1
|
Choi JE, Choi DI, Lee J, Kim J, Kim MJ, Hong I, Jung H, Sung Y, Kim JI, Kim T, Yu NK, Lee SH, Choe HK, Koo JW, Kim JH, Kaang BK. Synaptic ensembles between raphe and D 1R-containing accumbens shell neurons underlie postisolation sociability in males. SCIENCE ADVANCES 2022; 8:eabo7527. [PMID: 36223467 PMCID: PMC9555785 DOI: 10.1126/sciadv.abo7527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Social animals expend considerable energy to maintain social bonds throughout their life. Male and female mice show sexually dimorphic behaviors, yet the underlying neural mechanisms of sociability and their dysregulation during social disconnection remain unknown. Dopaminergic neurons in dorsal raphe nucleus (DRNTH) is known to contribute to a loneliness-like state and modulate sociability. We identified that activated subpopulations in DRNTH and nucleus accumbens shell (NAcsh) during 24 hours of social isolation underlie the increase in isolation-induced sociability in male but not in female mice. This effect was reversed by chemogenetically and optogenetically inhibiting the DRNTH-NAcsh circuit. Moreover, synaptic connectivity among the activated neuronal ensembles in this circuit was increased, primarily in D1 receptor-expressing neurons in NAcsh. The increase in synaptic density functionally correlated with elevated dopamine release into NAcsh. Overall, specific synaptic ensembles in DRNTH-NAcsh mediate sex differences in isolation-induced sociability, indicating that sex-dependent circuit dynamics underlie the expression of sexually dimorphic behaviors.
Collapse
Affiliation(s)
- Ja Eun Choi
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Dong Il Choi
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jisu Lee
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jooyoung Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Min Jung Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ilgang Hong
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyunsu Jung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Yongmin Sung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ji-il Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - TaeHyun Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Nam-Kyung Yu
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Technojoongang-daero, Dalseong-gun, Daegu 42988, South Korea
| | - Ja Wook Koo
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-Gu, Pohang 37673, South Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
2
|
Yepez JE, Juárez J. Modafinil acquires reinforcing effects when combined with citalopram. Pharmacol Biochem Behav 2022; 217:173407. [DOI: 10.1016/j.pbb.2022.173407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
3
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
4
|
Serotonergic control of the glutamatergic neurons of the subthalamic nucleus. PROGRESS IN BRAIN RESEARCH 2021; 261:423-462. [PMID: 33785138 DOI: 10.1016/bs.pbr.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The subthalamic nucleus (STN) houses a dense cluster of glutamatergic neurons that play a central role in the functional dynamics of the basal ganglia, a group of subcortical structures involved in the control of motor behaviors. Numerous anatomical, electrophysiological, neurochemical and behavioral studies have reported that serotonergic neurons from the midbrain raphe nuclei modulate the activity of STN neurons. Here, we describe this serotonergic innervation and the nature of the regulation exerted by serotonin (5-hydroxytryptamine, 5-HT) on STN neuron activity. This regulation can occur either directly within the STN or at distal sites, including other structures of the basal ganglia or cortex. The effect of 5-HT on STN neuronal activity involves several 5-HT receptor subtypes, including 5-HT1A, 5-HT1B, 5-HT2C and 5-HT4 receptors, which have garnered the highest attention on this topic. The multiple regulatory effects exerted by 5-HT are thought to be modified under pathological conditions, altering the activity of the STN, or due to the benefits and side effects of treatments used for Parkinson's disease, notably the dopamine precursor l-DOPA and high-frequency STN stimulation. Originally understood as a motor center, the STN is also associated with decision making and participates in mood regulation and cognitive performance, two domains of personality that are also regulated by 5-HT. The literature concerning the link between 5-HT and STN is already important, and the functional overlap is evident, but this link is still not entirely understood. The understanding of this link between 5-HT and STN should be increased due to the possible importance of this regulation in the control of fronto-STN loops and inherent motor and non-motor behaviors.
Collapse
|
5
|
De Deurwaerdère P, Bharatiya R, Chagraoui A, Di Giovanni G. Constitutive activity of 5-HT receptors: Factual analysis. Neuropharmacology 2020; 168:107967. [DOI: 10.1016/j.neuropharm.2020.107967] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022]
|
6
|
Ondansetron, a highly selective 5-HT3 receptor antagonist, reduces L-DOPA-induced dyskinesia in the 6-OHDA-lesioned rat model of Parkinson's disease. Eur J Pharmacol 2020; 871:172914. [DOI: 10.1016/j.ejphar.2020.172914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/12/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023]
|
7
|
Fakhfouri G, Rahimian R, Dyhrfjeld-Johnsen J, Zirak MR, Beaulieu JM. 5-HT 3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface. Pharmacol Rev 2019; 71:383-412. [PMID: 31243157 DOI: 10.1124/pr.118.015487] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
5-HT3 receptor antagonists, first introduced to the market in the mid-1980s, are proven efficient agents to counteract chemotherapy-induced emesis. Nonetheless, recent investigations have shed light on unappreciated dimensions of this class of compounds in conditions with an immunoinflammatory component as well as in neurologic and psychiatric disorders. The promising findings from multiple studies have unveiled several beneficial effects of these compounds in multiple sclerosis, stroke, Alzheimer disease, and Parkinson disease. Reports continue to uncover important roles for 5-HT3 receptors in the physiopathology of neuropsychiatric disorders, including depression, anxiety, drug abuse, and schizophrenia. This review addresses the potential of 5-HT3 receptor antagonists in neurology- and neuropsychiatry-related disorders. The broad therapeutic window and high compliance observed with these agents position them as suitable prototypes for the development of novel pharmacotherapeutics with higher efficacy and fewer adverse effects.
Collapse
Affiliation(s)
- Gohar Fakhfouri
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Mohammad Reza Zirak
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| | - Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
| |
Collapse
|
8
|
Huo J, Cui Q, Yang W, Guo W. LPS induces dopamine depletion and iron accumulation in substantia nigra in rat models of Parkinson's disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4942-4949. [PMID: 31949570 PMCID: PMC6962913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/07/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Intrapallidal inflammation may lead to the pathogenesis of Parkinson's disease. Pathological changes caused by lipopolysaccharide (LPS)-induced inflammation in Parkinson's disease rat models were largely unknown. METHODS Male Sprague-Dawley rat models were intra-globuspallidus injected with saline and lipopolysaccharide and divided into two groups, the control group and the LPS-stimulation group. The locomotor activity of the rat models was recorded for 4 consecutive weeks by trajectory analysis software for animal behavior. For the evaluation of pathological profiles, the expression levels of tyrosine hydroxylase and OX-42 in the substantia nigra tissues were detected by immunohistochemical staining. Also, the concentrations of dopamine at specific sites were detected through high-performance liquid chromatography. Perl's iron staining was used to evaluate iron accumulation in substantia nigra tissues. RESULTS LPS-stimulation reduced the locomotor capacity of the rat models compared with the control group. The density of tyrosine hydroxylase-positive cells was reduced and the secretion of striatal dopamine in the substantia nigra pars compacts was lower in the LPS group than it was in the control group. OX-42 positive microglia and ferritin levels were enhanced in the LPS group. CONCLUSION Intrapallidal inflammation by LPS induced dopamine depletion and iron accumulation in the substantia nigra of Parkinson's disease rat models. The management of cerebral inflammation might be pivotal for PD pathogenesis and prognosis.
Collapse
Affiliation(s)
- Jie Huo
- Department of Emergency, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
| | - Qu Cui
- Department of Emergency, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
- Department of Immunology, School of Basic Medicine, Norman Bethune Health Science Center, Jilin UniversityJilin, China
| | - Wei Yang
- Department of Immunology, School of Basic Medicine, Norman Bethune Health Science Center, Jilin UniversityJilin, China
| | - Wei Guo
- Department of Emergency, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
9
|
Negative consequences of early-life adversity on substance use as mediated by corticotropin-releasing factor modulation of serotonin activity. Neurobiol Stress 2018; 9:29-39. [PMID: 30151419 PMCID: PMC6108067 DOI: 10.1016/j.ynstr.2018.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/11/2018] [Accepted: 08/05/2018] [Indexed: 01/01/2023] Open
Abstract
Early-life adversity is associated with increased risk for substance abuse in later life, with women more likely to report past and current stress as a mediating factor in their substance use and relapse as compared to men. Preclinical models of neonatal and peri-adolescent (early through late adolescence) stress all support a direct relationship between experiences of early-life adversity and adult substance-related behaviors, and provide valuable information regarding the underlying neurobiology. This review will provide an overview of these animal models and how these paradigms alter drug and alcohol consumption and/or seeking in male and female adults. An introduction to the corticotropin-releasing factor (CRF) and serotonin systems, their development and their interactions at the level of the dorsal raphe will be provided, illustrating how this particular stress system is sexually dimorphic, and is well positioned to be affected by stressors early in development and throughout maturation. A model for CRF-serotonin interactions in the dorsal raphe and how these influence dopaminergic activity within the nucleus accumbens and subsequent reward-associated behaviors will be provided, and alterations to the activity of this system following early-life adversity will be identified. Overall, converging findings suggest that early-life adversity has long-term effects on the functioning of the CRF-serotonin system, highlighting a potentially important and targetable mediator linking stress to addiction. Future work should focus on identifying the exact mechanisms that promote long-term changes to the expression and activity of CRF receptors in the dorsal raphe. Moreover, it is important to clarify whether similar neurobiological mechanisms exist for males and females, given the sexual dimorphism both in CRF receptors and serotonin indices in the dorsal raphe and in the behavioral outcomes of early-life adversity. Early life stress increases risk for substance abuse in adulthood. Stress and drugs increase CRF which alters serotonin release in the brain. CRF2 receptor expression in the dorsal raphe is altered by early life stress. Resultant changes to serotonin output facilitates dopamine in the accumbens. CRF2-sertotonin-dopamine interactions may link early life stress with substance abuse.
Collapse
Key Words
- 5-HIAA, 5–Hydroxyindoleacetic Acid
- BNST, Bed Nucleus of the Stria Terminalis
- CRF, Corticotropin-Releasing Factor
- CRF-BP, Corticotropin-Releasing Factor Binding Protein
- CeA, Central Nucleus of the Amygdala
- Corticotropin-releasing factor
- Dorsal raphe nucleus
- Drug reward
- Early-life stress
- LC, Locus Coeruleus
- MDMA, 3,4-Methylenedioxymethamphetamine
- NAc, Nucleus Accumbens
- NMDA, N-methyl-d-aspartate
- PND, Postnatal Day
- Serotonin
- Sex differences
- TPH2, Tryptophan Hydroxylase 2
- VTA, Ventral Tegmental Area
- dRN, Dorsal Raphe Nucleus
Collapse
|
10
|
Ruthirakuhan MT, Herrmann N, Abraham EH, Chan S, Lanctôt KL. Pharmacological interventions for apathy in Alzheimer's disease. Cochrane Database Syst Rev 2018; 5:CD012197. [PMID: 29727467 PMCID: PMC6494556 DOI: 10.1002/14651858.cd012197.pub2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Despite the high prevalence of apathy in Alzheimer's disease (AD), and its harmful effects, there are currently no therapies proven to treat this symptom. Recently, a number of pharmacological therapies have been investigated as potential treatments for apathy in AD. OBJECTIVES Objective 1: To assess the safety and efficacy of pharmacotherapies for the treatment of apathy in Alzheimer's disease (AD).Objective 2: To assess the effect on apathy of pharmacotherapies investigated for other primary outcomes in the treatment of AD. SEARCH METHODS We searched the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group (ALOIS), MEDLINE, Embase, CINAHL, PsycINFO, LILACS, ClinicalTrials.gov and the World Health Organization (WHO) portal, ICTRP on 17 May 2017. SELECTION CRITERIA Eligible studies were double-blind, randomized, placebo-controlled trials (RCTs) investigating apathy as a primary or secondary outcome in people with AD. DATA COLLECTION AND ANALYSIS Three review authors extracted data. We assessed the risks of bias of included studies using Cochrane methods, and the overall quality of evidence for each outcome using GRADE methods. We calculated mean difference (MD), standardized mean difference (SMD) or risk ratio (RR) with 95% confidence intervals on an intention-to-treat basis for all relevant outcome measures. MAIN RESULTS We included 21 studies involving a total of 6384 participants in the quantitative analyses. Risk of bias is very low to moderate. All studies reported appropriate methods of randomization and blinding. Most studies reported appropriate methods of allocation concealment. Four studies, three with methylphenidate and one with modafinil, had a primary aim of improving apathy. In these studies, all participants had clinically significant apathy at baseline. Methylphenidate may improve apathy compared to placebo. This finding was present when apathy was assessed using the apathy evaluation scale (AES), which was used by all three studies investigating methylphenidate: MD -4.99, 95% CI -9.55 to -0.43, n = 145, 3 studies, low quality of evidence, but not when assessed with the neuropsychiatric inventory (NPI)-apathy subscale, which was used by two of the three studies investigating methylphenidate: MD -0.08, 95% CI -3.85 to 3.69, n = 85, 2 studies, low quality of evidence. As well as having potential benefits for apathy, methylphenidate probably also slightly improves cognition (MD 1.98, 95% CI 1.06 to 2.91, n = 145, 3 studies, moderate quality of evidence), and probably improves instrumental activities of daily living (MD 2.30, 95% CI 0.74 to 3.86, P = 0.004, n = 60, 1 study, moderate quality of evidence), compared to placebo. There may be no difference between methylphenidate and placebo in the risk of developing an adverse event: RR 1.28, 95% CI 0.67 to 2.42, n = 145, 3 studies, low quality of evidence. There was insufficient evidence from one very small study of modafinil to determine the effect of modafinil on apathy assessed with the FrSBe-apathy subscale: MD 0.27, 95% CI -3.51 to 4.05, n = 22, 1 study, low quality of evidence. In all other included studies, apathy was a secondary outcome and participants were not selected on the basis of clinically significant apathy at baseline. We considered the evidence on apathy from these studies to be indirect and associated with publication bias. There was low or very low quality of evidence on cholinesterase inhibitors (ChEIs) (six studies), ChEI discontinuation (one study), antipsychotics (two studies), antipsychotic discontinuation (one study), antidepressants (two studies), mibampator (one study), valproate (three studies) and semagacestat (one study). AUTHORS' CONCLUSIONS Methylphenidate may demonstrate a benefit for apathy and may have slight benefits for cognition and functional performance in people with AD, but this finding is associated with low-quality evidence. Our meta-analysis is limited by the small number of studies within each drug class, risk of bias, publication bias, imprecision and inconsistency between studies. Additional studies should be encouraged targeting people with AD with clinically significant apathy which investigate apathy as a primary outcome measure, and which have a longer duration and a larger sample size. This could increase the quality of evidence for methylphenidate, and may confirm whether or not it is an effective pharmacotherapy for apathy in AD.
Collapse
Affiliation(s)
- Myuri T Ruthirakuhan
- Sunnybrook Research InstituteHurvitz Brain Sciences Research Program2075 Bayview AvenueTorontoONCanadaM4N 3M5
- University of TorontoDepartment of Pharmacology and Toxicology2075 Bayview AvenueTorontoCanada
| | - Nathan Herrmann
- Sunnybrook Research InstituteHurvitz Brain Sciences Research Program2075 Bayview AvenueTorontoONCanadaM4N 3M5
- University of TorontoDepartment of Psychiatry2075 Bayview Avenue, Room H‐185TorontoONCanada
- Sunnybrook Health Sciences CentreGeriatric PsychiatryTorontoCanada
| | - Eleenor H Abraham
- Sunnybrook Research InstituteHurvitz Brain Sciences Research Program2075 Bayview AvenueTorontoONCanadaM4N 3M5
| | - Sarah Chan
- Sunnybrook Health Sciences CentreNeuropsychopharmacology Research Group2075 Bayview AvenueTorontoCanadaM4N 3M5
| | - Krista L Lanctôt
- Sunnybrook Research InstituteHurvitz Brain Sciences Research Program2075 Bayview AvenueTorontoONCanadaM4N 3M5
- University of TorontoDepartment of Pharmacology and Toxicology2075 Bayview AvenueTorontoCanada
- University of TorontoDepartment of Psychiatry2075 Bayview Avenue, Room H‐185TorontoONCanada
- Sunnybrook Health Sciences CentreGeriatric PsychiatryTorontoCanada
| | | |
Collapse
|
11
|
Dellu-Hagedorn F, Fitoussi A, De Deurwaerdère P. Correlative analysis of dopaminergic and serotonergic metabolism across the brain to study monoaminergic function and interaction. J Neurosci Methods 2017; 280:54-63. [DOI: 10.1016/j.jneumeth.2017.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/28/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
|
12
|
Janssen MLF, Temel Y, Delaville C, Zwartjes DGM, Heida T, De Deurwaerdère P, Visser-Vandewalle V, Benazzouz A. Cortico-subthalamic inputs from the motor, limbic, and associative areas in normal and dopamine-depleted rats are not fully segregated. Brain Struct Funct 2016; 222:2473-2485. [PMID: 28013397 DOI: 10.1007/s00429-016-1351-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/13/2016] [Indexed: 11/30/2022]
Abstract
The subthalamic nucleus (STN) receives monosynaptic glutamatergic afferents from different areas of the cortex, known as the "hyperdirect" pathway. The STN has been divided into three distinct subdivisions, motor, limbic, and associative parts in line with the concept of parallel information processing. The extent to which the parallel information processing coming from distinct cortical areas overlaps in the different territories of the STN is still a matter of debate and the proposed role of dopaminergic neurons in maintaining the coherence of responses to cortical inputs in each territory is not documented. Using extracellular electrophysiological approaches, we investigated to what degree the motor and non-motor regions in the STN are segregated in control and dopamine (DA) depleted rats. We performed electrical stimulation of different cortical areas and recorded STN neuronal responses. We showed that motor and non-motor cortico-subthalamic pathways are not fully segregated, but partially integrated in the rat. This integration was mostly present through the indirect pathway. The spatial distribution and response latencies were the same in sham and 6-hydroxydopamine lesioned animals. The inhibitory phase was, however, less apparent in the lesioned animals. In conclusion, this study provides the first evidence that motor and non-motor cortico-subthalamic pathways in the rat are not fully segregated, but partially integrated. This integration was mostly present through the indirect pathway. We also show that the inhibitory phase induced by GABAergic inputs from the external segment of the globus pallidus is reduced in the DA-depleted animals.
Collapse
Affiliation(s)
- Marcus L F Janssen
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146, Rue Léo-Saignat, 33000, Bordeaux Cedex, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center, 6202 AZ, Maastricht, The Netherlands
| | - Yasin Temel
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, 6202 AZ, Maastricht, The Netherlands
| | - Claire Delaville
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146, Rue Léo-Saignat, 33000, Bordeaux Cedex, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
| | - Daphne G M Zwartjes
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Electrical Engineering, Mathematics and Computer Science, Biomedical Signals and Systems group, Twente University, 7500 AE, Enschede, The Netherlands
| | - Tjitske Heida
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Electrical Engineering, Mathematics and Computer Science, Biomedical Signals and Systems group, Twente University, 7500 AE, Enschede, The Netherlands
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146, Rue Léo-Saignat, 33000, Bordeaux Cedex, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
| | | | - Abdelhamid Benazzouz
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146, Rue Léo-Saignat, 33000, Bordeaux Cedex, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France.
| |
Collapse
|
13
|
Basaran NF, Buyukuysal RL, Sertac Yilmaz M, Aydin S, Cavun S, Millington WR. The effect of Gly-Gln [ß-endorphin30-31] on morphine-evoked serotonin and GABA efflux in the nucleus accumbens of conscious rats. Neuropeptides 2016; 58:23-9. [PMID: 26861257 DOI: 10.1016/j.npep.2016.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/21/2015] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
Abstract
Glycyl-L-glutamine (Gly-Gln; β-endorphin30-31) is an endogenous dipeptide synthesized through the post-translational processing of β-endorphin1-31. Central Gly-Gln administration inhibits the rewarding properties of morphine and attenuates morphine tolerance, dependence and withdrawal although it does not interfere with morphine analgesia. In an earlier study, we found that Gly-Gln inhibits morphine-induced dopamine efflux in the nucleus accumbens (NAc), consistent with its ability to inhibit morphine reward. To further investigate the mechanism responsible for its central effects we tested whether i.c.v. Gly-Gln administration influences the rise in extracellular serotonin and GABA concentrations evoked by morphine in the NAc. Conscious rats were treated with Gly-Gln (100nmol/5μl) or saline i.c.v. followed, 2min later, by morphine (2.5mg/kg) or saline i.p. and extracellular serotonin and GABA concentrations were analyzed by microdialysis and HPLC. Morphine administration increased extracellular serotonin and GABA concentrations significantly within 20min, as shown previously. Unexpectedly, Gly-Gln also increased extracellular serotonin concentrations significantly in control animals. Combined treatment with Gly-Gln+morphine also elevated extracellular serotonin concentrations although the magnitude of the response did not differ significantly from the effect of Gly-Gln or morphine, given alone suggesting that Gly-Gln suppressed morphine induced serotonin efflux. Gly-Gln abolished the morphine-induced rise in extracellular GABA concentrations but had no effect on extracellular GABA when given alone to otherwise untreated animals. These data show that Gly-Gln stimulates NAc serotonin efflux and, together with earlier studies, support the hypothesis that Gly-Gln inhibits the rewarding effects of morphine by modulating morphine induced dopamine, GABA and serotonin efflux in the NAc.
Collapse
Affiliation(s)
- Nesrin F Basaran
- Department of Medical Pharmacology, Uludag University Medical Faculty, Bursa, Turkey; Department of Medical Pharmacology, Mugla Sitci Kocman University Medical Faculty, Mugla, Turkey
| | - R Levent Buyukuysal
- Department of Medical Pharmacology, Uludag University Medical Faculty, Bursa, Turkey
| | - M Sertac Yilmaz
- Department of Medical Pharmacology, Uludag University Medical Faculty, Bursa, Turkey
| | - Sami Aydin
- Department of Medical Pharmacology, Uludag University Medical Faculty, Bursa, Turkey
| | - Sinan Cavun
- Department of Medical Pharmacology, Uludag University Medical Faculty, Bursa, Turkey.
| | - William R Millington
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, Albany, NY, USA
| |
Collapse
|
14
|
Ruthirakuhan MT, Herrmann N, Abraham EH, Lanctôt KL. Pharmacological interventions for apathy in Alzheimer's disease. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2016. [DOI: 10.1002/14651858.cd012197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Myuri T Ruthirakuhan
- Sunnybrook Research Institute; Hurvitz Brain Sciences Research Program; 2075 Bayview Avenue Toronto ON Canada M4N 3M5
- University of Toronto; Department of Pharmacology and Toxicology; 2075 Bayview Avenue Toronto Canada
| | - Nathan Herrmann
- Sunnybrook Research Institute; Hurvitz Brain Sciences Research Program; 2075 Bayview Avenue Toronto ON Canada M4N 3M5
- University of Toronto; Department of Psychiatry; 2075 Bayview Avenue, Room H-185 Toronto ON Canada
- Sunnybrook Health Sciences Centre; Geriatric Psychiatry; Toronto Canada
| | - Eleenor H Abraham
- Sunnybrook Research Institute; Hurvitz Brain Sciences Research Program; 2075 Bayview Avenue Toronto ON Canada M4N 3M5
| | - Krista L Lanctôt
- Sunnybrook Research Institute; Hurvitz Brain Sciences Research Program; 2075 Bayview Avenue Toronto ON Canada M4N 3M5
- University of Toronto; Department of Pharmacology and Toxicology; 2075 Bayview Avenue Toronto Canada
- University of Toronto; Department of Psychiatry; 2075 Bayview Avenue, Room H-185 Toronto ON Canada
- Sunnybrook Health Sciences Centre; Geriatric Psychiatry; Toronto Canada
| |
Collapse
|
15
|
Hinderberger P, Rullmann M, Drabe M, Luthardt J, Becker GA, Blüher M, Regenthal R, Sabri O, Hesse S. The effect of serum BDNF levels on central serotonin transporter availability in obese versus non-obese adults: A [(11)C]DASB positron emission tomography study. Neuropharmacology 2016; 110:530-536. [PMID: 27108933 DOI: 10.1016/j.neuropharm.2016.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/26/2016] [Accepted: 04/20/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Serotonin (5-HT) and its neurotrophic support system, specifically brain-derived neurotrophic factor (BDNF), are thought to modulate energy homeostasis and susceptibility to obesity. Moreover, a polymorphism (5-HTTLPR) in the serotonin reuptake transporter (5-HTT) gene impairs its transcription, thereby altering serotonergic tone and potentially contributing to such susceptibility. This study aims to investigate the effect of BDNF, biallelic 5-HTTLPR, and central in-vivo 5-HTT availability in highly obese versus non-obese subjects using positron emission tomography (PET) and 5-HTT selective [(11)C]DASB. METHODS Thirty-eight subjects, 24 obese, otherwise mentally and physically healthy, and 14 non-obese healthy controls were included in this study. Parametric images of binding potential were generated from PET data. Central 5-HTT availability, 5-HTTLPR genotype, and serum BDNF concentrations were analyzed, first in a volume of interest, then in a voxel-wise manner. RESULTS Overall, our results showed an absence of a linear correlation between BDNF, in-vivo central 5-HTT availability, and body mass index (BMI). 5-HTTLPR genotyping revealed BDNF and hippocampal 5-HTT availability to be negatively correlated (r = -0.57, p = 0.007) in long allelic homozygotes. However, obese subjects exhibited opposing effects of BDNF levels on 5-HTT availability in the nucleus accumbens (NAcc) relative to our non-obese controls. CONCLUSIONS Our data did not confirm an overall correlation between serum BDNF, in-vivo central 5-HTT availability, 5-HTTLPR, and BMI. However, there is evidence that serotonergic tone linked to BDNF, specifically in the NAcc, is involved in the pathophysiology of obesity, although this needs further exploration over a wide range of reward-related eating behaviors.
Collapse
Affiliation(s)
- Philipp Hinderberger
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Mandy Drabe
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Julia Luthardt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | | | - Matthias Blüher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
16
|
De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 2016; 151:175-236. [PMID: 27013075 DOI: 10.1016/j.pneurobio.2016.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Since their discovery in the mammalian brain, it has been apparent that serotonin (5-HT) and dopamine (DA) interactions play a key role in normal and abnormal behavior. Therefore, disclosure of this interaction could reveal important insights into the pathogenesis of various neuropsychiatric diseases including schizophrenia, depression and drug addiction or neurological conditions such as Parkinson's disease and Tourette's syndrome. Unfortunately, this interaction remains difficult to study for many reasons, including the rich and widespread innervations of 5-HT and DA in the brain, the plethora of 5-HT receptors and the release of co-transmitters by 5-HT and DA neurons. The purpose of this review is to present electrophysiological and biochemical data showing that endogenous 5-HT and pharmacological 5-HT ligands modify the mesencephalic DA systems' activity. 5-HT receptors may control DA neuron activity in a state-dependent and region-dependent manner. 5-HT controls the activity of DA neurons in a phasic and excitatory manner, except for the control exerted by 5-HT2C receptors which appears to also be tonically and/or constitutively inhibitory. The functional interaction between the two monoamines will also be discussed in view of the mechanism of action of antidepressants, antipsychotics, anti-Parkinsonians and drugs of abuse.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux Cedex, France.
| | - Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
17
|
Gupta D, Prabhakar V, Radhakrishnan M. 5HT3 receptors: Target for new antidepressant drugs. Neurosci Biobehav Rev 2016; 64:311-25. [PMID: 26976353 DOI: 10.1016/j.neubiorev.2016.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
Abstract
5HT3 receptors (5HT3Rs) have long been identified as a potential target for antidepressants. Several studies have reported that antagonism of 5HT3Rs produces antidepressant-like effects. However, the exact role of 5HT3Rs and the mode of antidepressant action of 5HT3R antagonists still remain a mystery. Here, we provide a comprehensive overview of 5HT3Rs: (a) regional and subcellular distribution of 5HT3Rs in discrete brain regions, (b) preclinical and clinical evidence supporting the antidepressant effect of 5HT3R antagonists, and (c) neurochemical, biological and neurocellular signaling pathways associated with the antidepressant action of 5HT3R antagonists. 5HT3Rs located on the serotonergic and other neurotransmitter interneuronal projections control their release and affect mood and emotional behavior; however, new evidence suggests that apart from modulating the neurotransmitter functions, 5HT3R antagonists have protective effects in the pathogenic events including hypothalamic-pituitary-adrenal-axis hyperactivity, brain oxidative stress and impaired neuronal plasticity, pointing to hereby unknown and novel mechanisms of their antidepressant action. Nonetheless, further investigations are warranted to establish the exact role of 5HT3Rs in depression and antidepressant action of 5HT3R antagonists.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Visakh Prabhakar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Mahesh Radhakrishnan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| |
Collapse
|
18
|
Bourdenx M, Dovero S, De Deurwaerdère P, Li Q, Bezard E. Early prenatal exposure to MPTP does not affect nigrostrial neurons in macaque monkey. Synapse 2015; 70:52-6. [PMID: 26584009 DOI: 10.1002/syn.21876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/13/2015] [Indexed: 11/08/2022]
Abstract
The discovery of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin that induces parkinsonism in both human and primate, has prompted the search for environmental toxins potentially responsible for idiopathic Parkinson's disease (PD). The present study reports the ultimate effects of MPTP intoxication of a female macaque monkey, which unraveled to be pregnant after parkinsonism had developed, upon its fetus. Detailed examination of the offpsring nigrostriatal pathway showed that tyrosine hydroxylase immunoreactivity in caudate-putamen nuclei and substantia nigra compacta (SNc) was not different from an age-matched control. Biochemical analysis of the tissue content of dopaminergic markers further suggested modification of metabolism in the MPTP-exposed monkey. These data suggest that early prenatal intoxication does not destroy nigrostriatal neurons, most likely because dopamine neurons had not developed yet when exposed to MPTP.
Collapse
Affiliation(s)
- Mathieu Bourdenx
- Université De Bordeaux, Institut Des Maladies Neurodégénératives, Bordeaux, UMR 5293, France.,Institut Des Maladies Neurodégénératives, CNRS, Bordeaux, UMR 5293, France
| | - Sandra Dovero
- Université De Bordeaux, Institut Des Maladies Neurodégénératives, Bordeaux, UMR 5293, France.,Institut Des Maladies Neurodégénératives, CNRS, Bordeaux, UMR 5293, France
| | - Philippe De Deurwaerdère
- Université De Bordeaux, Institut Des Maladies Neurodégénératives, Bordeaux, UMR 5293, France.,Institut Des Maladies Neurodégénératives, CNRS, Bordeaux, UMR 5293, France
| | - Qin Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Motac Neuroscience, Manchester, UK
| | - Erwan Bezard
- Université De Bordeaux, Institut Des Maladies Neurodégénératives, Bordeaux, UMR 5293, France.,Institut Des Maladies Neurodégénératives, CNRS, Bordeaux, UMR 5293, France.,Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,Motac Neuroscience, Manchester, UK
| |
Collapse
|
19
|
Di Giovanni G, De Deurwaerdère P. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol Ther 2015; 157:125-62. [PMID: 26617215 DOI: 10.1016/j.pharmthera.2015.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293) 33076 Bordeaux Cedex, France.
| |
Collapse
|
20
|
Clark PJ, Amat J, McConnell SO, Ghasem PR, Greenwood BN, Maier SF, Fleshner M. Running Reduces Uncontrollable Stress-Evoked Serotonin and Potentiates Stress-Evoked Dopamine Concentrations in the Rat Dorsal Striatum. PLoS One 2015; 10:e0141898. [PMID: 26555633 PMCID: PMC4640857 DOI: 10.1371/journal.pone.0141898] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/03/2015] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence from both the human and animal literature indicates that exercise reduces the negative consequences of stress. The neurobiological etiology for this stress protection, however, is not completely understood. Our lab reported that voluntary wheel running protects rats from expressing depression-like instrumental learning deficits on the shuttle box escape task after exposure to unpredictable and inescapable tail shocks (uncontrollable stress). Impaired escape behavior is a result of stress-sensitized serotonin (5-HT) neuron activity in the dorsal raphe (DRN) and subsequent excessive release of 5-HT into the dorsal striatum following exposure to a comparatively mild stressor. However, the possible mechanisms by which exercise prevents stress-induced escape deficits are not well characterized. The purpose of this experiment was to test the hypothesis that exercise blunts the stress-evoked release of 5-HT in the dorsal striatum. Changes to dopamine (DA) levels were also examined, since striatal DA signaling is critical for instrumental learning and can be influenced by changes to 5-HT activity. Adult male F344 rats, housed with or without running wheels for 6 weeks, were either exposed to tail shock or remained undisturbed in laboratory cages. Twenty-four hours later, microdialysis was performed in the medial (DMS) and lateral (DLS) dorsal striatum to collect extracellular 5-HT and DA before, during, and following 2 mild foot shocks. We report wheel running prevents foot shock-induced elevation of extracellular 5-HT and potentiates DA concentrations in both the DMS and DLS approximately 24 h following exposure to uncontrollable stress. These data may provide a possible mechanism by which exercise prevents depression-like instrumental learning deficits following exposure to acute stress.
Collapse
Affiliation(s)
- Peter J. Clark
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO, 80309, United States of America
- * E-mail:
| | - Jose Amat
- Department of Psychology & Neuroscience, University of Colorado Boulder, Muenzinger D244, 345 UCB, Boulder, CO, 80309, United States of America
| | - Sara O. McConnell
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO, 80309, United States of America
| | - Parsa R. Ghasem
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO, 80309, United States of America
| | - Benjamin N. Greenwood
- Department of Psychology, University of Colorado Denver, Campus Box 173, PO 173364, Denver, CO, 80217–3364, United States of America
| | - Steven F. Maier
- Department of Psychology & Neuroscience, University of Colorado Boulder, Muenzinger D244, 345 UCB, Boulder, CO, 80309, United States of America
| | - Monika Fleshner
- Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO, 80309, United States of America
| |
Collapse
|
21
|
Abstract
In one of his earlier papers, Lex Cools stated that the 'concept of an impaired balance between the in series connected […] dopamine system, […] 5-HT system and […] noradrenaline system offers a single coherent and integrated theory of schizophrenia' (Cools, 1975). Since then, considerable attention has focused on the interaction between dopamine and 5-HT and it is now well accepted that most antipsychotics (especially the second-generation drugs) modulate both dopaminergic and serotonergic receptors. However, the vast majority of research has focused on the 5-HT1A, 5-HT2A and 5-HT2C receptors. In the present paper, we review the literature pertaining to the 5-HT3 receptor, the only ionotropic 5-HT receptor. We discuss both the interactions between 5-HT3 receptors and dopamine, and the animal and human literature investigating the role of 5-HT3 receptors in schizophrenia. The results show that the interactions between 5-HT3 receptors and dopamine are complex, but that 5-HT3 receptors do not have a strong influence on the positive symptoms of schizophrenia. However, when added to standard antipsychotic medication, several recent studies have found that 5-HT3 receptor antagonists can induce a statistically significantly improvement in negative and cognitive symptoms. The implications of these findings in relation to animal modelling and drug development are discussed.
Collapse
|
22
|
Brennan KA, Laugesen M, Truman P. Whole tobacco smoke extracts to model tobacco dependence in animals. Neurosci Biobehav Rev 2014; 47:53-69. [PMID: 25064817 DOI: 10.1016/j.neubiorev.2014.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/12/2014] [Accepted: 07/14/2014] [Indexed: 01/01/2023]
Abstract
Smoking tobacco is highly addictive and a leading preventable cause of death. The main addictive constituent is nicotine; consequently it has been administered to laboratory animals to model tobacco dependence. Despite extensive use, this model might not best reflect the powerful nature of tobacco dependence because nicotine is a weak reinforcer, the pharmacology of smoke is complex and non-pharmacological factors have a critical role. These limitations have led researchers to expose animals to smoke via the inhalative route, or to administer aqueous smoke extracts to produce more representative models. The aim was to review the findings from molecular/behavioural studies comparing the effects of nicotine to tobacco/smoke extracts to determine whether the extracts produce a distinct model. Indeed, nicotine and tobacco extracts yielded differential effects, supporting the initiative to use extracts as a complement to nicotine. Of the behavioural tests, intravenous self-administration experiments most clearly revealed behavioural differences between nicotine and extracts. Thus, future applications for use of this behavioural model were proposed that could offer new insights into tobacco dependence.
Collapse
Affiliation(s)
- Katharine A Brennan
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Murray Laugesen
- Health New Zealand Ltd, 36 Winchester St, Lyttelton, Christchurch, New Zealand
| | - Penelope Truman
- Institute of Environmental Science and Research Ltd, PO Box 50348, Porirua 5240, New Zealand
| |
Collapse
|
23
|
Spiros A, Roberts P, Geerts H. A computer-based quantitative systems pharmacology model of negative symptoms in schizophrenia: exploring glycine modulation of excitation-inhibition balance. Front Pharmacol 2014; 5:229. [PMID: 25374541 PMCID: PMC4204440 DOI: 10.3389/fphar.2014.00229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023] Open
Abstract
Although many antipsychotics can reasonably control positive symptoms in schizophrenia, patients' return to society is often hindered by negative symptoms and cognitive deficits. As an alternative to animal rodent models that are often not very predictive for the clinical situation, we developed a new computer-based mechanistic modeling approach. This Quantitative Systems Pharmacology approach combines preclinical basic neurophysiology of a biophysically realistic neuronal ventromedial cortical-ventral striatal network identified from human imaging studies that are associated with negative symptoms. Calibration of a few biological coupling parameters using a retrospective clinical database of 34 drug-dose combinations resulted in correlation coefficients greater than 0.60, while a robust quantitative prediction of a number of independent trials was observed. We then simulated the effect of glycine modulation on the anticipated clinical outcomes. The quantitative biochemistry of glycine interaction with the different NMDA-NR2 subunits, neurodevelopmental trajectory of the NMDA-NR2B in the human schizophrenia pathology, their specific localization on excitatory vs. inhibitory interneurons and the electrogenic nature of the glycine transporter resulted in an inverse U-shape dose-response with an optimum in the low micromolar glycine concentration. Quantitative systems pharmacology based computer modeling of complex humanized brain circuits is a powerful alternative approach to explain the non-monotonic dose-response observed in past clinical trial outcomes with sarcosine, D-cycloserine, glycine, or D-serine or with glycine transporter inhibitors. In general it can be helpful to better understand the human neurophysiology of negative symptoms, especially with targets that show non-monotonic dose-responses.
Collapse
Affiliation(s)
- Athan Spiros
- Computational Neuropharmacology, In Silico Biosciences, Inc. Berwyn, PA, USA
| | - Patrick Roberts
- Computational Neuropharmacology, In Silico Biosciences, Inc. Berwyn, PA, USA ; Department of Biomedical Engineering, Oregon Health and Science University Portland, OR, USA
| | - Hugo Geerts
- Computational Neuropharmacology, In Silico Biosciences, Inc. Berwyn, PA, USA ; Department of Laboratory Pathology, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
24
|
Kenna GA, Zywiak WH, Swift RM, McGeary JE, Clifford JS, Shoaff JR, Fricchione S, Brickley M, Beaucage K, Haass-Koffler CL, Leggio L. Ondansetron and sertraline may interact with 5-HTTLPR and DRD4 polymorphisms to reduce drinking in non-treatment seeking alcohol-dependent women: exploratory findings. Alcohol 2014; 48:515-22. [PMID: 25212749 DOI: 10.1016/j.alcohol.2014.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 01/30/2023]
Abstract
The purpose of this exploratory study was to examine the interaction of 5-HTTLPR and DRD4 exon III polymorphisms with gender in non-treatment seeking alcohol-dependent (AD) individuals while alternately taking ondansetron and sertraline. Evidence suggests that alcohol dependence may be influenced by a genetic interaction that may be gender-specific with temporal changes making pharmacological treatment with serotonergic drugs complex. The main trial was a within-subject double-blind placebo-controlled human laboratory study with 77 non-treatment-seeking AD individuals randomized (55 completed, 49 complete data) to receive 200 mg/day of sertraline or 0.5 mg/day of ondansetron for 3 weeks followed by an alcohol self-administration experiment (ASAE), then placebo for 3 weeks followed by a second ASAE, then receive the alternate drug, in a counterbalanced order, for 3 weeks followed by a third ASAE. Results for men were not significant. Women with the LL 5-HTTLPR genotype receiving ondansetron and SS/SL 5-HTTLPR genotype receiving sertraline (matched), drank significantly fewer drinks per drinking day (DDD) during the 7 days prior to the first and third ASAEs than women receiving the mismatched medication (i.e., sertraline to LL and ondansetron to SS/SL). In a 3-way interaction, 5-HTTLPR alleles by DRD4 alleles by medications, women with the LL genotype who received ondansetron and had DRD4≥7 exon III repeats drank significantly fewer DDD as did SS/SL women who received sertraline but conversely had DRD4<7 repeats in the 7-day period leading up to the first and third ASAEs. Consistent with these data was a significant reduction of milliliters consumed ad libitum during these same ASAEs. These exploratory findings add possible support to gender and genetic differences among AD individuals in response to serotonergic pharmacotherapies. Future trials should be powerful enough to take into account that endophenotypes and a targeting of serotonergic interactions may be essential to successfully treat alcohol dependence.
Collapse
|
25
|
Fossat P, Bacque-Cazenave J, De Deurwaerdere P, Delbecque JP, Cattaert D. Anxiety-like behavior in crayfish is controlled by serotonin. Science 2014; 344:1293-7. [DOI: 10.1126/science.1248811] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Navailles S, Milan L, Khalki H, Di Giovanni G, Lagière M, De Deurwaerdère P. Noradrenergic terminals regulate L-DOPA-derived dopamine extracellular levels in a region-dependent manner in Parkinsonian rats. CNS Neurosci Ther 2014; 20:671-8. [PMID: 24775184 DOI: 10.1111/cns.12275] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/09/2023] Open
Abstract
AIMS Serotonin (5-HT) neurons mediate the ectopic release of dopamine (DA) induced by L-DOPA in the Parkinsonian brain. We hypothesized that the participation of noradrenalin transporters (NET) in the clearance of DA may account for the lower effect of L-DOPA in extrastriatal regions compared with the striatum. METHODS Using a multisite intracerebral microdialysis approach, we tested the influence of the pharmacological blockade of NET and/or the destruction of noradrenalin (NE) fibers on DA and 5-HT release in the striatum, hippocampus (HIPP), substantia nigra pars reticulata (SNr) and prefrontal cortex (PFC) of 6-hydroxydopamine-lesioned rats. RESULTS L-DOPA (12 mg/kg, i.p.) increased DA extracellular levels to a lesser extent in the SNr, PFC and HIPP compared with the striatum. The NET blockers desipramine (10 mg/kg, i.p.) and reboxetine (3 mg/kg, i.p.) potentiated L-DOPA effect in the PFC, SNr and HIPP but not in the striatum. The NE neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (50 mg/kg, i.p. 1 week before dialysis experiment) potentiated L-DOPA effect in the SNr and HIPP. 5-HT extracellular levels were enhanced only when L-DOPA was combined to NET blockers. CONCLUSION Noradrenalin neurons are indirectly involved in the mechanism of action of L-DOPA in part through the heterologous reuptake of DA in extrastriatal regions.
Collapse
Affiliation(s)
- Sylvia Navailles
- Université de Bordeaux, Bordeaux Cedex, France; Unité Mixte de Recherche 5293, Centre National de la Recherche Scientifique, Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
27
|
Engeln M, De Deurwaerdère P, Li Q, Bezard E, Fernagut PO. Widespread Monoaminergic Dysregulation of Both Motor and Non-Motor Circuits in Parkinsonism and Dyskinesia. Cereb Cortex 2014; 25:2783-92. [DOI: 10.1093/cercor/bhu076] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Fitoussi A, Dellu-Hagedorn F, De Deurwaerdère P. Monoamines tissue content analysis reveals restricted and site-specific correlations in brain regions involved in cognition. Neuroscience 2013; 255:233-45. [DOI: 10.1016/j.neuroscience.2013.09.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 11/29/2022]
|
29
|
Bang SJ, Commons KG. Forebrain GABAergic projections from the dorsal raphe nucleus identified by using GAD67-GFP knock-in mice. J Comp Neurol 2013; 520:4157-67. [PMID: 22605640 DOI: 10.1002/cne.23146] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The dorsal raphe nucleus (DR) contains serotonergic (5-HT) neurons that project widely throughout the forebrain. These forebrain regions also receive innervation from non-5-HT neurons in the DR. One of the main groups of non-5-HT neurons in the DR is γ-aminobutyric acid (GABA)ergic, but their projections are poorly understood due to the difficulty of labeling these neurons immunohistochemically. To identify GABAergic projection neurons within the DR in the current study, we used a knock-in mouse line in which expression of green fluorescent protein (GFP) is controlled by the glutamic acid decarboxylase (GAD)67 promotor. Projections of GAD67-GFP neurons to the prefrontal cortex (PFC), nucleus accumbens (NAC), and lateral hypothalamus (LH) were evaluated by using retrograde tract tracing. The location of GAD67-GFP neurons projecting to each of these areas was mapped by rostrocaudal and dorsoventral location within the DR. Overall, 16% of DR neurons projecting to either the PFC or NAC were identified as GAD67-GFP neurons. GAD67-GFP neurons projecting to the PFC were most commonly found ventrally, in the rostral two-thirds of the DR. NAC-projecting GAD67-GFP neurons had an overlapping distribution that extended dorsally. GAD67-GFP neurons made a larger contribution to the projection of the DR to the LH, accounting for 36% of retrogradely labeled neurons, and were widespread throughout the DR. The current data indicate that DR GABAergic neurons not only may have the capacity to influence local network activity, but also make a notable contribution to DR output to multiple forebrain targets. J. Comp. Neurol. 520:4157-4167, 2012. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sun Jung Bang
- Department of Anesthesiology, Perioperative, and Pain Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
30
|
Serotonin2C ligands exhibiting full negative and positive intrinsic activity elicit purposeless oral movements in rats: distinct effects of agonists and inverse agonists in a rat model of Parkinson's disease. Int J Neuropsychopharmacol 2013; 16:593-606. [PMID: 22717119 DOI: 10.1017/s1461145712000417] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
This study examined in naive or hemiparkinsonian rats the effect of various serotonin 2C (5-HT(2C)) receptor ligands differing in their intrinsic activity at 5-HT(2C) receptors on purposeless oral movements, a motor response integrated in the basal ganglia. Intraperitoneal administration of a non-selective [meta-chlorophenylpiperazine (m-CPP) 0.1-3 mg/kg], preferential [S-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine, Ro60-0175, 0.1-3 mg/kg] or selective [(7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole, WAY163909, 0.3-10 mg/kg] 5-HT(2C) agonists enhanced oral bouts in naive rats. The 5-HT(2C) inverse agonists SB206553 [1-20 mg/kg; 5-methyl-1-(3-pyridylcarbamoyl)-1,2,3,5-tetrahydropyrrolo[2,3-f]indole] and S32006 [1-20 mg/kg; N-pyridin-3-yl-1,2-dihydro-3H-benzo[e]indole-3-carboxamide], but not the 5-HT(2C) antagonist SB243213 [1-10 mg/kg; 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-6-trifluoromethylindoline], likewise dose-dependently enhanced oral movements. The effects induced by preferential 5-HT(2C) agonists and inverse agonists, but not by the cholinomimetic drug pilocarpine (5 mg/kg), were abolished by SB243213 underpinning its specificity. S32006-induced oral bouts was unaffected by the 5,7-dihydroxytryptamine lesions of 5-HT neurons. Nigrostriatal dopaminergic lesions potentiated oral effects induced by the agonists Ro60-0175 (3 mg/kg) and WAY163909 (1 mg/kg), but not by the inverse agonist SB206553 (10 mg/kg). The effect of Ro60-0175 in dopamine-lesioned rats was suppressed by SB243213. These data show that 5-HT(2C) agonists and full inverse agonists (but not neutral antagonists) perturb oral activity in rodents, paralleling studies of common antidepressant, anxiolytic and antipsychotic properties. The differential sensitivity of their actions to depletion of dopamine suggests recruitment of different contrasting neural mechanisms in the basal ganglia.
Collapse
|
31
|
Abedi PM, Delaville C, De Deurwaerdère P, Benjelloun W, Benazzouz A. Intrapallidal administration of 6-hydroxydopamine mimics in large part the electrophysiological and behavioral consequences of major dopamine depletion in the rat. Neuroscience 2013; 236:289-97. [PMID: 23376117 DOI: 10.1016/j.neuroscience.2013.01.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/12/2013] [Accepted: 01/14/2013] [Indexed: 11/26/2022]
Abstract
In addition to GABA and glutamate innervations, the globus pallidus (GP) receives dopamine afferents from the pars compacta of the substantia nigra (SNc), and in turn, sends inhibitory GABAergic efferents to the subthalamic nucleus (STN) and the pars reticulata of the substantia nigra (SNr). Nevertheless, the role of dopamine in the modulation of these pallido-subthalamic and pallido-nigral projections is not known. The present study aimed to investigate the effects of intrapallidal injection of 6-hydroxydopamine (6-OHDA) on the electrical activity of STN and SNr neurons using in vivo extracellular single unit recordings in the rat and on motor behaviors, using the "open field" actimeter and the stepping test. We show that intrapallidal injection of 6-OHDA significantly decreased locomotor activity and contralateral paw use. Electrophysiological recordings show that 6-OHDA injection into GP significantly increased the number of bursty cells in the STN without changing the firing rate, while in the SNr neuronal firing rate decreased and the proportion of irregular cells increased. Our data provide evidence that intrapallidal injection of 6-OHDA resulted in motor deficits paralleled by changes in the firing activity of STN and SNr neurons, which mimic in large part those obtained after major dopamine depletion in the classical rat model of Parkinson's disease. They support the assumption that in addition to its action in the striatum, dopamine mediates its regulatory function at various levels of the basal ganglia circuitry, including the GP.
Collapse
Affiliation(s)
- P M Abedi
- Univ. Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| | | | | | | | | |
Collapse
|
32
|
Min CR, Kim MJ, Park YJ, Kim HR, Lee SY, Chung KH, Oh SM. Estrogenic effects and their action mechanism of the major active components of party pill drugs. Toxicol Lett 2012; 214:339-47. [PMID: 23026265 DOI: 10.1016/j.toxlet.2012.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 11/26/2022]
Abstract
Benzylpiperazine (BZP) and trifluoromethylphenylpiperazine (TFMPP) are commonly used constituents of party pill drugs. They are reported to induce psychoactive effects such as euphoria and provide effects similar with other illicit drugs such as methylenedioxymethamphetamine (MDMA). A great deal of evidence has proven that party pills, as alternatives for MDMA, exert harmful effects on users. However, their toxicological effects have not been fully understood and endocrine disruptive effects are still unknown. In this study, we identified estrogenic effects of BZP and TFMPP by using in vitro and in vivo assays. BZP and TFMPP stimulated cell proliferation in a dose-dependent manner, while co-treatment with tamoxifen and BZP or TFMPP showed a decrease of E(2)-induced cell proliferation. In an estrogen sensitive reporter gene assay, BZP and TFMPP significantly increased transcriptional activities of party pill drugs. In addition, ER-related genes, PR and pS2, were significantly stimulated by BZP and TFMPP. These results indicated that BZP and TFMPP could have estrogenic activities related to the ER-mediated pathway. Unlike the in vitro assay results, BZP and TFMPP did not show significant effects on weight increase in a rodent uterotrophic assay. However, further studies would be necessary to verify the estrogenic activities of BZP and TFMPP by a chronic exposure animal study.
Collapse
Affiliation(s)
- Cho Rong Min
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon dong, Jangan-gu, Suwon, Kyeonggi-do 440-746, South Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Spiros A, Roberts P, Geerts H. A Quantitative Systems Pharmacology Computer Model for Schizophrenia Efficacy and Extrapyramidal Side Effects. Drug Dev Res 2012. [DOI: 10.1002/ddr.21008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Panin F, Cathala A, Piazza PV, Spampinato U. Coupled intracerebral microdialysis and electrophysiology for the assessment of dopamine neuron function in vivo. J Pharmacol Toxicol Methods 2012; 65:83-92. [DOI: 10.1016/j.vascn.2012.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
|
35
|
Delaville C, Navailles S, Benazzouz A. Effects of noradrenaline and serotonin depletions on the neuronal activity of globus pallidus and substantia nigra pars reticulata in experimental parkinsonism. Neuroscience 2012; 202:424-33. [DOI: 10.1016/j.neuroscience.2011.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/31/2011] [Accepted: 11/10/2011] [Indexed: 11/28/2022]
|
36
|
Two-week administration of the combined serotonin-noradrenaline reuptake inhibitor duloxetine augments functioning of mesolimbic incentive processing circuits. Biol Psychiatry 2011; 70:568-74. [PMID: 21601833 DOI: 10.1016/j.biopsych.2011.03.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Anhedonia and lack of motivation are core symptoms of major depressive disorder (MDD). Neuroimaging studies in MDD patients have shown reductions in reward-related activity in terminal regions of the mesolimbic dopamine (DA) system, such as the ventral striatum. Monoamines have been implicated in both mesolimbic incentive processing and the mechanism of action of antidepressant drugs. However, not much is known about antidepressant effects on mesolimbic incentive processing in humans, which might be related to the effects on anhedonia. METHODS To investigate the short-term effects of antidepressants on reward-related activity in the ventral striatum, we investigated the effect of the combined serotonin-norepinephrine reuptake inhibitor duloxetine. Healthy volunteers underwent functional magnetic resonance imaging in a randomized, double-blind, placebo-controlled, crossover study. After taking duloxetine (60 mg once a day) or placebo for 14 days, participants completed a monetary incentive delay task that activates the ventral striatum during reward anticipation. RESULTS Our results (n = 19) show enhanced ventral striatal responses after duloxetine administration compared with placebo. Moreover, this increase in ventral striatal activity was positively correlated with duloxetine plasma levels. CONCLUSIONS This is the first study to demonstrate that antidepressants augment neural activity in mesolimbic DA incentive processing circuits in healthy volunteers. These effects are likely caused by the increase in monoamine neurotransmission in the ventral striatum. Our findings suggest that antidepressants may alleviate anhedonia by stimulating incentive processing.
Collapse
|
37
|
Tan SKH, Hartung H, Sharp T, Temel Y. Serotonin-dependent depression in Parkinson's disease: a role for the subthalamic nucleus? Neuropharmacology 2011; 61:387-99. [PMID: 21251918 DOI: 10.1016/j.neuropharm.2011.01.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/23/2010] [Accepted: 01/05/2011] [Indexed: 12/17/2022]
Abstract
Depression is the most common neuropsychiatric co-morbidity in Parkinson's disease (PD). The underlying mechanism of depression in PD is complex and likely involves biological, psychosocial and therapeutic factors. The biological mechanism may involve changes in monoamine systems, in particular the serotonergic (5-hydroxytryptamine, 5-HT) system. It is well established that the 5-HT system is markedly affected in the Parkinsonian brain, with evidence including pathological loss of markers of 5-HT axons as well as cell bodies in the dorsal and median raphe nuclei of the midbrain. However, it remains unresolved whether alterations to the 5-HT system alone are sufficient to confer vulnerability to depression. Here we propose low 5-HT combined with altered network activity within the basal ganglia as critically involved in depression in PD. The latter hypothesis is derived from a number of recent findings that highlight the close interaction between the basal ganglia and the 5-HT system, not only in motor but also limbic functions. These findings include evidence that clinical depression is a side effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN), a treatment option in advanced PD. Further, it has recently been demonstrated that STN DBS in animal models inhibits 5-HT neurotransmission, and that this change may underpin depressive-like side effects. This review provides an overview of 5-HT alterations in PD and a discussion of how these changes might combine with altered basal ganglia network activity to increase depression vulnerability.
Collapse
Affiliation(s)
- Sonny K H Tan
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Involvement of 5-HT2A receptors in MDMA reinforcement and cue-induced reinstatement of MDMA-seeking behaviour. Int J Neuropsychopharmacol 2011; 14:927-40. [PMID: 20942998 DOI: 10.1017/s1461145710001215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The serotonergic system appears crucial for (±)-3,4-methylenedioxymethamphetamine (MDMA) reinforcing properties. Current evidence indicates that serotonin 5-HT2A receptors (5-HT2ARs) modulate mesolimbic dopamine (DA) activity and several behavioural responses related to the addictive properties of psychostimulants. This study evaluated the role of 5-HT2ARs in MDMA-induced reinforcement and hyperlocomotion, and the reinstatement of MDMA-seeking behaviour. Basal and MDMA-stimulated extracellular levels of DA in the nucleus accumbens (NAc) and serotonin and noradrenaline in the prefrontal cortex were also assessed. Self-administration of MDMA was blunted in 5-HT2AR knockout (KO) mice compared to wild-type (WT) littermates at both doses tested (0.125 and 0.25 mg/kg per infusion). Horizontal locomotion was increased by MDMA (10 and 20 mg/kg i.p.) to a higher extent in KO than in WT mice. DA outflow in the NAc was lower in KO compared to WT mice under basal conditions and after MDMA (20 mg/kg) challenge. In WT mice, MDMA (5 and 10 mg/kg i.p.) priming did not reinstate MDMA-seeking behaviour, while cue-induced reinstatement was prominent. This cue-induced reinstatement was blocked by administration of the selective 5-HT2AR antagonist, SR46349B (eplivanserin) at a dose of 0.5 mg/kg, but not at 0.25 mg/kg. Our results indicate that 5-HT2ARs are crucial for MDMA-induced reinforcement and cue-induced reinstatement of MDMA-seeking behaviour. These effects are probably due to the modulation of mesolimbic dopaminergic activity.
Collapse
|
39
|
Abstract
Serotonin (5-HT)3 receptors are the only ligand-gated ion channel of the 5-HT receptors family. They are present both in the peripheral and central nervous system and are localized in several areas involved in mood regulation (e.g., hippocampus or prefrontal cortex). Moreover, they are involved in regulation of neurotransmitter systems implicated in the pathophysiology of major depression (e.g., dopamine or GABA). Clinical and preclinical studies have suggested that 5-HT3 receptors may be a relevant target in the treatment of affective disorders. 5-HT3 receptor agonists seem to counteract the effects of antidepressants in non-clinical models, whereas 5-HT3 receptor antagonists, such as ondansetron, present antidepressant-like activities. In addition, several antidepressants, such as mirtazapine, also target 5-HT3 receptors. In this review, we will report major advances in the research of 5-HT3 receptor's roles in neuropsychiatric disorders, with special emphasis on mood and anxiety disorders.
Collapse
|
40
|
Robert PH, Mulin E, Malléa P, David R. REVIEW: Apathy diagnosis, assessment, and treatment in Alzheimer's disease. CNS Neurosci Ther 2011; 16:263-71. [PMID: 20345973 DOI: 10.1111/j.1755-5949.2009.00132.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Apathy is defined as a disorder of motivation. There is wide acknowledgement that apathy is an important behavioral syndrome in Alzheimer's disease and in various neuropsychiatric disorders. In light of recent research and the renewed interest in the correlates and impacts of apathy and in its treatments, it is important to develop criteria for apathy that will be widely accepted, have clear operational steps, and be easy to apply in clinical practice and in research settings. Meeting these needs was the focus for a task force that included members of the European Psychiatric Association, the European Alzheimer's Disease Consortium and experts from Europe, Australia and North America.
Collapse
Affiliation(s)
- Philippe H Robert
- Centre Mémoire de Ressources et de Recherche, CHU de Nice, Université de Nice-Sophia Antipolis, France.
| | | | | | | |
Collapse
|
41
|
Navailles S, De Deurwaerdère P. Presynaptic control of serotonin on striatal dopamine function. Psychopharmacology (Berl) 2011; 213:213-42. [PMID: 20953589 DOI: 10.1007/s00213-010-2029-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/14/2010] [Indexed: 11/27/2022]
Abstract
RATIONALE The influences of the serotonergic system on dopamine (DA) neuron activity have received considerable attention during the last three decades due to the real opportunity to improve disorders related to central DA neuron dysfunctions such as Parkinson's disease, schizophrenia, or drug abuse with serotonergic drugs. Numerous biochemical and behavioral data indicate that serotonin (5-HT) affects dopaminergic terminal function in the striatum. OBJECTIVE The authors propose a thorough examination of data showing controversial effects induced by striatal 5-HT on dopaminergic activity. RESULTS Inhibitory and excitatory effects of exogenous 5-HT have been reported on DA release and synthesis, involving various striatal 5-HT receptors. 5-HT also promotes an efflux of DA through reversal of the direction of DA transport. By analogy with the mechanism of action described for amphetamine, the consequences of 5-HT entering DA terminals might explain both the excitatory and inhibitory effects of 5-HT on presynaptic DA terminal activity, but the physiological relevance of this mechanism is far from clear. The recent data suggest that the endogenous 5-HT system affects striatal DA release in a state-dependent manner associated with the conditional involvement of various 5-HT receptors such as 5-HT(2A), 5-HT(2C), 5-HT(3), and 5-HT(4) receptors. CONCLUSION Methodological and pharmacological issues have prevented a comprehensive overview of the influence of 5-HT on striatal DA activity. The distribution of striatal 5-HT receptors and their restricted influence on DA neuron activity suggest that the endogenous 5-HT system exerts multiple and subtle influences on DA-mediated behaviors.
Collapse
Affiliation(s)
- Sylvia Navailles
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5227, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | | |
Collapse
|
42
|
The Constitutive Activity of 5-HT2C Receptors as an Additional Modality of Interaction of the Serotonergic System. 5-HT2C RECEPTORS IN THE PATHOPHYSIOLOGY OF CNS DISEASE 2011. [DOI: 10.1007/978-1-60761-941-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
43
|
Pallanti S, Bernardi S, Allen A, Hollander E. Serotonin function in pathological gambling: blunted growth hormone response to sumatriptan. J Psychopharmacol 2010; 24:1802-9. [PMID: 19825906 DOI: 10.1177/0269881109106907] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pathological gambling is a disruptive behaviour and an important public health concern that is classified as an impulse control disorder, and is also conceptualized as a prototype of 'behavioural addiction'. Its phenomenology cannot be reduced to a single neurobiological dysfunction; instead, it has been conceived as a complex chain of events in which the serotonergic system (5-HT) has often been suggested as one of the most prominent involved. Acute administration of Sumatriptan, a selective 5-HT(1B/1D) agonist, has been used to investigate the functional responsivity of 5-HT(1B/1D) receptors in alcoholics, resulting in a blunted growth hormone response. These findings have been interpreted as being due to the down-regulation of these receptors. However, previous studies could not rule out the possibility that the changes in receptor function were induced by chronic substance exposure. Twenty-two pathological gamblers and 19 healthy control subjects were evaluated in response to double-blind administration of both a single dose of oral Sumatriptan (100 mg) and of placebo in a crossover design. All participants were screened to ensure that they were negative for lifetime alcohol and drug addiction, and had been free of substance abuse for at least 6 months. Outcome measures included growth hormone, prolactin, gambling severity, mood, craving and 'high' change scales. A blunted growth hormone response was observed in pathological gamblers compared with healthy controls after Sumatriptan administration. No statistically significant differences were found for prolactin or behavioural measures, except for an increase in anxiety over time in pathological gamblers. These results, together with those obtained in our previous serotoninergic challenge study, document the presence of a serotonergic dysfunction in pathological gamblers similar to that reported in alcoholics.
Collapse
Affiliation(s)
- Stefano Pallanti
- Department of Psychiatry, The Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
44
|
Influence of 5-HT3 receptor subunit genes HTR3A, HTR3B, HTR3C, HTR3D and HTR3E on treatment response to antipsychotics in schizophrenia. Pharmacogenet Genomics 2010; 19:843-51. [PMID: 19794330 DOI: 10.1097/fpc.0b013e3283313296] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Among serotonin (5-HT) receptors, the 5-HT3 receptor is the only ligand-gated ion channel. 5-HT3 antagonists such as ondansetron and tropisetron may improve auditory gating and neurocognitive deficits in schizophrenic patients. Moreover, many antipsychotic drugs are antagonists at 5-HT3 receptors. However, the role of 5-HT3 receptor variants on response to antipsychotic drugs in schizophrenic patients is still unclear. METHODS In a prospective, randomized, double-blind study, we have assessed six functional and coding variants of the subunit genes HTR3A, HTR3B as well as the novel HTR3C, HTR3D, and HTR3E subunits in the response to haloperidol or risperidone. Seventy patients were treated for 4 weeks and positive symptoms, negative symptoms, and general psychopathology were measured by the Positive and Negative Syndrome Scale (PANSS). RESULTS HTR3E had an effect on the speed of response to antipsychotics. GG-allele carriers responded more quickly to treatment on the PANSS negative symptom subscale (P = 0.03) and on the total PANSS score (P = 0.04) irrespective of medication. In a second independent study of 144 schizophrenia patients treated with atypical antipsychotics, this effect could not be confirmed. CONCLUSION Our findings argue against a major effect of HTR3 variants in response to antipsychotics. Solely, the HTR3E and also the HTR3A variant could exert a weak effect on the speed of response to antipsychotics.
Collapse
|
45
|
Beyeler A, Kadiri N, Navailles S, Boujema MB, Gonon F, Moine CL, Gross C, De Deurwaerdère P. Stimulation of serotonin2C receptors elicits abnormal oral movements by acting on pathways other than the sensorimotor one in the rat basal ganglia. Neuroscience 2010; 169:158-70. [PMID: 20447448 DOI: 10.1016/j.neuroscience.2010.04.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/20/2010] [Accepted: 04/25/2010] [Indexed: 11/24/2022]
Abstract
Serotonin2C (5-HT(2C)) receptors act in the basal ganglia, a group of sub-cortical structures involved in motor behavior, where they are thought to modulate oral activity and participate in iatrogenic motor side-effects in Parkinson's disease and Schizophrenia. Whether abnormal movements initiated by 5-HT(2C) receptors are directly consequent to dysfunctions of the motor circuit is uncertain. In the present study, we combined behavioral, immunohistochemical and extracellular single-cell recordings approaches in rats to investigate the effect of the 5-HT(2C) agonist Ro-60-0175 respectively on orofacial dyskinesia, the expression of the marker of neuronal activity c-Fos in basal ganglia and the electrophysiological activity of substantia nigra pars reticulata (SNr) neuron connected to the orofacial motor cortex (OfMC) or the medial prefrontal cortex (mPFC). The results show that Ro-60-0175 (1 mg/kg) caused bouts of orofacial movements that were suppressed by the 5-HT(2C) antagonist SB-243213 (1 mg/kg). Ro-60-0175 (0.3, 1, 3 mg/kg) dose-dependently enhanced Fos expression in the striatum and the nucleus accumbens. At the highest dose, it enhanced Fos expression in the subthalamic nucleus, the SNr and the entopeduncular nucleus but not in the external globus pallidus. However, the effect of Ro-60-0175 was mainly associated with associative/limbic regions of basal ganglia whereas subregions of basal ganglia corresponding to sensorimotor territories were devoid of Fos labeling. Ro-60-0175 (1-3 mg/kg) did not affect the electrophysiological activity of SNr neurons connected to the OfMC nor their excitatory-inhibitory-excitatory responses to the OfMC electrical stimulation. Conversely, Ro-60-0175 (1 mg/kg) enhanced the late excitatory response of SNr neurons evoked by the mPFC electrical stimulation. These results suggest that oral dyskinesia induced by 5-HT(2C) agonists are not restricted to aberrant signalling in the orofacial motor circuit and demonstrate discrete modifications in associative territories.
Collapse
Affiliation(s)
- A Beyeler
- Université de Bordeaux, 33076 Bordeaux Cedex, France; Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5227), 33076 Bordeaux Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Carrillo M, Ricci LA, Schwartzer JJ, Melloni RH. Immunohistochemical characterization of 5-HT3A receptors in the Syrian hamster forebrain. Brain Res 2010; 1329:67-81. [DOI: 10.1016/j.brainres.2010.02.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/04/2010] [Accepted: 02/09/2010] [Indexed: 12/24/2022]
|
47
|
Feinberg-Zadek PL, Davies PA. Ethanol stabilizes the open state of single 5-hydroxytryptamine(3A)(QDA) receptors. J Pharmacol Exp Ther 2010; 333:896-902. [PMID: 20200118 DOI: 10.1124/jpet.109.164863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ethanol enhancement of 5-hydroxytryptamine (5-HT)(3A) receptor-mediated responses may have important consequences in the intoxicating and addictive properties of ethanol. Although the exact mechanism is unknown, ethanol-mediated enhancement of 5-HT(3) receptor current has been proposed to occur due to stabilization of the open-channel state. It has not been possible to directly measure the open state of the channel due to the extremely low single-channel conductance of 5-HT(3A) channels. Recently, three arginine residues within the large intracellular loop of the 5-HT(3A) subunit were substituted by their equivalent residues (glutamine, aspartate, and alanine) of the 5-HT(3B) subunit to produce a 5-HT(3A)(QDA) subunit that forms functional homomeric channels exhibiting a measurable single-channel conductance. Using whole-cell rapid-agonist application techniques and the cell-attached single-channel recording configuration, we examined human 5-HT(3A)(QDA) receptors expressed in human embryonic kidney 293 cells. The agonist sensitivity, macroscopic kinetics, and modulation by ethanol were similar between mutant and wild-type channels, suggesting the substitutions had not altered these channel structure-function properties. The open time histogram for single-channel events mediated by 5-HT(3A)(QDA) receptors in the presence of maximal 5-HT was best fit by three exponentials, but in the presence of ethanol a fourth open state was evident. In summary, the QDA substitution greatly enhanced single-channel conductance with little effect on 5-HT(3A) channel's kinetic properties and ethanol enhances agonist action on 5-HT(3A) receptors by inducing a new, long-lived open-channel state. Furthermore, the 5-HT(3A)(QDA) receptor appears to be suitable for pharmacological studies of 5-HT(3A) receptor modulation at a single-channel level.
Collapse
Affiliation(s)
- Paula L Feinberg-Zadek
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
48
|
Navailles S, Bioulac B, Gross C, De Deurwaerdère P. Serotonergic neurons mediate ectopic release of dopamine induced by L-DOPA in a rat model of Parkinson's disease. Neurobiol Dis 2010; 38:136-43. [PMID: 20096781 DOI: 10.1016/j.nbd.2010.01.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 01/14/2010] [Indexed: 11/28/2022] Open
Abstract
Benefit and motor side effects of l-DOPA in Parkinson's disease have been related to dopamine transmission in the striatum. However, the putative involvement of serotonergic neurons in the dopaminergic effects of l-DOPA suggests that the striatum is not a preferential target of l-DOPA. By using microdialysis in a rat model of Parkinson's disease, we found that l-DOPA (3-100 mg/kg) increased dopamine extracellular levels monitored simultaneously in four brain regions receiving serotonergic innervation: striatum, substantia nigra, hippocampus, prefrontal cortex. The increase was regionally similar at the lowest dose and 2-3 times stronger in the striatum at higher doses. Citalopram, a serotonin reuptake blocker, or the destruction of serotonergic fibers by 5,7-dihydroxytryptamine impaired l-DOPA-induced dopamine release in all regions. These data demonstrate that l-DOPA induces an ectopic release of dopamine due to serotonergic neurons. The new pattern of dopamine transmission created by l-DOPA may contribute to the benefit and side effects of l-DOPA.
Collapse
Affiliation(s)
- Sylvia Navailles
- Université de Bordeaux, Unité Mixte de Recherche Centre National de la Recherche Scientifique 5227, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux cedex, France
| | | | | | | |
Collapse
|
49
|
Rammes G, Hosp C, Eisensamer B, Tanasic S, Nothdurfter C, Zieglgänsberger W, Rupprecht R. Identification of a domain which affects kinetics and antagonistic potency of clozapine at 5-HT3 receptors. PLoS One 2009; 4:e6715. [PMID: 19696922 PMCID: PMC2725292 DOI: 10.1371/journal.pone.0006715] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 07/17/2009] [Indexed: 11/18/2022] Open
Abstract
The widely used atypical antipsychotic clozapine is a potent competitive antagonist at 5-HT3 receptors which may contribute to its unique psychopharmacological profile. Clozapine binds to 5-HT3 receptors of various species. However, the structural requirements of the respective binding site for clozapine remain to be determined. Differences in the primary sequences within the 5-HT3A receptor gene in schizophrenic patients may result in an alteration of the antipsychotic potency and/or the side effect profile of clozapine. To determine these structural requirements we constructed chimeras with different 5-HT3A receptor sequences of murine and human origin and expressed these mutants in human embryonic kidney (HEK) 293 cells. Clozapine antagonises recombinant mouse 5-HT3A receptors with higher potency compared to recombinant human 5-HT3A receptors. 5-HT activation curves and clozapine inhibition curves yielded the parameters EC50 and IC50 for all receptors tested in the range of 0.6–2.7 µM and 1.5–83.3 nM, respectively. The use of the Cheng-Prusoff equation to calculate the dissociation constant Kb values for clozapine revealed that an extracellular sequence (length 86 aa) close to the transmembrane domain M1 strongly determines the binding affinity of clozapine. Kb values of clozapine were significantly lower (0.3–1.1 nM) for receptors containing the murine sequence and higher when compared with receptors containing the respective human sequence (5.8–13.4 nM). Thus, individual differences in the primary sequence of 5-HT3 receptors may be crucial for the antipsychotic potency and/or the side effect profile of clozapine.
Collapse
|
50
|
Chapter 2 Neurochemistry of cognition: serotonergic and adrenergic mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2008; 88:31-40. [DOI: 10.1016/s0072-9752(07)88002-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|