1
|
Veshchitskii A, Shkorbatova P, Merkulyeva N. Neurochemical atlas of the rabbit spinal cord. Brain Struct Funct 2024; 229:2011-2027. [PMID: 39115602 DOI: 10.1007/s00429-024-02842-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/15/2024] [Indexed: 10/18/2024]
Abstract
Complex neurophysiological and morphologic experiments require suitable animal models for investigation. The rabbit is one of the most successful models for studying spinal cord functions owing to its substantial size. However, achieving precise surgical access to specific spinal regions requires a thorough understanding of the spinal cord's cytoarchitectonic structure and its spatial relationship with the vertebrae. The comprehensive anatomo-neurochemical atlases of the spinal cord are invaluable for attaining such insight. While such atlases exist for some rodents and primates, none exist for rabbits. We have developed a spinal cord atlas for rabbits to bridge this gap. Utilizing various neurochemical markers-including antibodies to NeuN, calbindin 28 kDa, parvalbumin, choline acetyltransferase, nitric oxide synthase, and non-phosphorylated heavy-chain neurofilaments (SMI-32 antibody)-we present the visualization of diverse spinal neuronal populations, various spinal cord metrics, stereotaxic maps of transverse slices for each spinal segment, and a spatial map detailing the intricate relationship between the spinal cord and the vertebrae across its entire length.
Collapse
Affiliation(s)
- Aleksandr Veshchitskii
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia, 199034
| | - Polina Shkorbatova
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia, 199034
| | - Natalia Merkulyeva
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia, 199034.
| |
Collapse
|
2
|
Merkulyeva N, Mikhalkin A, Veshchitskii A. Inner Structure of the Lateral Geniculate Complex of Adult and Newborn Acomys cahirinus. Int J Mol Sci 2024; 25:7855. [PMID: 39063096 PMCID: PMC11277159 DOI: 10.3390/ijms25147855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Acomys cahirinus is a unique Rodentia species with several distinctive physiological traits, such as precocial development and remarkable regenerative abilities. These characteristics render A. cahirinus increasingly valuable for regenerative and developmental physiology studies. Despite this, the structure and postnatal development of the central nervous system in A. cahirinus have been inadequately explored, with only sporadic data available. This study is the first in a series of papers addressing these gaps. Our first objective was to characterize the structure of the main visual thalamic region, the lateral geniculate complex, using several neuronal markers (including Ca2+-binding proteins, glutamic acid decarboxylase enzyme, and non-phosphorylated domains of heavy-chain neurofilaments) to label populations of principal neurons and interneurons in adult and newborn A. cahirinus. As typically found in other rodents, we identified three subdivisions in the geniculate complex: the dorsal and ventral lateral geniculate nuclei (LGNd and LGNv) and the intergeniculate leaflet (IGL). Additionally, we characterized internal diversity in the LGN nuclei. The "shell" and "core" regions of the LGNd were identified using calretinin in adults and newborns. In adults, the inner and outer parts of the LGNv were identified using calbindin, calretinin, parvalbumin, GAD67, and SMI-32, whereas in newborns, calretinin and SMI-32 were employed for this purpose. Our findings revealed more pronounced developmental changes in LGNd compared to LGNv and IGL, suggesting that LGNd is less mature at birth and more influenced by visual experience.
Collapse
Affiliation(s)
- Natalia Merkulyeva
- Neuromorphology Laboratory, Pavlov Institute of Physiology of Russian Academy of Sciences, St. Petersburg 199034, Russia; (A.M.); (A.V.)
| | | | | |
Collapse
|
3
|
Merkulyeva N, Mikhalkin A. Transient expression of heavy-chain neurofilaments in the perigeniculate nucleus of cats. Brain Struct Funct 2024; 229:489-495. [PMID: 38265459 DOI: 10.1007/s00429-023-02752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
The perigeniculate nucleus (PGN) is a visual part of the thalamic reticular nucleus modulating the information transfer between the lateral geniculate nucleus and the visual cortex. This study focused on the postnatal development of the PGN in cats, using the SMI-32 antibody, which recognizes non-phosphorylated heavy-chain neurofilaments responsible for neuronal structural maturation and is also used as a marker for motion processing, or Y, stream. We questioned whether transient neuronal populations exist in the PGN and can they possibly be related to the Y processing stream. We uncovered a transient, robust SMI-32 staining in the PGN of kittens aged 0-34 days with the significant decline in the cellular density of labeled cells in older animals. According to the double-labeling, in all examined age groups, perigeniculate SMI-32-immunopositive cells are part of the main parvalbumin-positive population. The maximal cellular density of the double-stained cells appeared in animals aged 10-28 days. We also revealed that the most significant growth of perigeniculate cells's soma occurred at three postnatal weeks. The possible link of our data to the development of the Y visual processing stream and to the heterogeneity of the perigeniculate neuronal population is also discussed.
Collapse
Affiliation(s)
- Natalia Merkulyeva
- Pavlov Institute of Physiology RAS, Makarov Nab., 6, Saint-Petersburg, Russia, 199034.
| | - Aleksandr Mikhalkin
- Pavlov Institute of Physiology RAS, Makarov Nab., 6, Saint-Petersburg, Russia, 199034
| |
Collapse
|
4
|
Balaram P, Takasaki K, Hellevik A, Tandukar J, Turschak E, MacLennan B, Ouellette N, Torres R, Laughland C, Gliko O, Seshamani S, Perlman E, Taormina M, Peterson E, Juneau Z, Potekhina L, Glaser A, Chandrashekar J, Logsdon M, Cao K, Dylla C, Hatanaka G, Chatterjee S, Ting J, Vumbaco D, Waters J, Bair W, Tsao D, Gao R, Reid C. Microscale visualization of cellular features in adult macaque visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565381. [PMID: 37961179 PMCID: PMC10635096 DOI: 10.1101/2023.11.02.565381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Expansion microscopy and light sheet imaging enable fine-scale resolution of intracellular features that comprise neural circuits. Most current techniques visualize sparsely distributed features across whole brains or densely distributed features within individual brain regions. Here, we visualize dense distributions of immunolabeled proteins across early visual cortical areas in adult macaque monkeys. This process may be combined with multiphoton or magnetic resonance imaging to produce multimodal atlases in large, gyrencephalic brains.
Collapse
|
5
|
Henneberry JM, Elgallad J, Smith S, Duffy KR. Early monocular deprivation reduces the capacity for neural plasticity in the cat visual system. Cereb Cortex Commun 2023; 4:tgad017. [PMID: 37675436 PMCID: PMC10477708 DOI: 10.1093/texcom/tgad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 09/08/2023] Open
Abstract
Obstruction of vision to one eye during early postnatal development elicits neural modifications in the visual system that can last a lifetime. Research in rodents has revealed that an early and transient monocular deprivation (MD) can produce an enduring alteration to the framework of neural connections within visual cortex. This lasting trace of early MD enables an enhanced effect of a second MD imposed on the same eye in adulthood. In the current study, we examined whether the modification of plasticity potential was bidirectional by assessing whether the effect of early and brief MD attenuated the impact of a subsequent MD when applied to the fellow eye. Results were clear in showing that animals with an early MD exhibited a smaller response to later visual deprivation of the fellow eye. Compared to controls, animals with a history of MD exhibited less atrophy of neurons, and a smaller loss of neurofilament labeling within the dorsal lateral geniculate nucleus. The shift in cortical ocular dominance elicited by MD was also smaller in animals with a prior MD. These results indicate that early MD elicits abiding and eye-specific neural modifications that can selectively alter plasticity potential in the visual system.
Collapse
Affiliation(s)
- Jonathon Mark Henneberry
- Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St., Halifax, NS B3H 4R2, Canada
| | - Joseph Elgallad
- Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St., Halifax, NS B3H 4R2, Canada
| | - Seth Smith
- Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St., Halifax, NS B3H 4R2, Canada
| | - Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St., Halifax, NS B3H 4R2, Canada
| |
Collapse
|
6
|
Mikhalkin AA, Nikitina NI, Merkulyeva NS. Age-Related Changes in Soma Size of Y Neurons in the Cat Dorsal Lateral Geniculate Nucleus: Dorsoventral and Centroperipheral Gradients. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Veshchitskii A, Shkorbatova P, Merkulyeva N. Neurochemical atlas of the cat spinal cord. Front Neuroanat 2022; 16:1034395. [PMID: 36337139 PMCID: PMC9627295 DOI: 10.3389/fnana.2022.1034395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/30/2022] [Indexed: 11/15/2022] Open
Abstract
The spinal cord is a complex heterogeneous structure, which provides multiple vital functions. The precise surgical access to the spinal regions of interest requires precise schemes for the spinal cord structure and the spatial relation between the spinal cord and the vertebrae. One way to obtain such information is a combined anatomical and morphological spinal cord atlas. One of the widely used models for the investigation of spinal cord functions is a cat. We create a single cell-resolution spinal cord atlas of the cat using a variety of neurochemical markers [antibodies to NeuN, choline acetyltransferase, calbindin 28 kDa, calretinin, parvalbumin, and non-phosphorylated heavy-chain neurofilaments (SMI-32 antibody)] allowing to visualize several spinal neuronal populations. In parallel, we present a map of the spatial relation between the spinal cord and the vertebrae for the entire length of the spinal cord.
Collapse
|
8
|
Mikhalkin AA, Merkulyeva NS. Peculiarities of Age-Related Dynamics of Neurons in the Cat Lateral Geniculate Nucleus as Revealed in Frontal versus Sagittal Slices. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021050021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Mikhalkin A, Nikitina N, Merkulyeva N. Heterochrony of postnatal accumulation of nonphosphorylated heavy‐chain neurofilament by neurons of the cat dorsal lateral geniculate nucleus. J Comp Neurol 2020; 529:1430-1441. [DOI: 10.1002/cne.25028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Aleksandr Mikhalkin
- lab Neuromorphology Pavlov Institute of Physiology RAS Makarov emb, 6 Saint‐Petersburg Russia
| | - Nina Nikitina
- lab Neuromorphology Pavlov Institute of Physiology RAS Makarov emb, 6 Saint‐Petersburg Russia
| | - Natalia Merkulyeva
- lab Neuromorphology Pavlov Institute of Physiology RAS Makarov emb, 6 Saint‐Petersburg Russia
| |
Collapse
|
10
|
Modification of Peak Plasticity Induced by Brief Dark Exposure. Neural Plast 2019; 2019:3198285. [PMID: 31565047 PMCID: PMC6745115 DOI: 10.1155/2019/3198285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022] Open
Abstract
The capacity for neural plasticity in the mammalian central visual system adheres to a temporal profile in which plasticity peaks early in postnatal development and then declines to reach enduring negligible levels. Early studies to delineate the critical period in cats employed a fixed duration of monocular deprivation to measure the extent of ocular dominance changes induced at different ages. The largest deprivation effects were observed at about 4 weeks postnatal, with a steady decline in plasticity thereafter so that by about 16 weeks only small changes were measured. The capacity for plasticity is regulated by a changing landscape of molecules in the visual system across the lifespan. Studies in rodents and cats have demonstrated that the critical period can be altered by environmental or pharmacological manipulations that enhance plasticity at ages when it would normally be low. Immersion in complete darkness for long durations (dark rearing) has long been known to alter plasticity capacity by modifying plasticity-related molecules and slowing progress of the critical period. In this study, we investigated the possibility that brief darkness (dark exposure) imposed just prior to the critical period peak can enhance the level of plasticity beyond that observed naturally. We examined the level of plasticity by measuring two sensitive markers of monocular deprivation, namely, soma size of neurons and neurofilament labeling within the dorsal lateral geniculate nucleus. Significantly larger modification of soma size, but not neurofilament labeling, was observed at the critical period peak when dark exposure preceded monocular deprivation. This indicated that the natural plasticity ceiling is modifiable and also that brief darkness does not simply slow progress of the critical period. As an antecedent to traditional amblyopia treatment, darkness may increase treatment efficacy even at ages when plasticity is at its highest.
Collapse
|
11
|
Han JJ, Lee HS, Park MH. Neuroplastic change of cytoskeleton in inferior colliculus after auditory deafferentation. Hear Res 2018; 367:207-212. [PMID: 29954642 DOI: 10.1016/j.heares.2018.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
Neural plasticity is a characteristic of the brain that helps it adapt to changes in sensory input. We hypothesize that auditory deafferentation may induce plastic changes in the cytoskeleton of the neurons in the inferior colliculus (IC). In this study, we evaluated the dynamic status of neurofilament (NF) phosphorylation in the IC after hearing loss. We induced auditory deafferentation via unilateral or bilateral cochlear ablation in rats, aged 4 weeks. To evaluate cytoskeletal changes in neurons, we evaluated mRNA fold changes in NF heavy chain expression, non-phosphorylated NF protein fold changes using SMI-32 antibody, and the ratio of SMI-32 immunoreactive (SMI-32-ir) neurons to the total neuronal population in the IC at 4 and 12 weeks after deafness. In the bilateral deafness (BD) group, the ratios of SMI-32-ir neurons significantly increased at 4 weeks after ablation in the right and left IC (6.1 ± 4.4%, 5.0 ± 3.4%, respectively), compared with age-matched controls (P < 0.01, P < 0.01). At 12 weeks after ablation, the ratio of SMI-32 positive neurons was higher (right, 3.4 ± 2.0%; left, 3.2 ± 2.3%) than that in the age-matched control group, albeit not significant in the right and left side (P = 0.38, P = 0.24, respectively). Consistent with the results of the ratio of SMI-32-ir neurons, SMI-32-ir protein expression was increased at 4 weeks after BD, and the changes at 12 weeks after bilateral ablation were not significant in the right or left IC. The age-matched control fold changes of NF mRNA expression after bilateral deafness were not significant at 4 and 12 weeks after deafness in right and left IC. Unilateral deafness did not induce significant change of NF mRNA expression, SMI-32-ir protein expression, and the ratio of SMI-32-ir neurons in the IC at 4 and 12 weeks after hearing loss. Bilateral auditory deafferentation induces structural changes in the neuronal cytoskeleton within the IC, which is prominent at 4 weeks after BD. The structural remodeling of neurons stabilized at 12 weeks after BD. Unlike BD, unilateral auditory deafferentation did not affect the dynamic status of NFs in the IC.
Collapse
Affiliation(s)
- Jae Joon Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ho Sun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul Metropolitan Government-Seoul National University, South Korea; Department of Otorhinolaryngology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Min-Hyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul Metropolitan Government-Seoul National University, South Korea; Department of Otorhinolaryngology, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
12
|
Nurzynska K, Mikhalkin A, Piorkowski A. CAS: Cell Annotation Software - Research on Neuronal Tissue Has Never Been so Transparent. Neuroinformatics 2018; 15:365-382. [PMID: 28849545 PMCID: PMC5671565 DOI: 10.1007/s12021-017-9340-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CAS (Cell Annotation Software) is a novel tool for analysis of microscopic images and selection of the cell soma or nucleus, depending on the research objectives in medicine, biology, bioinformatics, etc. It replaces time-consuming and tiresome manual analysis of single images not only with automatic methods for object segmentation based on the Statistical Dominance Algorithm, but also semi-automatic tools for object selection within a marked region of interest. For each image, a broad set of object parameters is computed, including shape features and optical and topographic characteristics, thus giving additional insight into data. Our solution for cell detection and analysis has been verified by microscopic data and its application in the annotation of the lateral geniculate nucleus has been examined in a case study.
Collapse
Affiliation(s)
- Karolina Nurzynska
- Institute of Informatics, Silesian University of Technology, Gliwice, Poland.
| | - Aleksandr Mikhalkin
- Laboratory of Neuromorphology, Pavlov Institute of Physiology RAS, St. Petersburg, Russia
| | - Adam Piorkowski
- Department of Geoinformatics and Applied Computer Science, AGH University of Science and Technology, Cracow, Poland
| |
Collapse
|
13
|
Bickford ME. Synaptic organization of the dorsal lateral geniculate nucleus. Eur J Neurosci 2018; 49:938-947. [PMID: 29575193 DOI: 10.1111/ejn.13917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 01/01/2023]
Abstract
A half century after Ray Guillery's classic descriptions of cell types, axon types, and synaptic architecture of the dorsal lateral geniculate nucleus, the functional organization of this nucleus, as well as all other thalamic nuclei, is still of enormous interest. This review will focus on two classic papers written by Ray Guillery: 'A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat', and 'The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat', as well as the studies that most directly followed from the insights these landmark manuscripts provided. It is hoped that this review will honor Ray Guillery by encouraging further investigations of the synaptic organization of the dorsal thalamus.
Collapse
Affiliation(s)
- Martha E Bickford
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, 511 South Floyd, Room 111, Louisville, KY, 40202, USA
| |
Collapse
|
14
|
Duffy KR, Fong MF, Mitchell DE, Bear MF. Recovery from the anatomical effects of long-term monocular deprivation in cat lateral geniculate nucleus. J Comp Neurol 2017; 526:310-323. [PMID: 29023717 DOI: 10.1002/cne.24336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/06/2022]
Abstract
Monocular deprivation (MD) imposed early in postnatal life elicits profound structural and functional abnormalities throughout the primary visual pathway. The ability of MD to modify neurons within the visual system is restricted to a so-called critical period that, for cats, peaks at about one postnatal month and declines thereafter so that by about 3 months of age MD has little effect. Recovery from the consequences of MD likewise adheres to a critical period that ends by about 3 months of age, after which the effects of deprivation are thought to be permanent and without capacity for reversal. The attenuation of plasticity beyond early development is a formidable obstacle for conventional therapies to stimulate recovery from protracted visual deprivation. In the current study we examined the efficacy of dark exposure and retinal inactivation with tetrodotoxin to promote anatomical recovery in the dorsal lateral geniculate nuclues (dLGN) from long-term MD started at the peak of the critical period. Whereas 10 days of dark exposure or binocular retinal inactivation were not better at promoting recovery than conventional treatment with reverse occlusion, inactivation of only the non-deprived (fellow) eye for 10 days produced a complete restoration of neuron soma size, and also reversed the significant loss of neurofilament protein within originally deprived dLGN layers. These results reveal a capacity for neural plasticity and recovery that is larger than anything previously observed following protracted MD in cat, and they highlight a possibility for alternative therapies applied at ages thought to be recalcitrant to recovery.
Collapse
Affiliation(s)
- Kevin R Duffy
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ming-Fai Fong
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Donald E Mitchell
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark F Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
15
|
Butler BE, de la Rua A, Ward-Able T, Lomber SG. Cortical and thalamic connectivity to the second auditory cortex of the cat is resilient to the onset of deafness. Brain Struct Funct 2017; 223:819-835. [PMID: 28940055 DOI: 10.1007/s00429-017-1523-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
It has been well established that following sensory loss, cortical areas that would normally be involved in perceiving stimuli in the absent modality are recruited to subserve the remaining senses. Despite this compensatory functional reorganization, there is little evidence to date for any substantial change in the patterns of anatomical connectivity between sensory cortices. However, while many auditory areas are contracted in the deaf, the second auditory cortex (A2) of the cat undergoes a volumetric expansion following hearing loss, suggesting this cortical area may demonstrate a region-specific pattern of structural reorganization. To address this hypothesis, and to complement existing literature on connectivity within auditory cortex, we injected a retrograde neuronal tracer across the breadth and cortical thickness of A2 to provide the first comprehensive quantification of projections from cortical and thalamic auditory and non-auditory regions to the second auditory cortex, and to determine how these patterns are affected by the onset of deafness. Neural projections arising from auditory, visual, somatomotor, and limbic cortices, as well as thalamic nuclei, were compared across normal hearing, early-deaf, and late-deaf animals. The results demonstrate that, despite previously identified changes in A2 volume, the pattern of projections into this cortical region are unaffected by the onset of hearing loss. These results fail to support the idea that crossmodal plasticity reflects changes in the pattern of projections between cortical regions and provides evidence that the pattern of connectivity that supports normal hearing is retained in the deaf brain.
Collapse
Affiliation(s)
- Blake E Butler
- Cerebral Systems Laboratory, University of Western Ontario, London, ON, N6A 5C2, Canada. .,Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada. .,Brain and Mind Institute, University of Western Ontario, London, ON, N6A 5B7, Canada. .,National Centre for Audiology, University of Western Ontario, London, ON, N6G 1H1, Canada.
| | - Alexandra de la Rua
- Cerebral Systems Laboratory, University of Western Ontario, London, ON, N6A 5C2, Canada.,Neuroscience Undergraduate Program, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Taylor Ward-Able
- Cerebral Systems Laboratory, University of Western Ontario, London, ON, N6A 5C2, Canada.,Neuroscience Undergraduate Program, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Stephen G Lomber
- Cerebral Systems Laboratory, University of Western Ontario, London, ON, N6A 5C2, Canada.,Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada.,Brain and Mind Institute, University of Western Ontario, London, ON, N6A 5B7, Canada.,National Centre for Audiology, University of Western Ontario, London, ON, N6G 1H1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| |
Collapse
|
16
|
Cell type-specific expression of FoxP2 in the ferret and mouse retina. Neurosci Res 2016; 117:1-13. [PMID: 27888071 DOI: 10.1016/j.neures.2016.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/25/2022]
Abstract
Although the anatomical and physiological properties of subtypes of retinal ganglion cells (RGCs) have been extensively investigated, their molecular properties are still unclear. Here, we examined the expression patterns of FoxP2 in the retina of ferrets and mice. We found that FoxP2 was expressed in small subsets of neurons in the adult ferret retina. FoxP2-positive neurons in the ganglion cell layer were divided into two groups. Large FoxP2-positive neurons expressed Brn3a and were retrogradely labeled with cholera toxin subunit B injected into the optic nerve, indicating that they are RGCs. The soma size and the projection pattern of FoxP2-positive RGCs were consistent with those of X cells. Because we previously reported that FoxP2 was selectively expressed in X cells in the ferret lateral geniculate nucleus (LGN), our findings indicate that FoxP2 is specifically expressed in the parvocellular pathway from the retina to the LGN. Small FoxP2-positive neurons were positive for GAD65/67, suggesting that they are GABAergic amacrine cells. Most Foxp2-positive cells were RGCs in the adult mouse retina. Dendritic morphological analyses suggested that Foxp2-positive RGCs included direction-selective RGCs in mice. Thus, our findings suggest that FoxP2 is expressed in specific subtypes of RGCs in the retina of ferrets and mice.
Collapse
|
17
|
Park MH, Jang JH, Song JJ, Lee HS, Oh SH. Neurofilament heavy chain expression and neuroplasticity in rat auditory cortex after unilateral and bilateral deafness. Hear Res 2016; 339:155-60. [PMID: 27457532 DOI: 10.1016/j.heares.2016.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 07/16/2016] [Accepted: 07/19/2016] [Indexed: 01/24/2023]
Abstract
Deafness induces many plastic changes in the auditory neural system. For instance, dendritic changes cause synaptic changes in neural cells. SMI-32, a monoclonal antibody reveals auditory areas and recognizes non-phosphorylated epitopes on medium- and high-molecular-weight subunits of neurofilament proteins in cortical pyramidal neuron dendrites. We investigated SMI-32-immunoreactive (-ir) protein levels in the auditory cortices of rats with induced unilateral and bilateral deafness. Adult male Sprague-Dawley rats were divided into unilateral deafness (UD), bilateral deafness (BD), and control groups. Deafness was induced by cochlear ablation. All rats were sacrificed, and the auditory cortices were harvested for real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analyses at 2, 4, 6, and 12 weeks after deafness was induced. Immunohistochemical staining was performed to evaluate the location of SMI-32-ir neurons. Neurofilament heavy chain (NEFH) mRNA expression and SMI-32-ir protein levels were increased in the BD group. In particular, SMI-32-ir protein levels increased significantly 6 and 12 weeks after deafness was induced. In contrast, no significant changes in protein level were detected in the right or left auditory cortices at any time point in the UD group. NEFH mRNA level decreased at 4 weeks after deafness was induced in the UD group, but recovered thereafter. Taken together, BD induced plastic changes in the auditory cortex, whereas UD did not affect the auditory neural system sufficiently to show plastic changes, as measured by neurofilament protein level.
Collapse
Affiliation(s)
- Min-Hyun Park
- Department of Otorhinolaryngology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 07061, Boramae Road 5 Gil 20, Dongjak-gu, Seoul, South Korea.
| | - Jeong Hun Jang
- Department of Otorhinolaryngology Head and Neck Surgery, Ajou University Hospital, 16499, World cup-ro 164, Yeongtong-gu, Suwon, Gyeonggi-do, South Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Gumi-Ro 173 Beon-Gil 82, Bundang-gu, Gyeonggi-Do, South Korea
| | - Ho Sun Lee
- Department of Otorhinolaryngology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 07061, Boramae Road 5 Gil 20, Dongjak-gu, Seoul, South Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology, College of Medicine, Seoul National University, 03080, Daehangno 101, Jongno-gu, Seoul, South Korea
| |
Collapse
|
18
|
Butler BE, Chabot N, Lomber SG. Quantifying and comparing the pattern of thalamic and cortical projections to the posterior auditory field in hearing and deaf cats. J Comp Neurol 2016; 524:3042-63. [DOI: 10.1002/cne.24005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Blake E. Butler
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Brain and Mind Institute; University of Western Ontario; London Ontario Canada N6A 5B7
| | - Nicole Chabot
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Brain and Mind Institute; University of Western Ontario; London Ontario Canada N6A 5B7
| | - Stephen G. Lomber
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Department of Psychology; University of Western Ontario; London Ontario Canada N6A 5C2
- Brain and Mind Institute; University of Western Ontario; London Ontario Canada N6A 5B7
- National Centre for Audiology; University of Western Ontario; London Ontario Canada N6G 1H1
| |
Collapse
|
19
|
Duffy KR, Lingley AJ, Holman KD, Mitchell DE. Susceptibility to monocular deprivation following immersion in darkness either late into or beyond the critical period. J Comp Neurol 2016; 524:2643-53. [PMID: 26878686 DOI: 10.1002/cne.23985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 01/04/2023]
Abstract
An extended duration of darkness starting near the time of birth preserves immature neuronal characteristics and prolongs the accentuated plasticity observed in young animals. Brief periods of complete darkness have emerged as an effective means of restoring a high capacity for neural plasticity and of promoting recovery from the effects of monocular deprivation (MD). We examined whether 10 days of darkness imposed in adulthood or beyond the peak of the critical period could rejuvenate the ability of MD to reduce the size of neuron somata within deprived layers of the cat dorsal lateral geniculate nucleus (dLGN). For adult cats subjected to 10 days of darkness before 7 days of MD, we observed no alteration in neuron size or neurofilament labeling within the dLGN. At 12 weeks of age, MD that followed immediately after 10 days of darkness produced an enhanced reduction of neuron soma size within deprived dLGN layers. For this age we observed that 10 days of darkness also enhanced the loss of neurofilament protein within deprived dLGN layers. These results indicate that, although 10 days of darkness in adulthood does not enhance the susceptibility to 7 days of MD, darkness imposed near the trailing edge of the critical period can restore a heightened susceptibility to MD more typical of an earlier developmental stage. The loss of neurofilament in juveniles exposed to darkness prior to MD suggests that the enhanced capacity for structural plasticity is partially rooted in the ability of darkness to modulate molecules that inhibit plasticity. J. Comp. Neurol. 524:2643-2653, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie University Life Sciences Centre, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Alexander J Lingley
- Department of Psychology and Neuroscience, Dalhousie University Life Sciences Centre, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Kaitlyn D Holman
- Department of Psychology and Neuroscience, Dalhousie University Life Sciences Centre, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Donald E Mitchell
- Department of Psychology and Neuroscience, Dalhousie University Life Sciences Centre, Halifax, Nova Scotia, Canada, B3H 4R2
| |
Collapse
|
20
|
Song S, Mitchell DE, Crowder NA, Duffy KR. Postnatal accumulation of intermediate filaments in the cat and human primary visual cortex. J Comp Neurol 2015; 523:2111-26. [PMID: 25823892 DOI: 10.1002/cne.23781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/25/2022]
Abstract
A principal characteristic of the mammalian visual system is its high capacity for plasticity in early postnatal development during a time commonly referred to as the critical period. The progressive diminution of plasticity with age is linked to the emergence of a collection of molecules called molecular brakes that reduce plasticity and stabilize neural circuits modified by earlier visual experiences. Manipulation of braking molecules either pharmacologically or though experiential alteration enhances plasticity and promotes recovery from visual impairment. The stability of neural circuitry is increased by intermediate filamentous proteins of the cytoskeleton such as neurofilaments and α-internexin. We examined levels of these intermediate filaments within cat and human primary visual cortex (V1) across development to determine whether they accumulate following a time course consistent with a molecular brake. In both species, levels of intermediate filaments increased considerably throughout early postnatal life beginning shortly after the peak of the critical period, with the highest levels measured in adults. Neurofilament phosphorylation was also observed to increase throughout development, raising the possibility that posttranslational modification by phosphorylation reduces plasticity due to increased protein stability. Finally, an approach to scale developmental time points between species is presented that compares the developmental profiles of intermediate filaments between cats and humans. Although causality between intermediate filaments and plasticity was not directly tested in this study, their accumulation relative to the critical period indicates that they may contribute to the decline in plasticity with age, and may also constrain the success of treatments for visual disorders applied in adulthood.
Collapse
Affiliation(s)
- Seoho Song
- Department of Psychology and Neuroscience, Dalhousie University, Life Sciences Centre, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Donald E Mitchell
- Department of Psychology and Neuroscience, Dalhousie University, Life Sciences Centre, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Nathan A Crowder
- Department of Psychology and Neuroscience, Dalhousie University, Life Sciences Centre, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie University, Life Sciences Centre, Halifax, Nova Scotia, Canada, B3H 4R2
| |
Collapse
|
21
|
Shrinkage of X cells in the lateral geniculate nucleus after monocular deprivation revealed by FoxP2 labeling. Vis Neurosci 2014; 31:253-61. [PMID: 24480423 DOI: 10.1017/s0952523813000643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The parallel processing of visual features by distinct neuron populations is a central characteristic of the mammalian visual system. In the A laminae of the cat dorsal lateral geniculate nucleus (dLGN), parallel processing streams originate from two principal neuron types, called X and Y cells. Disruption of visual experience early in life by monocular deprivation has been shown to alter the structure and function of Y cells, but the extent to which deprivation influences X cells remains less clear. A transcription factor, FoxP2, has recently been shown to selectively label X cells in the ferret dLGN and thus provides an opportunity to examine whether monocular deprivation alters the soma size of X cells. In this study, FoxP2 labeling was examined in the dLGN of normal and monocularly deprived cats. The characteristics of neurons labeled for FoxP2 were consistent with FoxP2 being a marker for X cells in the cat dLGN. Monocular deprivation for either a short (7 days) or long (7 weeks) duration did not alter the density of FoxP2-positive neurons between nondeprived and deprived dLGN layers. However, for each deprived animal examined, measurement of the cross-sectional area of FoxP2-positive neurons (X cells) revealed that within deprived layers, X cells were smaller by approximately 20% after 7 days of deprivation, and by approximately 28% after 7 weeks of deprivation. The observed alteration to the cross-sectional area of X cells indicates that perturbation of this major pathway contributes to the functional impairments that develop from monocular deprivation.
Collapse
|
22
|
|
23
|
Duffy KR, Mitchell DE. Darkness alters maturation of visual cortex and promotes fast recovery from monocular deprivation. Curr Biol 2013; 23:382-6. [PMID: 23416100 DOI: 10.1016/j.cub.2013.01.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/04/2012] [Accepted: 01/03/2013] [Indexed: 11/25/2022]
Abstract
The existence of heightened brain plasticity during critical periods in early postnatal life is a central tenet of developmental sensory neuroscience and helps explain the enduring deficits induced by early abnormal sensory exposure. The human visual disorder amblyopia has been linked to unbalanced visual input to the two eyes in early postnatal visual cortical development and has been modeled in animals by depriving them of patterned visual input to one eye, a procedure known as monocular deprivation (MD). We investigated the possibility that a period of darkness might reset the central visual pathways to a more plastic stage and hence increase the capacity for recovery from early MD. Here we show that a 10 day period of complete darkness reverses maturation of stable cytoskeleton components in kitten visual cortex and also results in rapid elimination of, or even immunity from, visual deficits linked to amblyogenic rearing by MD. The heightened instability of the cytoskeleton induced by darkness likely represents just one of many parallel molecular changes that promote visual recovery, possibly by release of the various brakes on cortical plasticity.
Collapse
Affiliation(s)
- Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie University, 1459 Oxford Street, Halifax, NS B3H 4R2, Canada.
| | | |
Collapse
|
24
|
Wong C, Chabot N, Kok MA, Lomber SG. Modified Areal Cartography in Auditory Cortex Following Early- and Late-Onset Deafness. Cereb Cortex 2013; 24:1778-92. [DOI: 10.1093/cercor/bht026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Burnat K, Van Der Gucht E, Waleszczyk WJ, Kossut M, Arckens L. Lack of early pattern stimulation prevents normal development of the alpha (Y) retinal ganglion cell population in the cat. J Comp Neurol 2012; 520:2414-29. [PMID: 22237852 DOI: 10.1002/cne.23045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Binocular deprivation of pattern vision (BD) early in life permanently impairs global motion perception. With the SMI-32 antibody against neurofilament protein (NFP) as a marker of the motion-sensitive Y-cell pathway (Van der Gucht et al. [2001] Cereb. Cortex 17:2805-2819), we analyzed the impact of early BD on the retinal circuitry in adult, perceptually characterized cats (Burnat et al. [2005] Neuroreport 16:751-754). In controls, large retinal ganglion cells exhibited a strong NFP signal in the soma and in the proximal parts of the dendritic arbors. The NFP-immunoreactive dendrites typically branched into sublamina a of the inner plexiform layer (IPL), i.e., the OFF inner plexiform sublamina. In the retina of adult BD cats, however, most of the NFP-immunoreactive ganglion cell dendrites branched throughout the entire IPL. The NFP-immunoreactive cell bodies were less regularly distributed, often appeared in pairs, and had a significantly larger diameter compared with NFP-expressing cells in control retinas. These remarkable differences in the immunoreactivity pattern were typically observed in temporal retina. In conclusion, we show that the anatomical organization typical of premature Y-type retinal ganglion cells persists into adulthood even if normal visual experience follows for years upon an initial 6-month period of BD. Binocular pattern deprivation possibly induces a lifelong OFF functional domination, normally apparent only during development, putting early high-quality vision forward as a premise for proper ON-OFF pathway segregation. These new observations for pattern-deprived animals provide an anatomical basis for the well-described motion perception deficits in congenital cataract patients.
Collapse
Affiliation(s)
- Kalina Burnat
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
26
|
Iwai L, Ohashi Y, van der List D, Usrey WM, Miyashita Y, Kawasaki H. FoxP2 is a parvocellular-specific transcription factor in the visual thalamus of monkeys and ferrets. Cereb Cortex 2012; 23:2204-12. [PMID: 22791804 DOI: 10.1093/cercor/bhs207] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although the parallel visual pathways are a fundamental basis of visual processing, our knowledge of their molecular properties is still limited. Here, we uncovered a parvocellular-specific molecule in the dorsal lateral geniculate nucleus (dLGN) of higher mammals. We found that FoxP2 transcription factor was specifically expressed in X cells of the adult ferret dLGN. Interestingly, FoxP2 was also specifically expressed in parvocellular layers 3-6 of the dLGN of adult old world monkeys, providing new evidence for a homology between X cells in the ferret dLGN and parvocellular cells in the monkey dLGN. Furthermore, this expression pattern was established as early as gestation day 140 in the embryonic monkey dLGN, suggesting that parvocellular specification has already occurred when the cytoarchitectonic dLGN layers are formed. Our results should help in gaining a fundamental understanding of the development, evolution, and function of the parallel visual pathways, which are especially prominent in higher mammals.
Collapse
Affiliation(s)
- Lena Iwai
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Duffy KR, Crowder NA, LeDue EE. Investigation of cytoskeleton proteins in neurons of the cat lateral geniculate nucleus. J Comp Neurol 2011; 520:186-99. [DOI: 10.1002/cne.22727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Ouda L, Druga R, Syka J. Distribution of SMI-32-immunoreactive neurons in the central auditory system of the rat. Brain Struct Funct 2011; 217:19-36. [PMID: 21656307 DOI: 10.1007/s00429-011-0329-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 05/11/2011] [Indexed: 02/02/2023]
Abstract
SMI-32 antibody recognizes a non-phosphorylated epitope of neurofilament proteins, which are thought to be necessary for the maintenance of large neurons with highly myelinated processes. We investigated the distribution and quantity of SMI-32-immunoreactive(-ir) neurons in individual parts of the rat auditory system. SMI-32-ir neurons were present in all auditory structures; however, in most regions they constituted only a minority of all neurons (10-30%). In the cochlear nuclei, a higher occurrence of SMI-32-ir neurons was found in the ventral cochlear nucleus. Within the superior olivary complex, SMI-32-ir cells were particularly abundant in the medial nucleus of the trapezoid body (MNTB), the only auditory region where SMI-32-ir neurons constituted an absolute majority of all neurons. In the inferior colliculus, a region with the highest total number of neurons among the rat auditory subcortical structures, the percentage of SMI-32-ir cells was, in contrast to the MNTB, very low. In the medial geniculate body, SMI-32-ir neurons were prevalent in the ventral division. At the cortical level, SMI-32-ir neurons were found mainly in layers III, V and VI. Within the auditory cortex, it was possible to distinguish the Te1, Te2 and Te3 areas on the basis of the variable numerical density and volumes of SMI-32-ir neurons, especially when the pyramidal cells of layer V were taken into account. SMI-32-ir neurons apparently form a representative subpopulation of neurons in all parts of the rat central auditory system and may belong to both the inhibitory and excitatory systems, depending on the particular brain region.
Collapse
Affiliation(s)
- Ladislav Ouda
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | | | | |
Collapse
|
29
|
Baizer JS, Paolone NA, Witelson SF. Nonphosphorylated neurofilament protein is expressed by scattered neurons in the human vestibular brainstem. Brain Res 2011; 1382:45-56. [DOI: 10.1016/j.brainres.2011.01.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/21/2011] [Accepted: 01/22/2011] [Indexed: 12/25/2022]
|
30
|
Mellott JG, Van der Gucht E, Lee CC, Carrasco A, Winer JA, Lomber SG. Areas of cat auditory cortex as defined by neurofilament proteins expressing SMI-32. Hear Res 2010; 267:119-36. [PMID: 20430082 DOI: 10.1016/j.heares.2010.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 02/22/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
The monoclonal antibody SMI-32 was used to characterize and distinguish individual areas of cat auditory cortex. SMI-32 labels non-phosphorylated epitopes on the high- and medium-molecular weight subunits of neurofilament proteins in cortical pyramidal cells and dendritic trees with the most robust immunoreactivity in layers III and V. Auditory areas with unique patterns of immunoreactivity included: primary auditory cortex (AI), second auditory cortex (AII), dorsal zone (DZ), posterior auditory field (PAF), ventral posterior auditory field (VPAF), ventral auditory field (VAF), temporal cortex (T), insular cortex (IN), anterior auditory field (AAF), and the auditory field of the anterior ectosylvian sulcus (fAES). Unique patterns of labeling intensity, soma shape, soma size, layers of immunoreactivity, laminar distribution of dendritic arbors, and labeled cell density were identified. Features that were consistent in all areas included: layers I and IV neurons are immunonegative; nearly all immunoreactive cells are pyramidal; and immunoreactive neurons are always present in layer V. To quantify the results, the numbers of labeled cells and dendrites, as well as cell diameter, were collected and used as tools for identifying and differentiating areas. Quantification of the labeling patterns also established profiles for ten auditory areas/layers and their degree of immunoreactivity. Areal borders delineated by SMI-32 were highly correlated with tonotopically-defined areal boundaries. Overall, SMI-32 immunoreactivity can delineate ten areas of cat auditory cortex and demarcate topographic borders. The ability to distinguish auditory areas with SMI-32 is valuable for the identification of auditory cerebral areas in electrophysiological, anatomical, and/or behavioral investigations.
Collapse
Affiliation(s)
- Jeffrey G Mellott
- Centre for Brain and Mind, Department of Physiology & Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Medical Sciences Building, Room 216, 1151 Richmond Street North, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Baizer JS. Nonphosphorylated neurofilament protein is expressed by scattered neurons in the vestibular and precerebellar brainstem. Brain Res 2009; 1298:46-56. [PMID: 19728992 PMCID: PMC2761759 DOI: 10.1016/j.brainres.2009.08.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/20/2009] [Accepted: 08/22/2009] [Indexed: 10/20/2022]
Abstract
Vestibular information is essential for the control of posture, balance, and eye movements. The vestibular nerve projects to the four nuclei of the vestibular nuclear complex (VNC), as well as to several additional brainstem nuclei and the cerebellum. We have found that expression of the calcium-binding proteins calretinin (CR) and calbindin (CB), and the synthetic enzyme for nitric oxide synthase (nNOS) define subdivisions of the medial vestibular nucleus (MVe) and the nucleus prepositus (PrH), in cat, monkey, and human. We have asked if the pattern of expression of nonphosphorylated neurofilament protein (NPNFP) might define additional subdivisions of these or other nuclei that participate in vestibular function. We studied the distribution of cells immunoreactive to NPNFP in the brainstems of 5 cats and one squirrel monkey. Labeled cells were scattered throughout the four nuclei of the VNC, as well as in PrH, the reticular formation (RF) and the external cuneate nucleus. We used double-label immunofluorescence to visualize the distribution of these cells relative to other neurochemically defined subdivisions. NPNFP cells were excluded from the CR and CB regions of the MVe. In PrH, NPNFP and nNOS were not colocalized. Cells in the lateral vestibular nucleus and RF colocalized NPNFP and a marker for glutamatergic neurons. We also found that the cholinergic cells and axons of cranial nerve nuclei 3, 4, 6, 7,10 and 12 colocalize NPNFP. The data suggest that NPNFP is expressed by a subset of glutamatergic projection neurons of the vestibular brainstem. NPNFP may be a marker for those cells that are especially vulnerable to the effects of normal aging, neurological disease or disruption of sensory input.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA.
| |
Collapse
|
32
|
Dual chemoarchitectonic lamination of the visual sector of the thalamic reticular nucleus. Neuroscience 2009; 165:801-18. [PMID: 19909790 DOI: 10.1016/j.neuroscience.2009.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 11/01/2009] [Accepted: 11/04/2009] [Indexed: 11/21/2022]
Abstract
The chemoanatomical organization of the visual sector of the cat's thalamic reticular nucleus (TRN)-that is at the dorsal lateral geniculate nucleus (dLGN) and at the pulvinar nucleus (Pul)-was investigated with two novel cytoarchitectonic markers. The Wisteria floribunda agglutinin (WFA) binding reaction visualized the extracellular perineuronal net (PN) and the SMI 32 immunoreaction stained intracellular neurofilaments. Two distinct layers of the TRN could be detected, particularly by WFA- but also by SMI 32-staining. The outer tier outlined a canopy of labeling placed a bit detached from the diencephalon dorsolaterally, while the inner TRN tier is very tightly attached to the thalamic lamina limitans externa. The labeled neurons showed typically fusiform morphology with dendrites orienting in the plane of TRN. Additionally, these chemoarchitectural reactions identified a chain of structures in the ventral diencephalon connected to the TRN tiers. One stained string is formed by the subthalamic nucleus bound laterally to the peripeduncular nucleus extending further dorsolateral into the outer TRN tier. The other chain laced up the field of Forel, the zona incerta, the ventral LGN, the perigeniculate nucleus (PGN) and the previously-overlooked peripulvinar nucleus (PPulN) and so formed the inner TRN tier. In the third most distanced TRN tier, in the perireticular nucleus, a very few WFA-binding presenting neuron were found. In addition to the PN possessing TRN neurons, WFA-reactive presumable interneurons were also labeled within the visual thalamus. Following tracer injections into the feline Pul, two stripes of cells were retrogradely labeled in the neighboring visual TRN sector. The location of these reticular neurons coincided precisely with the chemoanatomically identified inner and outer TRN tiers. On the analogy of the PGN-TRN duality at the dLGN, the chemoanatomical and tract tracing findings strongly suggest a similar dual organization in the pulvinoprojecting TRN portion.
Collapse
|
33
|
Monocular deprivation provokes alteration of the neuronal cytoskeleton in developing cat lateral geniculate nucleus. Vis Neurosci 2009; 26:319-28. [PMID: 19519963 DOI: 10.1017/s0952523809090130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Monocular deprivation early in development produces considerable change in the organization of connections within the central mammalian visual system. In the dorsal lateral geniculate nucleus, the soma, dendrites, and axon terminal fields of deprived cells become considerably smaller than nondeprived counterparts. We have examined the possibility that subcellular events enabling structural modification of deprived neurons include modification of proteins comprising the cytoskeleton. We examined the integrity of the cytoskeleton by measuring the response of a subset of its proteins to varying durations of monocular deprivation. Loss of all three neurofilament subunits (light, medium, and heavy) within deprived layers was observed to parallel changes in neuron gross structure. Monocular deprivation initiated beyond early life produced neither a change in structure nor a loss of neurofilament labeling.
Collapse
|
34
|
Yeh CI, Stoelzel CR, Weng C, Alonso JM. Functional consequences of neuronal divergence within the retinogeniculate pathway. J Neurophysiol 2009; 101:2166-85. [PMID: 19176606 DOI: 10.1152/jn.91088.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neuronal connections from the retina to the dorsal lateral geniculate nucleus (dLGN) are characterized by a high specificity. Each retinal ganglion cell diverges to connect to a small group of geniculate cells and each geniculate cell receives input from a small number of retinal ganglion cells. Consistent with the high specificity of the connections, geniculate cells sharing input from the same retinal afferent are thought to have very similar receptive fields. However, the magnitude of the receptive-field mismatches, which has not been systematically measured across the different cell types in dLGN, seems to be in contradiction with the functional anatomy of the Y visual pathway: Y retinal afferents in the cat diverge into two geniculate layers (A and C) that have Y geniculate cells (Y(A) and Y(C)) with different receptive-field sizes, response latencies, nonlinearity of spatial summation, and contrast sensitivity. To better understand the functional consequences of retinogeniculate divergence, we recorded from pairs of geniculate cells that shared input from a common retinal afferent across layers and within the same layer in dLGN. We found that nearly all cell pairs that shared retinal input across layers had Y-type receptive fields of the same sign (i.e., both on-center) that overlapped by >70%, but frequently differed in size and response latency. The receptive-field mismatches were relatively small in value (receptive-field size ratio <5; difference in peak response <5 ms), but were robustly correlated with the strength of the synchronous firing generated by the shared retinal connections (R(2) = 0.75). On average, the percentage of geniculate spikes that could be attributed to shared retinal inputs was about 10% for all cell-pair combinations studied. These results are used to provide new estimates of retinogeniculate divergence for different cell classes.
Collapse
Affiliation(s)
- Chun-I Yeh
- Department of Biological Sciences, State College of Optometry, State University of New York, 33 West 42nd Street, New York, NY 10036, USA
| | | | | | | |
Collapse
|
35
|
Bickford ME, Wei H, Eisenback MA, Chomsung RD, Slusarczyk AS, Dankowsi AB. Synaptic organization of thalamocortical axon collaterals in the perigeniculate nucleus and dorsal lateral geniculate nucleus. J Comp Neurol 2008; 508:264-85. [PMID: 18314907 DOI: 10.1002/cne.21671] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We examined the synaptic targets of large non-gamma-aminobutyric acid (GABA)-ergic profiles that contain round vesicles and dark mitochondria (RLD profiles) in the perigeniculate nucleus (PGN) and the dorsal lateral geniculate nucleus (dLGN). RLD profiles can provisionally be identified as the collaterals of thalamocortical axons, because their ultrastrucure is distinct from all other previously described dLGN inputs. We also found that RLD profiles are larger than cholinergic terminals and contain the type 2 vesicular glutamate transporter. RLD profiles are distributed throughout the PGN and are concentrated within the interlaminar zones (IZs) of the dLGN, regions distinguished by dense binding of Wisteria floribunda agglutinin (WFA). To determine the synaptic targets of thalamocortical axon collaterals, we examined RLD profiles in the PGN and dLGN in tissue stained for GABA. For the PGN, we found that all RLD profiles make synaptic contacts with GABAergic PGN somata, dendrites, and spines. In the dLGN, RLD profiles primarily synapse with GABAergic dendrites that contain vesicles (F2 profiles) and non-GABAergic dendrites in glomerular arrangements that include triads. Occasional synapses on GABAergic somata and proximal dendrites were also observed in the dLGN. These results suggest that correlated dLGN activity may be enhanced via direct synaptic contacts between thalamocortical cells, whereas noncorrelated activity (such as that occurring during binocular rivalry) could be suppressed via thalamocortical collateral input to PGN cells and dLGN interneurons.
Collapse
Affiliation(s)
- Martha E Bickford
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Fuentes-Santamaria V, McHaffie JG, Stein BE. Maturation of multisensory integration in the superior colliculus: expression of nitric oxide synthase and neurofilament SMI-32. Brain Res 2008; 1242:45-53. [PMID: 18486108 DOI: 10.1016/j.brainres.2008.03.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 03/19/2008] [Accepted: 03/22/2008] [Indexed: 10/22/2022]
Abstract
Nitric oxide (NO) containing (nitrergic) interneurons are well-positioned to convey the cortical influences that are crucial for multisensory integration in superior colliculus (SC) output neurons. However, it is not known whether nitrergic interneurons are in this position early in life, and might, therefore, also play a role in the functional maturation of this circuit. In the present study, we investigated the postnatal developmental relationship between these two populations of neurons using Beta-nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH) histochemistry and SMI-32 immunocytochemistry to label presumptive interneurons and output neurons, respectively. SMI-32 immunostained neurons were proved to mature and retained immature anatomical features until approximately 8 postnatal weeks. In contrast, nitrergic interneurons developed more rapidly. They had achieved their adult-like anatomy by 4 postnatal weeks and were in a position to influence the dendritic elaboration of output neurons. It is this dendritic substrate through which much of the cortico-collicular influence is expressed. Double-labeling experiments showed that the dendritic and axonal processes of nitrergic interneurons already apposed the somata and dendrites of SMI-32 labeled neurons even at the earliest age examined. The results suggest that nitrergic interneurons play a role in refining the cortico-collicular projection patterns that are believed to be essential for SC output neurons to engage in multisensory integration and to support normal orientation responses to cross-modal stimuli.
Collapse
Affiliation(s)
- Veronica Fuentes-Santamaria
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
37
|
Kutcher MR, Duffy KR. Cytoskeleton alteration correlates with gross structural plasticity in the cat lateral geniculate nucleus. Vis Neurosci 2007; 24:775-85. [PMID: 17915043 DOI: 10.1017/s095252380707068x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 08/20/2007] [Indexed: 11/07/2022]
Abstract
Monocular deprivation during early development causes rearrangement of neural connections within the visual cortex that produces a shift in ocular dominance favoring the non-deprived eye. This alteration is manifested anatomically within deprived layers of the lateral geniculate nucleus (LGN) where neurons have smaller somata and reduced geniculocortical terminal fields compared to non-deprived counterparts. Experiments using monocular deprivation have demonstrated a spatial correlation between cytoskeleton alteration and morphological change within the cat LGN, raising the possibility that subcellular events mediating deprivation-related structural rearrangement include modification to the neuronal cytoskeleton. In the current study we compared the spatial and temporal relationships between cytoskeleton alteration and morphological change in the cat LGN. Cross-sectional soma area and neurofilament labeling were examined in the LGN of kittens monocularly deprived at the peak of the critical period for durations that ranged from 1 day to 7 months. After 4 days of deprivation, neuron somata within deprived layers of the LGN were significantly smaller than those within non-deprived layers. This structural change was accompanied by a spatially coincident reduction in neurofilament immunopositive neurons that was likewise significant after 4 days of deprivation. Both anatomical effects reached close to their maximum by 10 days of deprivation. Results from this study demonstrate that alteration to the neuronal cytoskeleton is both spatially and temporally linked to the gross structural changes induced by monocular deprivation.
Collapse
Affiliation(s)
- Matthew R Kutcher
- Department of Psychology, Dalhousie University, Life Sciences Centre, Halifax, NS, Canada
| | | |
Collapse
|
38
|
Duffy KR, Murphy KM, Frosch MP, Livingstone MS. Cytochrome oxidase and neurofilament reactivity in monocularly deprived human primary visual cortex. Cereb Cortex 2006; 17:1283-91. [PMID: 16831856 PMCID: PMC2628812 DOI: 10.1093/cercor/bhl038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies of human primary visual cortex (V1) have demonstrated a significant eye-specific decrease in cytochrome oxidase (CO) staining following monocular enucleation. We have extended these results by examining CO staining and neurofilament labeling in V1 from a patient with long-standing monocular blindness. A pattern of reduced neurofilament reactivity was found to align with pale CO-stained ocular dominance columns. Neurons located within deprived ocular dominance columns were significantly smaller compared with those in nondeprived columns. A spatial analysis of the relationship between CO blobs and ocular dominance columns revealed that both deprived and nondeprived blobs tended to align with the centers of ocular dominance columns.
Collapse
Affiliation(s)
- Kevin R Duffy
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
39
|
Fuentes-Santamaria V, Stein BE, McHaffie JG. Neurofilament proteins are preferentially expressed in descending output neurons of the cat the superior colliculus: A study using SMI-32. Neuroscience 2006; 138:55-68. [PMID: 16426768 DOI: 10.1016/j.neuroscience.2005.11.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 10/22/2005] [Accepted: 11/12/2005] [Indexed: 11/17/2022]
Abstract
Physiological studies indicate that the output neurons in the multisensory (i.e. intermediate and deep) laminae of the cat superior colliculus receive converging information from widespread regions of the neuraxis, integrate this information, and then relay the product to regions of the brainstem involved in the control of head and eye movements. Yet, an understanding of the neuroanatomy of these converging afferents has been hampered because many terminals contact distal dendrites that are difficult to label with the neurochemical markers generally used to visualize superior colliculus output neurons. Here we show that the SMI-32 antibody, directed at the non-phosphorylated epitopes of high molecular weight neurofilament proteins, is an effective marker for these superior colliculus output neurons. It is also one that can label their distal dendrites. Superior colliculus sections processed for SMI-32 revealed numerous labeled neurons with varying morphologies within the deep laminae. In contrast, few labeled neurons were observed in the superficial laminae. Neurons with large somata in the lateral aspects of the deep superior colliculus were particularly well labeled, and many of their secondary and tertiary dendrites were clearly visible. Injections of the fluorescent biotinylated dextran amine into the pontine reticular formation revealed that approximately 80% of the SMI-32 immunostained neurons also contained retrogradely transported biotinylated dextran amine, indicating that SMI-32 is a common cytoskeletal component expressed in descending output neurons. Superior colliculus output neurons also are known to express the calcium-binding protein parvalbumin, and many SMI-32 immunostained neurons also proved to be parvalbumin immunostained. These studies suggest that SMI-32 can serve as a useful immunohistochemical marker for detailing the somatic and dendritic morphology of superior colliculus output neurons and for facilitating evaluations of their input/output relationships.
Collapse
Affiliation(s)
- V Fuentes-Santamaria
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.
| | | | | |
Collapse
|
40
|
Jaubert-Miazza L, Green E, Lo FS, Bui K, Mills J, Guido W. Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis Neurosci 2005; 22:661-76. [PMID: 16332277 DOI: 10.1017/s0952523805225154] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 07/27/2005] [Indexed: 11/06/2022]
Abstract
The advent of transgenic mice has made the developing retinogeniculate pathway a model system for targeting potential mechanisms that underlie the refinement of sensory connections. However, a detailed characterization of the form and function of this pathway is lacking. Here we use a variety of anatomical and electrophysiological techniques to delineate the structural and functional changes occurring in the lateral geniculate nucleus (LGN) of dorsal thalamus of the C57/BL6 mouse. During the first two postnatal weeks there is an age-related recession in the amount of terminal space occupied by retinal axons arising from the two eyes. During the first postnatal week, crossed and uncrossed axons show substantial overlap throughout most of the LGN. Between the first and second week retinal arbors show significant pruning, so that by the time of natural eye opening (P12–14) segregation is complete and retinal projections are organized into distinct eye-specific domains. During this time of rapid anatomical rearrangement, LGN cells could be readily distinguished using immunocytochemical markers that stain for NMDA receptors, GABA receptors, L-type Ca2+channels, and the neurofilament protein SMI-32. Moreover, the membrane properties and synaptic responses of developing LGN cells are remarkably stable and resemble those of mature neurons. However, there are some notable developmental changes in synaptic connectivity. At early ages, LGN cells are binocularly responsive and receive input from as many as 11 different retinal ganglion cells. Optic tract stimulation also evokes plateau-like depolarizations that are mediated by the activation of L-type Ca2+channels. As retinal inputs from the two eyes segregate into nonoverlapping territories, there is a loss of binocular responsiveness, a decrease in retinal convergence, and a reduction in the incidence of plateau potentials. These data serve as a working framework for the assessment of phenotypes of genetically altered strains as well as provide some insight as to the molecular mechanisms underlying the refinement of retinogeniculate connections.
Collapse
Affiliation(s)
- Lisa Jaubert-Miazza
- Department of Cell Biology and Anatomy, Louisiana State Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
41
|
Ashwell KWS, Paxinos G. Cyto- and chemoarchitecture of the dorsal thalamus of the monotreme Tachyglossus aculeatus, the short beaked echidna. J Chem Neuroanat 2005; 30:161-83. [PMID: 16099140 DOI: 10.1016/j.jchemneu.2005.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022]
Abstract
We have examined the cyto- and chemoarchitecture of the dorsal thalamus of the short beaked echidna (Tachyglossus aculeatus), using Nissl and myelin staining, immunoreactivity for parvalbumin, calbindin, calretinin and non-phosphorylated neurofilament protein (SMI-32 antibody), and histochemistry for acetylcholinesterase and NADPH diaphorase. Immunohistochemical methods revealed many nuclear boundaries, which were difficult to discern with Nissl staining. Parvalbumin immunoreactive somata were concentrated in the ventral posterior, reticular, posterior, lateral and medial geniculate nuclei, while parvalbumin immunoreactivity of the neuropil was present throughout all but the midline nuclei. Large numbers of calbindin immunoreactive somata were also found within the midline thalamic nuclei, and thalamic sensory relay nuclei. Immunoreactivity for calretinin was found in many small somata within the lateral geniculate "a" nucleus, with other labelled somata found in the lateral geniculate "b" nucleus, ventral posterior medial and ventral posterior lateral nuclei. Immunoreactivity with the SMI-32 antibody was largely confined to somata and neuropil within the thalamocortical relay nuclei (ventral posterior medial and lateral nuclei, lateral and medial geniculate nuclei and the posterior thalamic nucleus). In broad terms there were many similarities between the thalamus of this monotreme and that of eutheria (e.g. disposition of somatosensory thalamus, complementarity of parvalbumin and calbindin immunoreactive structures), but there were some unique features of the thalamus of the echidna. These include the relatively small size of the thalamic reticular nucleus and the preponderance of calbindin immunoreactive neurons over parvalbumin immunoreactive neurons in the ventral posterior nucleus.
Collapse
Affiliation(s)
- Ken W S Ashwell
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, NSW 2052, Australia.
| | | |
Collapse
|
42
|
Baldauf ZB. SMI-32 parcellates the visual cortical areas of the marmoset. Neurosci Lett 2005; 383:109-14. [PMID: 15936521 DOI: 10.1016/j.neulet.2005.03.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2004] [Revised: 02/02/2005] [Accepted: 03/25/2005] [Indexed: 11/17/2022]
Abstract
The distribution pattern of SMI-32-immunoreactivity (SMI-32-ir) of neuronal elements was examined in the visual cortical areas of marmoset monkey. Layer IV of the primary visual cortex (V1) and layers III and V of the extrastriate areas showed the most abundant SMI-32-ir. The different areal and laminar distribution of SMI-32-ir allowed the distinction between various extrastriate areas and determined their exact anatomical boundaries in the New World monkey, Callithrix penicillata. It is shown here that the parcellating nature of SMI-32 described earlier in the visual cortical areas of other mammals - including Old World monkeys - is also present in the marmoset. Furthermore, a comparison became possible between the chemoanatomical organization of New World and Old World primates' visual cortical areas.
Collapse
Affiliation(s)
- Zsolt B Baldauf
- Laboratory of Neurobiology, Hungarian Academy of Sciences, Semmelweis University, Budapest.
| |
Collapse
|
43
|
Duffy KR, Livingstone MS. Loss of neurofilament labeling in the primary visual cortex of monocularly deprived monkeys. ACTA ACUST UNITED AC 2004; 15:1146-54. [PMID: 15563721 PMCID: PMC2646853 DOI: 10.1093/cercor/bhh214] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Visual experience during early life is important for the development of neural organizations that support visual function. Closing one eye (monocular deprivation) during this sensitive period can cause a reorganization of neural connections within the visual system that leaves the deprived eye functionally disconnected. We have assessed the pattern of neurofilament labeling in monocularly deprived macaque monkeys to examine the possibility that a cytoskeleton change contributes to deprivation-induced reorganization of neural connections within the primary visual cortex (V-1). Monocular deprivation for three months starting around the time of birth caused a significant loss of neurofilament labeling within deprived-eye ocular dominance columns. Three months of monocular deprivation initiated in adulthood did not produce a loss of neurofilament labeling. The evidence that neurofilament loss was found only when deprivation occurred during the sensitive period supports the notion that the loss permits restructuring of deprived-eye neural connections within the visual system. These results provide evidence that, in addition to reorganization of LGN inputs, the intrinsic circuitry of V-1 neurons is altered when monocular deprivation occurs early in development.
Collapse
Affiliation(s)
- Kevin R Duffy
- Department of Psychology, Dalhousie University, Life Sciences Centre, Halifax, NS, Canada.
| | | |
Collapse
|
44
|
Carden WB, Guido W, Godwin DW, Bickford ME. Thalamocortical cells in the cat pulvinar nucleus transiently express nitric oxide synthase during development. Neurosci Lett 2003; 351:87-90. [PMID: 14583388 DOI: 10.1016/j.neulet.2003.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We examined the postnatal expression of the neuronal form of nitric oxide synthase (nNOS) within the pulvinar and lateral posterior (LP) nuclei of the cat thalamus using immunocytochemical techniques. During the first postnatal month, nNOS was expressed in many cells within the pulvinar nucleus and medial subdivision of the LP nucleus; fewer neurons in the lateral LP nucleus were stained by the nNOS antibody. We examined the pulvinar nucleus to determine what cell types express nNOS. A comparison of the soma sizes of nNOS-stained cells to the overall population of Nissl-stained cells and interneurons (stained with an antibody against glutamic acid decarboxylase) suggests that within the pulvinar nucleus, thalamocortical cells express nNOS during development. In addition, the nNOS antibody stained axon bundles that traverse the pulvinar nucleus to enter the optic radiations, suggesting that thalamocortical cell axons also contain nNOS during development. However, this staining pattern was dramatically reduced by postnatal day 42 and later ages; the size of the remaining nNOS-stained cells was closer to that of interneurons, a subset of which contain nNOS in the adult pulvinar nucleus. This contrasts with our previous findings that nNOS is specifically expressed within interneurons in the developing dorsal lateral geniculate nucleus (LGN) and serves as further confirmation that the pulvinar nucleus and LGN represent distinct categories of thalamic nuclei.
Collapse
Affiliation(s)
- W Breckinridge Carden
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, 500 S. Preston St., Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
45
|
Zhou Y, Yu H, Yang Y, Shou T. Non-dominant eye responses in the dorsal lateral geniculate nucleus of the cat: an intracellular study. Brain Res 2003; 987:76-85. [PMID: 14499948 DOI: 10.1016/s0006-8993(03)03256-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
UNLABELLED While binocularity has been established as an important characteristic of cat visual cortical neurons, neurons in the dorsal lateral geniculate nucleus (LGNd) are commonly believed to be monocular. To test whether binocularity exists at the level of the LGNd, postsynaptic potentials (PSPs) of 101 cells were intracellularly recorded in eight normal and eight monocularly deprived cats while presenting stimuli to either the dominant or non-dominant eyes. The results showed that: (1) About 92% of neurons (45 out of 49) responded to a flashing spot presented to the non-dominant eye. In contrast to the dominant eye responses, the non-dominant eye PSPs usually exhibited the same polarization tendency (hyperpolarization or depolarization) to flashing spot stimuli of light increment or decrement, and most of them were inhibitory (hyperpolarization, 35 out of 45, 78%). (2) The response field (RF) of the non-dominant eye overlapped that of the dominant eye. (3) For most binocular cells, peak-to-peak amplitudes of non-dominant eye PSPs were about half the size (46%) of those of the dominant eye. The peak latencies and half-peak latencies of non-dominant eye PSPs were significantly longer than those of the dominant eye (mean differences were 5.4 ms and 5.6 ms respectively). (4) Most of the binocular cells responded well to contrast reversing gratings presented to the non-dominant eye, and the responses were clearly spatial-frequency tuned. No null phase could be found for non-dominant eye PSPs, no matter the neuron was classified as X or Y type according to dominant eye elicited responses. Some of the cells responded well to drifting gratings presented to the non-dominant eye. (5) We also recorded 52 cells in monocularly deprived cats, and found that 49 cells (94%) showed significant responses to flashing spots presented to the non-dominant eye, a similar percentage to that found in normal cats (92%). CONCLUSION as strongly monocular neurons, most of LGNd cells could also be driven by the non-dominant eye. The responses evoked by non-dominant eye stimulation differ greatly from those evoked by dominant eye stimulation, and remain intact even without visual experience. These observations suggest an important role of the perigeniculate nucleus in providing binocular inputs to LGNd cells.
Collapse
Affiliation(s)
- Yifeng Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027 Anhui, China.
| | | | | | | |
Collapse
|
46
|
McCauley AK, Carden WB, Godwin DW. Brain nitric oxide synthase expression in the developing ferret lateral geniculate nucleus: analysis of time course, localization, and synaptic contacts. J Comp Neurol 2003; 462:342-54. [PMID: 12794737 DOI: 10.1002/cne.10729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nitric oxide (NO) is a diffusible neurotransmitter that has been implicated in key developmental events, including the refinement of retinogeniculate axons into ON/OFF sublayers in the ferret lateral geniculate nucleus (LGN), and in the formation of eye-specific laminae in other species. To understand the role of NO in the LGN, it is critical to fully characterize the pattern of brain nitric oxide synthase (bNOS) expression within the nucleus, including the phenotype of the neural elements that express it. We have examined the temporal and spatial pattern of bNOS expression in the ferret LGN during the first 6 weeks of postnatal development, and in the adult, by detecting bNOS with a monoclonal antibody as well as beta-nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry. We have found that bNOS is expressed in neurons in the A laminae of the LGN as early as postnatal day 7 (P7), a time coincident with eye-specific segregation of retinal axons. This expression continues through P35, with peak somatodendritic expression at P21. Fluorescent double labeling using antibodies to bNOS and glutamic acid decarboxylase indicate that bNOS is expressed in gamma-aminobutyric acid-ergic interneurons within the A laminae. Electron microscopic examination of bNOS-labeled cells showed synaptic contacts from terminals with two distinct morphologic profiles. Expression of bNOS within interneurons that receive contacts from multiple sources indicates that the synaptic circuitry associated with bNOS activation and the potential targets of NO may be more complex than originally thought and supports a potential new role for interneurons as cellular intermediaries in the refinement of pathways in the LGN. Our findings broaden the window of time that bNOS may be active within the developing LGN, suggesting an expanded role for NO during early postnatal development.
Collapse
Affiliation(s)
- Anita K McCauley
- Department of Neurobiology and Anatomy, Wake Forest University, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
47
|
Nucci C, Piccirilli S, Nisticò R, Morrone LA, Cerulli L, Bagetta G. Apoptosis in the mechanisms of neuronal plasticity in the developing visual system. Eur J Ophthalmol 2003; 13 Suppl 3:S36-43. [PMID: 12749676 DOI: 10.1177/112067210301303s07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Visual experience during early postnatal life is essential for normal development of synaptic connections in the visual system. In fact, altered visual experiences such as monocular deprivation (MD) or abnormal visual stimulation (e.g. strabismus, anisometropia) during this period disrupt the physiologic organization of the visual pathway, leading to loss of visual responses in cortical neurons and reduction in visual acuity of the affected eye, so that it becomes amblyopic. The authors review the main functional and morphologic changes induced by altered visual experiences in the developing visual system and focus on the recent discovery that MD induces apoptotic cell death in the lateral geniculate nucleus of newborn rats. Particular attention is given to the authors' studies documenting that, during development, MD leads retinal terminals to release excessive glutamate in the lateral geniculate nucleus where it elevates nitric oxide and causes DNA fragmentation. The latter event is known to activate poly-(ADP-ribose) polymerase, which in turn may trigger apoptosis. Better understanding of the mechanisms underlying the morphologic changes induced by altered visual experiences during development may open new venues for studying novel neuroprotective strategies for amblyopia and, more generally, for the treatment of ophthalmic diseases associated with neuronal apoptosis.
Collapse
Affiliation(s)
- C Nucci
- Physiopathological Optics, Department of Biopathology and Diagnostic Imaging, University of Roma Tor Vergata, Roma, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
Prasad SS, Schnerch A, Lam DY, To E, Jim J, Kaufman PL, Matsubara JA. Immunohistochemical investigations of neurofilament M' and alphabeta-crystallin in the magnocellular layers of the primate lateral geniculate nucleus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 109:216-20. [PMID: 12531531 DOI: 10.1016/s0169-328x(02)00564-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The magnocellular and parvocellular pathways are two major processing streams in the primate visual system. Using high-density grid arrayed cDNA clones to hybridize to cDNA probes from cortical regions of each pathway, a list of candidate differentially expressed genes was produced [Mol. Brain Res. 82 (2000) 11-24]. Magnocellular pathway candidates include neurofilament M' and alphabeta-crystallin. Using antibodies generated against these proteins, immunohistochemical analysis revealed preferential staining of the magnocellular layers in the primate lateral geniculate nucleus, providing verification of two candidate magnocellular-enriched genes.
Collapse
Affiliation(s)
- S S Prasad
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, British Columbia, Canada V5Z 3N9
| | | | | | | | | | | | | |
Collapse
|
49
|
van der Gucht E, Vandesande F, Arckens L. Neurofilament protein: a selective marker for the architectonic parcellation of the visual cortex in adult cat brain. J Comp Neurol 2001; 441:345-68. [PMID: 11745654 DOI: 10.1002/cne.1416] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this immunocytochemical study, we examined the expression profile of neurofilament protein in the cat visual system. We have used SMI-32, a monoclonal antibody that recognizes a nonphosphorylated epitope on the medium- and high-molecular-weight subunits of neurofilament proteins. This antibody labels primarily the cell body and dendrites of pyramidal neurons in cortical layers III, V, and VI. Neurofilament protein-immunoreactive neurons were prominent in 20 visual cortical areas (areas 17, 18, 19, 20a, 20b, 21a, 21b, and 7; posteromedial lateral, posterolateral lateral, anteromedial lateral, anterolateral lateral, dorsal lateral, ventral lateral, and posterior suprasylvian areas; anterior ectosylvian, the splenial, the cingulate, and insular visual areas; and the anterolateral gyrus area). In addition, we have also found strong immunopositive cells in the A laminae of the dorsal part of the lateral geniculate nucleus (dLGN) and in the medial interlaminar nucleus, but no immunoreactive cells were present in the parvocellular C (1-3) laminae of the dLGN, in the ventral part of the LGN and in the perigeniculate nucleus. This SMI-32 antibody against neurofilament protein revealed a characteristic pattern of immunostaining in each visual area. The size, shape, intensity, and density of neurofilament protein-immunoreactive neurons and their dendritic arborization differed substantially across all visual areas. Moreover, it was also obvious that several visual areas showed differences in laminar distribution and that such profiles may be used to delineate various cortical areas. Therefore, the expression of neurofilament protein can be used as a specific marker to define areal patterns and topographic boundaries in the cat visual system.
Collapse
Affiliation(s)
- E van der Gucht
- Laboratory of Neuroendocrinology and Immunological Biotechnology, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
50
|
Carden WB, Guido W, Ziburkus J, Datskovskaia A, Godwin DW, Bickford ME. A novel means of Y cell identification in the developing lateral geniculate nucleus of the cat. Neurosci Lett 2000; 295:5-8. [PMID: 11078923 DOI: 10.1016/s0304-3940(00)01581-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We examined the postnatal development of putative Y cells in the dorsal lateral geniculate nucleus (dLGN) using the SMI-32 antibody, which has been demonstrated in the adult cat to stain cells with Y cell morphology. At birth, SMI-32 stained cells were concentrated in the interlaminar zones. During postnatal development, the SMI-32 staining gradually becomes more disperse and by P21 stained cells are found throughout the A and magnocellular C laminae. By the end of the first postnatal week, and in all later ages examined, the SMI-32 stained cells were significantly larger than the overall population of Nissl stained cells and interneurons (stained with an antibody against glutamic acid decarboxylase). Postnatal SMI-32 staining revealed a dramatic increase in soma sizes and the expansion of putative geniculate Y cell dendritic arbors that continued past the second postnatal month. In contrast, the growth of interneurons appeared to be complete by 3-4 postnatal weeks, at which time cell somas stained with SMI-32 have only reached a little over one half of their adult size. Similar to the adult cat, SMI-32 appears to selectively stain the Y cell population during development and may provide a useful morphological marker to examine the participation of Y cells in the developing postnatal circuitry of the dLGN. This further establishes the cat dLGN as a novel model system to study the normal function and pathological reorganization of neurofilaments.
Collapse
Affiliation(s)
- W B Carden
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, 500 S. Preston Street, KY 40292, USA
| | | | | | | | | | | |
Collapse
|