increases in core body temperature and spontaneous locomotor activity that was PAC1R dependent whereas, PVN injections of PACAP had no effect. Finally, PACAP-containing afferents were identified using the neuronal tracer cholera toxin subunit B (CTB) injected unilaterally into the PVN or VMN. CTB signal from PVN injections was colocalized with PACAP mRNA in the medial anterior bed nucleus of the stria terminalis, VMN, and lateral parabrachial nucleus (LPB), whereas CTB signal from VMN injections was highly colocalized with PACAP mRNA in the medial amygdala and LPB. These brain regions are known to influence energy homeostasis perhaps, in part, through PACAP projections to the PVN and VMN.
Collapse
Affiliation(s)
- Jon M Resch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | | | | | | | | | | |
Collapse
|
5
|
Avital-Cohen N, Heiblum R, Argov N, Rosenstrauch A, Chaiseha Y, Mobarkey N, Rozenboim I. The effect of active immunization against vasoactive intestinal peptide (VIP) and inhibin on reproductive performance of aging White Leghorn roosters. Poult Sci 2012; 91:161-74. [PMID: 22184441 DOI: 10.3382/ps.2011-01439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Decreasing fertility in aging domestic roosters is a well-known phenomenon. Aging is manifested by a decrease in plasma testosterone level, testis function, and spermatogenesis, resulting in a low level of fertility. The roles of vasoactive intestinal peptide (VIP) and testicular inhibin in this aging process are not clear. The effects of active immunization against VIP, inhibin, or the combination of both hormones on the reproduction of aging White Leghorn (WL) roosters were assayed. In experiment 1a, 60 White Leghorn roosters (67 wk of age) were divided into 4 groups (n = 15/group). The first group was actively immunized against VIP, the second against inhibin, the third against VIP and inhibin, and the fourth served as a control. Active immunization against VIP decreased semen quality parameters, plasma steroid levels, and gene expression of gonadotropin-releasing hormone-I (GnRH-I), follicle-stimulating hormone (FSH), luteinizing hormone (LH), LH receptor, VIP, and prolactin (Prl). Immunization against inhibin increased some of the semen quality parameters and FSH mRNA gene expression but decreased inhibin gene expression. In experiment 1b, at 94 wk of age, we took the actively immunized against VIP group and the control group and divided them into 2 subgroups (n = 7 or 8): the first group was injected with 1 mg of ovine Prl (oPrl) daily for 7 d, and the second group served as a control. Administration of oPrl to previously VIP-immunized birds significantly elevated semen quality parameters. We suggest that VIP, Prl, and inhibin have an important effect on the reproductive axis in aging roosters. Active immunization against VIP-depressed reproductive activity and Prl administration restored their reproduction, indicating that both VIP and Prl are essential for reproduction in aging roosters. Immunization against inhibin improved FSH mRNA gene expression, suggesting a negative role of inhibin on FSH secretion in aging roosters. Not all semen quality parameters increased significantly after immunization against inhibin, even though FSH mRNA gene expression increased, suggesting interference in testicular function in aging roosters.
Collapse
Affiliation(s)
- N Avital-Cohen
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
6
|
Avital-Cohen N, Heiblum R, Argov N, Rosenstrauch A, Chaiseha Y, Mobarkey N, Rozenboim I. The effect of active immunization against vasoactive intestinal peptide and inhibin on reproductive performance of young White Leghorn roosters. Poult Sci 2011; 90:2321-31. [DOI: 10.3382/ps.2011-01438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
7
|
An S, Irwin RP, Allen CN, Tsai C, Herzog ED. Vasoactive intestinal polypeptide requires parallel changes in adenylate cyclase and phospholipase C to entrain circadian rhythms to a predictable phase. J Neurophysiol 2011; 105:2289-96. [PMID: 21389307 DOI: 10.1152/jn.00966.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circadian oscillations in the suprachiasmatic nucleus (SCN) depend on transcriptional repression by Period (PER)1 and PER2 proteins within single cells and on vasoactive intestinal polypeptide (VIP) signaling between cells. Because VIP is released by SCN neurons in a circadian pattern, and, after photic stimulation, it has been suggested to play a role in the synchronization to environmental light cycles. It is not known, however, if or how VIP entrains circadian gene expression or behavior. Here, we tested candidate signaling pathways required for VIP-mediated entrainment of SCN rhythms. We found that single applications of VIP reset PER2 rhythms in a time- and dose-dependent manner that differed from light. Unlike VIP-mediated signaling in other cell types, simultaneous antagonism of adenylate cyclase and phospholipase C activities was required to block the VIP-induced phase shifts of SCN rhythms. Consistent with this, VIP rapidly increased intracellular cAMP in most SCN neurons. Critically, daily VIP treatment entrained PER2 rhythms to a predicted phase angle within several days, depending on the concentration of VIP and the interval between VIP applications. We conclude that VIP entrains circadian timing among SCN neurons through rapid and parallel changes in adenylate cyclase and phospholipase C activities.
Collapse
Affiliation(s)
- Sungwon An
- Department of Biology, Washington University, St. Louis, MO 63130-4899, USA
| | | | | | | | | |
Collapse
|
8
|
Zhu L, Lang J, Jiang F, Jiang X, Chen J. Vasoactive intestinal peptide in vaginal epithelium of patients with pelvic organ prolapse and stress urinary incontinence. Int J Gynaecol Obstet 2009; 105:223-5. [DOI: 10.1016/j.ijgo.2009.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 12/26/2008] [Accepted: 01/22/2009] [Indexed: 11/29/2022]
|
9
|
Favrais G, Couvineau A, Laburthe M, Gressens P, Lelievre V. Involvement of VIP and PACAP in neonatal brain lesions generated by a combined excitotoxic/inflammatory challenge. Peptides 2007; 28:1727-37. [PMID: 17683829 DOI: 10.1016/j.peptides.2007.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 06/18/2007] [Accepted: 06/21/2007] [Indexed: 02/08/2023]
Abstract
Several reports have highlighted the potential roles for the VIP-related neuropeptides in regeneration/neuroprotection after brain or nerve injuries. We previously reported that peripheral inflammation worsened ibotenate-induced cystic white matter lesions. Because VIP is also known as an immunomodulator, we wonder if VIP could also limit the deleterious effects of local inflammation. Therefore, we first tested the effects of peripheral IL-1beta on VIP and PACAP central production. Second, we observed that cox-2 activation by IL-1beta was essential to generate changes in ligand/receptor gene expression. We further tested whether the intraperitoneal injection of IL-1beta, known to aggravate the ibotenate-induced lesions, could modify the expression pattern of VIP-related genes. Finally, we concluded using histological analysis that VIP[ala(11,22,28)], a synthetic VPAC(1) agonist completely reversed the aggravating effects of IL-1beta on ibotenate-induced lesions of the periventricular white matter. Conversely, VIP-neurotensin hybrid, a nonselective VIP receptor antagonist, worsened the lesions. All together, our results suggest that an activation of VIP/VPAC(1) signaling cascade in the vicinity of the injury site could circumvent the synergizing degenerative effects of ibotenate and pro-inflammatory cytokines. Therefore, development of therapeutic tools inducing/sustaining the activation of VIP/VPAC(1) signaling cascade may lead to future preventive treatments for inflammatory conditions during pregnancy.
Collapse
Affiliation(s)
- Geraldine Favrais
- Inserm U676, hôpital Robert-Debré, 48, boulevard Sérurier, 75019 Paris, France
| | | | | | | | | |
Collapse
|
10
|
Girard BA, Lelievre V, Braas KM, Razinia T, Vizzard MA, Ioffe Y, El Meskini R, Ronnett GV, Waschek JA, May V. Noncompensation in peptide/receptor gene expression and distinct behavioral phenotypes in VIP- and PACAP-deficient mice. J Neurochem 2006; 99:499-513. [PMID: 17029602 DOI: 10.1111/j.1471-4159.2006.04112.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are closely related neurotrophic peptides of the secretin/glucagon family. The two peptides are derived from a common ancestral gene and share many functional attributes in neuronal development/regeneration which occur not only from overlapping receptor subtype signaling but also through common mechanisms regulating their expression. Although PACAP or VIP null mice have been generated for study, it is unclear whether the expression of the complementary peptide or their receptor systems are altered in a compensatory manner during nervous system development. By radioimmunoassay and quantitative PCR measurements, we first show that PACAP and VIP have very different temporal patterns of expression in developing postnatal mouse brain. In wild-type animals, PACAP transcript and peptide levels increased rapidly 2- and 5-fold, respectively, within 1 week of age. These levels at 1 week of age were maintained through adulthood. VIP transcript and peptide levels, by contrast, increased 25- and 50-fold, respectively, over a later time course. In parallel studies of development, there were no apparent compensatory increases in brain VIP expression in the PACAP knockout animals, PACAP expression in the VIP-deficient animals, or receptor mRNA levels in either genotype. To the contrary, there was evidence for developmental delays in the expression of peptide and receptor transcripts in the knockout animals. A series of behavioral and neurological tests demonstrated differences between the knockout genotypes, revealing some functional distinctions between the two genes. These results suggest that the PACAP and VIP have evolved to possess distinct biological activities and intimate that the respective knockout phenotypes represent deficits unmitigated by the actions of the complementary related peptide.
Collapse
Affiliation(s)
- Beatrice A Girard
- Department of Anatomy, University of Vermont College of Medicine, Burlington, 05405, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gajewska A, Wolińska-Witort E, Kochman K. Vasoactive intestinal peptide modulates luteinizing hormone subunit gene expression in the anterior pituitary in female rat. Brain Res Bull 2006; 67:319-26. [PMID: 16182940 DOI: 10.1016/j.brainresbull.2005.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Revised: 07/08/2005] [Accepted: 07/11/2005] [Indexed: 11/21/2022]
Abstract
The direct monosynaptic pathway which exists between vasoactive intestinal peptide (VIP) and GnRH neurons in the hypothalamic preoptic area provides a neuroanatomical background for the modulatory effects of VIP exerted on GnRH neurons activity. Though central microinjection of VIP revealed its involvement in the modulation of LH release pattern, there is a lack of data concerning a possible VIP influence on the alpha and LHbeta subunit gene expression in the pituitary gland. Using a model based on intracerebroventricular pulsatile peptide(s) microinjections (1 pulse/h [10 microl/5 min] over 5 h) the effect of exogenous VIP (5 nM dose) microinjection on subunits mRNA content in ovariectomized/oestrogen-pretreated rats was studied. Subsequently, to obtain data concerning the involvement of GnRH and VIP receptor(s) in the regulation of alpha and LHbeta subunit mRNA expression, OVX/estrogen-primed rats received a pulsatile microinjections of 5 nM VIP with 3 nM antide (GnRH receptor antagonist) or 5 nM VIP with 15 nM VIP 6-28 (VIP receptor antagonist). In this case, substances were given separately with a 30 min lag according to which each antagonist pulse preceded a VIP pulse. Northern-blot analysis revealed that VIP microinjection resulted in a decreased alpha and LHbeta mRNA content in pituitary gland and this effect was dependent on GnRH receptor activity. Moreover, obtained results indicated that centrally administered VIP might operate through its own receptor(s) because a receptor antagonist, VIP 6-28, blocked the inhibitory effect of VIP exerted on both LH subunit mRNA content and LH release.
Collapse
Affiliation(s)
- Alina Gajewska
- Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Warsaw.
| | | | | |
Collapse
|
12
|
Girard BM, Young BA, Buttolph TR, Locknar SA, White SL, Parsons RL. Trophic factor modulation of cocaine- and amphetamine-regulated transcript peptide expression in explant cultured guinea-pig cardiac neurons. Neuroscience 2006; 139:1329-41. [PMID: 16516394 DOI: 10.1016/j.neuroscience.2006.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 01/10/2006] [Accepted: 01/21/2006] [Indexed: 11/24/2022]
Abstract
The present study investigated the influence of trophic factors on the expression of cocaine- and amphetamine-regulated transcript peptide (CARTp) in guinea-pig cardiac ganglia maintained in explant culture. In acutely isolated cardiac ganglia preparations, <1% of the cholinergic cardiac neurons exhibited CARTp immunoreactivity. In contrast, this number increased to >25% of the cardiac neurons after 72 h in explant culture. This increase in the number of CARTp neurons in cultured cardiac ganglia explants was accompanied by an increase in CARTp transcript levels as assessed by real time polymerase chain reaction. Treatment of cardiac ganglia cultures with neurturin or glial-derived trophic factor (both at 10 ng/ml) for 72 h prevented the increase in neurons that exhibited CARTp immunoreactivity. In contrast, treatment with ciliary neurotrophic factor (50 ng/ml) for 72 h produced a small significant increase in the percentage of CARTp-immunoreactive cardiac neurons and treatment with nerve growth factor (100 ng/ml) had no effect. Neurturin treatment also decreased cardiac neuron CARTp levels after 72 h in explant culture. Cardiac neurons exhibited immunoreactivity to the neurturin receptor GFRalpha2 whereas non-neural cells preferentially exhibited immunoreactivity to the glial-derived neurotrophic factor receptor GFRalpha1 and neurturin transcripts were detected in cardiac tissue extracts. We hypothesize that a target-derived inhibitory factor, very likely neurturin, is a critical factor suppressing the expression of CARTp in guinea-pig cardiac neurons. These observations contrast with those reported in sympathetic neurons that suggest up-regulation of trophic factors after axotomy or during explant culture is a key factor contributing to the up-regulation of many neuropeptides.
Collapse
Affiliation(s)
- B M Girard
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, 05405, USA
| | | | | | | | | | | |
Collapse
|
13
|
Holmberg K, Kuteeva E, Brumovsky P, Kahl U, Karlström H, Lucas GA, Rodriguez J, Westerblad H, Hilke S, Theodorsson E, Berge OG, Lendahl U, Bartfai T, Hökfelt T. Generation and phenotypic characterization of a galanin overexpressing mouse. Neuroscience 2005; 133:59-77. [PMID: 15893631 DOI: 10.1016/j.neuroscience.2005.01.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 01/18/2005] [Accepted: 01/26/2005] [Indexed: 11/25/2022]
Abstract
In most parts of the peripheral nervous system galanin is expressed at very low levels. To further understand the functional role of galanin, a mouse overexpressing galanin under the platelet-derived growth factor-B was generated, and high levels of galanin expression were observed in several peripheral tissues and spinal cord. Thus, a large proportion of neurons in autonomic and sensory ganglia were galanin-positive, as were most spinal motor neurons. Strong galanin-like immunoreactivity was also seen in nerve terminals in the corresponding target tissues, including skin, blood vessels, sweat and salivary glands, motor end-plates and the gray matter of the spinal cord. In transgenic superior cervical ganglia around half of all neuron profiles expressed galanin mRNA but axotomy did not cause a further increase, even if mRNA levels were increased in individual neurons. In transgenic dorsal root ganglia galanin mRNA was detected in around two thirds of all neuron profiles, including large ones, and after axotomy the percentage of galanin neuron profiles was similar in overexpressing and wild type mice. Axotomy reduced the total number of DRG neurons less in overexpressing than in wild type mice, indicating a modest rescue effect. Aging by itself increased galanin expression in the superior cervical ganglion in wild type and transgenic mice, and in the latter also in preganglionic cholinergic neurons projecting to the superior cervical ganglion. Galanin overexpressing mice showed an attenuated plasma extravasation, an increased pain response in the formalin test, and changes in muscle physiology, but did not differ from wild type mice in sudomotor function. These findings suggest that overexpressed galanin in some tissues of these mice can be released and via a receptor-mediated action influence pathophysiological processes.
Collapse
Affiliation(s)
- K Holmberg
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, B3-4, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ford CP, Dryden WF, Smith PA. Neurotrophic regulation of calcium channels by the peptide neurotransmitter luteinizing hormone releasing hormone. J Neurosci 2003; 23:7169-75. [PMID: 12904477 PMCID: PMC6740652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
We exploited the simple organization of bullfrog paravertebral sympathetic ganglia (BFSG) to test whether the neurotransmitter peptide luteinizing hormone releasing hormone (LHRH), which generates the late slow EPSP, could also exert long-term neurotrophic control of ion channel expression. Whole-cell recordings from B-cells in BFSG showed that removal of all of the sources of ganglionic LHRH for 10 d by cutting preganglionic C-fibers in vivo caused a 28% reduction in Ca2+ current density. When BFSG B-neurons were dissociated from adult bullfrogs and maintained in a defined-medium, neuron-enriched, low-density, serum-free culture, the ICa density was increased by 49% after 6-7 d in the presence of 0.45 microm LHRH. This increase was not associated with alterations in the voltage dependence of Ca2+ current activation or inactivation and reflected a selective increase in N-type Ca2+ channel current. The increase in ICa density induced by LHRH was blocked by the transcription inhibitor actinomycin D. These results suggest that chronic exposure to a neurotransmitter that acts through G-protein-coupled receptors exerts long-term control of ion channel expression in a fully differentiated, adult sympathetic neuron in vitro or in vivo.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Calcium Channels, N-Type/drug effects
- Calcium Channels, N-Type/metabolism
- Cells, Cultured
- Denervation
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Ganglia, Sympathetic/cytology
- Ganglia, Sympathetic/drug effects
- Ganglia, Sympathetic/metabolism
- Gene Expression/drug effects
- Gene Expression/physiology
- Gonadotropin-Releasing Hormone/pharmacology
- Gonadotropin-Releasing Hormone/physiology
- Nerve Fibers, Myelinated/physiology
- Nerve Fibers, Unmyelinated/physiology
- Nerve Growth Factors/physiology
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Neurotransmitter Agents/pharmacology
- Neurotransmitter Agents/physiology
- Patch-Clamp Techniques
- Rana catesbeiana
- Receptors, LHRH/metabolism
- Time Factors
Collapse
Affiliation(s)
- Christopher P Ford
- Department of Pharmacology and Center for Neuroscience, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
15
|
Sandgren K, Lin Z, Fex Svenningsen A, Ekblad E. Vasoactive intestinal peptide and nitric oxide promote survival of adult rat myenteric neurons in culture. J Neurosci Res 2003; 72:595-602. [PMID: 12749024 DOI: 10.1002/jnr.10612] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several motility disorders originate in the enteric nervous system (ENS). Our knowledge of factors governing survival of the ENS is poor. Changes in the expression of vasoactive intestinal peptide (VIP) and nitric oxide synthase (NOS) in enteric neurons occur after neuronal injury and in intestinal adaptation. The aim of this study was to evaluate whether VIP and nitric oxide (NO) influence survival of cultured, dissociated myenteric neurons. Neuronal survival was evaluated after 0, 4, and 8 days in culture. Influence of VIP and NO on neuronal survival was examined after culturing in the presence of VIP, NO donor, VIP antiserum, or NOS inhibitor. A marked loss of neurons was noted during culturing. VIP and NO significantly promoted neuronal survival. Corroborating this was the finding of an enhanced neuronal cell loss when cultures were grown in the presence of VIP antiserum or NOS inhibitor.
Collapse
Affiliation(s)
- Katarina Sandgren
- Department of Physiological Sciences, Neuroendocrine Cell Biology, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
16
|
Liu NJ, Gintzler AR. Facilitative interactions between vasoactive intestinal polypeptide and receptor type-selective opioids: implications for sensory afferent regulation of spinal opioid action. Brain Res 2003; 959:103-10. [PMID: 12480163 DOI: 10.1016/s0006-8993(02)03734-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Afferent tone is known to influence spinal opioid antinociception but the underlying neurochemical events are not well defined. This study investigates the consequence on cAMP formation of the coincident activation of signal transduction sequelae initiated by an afferent transmitter and opioid using dissociated spinal cord tissue. Afferent transmission was simulated via the addition of vasoactive intestinal polypeptide (VIP), a pelvic visceral afferent transmitter. Individually, mu, delta-, or kappa-selective opioids (1 microM each) did not alter basal spinal content of cAMP. However, VIP (1 microM) and the delta-opioid selective agonist, [D-Pen(2,5)] enkephalin (DPDPE; 1 microM), in combination, manifest a striking facilitative interaction to augment spinal levels of cAMP. Facilitative interactions between VIP and kappa- or mu-opioids were of a reduced magnitude or not observed, respectively. Blockade of delta-opioid or VIP receptors using naltrindole or VIP6-28, respectively antagonized the VIP-DPDPE facilitative interaction, as did pertussis toxin treatment. The VIP-DPDPE facilitative interaction was also eliminated by phospholipase Cbeta inhibition and inositol trisphosphate receptor blockade. This suggests that modulation of Ca(2+) trafficking by VIP and delta-opioid agonists is a point of convergence of their respective signal transduction cascades, the concomitant action at which achieves cytosolic Ca(2+) concentrations that are now sufficient for the activation of signaling molecules, e.g. Ca(2+)/calmodulin-stimulated adenylyl cyclase isoforms. These data underscore the plasticity of spinal delta-opioid neurochemical sequelae and their dependence on concomitant afferent transmitter-initiated neurochemical events.
Collapse
MESH Headings
- Afferent Pathways/drug effects
- Analgesics, Opioid/pharmacology
- Animals
- Cell Culture Techniques
- Cyclic AMP/analysis
- Cyclic AMP/metabolism
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Female
- Narcotics/pharmacology
- Neuronal Plasticity/physiology
- Neurotransmitter Agents/pharmacology
- Ovariectomy
- Rats
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Vasoactive Intestinal Peptide/antagonists & inhibitors
- Receptors, Vasoactive Intestinal Peptide/drug effects
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Spinal Cord/chemistry
- Spinal Cord/metabolism
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- Nai Jiang Liu
- Department of Biochemistry, State University of New York, Downstate Medical Center, Box 8, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | | |
Collapse
|
17
|
Girard BM, May V, Bora SH, Fina F, Braas KM. Regulation of neurotrophic peptide expression in sympathetic neurons: quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction. REGULATORY PEPTIDES 2002; 109:89-101. [PMID: 12409220 DOI: 10.1016/s0167-0115(02)00191-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulated expression of the peptide and transcript levels of the neurotrophic peptides, pituitary adenylate cyclase-activating polypeptide (PACAP), galanin and vasoactive intestinal peptide (VIP) were examined in sympathetic neurons of the rat superior cervical ganglion (SCG). Real-time quantitative PCR methods were developed to assess modulation of neuronal peptide precursor protein transcript levels following experimental paradigms of neuropeptidergic plasticity. Oligonucleotide primer, fluorogenic probe and amplification conditions were optimized for maximal assay sensitivity. Depolarization of primary cultured sympathetic neurons stimulated PACAP, galanin, and VIP peptide contents and releases with differing magnitudes and temporal profiles. The rank order of increased neuronal peptide content paralleled the augmented peptide release (VIP>galanin>PACAP). Maximal cellular PACAP and VIP levels were achieved by 72 and 96 h, respectively; galanin levels did not plateau during the treatment period. PACAP transcript elevation was rapid and transient; PACAP mRNA expression diminished at longer depolarization times, which diverged markedly from the sustained high peptide production levels. By contrast, VIP and galanin mRNAs reached maximal levels at later times, and appeared to correlate more closely with peptide production. We previously described multiple proPACAP mRNA variants resulting from alternative 3' untranslated region cleavage and polyadenylation. The shorter depolarization-induced PACAP transcripts exhibit longer half-lives, suggesting that the short proPACAP mRNA variant may function to impart PACAP translational efficiency and sustain PACAP peptide production.
Collapse
Affiliation(s)
- Béatrice M Girard
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
18
|
Hamelink C, Lee HW, Chen Y, Grimaldi M, Eiden LE. Coincident elevation of cAMP and calcium influx by PACAP-27 synergistically regulates vasoactive intestinal polypeptide gene transcription through a novel PKA-independent signaling pathway. J Neurosci 2002; 22:5310-20. [PMID: 12097482 PMCID: PMC6758207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2001] [Revised: 04/11/2002] [Accepted: 04/16/2002] [Indexed: 02/25/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) causes calcium influx, intracellular calcium release, and elevation of cAMP in chromaffin cells. Calcium influx is required for PACAP-stimulated secretion of catecholamines and neuropeptides. The role of cAMP elevation in the action of PACAP at either sympathetic or adrenomedullary synapses, however, is unknown. Here, we show that PACAP-27-induced calcium influx through voltage-sensitive calcium channels (VSCCs), together with elevation of intracellular cAMP, was sufficient to stimulate vasoactive intestinal polypeptide (VIP) biosynthesis at least 40-fold. Combined treatment of chromaffin cells with 40 mm KCl, which elevates intracellular calcium, and 25 micrometer forskolin, which elevates intracellular cAMP, caused an increase in VIP peptide and mRNA much greater than that elicited by either agent alone, and comparable to the increase caused by 10-100 nm PACAP-27. Elevation of VIP mRNA by either KCl plus forskolin, or PACAP, (1) was independent of new protein synthesis, (2) was blocked by inhibition of calcium influx through voltage-sensitive calcium channels, (3) was calcineurin dependent, and (4) was dependent on MAP kinase activation but not activation of protein kinase A. The degree of activation of two different second-messenger pathways, calcium influx and cAMP elevation, appears to determine the magnitude of transcriptional activation of the VIP gene in chromaffin cells. Maximal stimulation of VIP biosynthesis by PACAP appears to require the coincident activation of both of these pathways.
Collapse
Affiliation(s)
- Carol Hamelink
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
19
|
Zhang QL, Liu J, Lin PX, Webster HD. Local administration of vasoactive intestinal peptide after nerve transection accelerates early myelination and growth of regenerating axons. J Peripher Nerv Syst 2002; 7:118-27. [PMID: 12090298 DOI: 10.1046/j.1529-8027.2002.02018.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our goal was to determine whether local injections of vasoactive intestinal peptide (VIP) promote early stages of regeneration after nerve transection. Sciatic nerves were transected bilaterally in 2 groups of 10 adult mice. In the first group, 15 microg (20 microL) of VIP were injected twice daily into the gap between transected ends of the right sciatic nerve for 7 days (4 mice) or 14 days (6 mice). The same number of mice in the second group received placebo injections (20 microL of 0.9% sterile saline) in the same site, twice daily, for the same periods. After 7 days, axon sizes, relationships with Schwann cells and degree of myelination were compared in electron micrographs of transversely sectioned distal ends of proximal stumps. Fourteen days after transection, light and electron microscopy were used to compare and measure axons and myelin sheaths in the transection gap, 2-mm distal to the ends of proximal stumps. Distal ends of VIP-treated proximal stumps contained larger axons 7 days after transection. More axons were in 1:1 relationships with Schwann cells and some of them were surrounded by thin myelin sheaths. In placebo-treated proximal stumps, axons were smaller, few were in 1:1 relationships with Schwann cells and no myelin sheaths were observed. In VIP-treated transection gaps, measurements 14 days after transection showed that larger axons were more numerous and their myelin sheaths were thicker. Our results suggest that in this nerve transection model, local administration of VIP promotes and accelerates early myelination and growth of regenerating axons.
Collapse
Affiliation(s)
- Qian-Lin Zhang
- Basic Neurosciences Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-4123, USA
| | | | | | | |
Collapse
|
20
|
Greif KF. 3',5'-cyclic adenosine monophosphate regulates expression of synaptotagmin in neonatal sympathetic ganglia in vitro. JOURNAL OF NEUROBIOLOGY 2001; 46:281-8. [PMID: 11180155 DOI: 10.1002/1097-4695(200103)46:4<281::aid-neu1008>3.0.co;2-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The expression of the synaptic vesicle protein, synaptotagmin, in developing rat superior cervical ganglia is influenced by transsynaptic factors associated with membrane depolarization. The present study examines the role of cyclic AMP in the regulation of synaptotagmin in neonatal superior cervical ganglia maintained in explant culture. Ganglia were treated for 48 h in vitro with the Na+-channel ionophore, veratridine, or with pharmacological agents that alter cyclic AMP levels. Levels of cyclic AMP and synaptotagmin were determined by radioimmunoassay. Veratridine treatment significantly increased cyclic AMP in cultured ganglia, with a long time course, and also increased synaptotagmin levels. Drugs that elevate cyclic AMP levels significantly increased synaptotagmin levels, with similar magnitude to that produced by veratridine treatment. These pharmacological agents did not alter neuron survival or total ganglionic protein content. No additive effects were observed after combined treatment with veratridine and pharmacological agents that increased cyclic AMP. Agents that blocked adenylyl cyclase blocked the veratridine-induced increase in synaptotagmin levels. The results suggest that regulation of expression of synaptotagmin in neonatal sympathetic neurons is mediated partially by cyclic AMP.
Collapse
Affiliation(s)
- K F Greif
- Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, USA.
| |
Collapse
|
21
|
Zigmond RE. Neuropeptide action in sympathetic ganglia. Evidence for distinct functions in intact and axotomized ganglia. Ann N Y Acad Sci 2001; 921:103-8. [PMID: 11193812 DOI: 10.1111/j.1749-6632.2000.tb06955.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R E Zigmond
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4975, USA.
| |
Collapse
|
22
|
Gibbins IL, Morris JL. Pathway specific expression of neuropeptides and autonomic control of the vasculature. REGULATORY PEPTIDES 2000; 93:93-107. [PMID: 11033057 DOI: 10.1016/s0167-0115(00)00181-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this article, we review the immunohistochemical evidence for the pathway-specific expression of co-existing neuropeptides in autonomic vasomotor neurons, and examine the functional significance of these expression patterns for the autonomic regulation of the vasculature. Most final motor neurons in autonomic vasomotor pathways contain neuropeptides in addition to non-peptide co-transmitters such as catecholamines, acetylcholine and nitric oxide. Neuropeptides also occur in preganglionic vasomotor neurons. The precise combinations of neuropeptides expressed by neurons in vasomotor pathways vary with species, vascular bed, and the level within the vascular bed. This applies to both vasoconstrictor and vasodilator pathways. There is a similar degree of variation in the expression of neuropeptide receptors in the vasculature. Consequently, the contributions of different peptides to autonomic vasomotor control are closely matched to the functional requirements of specific vascular beds. This arrangement allows for a high degree of precision in vascular control in normal conditions and has the potential for considerable plasticity under pathophysiological conditions.
Collapse
Affiliation(s)
- I L Gibbins
- Department of Anatomy and Histology, and Centre for Neuroscience, School of Medicine, Flinders University, GPO Box 2100, S.A. 5001, Adelaide, Australia.
| | | |
Collapse
|
23
|
Bergner AJ, Murphy SM, Anderson CR. After axotomy, substance P and vasoactive intestinal peptide expression occurs in pilomotor neurons in the rat superior cervical ganglion. Neuroscience 2000; 96:611-8. [PMID: 10717442 DOI: 10.1016/s0306-4522(99)00576-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Autonomic sympathetic postganglionic neurons normally express distinct combinations of neuropeptides which are often highly correlated with the projection of the neurons. When sympathetic postganglionic neurons are axotomized, they can express quite different neuropeptides, notably substance P, vasoactive intestinal peptide or galanin. In this study, we have examined rat sympathetic postganglionic neurons in the superior cervical ganglion that project to the skin, the vasculature of the skeletal muscle or to the submandibular salivary gland, and assessed whether the neuropeptides that they express after axotomy depend on which target tissue they previously innervated. In all three populations, around half of the postganglionic neurons expressed galanin after axotomy. In contrast, only skin-projecting neurons showed a significant increase in the number of neurons that expressed substance P (22%) and vasoactive intestinal peptide (17%) following axotomy. Within the skin-projecting neurons, as judged on the basis of cell body size, substance P and vasoactive intestinal peptide were expressed predominantly in pilomotor neurons, but only rarely were the two neuropeptides present in the same nerve cell body. In conclusion, we have demonstrated that three different neuropeptides, which can be induced by axotomy in postganglionic neurons, follow quite different patterns of expression when they are viewed in relation to the function of the postganglionic neurons in the superior cervical ganglion.
Collapse
Affiliation(s)
- A J Bergner
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
24
|
Gozes I, Brenneman DE. A new concept in the pharmacology of neuroprotection. J Mol Neurosci 2000; 14:61-8. [PMID: 10854037 DOI: 10.1385/jmn:14:1-2:061] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/1999] [Accepted: 06/20/1999] [Indexed: 11/11/2022]
Abstract
Vasoactive intestinal peptide (VIP), originally discovered in the intestine as a peptide of 28 amino acids, was later found to be a major brain peptide having neuroprotective activities. To exert neuroprotective activity, VIP requires glial cells secreting neuroprotective proteins. Activity-dependent neurotrophic factor (ADNF) is a recently isolated factor secreted by glial cells under the action of VIP. This protein, isolated by sequential chromatographic methods, was named activity-dependent neurotrophic factor since it protected neurons from death associated with blockade of electrical activity. A fourteen-amino-acid fragment of ADNF (ADNF-14) and the more potent, nine-amino-acid derivative (ADNF-9), exhibit activity that surpasses that of the parent protein with regard to potency and a broader range of effective concentration. Furthermore, the peptides exhibit protective activity in Alzheimer's disease-related systems (e.g., beta-amyloid toxicity and apolipoprotein E deficiencies, genes that have been associated with Alzheimer's disease onset and progression). ADNP is another glial mediator of VIP-associated neuroprotection. NAP, an eight-amino-acid peptide derived from ADNP (sharing structural and functional similarities with ADNF-9), was identified as the most potent neuroprotectant described to-date in an animal model of apolipoprotein E-deficiency (knock-out mice). These femtomolar-acting peptides form a basis for a new concept in pharmacology: femtomolar neuroprotection.
Collapse
Affiliation(s)
- I Gozes
- Department of Clinical Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel.
| | | |
Collapse
|
25
|
Mohney RP, Zigmond RE. Galanin expression is decreased by cAMP-elevating agents in cultured sympathetic ganglia. Neuroreport 1999; 10:1221-4. [PMID: 10363928 DOI: 10.1097/00001756-199904260-00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Galanin expression is co-regulated in peripheral neurons with that of vasoactive intestinal peptide (VIP) under a variety of conditions. For example, the expression of both increase after explantation of adult rat superior cervical ganglia (SCG). Because VIP participates in a positive feedback loop regulating its own expression, we examined whether VIP also increases galanin expression. Galanin mRNA and peptide are nearly undetectable in the SCG in vivo, but increase dramatically after 24-48 h in organ culture. Addition of VIP or forskolin to the culture medium reduced galanin mRNA expression by 75% and 77%, respectively, and reduced galanin peptide expression by 76% and 82%, respectively, compared with ganglia cultured in control medium. In contrast, isoproterenol stimulation did not significantly alter levels of galanin mRNA or peptide, consistent with previous observations that isoproterenol exerts its effect on SCG non-neuronal cells, but not on neurons. The results indicate that galanin and VIP are differentially regulated in sympathetic neurons by cAMP- elevating agents.
Collapse
Affiliation(s)
- R P Mohney
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | | |
Collapse
|