1
|
Romano EJ, Zhang DQ. Dopaminergic amacrine cells express HCN channels in the developing and adult mouse retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.604440. [PMID: 39091772 PMCID: PMC11291019 DOI: 10.1101/2024.07.20.604440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Purpose To determine the molecular and functional expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in developing and mature dopaminergic amacrine cells (DACs), the sole source of ocular dopamine that plays a vital role in visual function and eye development. Methods HCN channels are encoded by isoforms 1-4. HCN1, HCN2, and HCN4 were immunostained in retinal slices obtained from mice at postnatal day 4 (P4), P8, and P12 as well as in adults. Each HCN channel isoform was also immunostained with tyrosine hydroxylase, a marker for DACs, at P12 and adult retinas. Genetically-marked DACs were recorded in flat-mount retina preparation using a whole-cell current-clamp technique. Results HCN1 was expressed in rods/cones, amacrine cells, and retinal ganglion cells (RGCs) at P4, along with bipolar cells by P12. Different from HCN1, HCN2 and HCN4 were each expressed in amacrine cells and RGCs at P4, along with bipolar cells by P8, and in rods/cones by P12. Double immunostaining shows that each of the three isoforms was expressed in approximately half of DACs at P12 but in almost all DACs in adults. Electrophysiology results demonstrate that HCN channel isoforms form functional HCN channels, and the pharmacological blockade of HCN channels reduced the spontaneous firing frequency in most DACs. Conclusions Each class of retinal neurons may use different isoforms of HCN channels to function during development. HCN1, HCN2, and HCN4 form functional HCN channels in DACs, which appears to modulate their spontaneous firing activity.
Collapse
Affiliation(s)
- Emilio J Romano
- Eye Research Institute, Oakland University, Rochester, Michigan
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, Michigan
- Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| |
Collapse
|
2
|
Reyes-Ortega P, Rodríguez-Arzate A, Noguez-Imm R, Arnold E, Thébault SC. Contribution of chemical and electrical transmission to the low delta-like intrinsic retinal oscillation in mice: A role for daylight-activated neuromodulators. Eur J Pharmacol 2024; 968:176384. [PMID: 38342360 DOI: 10.1016/j.ejphar.2024.176384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Basal electroretinogram (ERG) oscillations have shown predictive value for modifiable risk factors for type 2 diabetes. However, their origin remains unknown. Here, we seek to establish the pharmacological profile of the low delta-like (δ1) wave in the mouse because it shows light sensitivity in the form of a decreased peak frequency upon photopic exposure. Applying neuropharmacological drugs by intravitreal injection, we eliminated the δ1 wave using lidocaine or by blocking all chemical and electrical synapses. The δ1 wave was insensitive to the blockade of photoreceptor input, but was accelerated when all inhibitory or ionotropic inhibitory receptors in the retina were antagonized. The sole blockade of GABAA, GABAB, GABAC, and glycine receptors also accelerated the δ1 wave. In contrast, the gap junction blockade slowed the δ1 wave. Both GABAA receptors and gap junctions contribute to the light sensitivity of the δ1 wave. We further found that the day light-activated neuromodulators dopamine and nitric oxide donors mimicked the effect of photopic exposure on the δ1 wave. All drug effects were validated through light flash-evoked ERG responses. Our data indicate that the low δ-like intrinsic wave detected by the non-photic ERG arises from an inner retinal circuit regulated by inhibitory neurotransmission and nitric oxide/dopamine-sensitive gap junction-mediated communication.
Collapse
Affiliation(s)
| | | | - Ramsés Noguez-Imm
- Laboratorio de Investigación Traslacional en Salud Visual D-13 y, Mexico
| | - Edith Arnold
- Laboratorio de Endocrinología Molecular A-14, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico; CONAHCYT-Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | | |
Collapse
|
3
|
Rodríguez-Arzate CA, Noguez-Imm R, Reyes-Ortega P, Rodríguez-Ortiz LR, García-Peña MF, Ordaz RP, Vélez-Uriza F, Cisneros-Mejorado A, Arellano RO, Pérez CI, Hernández-Zimbrón LF, Dégardin J, Simonutti M, Picaud S, Thébault SC. Potential contributions of the intrinsic retinal oscillations recording using non-invasive electroretinogram to bioelectronics. Front Cell Neurosci 2024; 17:1224558. [PMID: 38269118 PMCID: PMC10806452 DOI: 10.3389/fncel.2023.1224558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Targeted electric signal use for disease diagnostics and treatment is emerging as a healthcare game-changer. Besides arrhythmias, treatment-resistant epilepsy and chronic pain, blindness, and perhaps soon vision loss, could be among the pathologies that benefit from bioelectronic medicine. The electroretinogram (ERG) technique has long demonstrated its role in diagnosing eye diseases and early stages of neurodegenerative diseases. Conspicuously, ERG applications are all based on light-induced responses. However, spontaneous, intrinsic activity also originates in retinal cells. It is a hallmark of degenerated retinas and its alterations accompany obesity and diabetes. To the extent that variables extracted from the resting activity of the retina measured by ERG allow the predictive diagnosis of risk factors for type 2 diabetes. Here, we provided a comparison of the baseline characteristics of intrinsic oscillatory activity recorded by ERGs in mice, rats, and humans, as well as in several rat strains, and explore whether zebrafish exhibit comparable activity. Their pattern was altered in neurodegenerative models including the cuprizone-induced demyelination model in mice as well as in the Royal College of Surgeons (RCS-/-) rats. We also discuss how the study of their properties may pave the way for future research directions and treatment approaches for retinopathies, among others.
Collapse
Affiliation(s)
- Cynthia Alejandra Rodríguez-Arzate
- Laboratorio de Investigación Traslacional en Salud Visual D-13, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Ramsés Noguez-Imm
- Laboratorio de Investigación Traslacional en Salud Visual D-13, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Pamela Reyes-Ortega
- Laboratorio de Investigación Traslacional en Salud Visual D-13, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Luis Roberto Rodríguez-Ortiz
- Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - María Fernanda García-Peña
- Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Rainald Pablo Ordaz
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Fidel Vélez-Uriza
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Abraham Cisneros-Mejorado
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Rogelio O. Arellano
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Claudia I. Pérez
- Laboratorio de Neurofisiología de los Hábitos, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Luis Fernando Hernández-Zimbrón
- Clínica de Salud Visual, Escuela Nacional de Estudios Superiores, Unidad León, Universidad Nacional Autonóma de México (UNAM), León, Guanajuato, Mexico
| | - Julie Dégardin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Manuel Simonutti
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en Salud Visual D-13, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
4
|
Andersen-Ranberg NC, Poulsen LM, Perner A, Hästbacka J, Morgan M, Citerio G, Collet MO, Weber SO, Andreasen AS, Bestle M, Uslu B, Pedersen HS, Nielsen LG, Damgaard K, Jensen TB, Sommer T, Dey N, Mathiesen O, Granholm A. Haloperidol vs. placebo for the treatment of delirium in ICU patients: a pre-planned, secondary Bayesian analysis of the AID–ICU trial. Intensive Care Med 2023; 49:411-420. [PMID: 36971791 DOI: 10.1007/s00134-023-07024-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/28/2023]
Abstract
PURPOSE The AID-ICU trial was a randomised, blinded, placebo-controlled trial investigating effects of haloperidol versus placebo in acutely admitted, adult patients admitted in intensive care unit (ICU) with delirium. This pre-planned Bayesian analysis facilitates probabilistic interpretation of the AID-ICU trial results. METHODS We used adjusted Bayesian linear and logistic regression models with weakly informative priors to analyse all primary and secondary outcomes reported up to day 90, and with sensitivity analyses using other priors. The probabilities for any benefit/harm, clinically important benefit/harm, and no clinically important differences with haloperidol treatment according to pre-defined thresholds are presented for all outcomes. RESULTS The mean difference for days alive and out of hospital to day 90 (primary outcome) was 2.9 days (95% credible interval (CrI) - 1.1 to 6.9) with probabilities of 92% for any benefit and 82% for clinically important benefit. The risk difference for mortality was - 6.8 percentage points (95% CrI - 12.8 to - 0.8) with probabilities of 99% for any benefit and 94% for clinically important benefit. The adjusted risk difference for serious adverse reactions was 0.3 percentage points (95% CrI - 1.3 to 1.9) with 98% probability of no clinically important difference. Results were consistent across sensitivity analyses using different priors, with more than 83% probability of benefit and less than 17% probability of harm with haloperidol treatment. CONCLUSIONS We found high probabilities of benefits and low probabilities of harm with haloperidol treatment compared with placebo in acutely admitted, adult ICU patients with delirium for the primary and most secondary outcomes.
Collapse
|
5
|
Noguez Imm R, Muñoz-Benitez J, Medina D, Barcenas E, Molero-Castillo G, Reyes-Ortega P, Hughes-Cano JA, Medrano-Gracia L, Miranda-Anaya M, Rojas-Piloni G, Quiroz-Mercado H, Hernández-Zimbrón LF, Fajardo-Cruz ED, Ferreyra-Severo E, García-Franco R, Rubio Mijangos JF, López-Star E, García-Roa M, Lansingh VC, Thébault SC. Preventable risk factors for type 2 diabetes can be detected using noninvasive spontaneous electroretinogram signals. PLoS One 2023; 18:e0278388. [PMID: 36634073 PMCID: PMC9836271 DOI: 10.1371/journal.pone.0278388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/15/2022] [Indexed: 01/13/2023] Open
Abstract
Given the ever-increasing prevalence of type 2 diabetes and obesity, the pressure on global healthcare is expected to be colossal, especially in terms of blindness. Electroretinogram (ERG) has long been perceived as a first-use technique for diagnosing eye diseases, and some studies suggested its use for preventable risk factors of type 2 diabetes and thereby diabetic retinopathy (DR). Here, we show that in a non-evoked mode, ERG signals contain spontaneous oscillations that predict disease cases in rodent models of obesity and in people with overweight, obesity, and metabolic syndrome but not yet diabetes, using one single random forest-based model. Classification performance was both internally and externally validated, and correlation analysis showed that the spontaneous oscillations of the non-evoked ERG are altered before oscillatory potentials, which are the current gold-standard for early DR. Principal component and discriminant analysis suggested that the slow frequency (0.4-0.7 Hz) components are the main discriminators for our predictive model. In addition, we established that the optimal conditions to record these informative signals, are 5-minute duration recordings under daylight conditions, using any ERG sensors, including ones working with portative, non-mydriatic devices. Our study provides an early warning system with promising applications for prevention, monitoring and even the development of new therapies against type 2 diabetes.
Collapse
Affiliation(s)
- Ramsés Noguez Imm
- Instituto de Neurobiología y Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Julio Muñoz-Benitez
- Facultad de Ingeniería, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | - Diego Medina
- Facultad de Ingeniería, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | - Everardo Barcenas
- Facultad de Ingeniería, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | - Guillermo Molero-Castillo
- Facultad de Ingeniería, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | - Pamela Reyes-Ortega
- Instituto de Neurobiología y Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Jorge Armando Hughes-Cano
- Instituto de Neurobiología y Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | | | - Manuel Miranda-Anaya
- Unidad Multidisciplinaria de Docencia e Investigación-Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Gerardo Rojas-Piloni
- Instituto de Neurobiología y Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | | | - Luis Fernando Hernández-Zimbrón
- Research Department, Asociación Para Evitar la Ceguera, Mexico City, Mexico
- Clínica de Salud Visual, Escuela Nacional de Estudios Superiores, Unidad León, Universidad Nacional Autonóma de México (UNAM), León, Guanajuato, Mexico
| | | | | | - Renata García-Franco
- Instituto de la Retina del Bajío (INDEREB), Prolongación Constituyentes 302 (Consultorios 410 y 411, torre 3, Hospital San José), El jacal, Santiago de Querétaro, Querétaro, Mexico
| | - Juan Fernando Rubio Mijangos
- Instituto Mexicano de Oftalmología (IMO), I.A.P., Circuito Exterior Estadio Corregidora Sn, Centro Sur, Santiago de Querétaro, Querétaro, Mexico
| | - Ellery López-Star
- Instituto Mexicano de Oftalmología (IMO), I.A.P., Circuito Exterior Estadio Corregidora Sn, Centro Sur, Santiago de Querétaro, Querétaro, Mexico
| | - Marlon García-Roa
- Instituto Mexicano de Oftalmología (IMO), I.A.P., Circuito Exterior Estadio Corregidora Sn, Centro Sur, Santiago de Querétaro, Querétaro, Mexico
| | - Van Charles Lansingh
- Instituto Mexicano de Oftalmología (IMO), I.A.P., Circuito Exterior Estadio Corregidora Sn, Centro Sur, Santiago de Querétaro, Querétaro, Mexico
| | - Stéphanie C. Thébault
- Instituto de Neurobiología y Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| |
Collapse
|
6
|
Pircher T, Pircher B, Feigenspan A. A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents. PLoS One 2022; 17:e0273501. [PMID: 36121856 PMCID: PMC9484683 DOI: 10.1371/journal.pone.0273501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Spontaneous synaptic activity is a hallmark of biological neural networks. A thorough description of these synaptic signals is essential for understanding neurotransmitter release and the generation of a postsynaptic response. However, the complexity of synaptic current trajectories has either precluded an in-depth analysis or it has forced human observers to resort to manual or semi-automated approaches based on subjective amplitude and area threshold settings. Both procedures are time-consuming, error-prone and likely affected by human bias. Here, we present three complimentary methods for a fully automated analysis of spontaneous excitatory postsynaptic currents measured in major cell types of the mouse retina and in a primary culture of mouse auditory cortex. Two approaches rely on classical threshold methods, while the third represents a novel machine learning-based algorithm. Comparison with frequently used existing methods demonstrates the suitability of our algorithms for an unbiased and efficient analysis of synaptic signals in the central nervous system.
Collapse
Affiliation(s)
- Thomas Pircher
- Institute of Process Machinery and Systems Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- * E-mail:
| | - Bianca Pircher
- Department of Biology, Animal Physiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Feigenspan
- Department of Biology, Animal Physiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
7
|
Capsoni S, Fogli Iseppe A, Casciano F, Pignatelli A. Unraveling the Role of Dopaminergic and Calretinin Interneurons in the Olfactory Bulb. Front Neural Circuits 2021; 15:718221. [PMID: 34690707 PMCID: PMC8531203 DOI: 10.3389/fncir.2021.718221] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/31/2021] [Indexed: 11/27/2022] Open
Abstract
The perception and discriminating of odors are sensory activities that are an integral part of our daily life. The first brain region where odors are processed is the olfactory bulb (OB). Among the different cell populations that make up this brain area, interneurons play an essential role in this sensory activity. Moreover, probably because of their activity, they represent an exception compared to other parts of the brain, since OB interneurons are continuously generated in the postnatal and adult period. In this review, we will focus on periglomerular (PG) cells which are a class of interneurons found in the glomerular layer of the OB. These interneurons can be classified into distinct subtypes based on their neurochemical nature, based on the neurotransmitter and calcium-binding proteins expressed by these cells. Dopaminergic (DA) periglomerular cells and calretinin (CR) cells are among the newly generated interneurons and play an important role in the physiology of OB. In the OB, DA cells are involved in the processing of odors and the adaptation of the bulbar network to external conditions. The main role of DA cells in OB appears to be the inhibition of glutamate release from olfactory sensory fibers. Calretinin cells are probably the best morphologically characterized interneurons among PG cells in OB, but little is known about their function except for their inhibitory effect on noisy random excitatory signals arriving at the main neurons. In this review, we will mainly describe the electrophysiological properties related to the excitability profiles of DA and CR cells, with a particular view on the differences that characterize DA mature interneurons from cells in different stages of adult neurogenesis.
Collapse
Affiliation(s)
- Simona Capsoni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Alex Fogli Iseppe
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- Interdepartmental Research Centre for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, Ferrara, Italy
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Indrieri A, Pizzarelli R, Franco B, De Leonibus E. Dopamine, Alpha-Synuclein, and Mitochondrial Dysfunctions in Parkinsonian Eyes. Front Neurosci 2020; 14:567129. [PMID: 33192254 PMCID: PMC7604532 DOI: 10.3389/fnins.2020.567129] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by motor dysfunctions including bradykinesia, tremor at rest and motor instability. These symptoms are associated with the progressive degeneration of dopaminergic neurons originating in the substantia nigra pars compacta and projecting to the corpus striatum, and by accumulation of cytoplasmic inclusions mainly consisting of aggregated alpha-synuclein, called Lewy bodies. PD is a complex, multifactorial disorder and its pathogenesis involves multiple pathways and mechanisms such as α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport, and neuroinflammation. Motor symptoms manifest when there is already an extensive dopamine denervation. There is therefore an urgent need for early biomarkers to apply disease-modifying therapeutic strategies. Visual defects and retinal abnormalities, including decreased visual acuity, abnormal spatial contrast sensitivity, color vision defects, or deficits in more complex visual tasks are present in the majority of PD patients. They are being considered for early diagnosis together with retinal imaging techniques are being considered as non-invasive biomarkers for PD. Dopaminergic cells can be found in the retina in a subpopulation of amacrine cells; however, the molecular mechanisms leading to visual deficits observed in PD patients are still largely unknown. This review provides a comprehensive analysis of the retinal abnormalities observed in PD patients and animal models and of the molecular mechanisms underlying neurodegeneration in parkinsonian eyes. We will review the role of α-synuclein aggregates in the retina pathology and/or in the onset of visual symptoms in PD suggesting that α-synuclein aggregates are harmful for the retina as well as for the brain. Moreover, we will summarize experimental evidence suggesting that the optic nerve pathology observed in PD resembles that seen in mitochondrial optic neuropathies highlighting the possible involvement of mitochondrial abnormalities in the development of PD visual defects. We finally propose that the eye may be considered as a complementary experimental model to identify possible novel disease’ pathways or to test novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Institute for Genetic and Biomedical Research, National Research Council, Milan, Italy
| | - Rocco Pizzarelli
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Institute of Biochemistry and Cellular Biology, National Research Council, Rome, Italy
| |
Collapse
|
9
|
Korshunov KS, Blakemore LJ, Trombley PQ. Illuminating and Sniffing Out the Neuromodulatory Roles of Dopamine in the Retina and Olfactory Bulb. Front Cell Neurosci 2020; 14:275. [PMID: 33110404 PMCID: PMC7488387 DOI: 10.3389/fncel.2020.00275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/04/2020] [Indexed: 01/28/2023] Open
Abstract
In the central nervous system, dopamine is well-known as the neuromodulator that is involved with regulating reward, addiction, motivation, and fine motor control. Yet, decades of findings are revealing another crucial function of dopamine: modulating sensory systems. Dopamine is endogenous to subsets of neurons in the retina and olfactory bulb (OB), where it sharpens sensory processing of visual and olfactory information. For example, dopamine modulation allows the neural circuity in the retina to transition from processing dim light to daylight and the neural circuity in the OB to regulate odor discrimination and detection. Dopamine accomplishes these tasks through numerous, complex mechanisms in both neural structures. In this review, we provide an overview of the established and emerging research on these mechanisms and describe similarities and differences in dopamine expression and modulation of synaptic transmission in the retinas and OBs of various vertebrate organisms. This includes discussion of dopamine neurons’ morphologies, potential identities, and biophysical properties along with their contributions to circadian rhythms and stimulus-driven synthesis, activation, and release of dopamine. As dysregulation of some of these mechanisms may occur in patients with Parkinson’s disease, these symptoms are also discussed. The exploration and comparison of these two separate dopamine populations shows just how remarkably similar the retina and OB are, even though they are functionally distinct. It also shows that the modulatory properties of dopamine neurons are just as important to vision and olfaction as they are to motor coordination and neuropsychiatric/neurodegenerative conditions, thus, we hope this review encourages further research to elucidate these mechanisms.
Collapse
Affiliation(s)
- Kirill S Korshunov
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Laura J Blakemore
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Paul Q Trombley
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
10
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Molecular and Cellular Mechanisms Underlying Somatostatin-Based Signaling in Two Model Neural Networks, the Retina and the Hippocampus. Int J Mol Sci 2019; 20:ijms20102506. [PMID: 31117258 PMCID: PMC6566141 DOI: 10.3390/ijms20102506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Neural inhibition plays a key role in determining the specific computational tasks of different brain circuitries. This functional "braking" activity is provided by inhibitory interneurons that use different neurochemicals for signaling. One of these substances, somatostatin, is found in several neural networks, raising questions about the significance of its widespread occurrence and usage. Here, we address this issue by analyzing the somatostatinergic system in two regions of the central nervous system: the retina and the hippocampus. By comparing the available information on these structures, we identify common motifs in the action of somatostatin that may explain its involvement in such diverse circuitries. The emerging concept is that somatostatin-based signaling, through conserved molecular and cellular mechanisms, allows neural networks to operate correctly.
Collapse
|
12
|
Rod Photoreceptor Activation Alone Defines the Release of Dopamine in the Retina. Curr Biol 2019; 29:763-774.e5. [PMID: 30799247 DOI: 10.1016/j.cub.2019.01.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/27/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
Retinal dopamine is released by a specialized subset of amacrine cells in response to light and has a potent influence on how the retina responds to, and encodes, visual information. Here, we address the critical question of which retinal photoreceptor is responsible for coordinating the release of this neuromodulator. Although all three photoreceptor classes-rods, cones, and melanopsin-containing retinal ganglion cells (mRGCs)-have been shown to provide electrophysiological inputs to dopaminergic amacrine cells (DACs), we show here that the release of dopamine is defined only by rod photoreceptors. Remarkably, this rod signal coordinates both a suppressive signal at low intensities and drives dopamine release at very bright light intensities. These data further reveal that dopamine release does not necessarily correlate with electrophysiological activity of DACs and add to a growing body of evidence that rods define aspects of retinal function at very bright light levels.
Collapse
|
13
|
Hirasawa H, Contini M, Raviola E. Extrasynaptic release of GABA and dopamine by retinal dopaminergic neurons. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0186. [PMID: 26009765 DOI: 10.1098/rstb.2014.0186] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the mouse retina, dopaminergic amacrine (DA) cells synthesize both dopamine and GABA. Both transmitters are released extrasynaptically and act on neighbouring and distant retinal neurons by volume transmission. In simultaneous recordings of dopamine and GABA release from isolated perikarya of DA cells, a proportion of the events of dopamine and GABA exocytosis were simultaneous, suggesting co-release. In addition, DA cells establish GABAergic synapses onto AII amacrine cells, the neurons that transfer rod bipolar signals to cone bipolars. GABAA but not dopamine receptors are clustered in the postsynaptic membrane. Therefore, dopamine, irrespective of its site of release-synaptic or extrasynaptic-exclusively acts by volume transmission. Dopamine is released upon illumination and sets the gain of retinal neurons for vision in bright light. The GABA released at DA cells' synapses probably prevents signals from the saturated rods from entering the cone pathway when the dark-adapted retina is exposed to bright illumination. The GABA released extrasynaptically by DA and other amacrine cells may set a 'GABAergic tone' in the inner plexiform layer and thus counteract the effects of a spillover of glutamate released at the bipolar cell synapses of adjacent OFF and ON strata, thus preserving segregation of signals between ON and OFF pathways.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA Department of Physiology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan
| | - Massimo Contini
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA Dipartimento di Medicina Sperimentale e Clinica, Viale Morgagni, 63, Firenze 50134, Italy
| | - Elio Raviola
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
14
|
Chakraborty S, Rebecchi M, Kaczocha M, Puopolo M. Dopamine modulation of transient receptor potential vanilloid type 1 (TRPV1) receptor in dorsal root ganglia neurons. J Physiol 2016; 594:1627-42. [PMID: 26563747 DOI: 10.1113/jp271198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/04/2015] [Indexed: 01/11/2023] Open
Abstract
The transient receptor potential vanilloid type 1 (TRPV1) receptor plays a key role in the modulation of nociceptor excitability. To address whether dopamine can modulate the activity of TRPV1 channels in nociceptive neurons, the effects of dopamine and dopamine receptor agonists were tested on the capsaicin-activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons. Dopamine or SKF 81297 (an agonist at D1/D5 receptors), caused inhibition of both inward and outward currents by ∼60% and ∼48%, respectively. The effect of SKF 81297 was reversed by SCH 23390 (an antagonist at D1/D5 receptors), confirming that it was mediated by activation of D1/D5 dopamine receptors. In contrast, quinpirole (an agonist at D2 receptors) had no significant effect on the capsaicin-activated current. Inhibition of the capsaicin-activated current by SKF 81297 was mediated by G protein coupled receptors (GPCRs), and highly dependent on external calcium. The inhibitory effect of SKF 81297 on the capsaicin-activated current was not affected when the protein kinase A (PKA) activity was blocked with H89, or when the protein kinase C (PKC) activity was blocked with bisindolylmaleimide II (BIM). In contrast, when the calcium-calmodulin-dependent protein kinase II (CaMKII) was blocked with KN-93, the inhibitory effect of SKF 81297 on the capsaicin-activated current was greatly reduced, suggesting that activation of D1/D5 dopamine receptors may be preferentially linked to CaMKII activity. We suggest that modulation of TRPV1 channels by dopamine in nociceptive neurons may represent a way for dopamine to modulate incoming noxious stimuli.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | - Mario Rebecchi
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| |
Collapse
|
15
|
Firsov ML, Astakhova LA. The Role of Dopamine in Controlling Retinal Photoreceptor Function in Vertebrates. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0210-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Vuong HE, Pérez de Sevilla Müller L, Hardi CN, McMahon DG, Brecha NC. Heterogeneous transgene expression in the retinas of the TH-RFP, TH-Cre, TH-BAC-Cre and DAT-Cre mouse lines. Neuroscience 2015; 307:319-37. [PMID: 26335381 PMCID: PMC4603663 DOI: 10.1016/j.neuroscience.2015.08.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 11/29/2022]
Abstract
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) mouse line with three catecholamine-related Cre recombinase mouse lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ∼ 6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines was generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing.
Collapse
Affiliation(s)
- H E Vuong
- Molecular, Cellular, and Integrative Physiology Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - L Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - C N Hardi
- Department of Psychology, College of Letters and Science, UCLA, Los Angeles, CA 90095, United States
| | - D G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, United States
| | - N C Brecha
- Molecular, Cellular, and Integrative Physiology Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; CURE-Digestive Diseases Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90095, United States.
| |
Collapse
|
17
|
Bishop B, Ho KK, Tyler K, Smith A, Bonilla S, Leung YF, Ogas J. The chromatin remodeler chd5 is necessary for proper head development during embryogenesis of Danio rerio. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1040-50. [PMID: 26092436 DOI: 10.1016/j.bbagrm.2015.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022]
Abstract
The chromatin remodeler CHD5 plays a critical role in tumor suppression and neurogenesis in mammals. CHD5 contributes to gene expression during neurogenesis, but there is still much to learn regarding how this class of remodelers contributes to differentiation and development. CHD5 remodelers are vertebrate-specific, raising the prospect that CHD5 plays one or more conserved roles in this phylum. Expression of chd5 in adult fish closely mirrors expression of CHD5 in adult mammals. Knockdown of Chd5 during embryogenesis suggests new roles for CHD5 remodelers based on resulting defects in craniofacial development including reduced head and eye size as well as reduced cartilage formation in the head. In addition, knockdown of Chd5 results in altered expression of neural markers in the developing brain and eye as well as a profound defect in differentiation of dopaminergic amacrine cells. Recombinant zebrafish Chd5 protein exhibits nucleosome remodeling activity in vitro, suggesting that it is the loss of this activity that contributes to the observed phenotypes. Our studies indicate that zebrafish is an appropriate model for functional characterization of CHD5 remodelers in vertebrates and highlight the potential of this model for generating novel insights into the role of this vital class of remodelers.
Collapse
Affiliation(s)
- Brett Bishop
- Department of Biochemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Kwok Ki Ho
- Department of Biochemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Kim Tyler
- Department of Biochemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Amanda Smith
- Department of Biochemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Sylvia Bonilla
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Joe Ogas
- Department of Biochemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
18
|
Jaeger C, Sandu C, Malan A, Mellac K, Hicks D, Felder‐Schmittbuhl M. Circadian organization of the rodent retina involves strongly coupled, layer‐specific oscillators. FASEB J 2015; 29:1493-504. [DOI: 10.1096/fj.14-261214] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/02/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Catherine Jaeger
- Department of Neurobiology of RhythmsInstitute for Cellular and Integrative NeurosciencesNational Center for Scientific Research UPR3212University of StrasbourgStrasbourgFrance
| | - Cristina Sandu
- Department of Neurobiology of RhythmsInstitute for Cellular and Integrative NeurosciencesNational Center for Scientific Research UPR3212University of StrasbourgStrasbourgFrance
| | - André Malan
- Department of Neurobiology of RhythmsInstitute for Cellular and Integrative NeurosciencesNational Center for Scientific Research UPR3212University of StrasbourgStrasbourgFrance
| | - Katell Mellac
- Unit of Mathematics and Computer ScienceUniversity of StrasbourgStrasbourgFrance
| | - David Hicks
- Department of Neurobiology of RhythmsInstitute for Cellular and Integrative NeurosciencesNational Center for Scientific Research UPR3212University of StrasbourgStrasbourgFrance
| | - Marie‐Paule Felder‐Schmittbuhl
- Department of Neurobiology of RhythmsInstitute for Cellular and Integrative NeurosciencesNational Center for Scientific Research UPR3212University of StrasbourgStrasbourgFrance
| |
Collapse
|
19
|
Menzler J, Channappa L, Zeck G. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas. PLoS One 2014; 9:e106047. [PMID: 25153888 PMCID: PMC4143350 DOI: 10.1371/journal.pone.0106047] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/31/2014] [Indexed: 12/02/2022] Open
Abstract
In retinitis pigmentosa – a degenerative disease which often leads to incurable blindness- the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor’s dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance <200 µm) reveals synchrony among homologous RGC types and a constant phase shift (∼70 msec) among heterologous cell types (ON versus OFF). The rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the understanding of the degeneration process and may guide future rescue strategies.
Collapse
Affiliation(s)
- Jacob Menzler
- Neurochip Research Group, Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Lakshmi Channappa
- Neurochip Research Group, Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Guenther Zeck
- Neurochip Research Group, Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
- * E-mail:
| |
Collapse
|
20
|
Biswas S, Haselier C, Mataruga A, Thumann G, Walter P, Müller F. Pharmacological analysis of intrinsic neuronal oscillations in rd10 retina. PLoS One 2014; 9:e99075. [PMID: 24918437 PMCID: PMC4053359 DOI: 10.1371/journal.pone.0099075] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/11/2014] [Indexed: 12/30/2022] Open
Abstract
In the widely used mouse model of retinal degeneration, rd1, the loss of photoreceptors leads to rhythmic electrical activity of around 10-16 Hz in the remaining retinal network. Recent studies suggest that this oscillation is formed within the electrically coupled network of AII amacrine cells and ON-bipolar cells. A second mouse model, rd10, displays a delayed onset and slower progression of degeneration, making this mouse strain a better model for human retinitis pigmentosa. In rd10, oscillations occur at a frequency of 3-7 Hz, raising the question whether oscillations have the same origin in the two mouse models. As rd10 is increasingly being used as a model to develop experimental therapies, it is important to understand the mechanisms underlying the spontaneous rhythmic activity. To study the properties of oscillations in rd10 retina we combined multi electrode recordings with pharmacological manipulation of the retinal network. Oscillations were abolished by blockers for ionotropic glutamate receptors and gap junctions. Frequency and amplitude of oscillations were modulated strongly by blockers of inhibitory receptors and to a lesser extent by blockers of HCN channels. In summary, although we found certain differences in the pharmacological modulation of rhythmic activity in rd10 compared to rd1, the overall pattern looked similar. This suggests that the generation of rhythmic activity may underlie similar mechanisms in rd1 and rd10 retina.
Collapse
Affiliation(s)
- Sonia Biswas
- Institute of Complex Systems, Cellular Biophysics, ICS-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Anja Mataruga
- Institute of Complex Systems, Cellular Biophysics, ICS-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Gabriele Thumann
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Frank Müller
- Institute of Complex Systems, Cellular Biophysics, ICS-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
21
|
Galbavy W, Safaie E, Rebecchi MJ, Puopolo M. Inhibition of tetrodotoxin-resistant sodium current in dorsal root ganglia neurons mediated by D1/D5 dopamine receptors. Mol Pain 2013; 9:60. [PMID: 24283218 PMCID: PMC4220807 DOI: 10.1186/1744-8069-9-60] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/22/2013] [Indexed: 12/25/2022] Open
Abstract
Background Dopaminergic fibers originating from area A11 of the hypothalamus project to different levels of the spinal cord and represent the major source of dopamine. In addition, tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines, is expressed in 8-10% of dorsal root ganglia (DRG) neurons, suggesting that dopamine may be released in the dorsal root ganglia. Dopamine has been shown to modulate calcium current in DRG neurons, but the effects of dopamine on sodium current and on the firing properties of small DRG neurons are poorly understood. Results The effects of dopamine and dopamine receptor agonists were tested on the tetrodotoxin-resistant (TTX-R) sodium current recorded from acutely dissociated small (diameter ≤ 25 μm) DRG neurons. Dopamine (20 μM) and SKF 81297 (10 μM) caused inhibition of TTX-R sodium current in small DRG neurons by 23% and 37%, respectively. In contrast, quinpirole (20 μM) had no effects on the TTX-R sodium current. Inhibition by SKF 81297 of the TTX-R sodium current was not affected when the protein kinase A (PKA) activity was blocked with the PKA inhibitory peptide (6–22), but was greatly reduced when the protein kinase C (PKC) activity was blocked with the PKC inhibitory peptide (19–36), suggesting that activation of D1/D5 dopamine receptors is linked to PKC activity. Expression of D1and D5 dopamine receptors in small DRG neurons, but not D2 dopamine receptors, was confirmed by Western blotting and immunofluorescence analysis. In current clamp experiments, the number of action potentials elicited in small DRG neurons by current injection was reduced by ~ 30% by SKF 81297. Conclusions We conclude that activation of D1/D5 dopamine receptors inhibits TTX-R sodium current in unmyelinated nociceptive neurons and dampens their intrinsic excitability by reducing the number of action potentials in response to stimulus. Increasing or decreasing levels of dopamine in the dorsal root ganglia may serve to adjust the sensitivity of nociceptors to noxious stimuli.
Collapse
Affiliation(s)
| | | | | | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY 11794, USA.
| |
Collapse
|
22
|
Smith BJ, Tremblay F, Côté PD. Voltage-gated sodium channels contribute to the b-wave of the rodent electroretinogram by mediating input to rod bipolar cell GABAc receptors. Exp Eye Res 2013; 116:279-90. [DOI: 10.1016/j.exer.2013.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/23/2013] [Accepted: 09/10/2013] [Indexed: 11/26/2022]
|
23
|
Newkirk GS, Hoon M, Wong RO, Detwiler PB. Inhibitory inputs tune the light response properties of dopaminergic amacrine cells in mouse retina. J Neurophysiol 2013; 110:536-52. [PMID: 23636722 DOI: 10.1152/jn.00118.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine (DA) is a neuromodulator that in the retina adjusts the circuitry for visual processing in dim and bright light conditions. It is synthesized and released from retinal interneurons called dopaminergic amacrine cells (DACs), whose basic physiology is not yet been fully characterized. To investigate their cellular and input properties as well as light responses, DACs were targeted for whole cell recording in isolated retina using two-photon fluorescence microscopy in a mouse line where the dopamine receptor 2 promoter drives green fluorescent protein (GFP) expression. Differences in membrane properties gave rise to cell-to-cell variation in the pattern of resting spontaneous spike activity ranging from silent to rhythmic to periodic burst discharge. All recorded DACs were light sensitive and generated responses that varied with intensity. The threshold response to light onset was a hyperpolarizing potential change initiated by rod photoreceptors that was blocked by strychnine, indicating a glycinergic amacrine input onto DACs at light onset. With increasing light intensity, the ON response acquired an excitatory component that grew to dominate the response to the strongest stimuli. Responses to bright light (photopic) stimuli also included an inhibitory OFF response mediated by GABAergic amacrine cells driven by the cone OFF pathway. DACs expressed GABA (GABA(A)α1 and GABA(A)α3) and glycine (α2) receptor clusters on soma, axon, and dendrites consistent with the light response being shaped by dual inhibitory inputs that may serve to tune spike discharge for optimal DA release.
Collapse
Affiliation(s)
- G S Newkirk
- Department of Physiology & Biophysics and Program in Neurobiology & Behavior, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
24
|
Pignatelli A, Borin M, Fogli Iseppe A, Gambardella C, Belluzzi O. The h-current in periglomerular dopaminergic neurons of the mouse olfactory bulb. PLoS One 2013; 8:e56571. [PMID: 23418585 PMCID: PMC3572079 DOI: 10.1371/journal.pone.0056571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/11/2013] [Indexed: 12/31/2022] Open
Abstract
The properties of the hyperpolarization-activated cation current (I(h)) were investigated in rat periglomerular dopaminergic neurons using patch-clamp recordings in thin slices. A reliable identification of single dopaminergic neurons was made possible by use of a transgenic line of mice expressing eGFP under the tyrosine hydroxylase promoter. At 37 °C and minimizing the disturbance of the intracellular milieu with perforated patches, this current shows a midpoint of activation around -82.7 mV, with a significant level of opening already at rest, thereby giving a substantial contribution to the resting potential, and ultimately playing a relevant function in the control of the cell excitability. The blockage of I(h) has a profound influence on the spontaneous firing of these neurons, which result as strongly depressed. However the effect is not due to a direct role of the current in the pacemaker process, but to the I(h) influence on the resting membrane potential. I(h) kinetics is sensitive to the intracellular levels of cAMP, whose increase promotes a shift of the activation curve towards more positive potentials. The direct application of DA and 5-HT neurotransmitters, physiologically released onto bulbar dopaminergic neurons and known to act on metabotropic receptors coupled to the cAMP pathway, do not modifythe I(h) amplitude. On the contrary, noradrenaline almost halves the I(h) amplitude. Our data indicate that the HCN channels do not participate directly to the pacemaker activity of periglomerular dopaminergic neurons, but influence their resting membrane potential by controlling the excitability profile of these cells, and possibly affecting the processing of sensory information taking place at the entry of the bulbar circuitry.
Collapse
Affiliation(s)
- Angela Pignatelli
- Dipartimento di Scienze della Vita e Biotecnologie, University of Ferrara and Istituto Nazionale di Neuroscienze, Ferrara, Italy
| | - Mirta Borin
- Dipartimento di Scienze della Vita e Biotecnologie, University of Ferrara and Istituto Nazionale di Neuroscienze, Ferrara, Italy
| | - Alex Fogli Iseppe
- Dipartimento di Scienze della Vita e Biotecnologie, University of Ferrara and Istituto Nazionale di Neuroscienze, Ferrara, Italy
| | - Cristina Gambardella
- Dipartimento di Scienze della Vita e Biotecnologie, University of Ferrara and Istituto Nazionale di Neuroscienze, Ferrara, Italy
| | - Ottorino Belluzzi
- Dipartimento di Scienze della Vita e Biotecnologie, University of Ferrara and Istituto Nazionale di Neuroscienze, Ferrara, Italy
- * E-mail:
| |
Collapse
|
25
|
|
26
|
Damiani D, Novelli E, Mazzoni F, Strettoi E. Undersized dendritic arborizations in retinal ganglion cells of the rd1 mutant mouse: a paradigm of early onset photoreceptor degeneration. J Comp Neurol 2012; 520:1406-23. [PMID: 22102216 DOI: 10.1002/cne.22802] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Retinitis pigmentosa (RP) is a family of inherited diseases causing progressive photoreceptor death. Retinal ganglion cells (RGCs) form the biological substrate for various therapeutic approaches designed to restore vision in RP individuals. Assessment of survival and preservation of RGCs in animal paradigms mimicking the human disease is of key importance for appropriate implementation of vision repair strategies. Here we studied the survival of RGCs in the rd1 mutant mouse, a known model of early onset, autosomic recessive RP, at various stages of photoreceptor degeneration. Furthermore, we analyzed the morphology of various types of RGCs using the newly generated transgenic mouse rd1/Thy1-GFP, in which the rd1 mutation is associated with green fluorescent protein (GFP) expression in a small population of different RGCs. We found excellent survival of cells at up to 1 year of age, a time at which the inner retina is known to have severely reorganized and partially degenerated. However, 50% of the cells analyzed within all RGC types exhibit an undersized dendritic tree, spanning about half of the normal area. Undersized cells are found both in adult and in very young (1-month-old) mice. This suggests that their aberrant phenotype is due to incomplete dendritic development, possibly as a consequence of altered visual input at the time of dendritic arbor refinement. These data show the importance of the timing of photoreceptor death in RGC dendritic development.
Collapse
Affiliation(s)
- Devid Damiani
- Neuroscience Institute, National Research Council of Italy, CNR, Pisa, Italy
| | | | | | | |
Collapse
|
27
|
Abstract
Retinal photoreceptor degeneration takes many forms. Mutations in rhodopsin genes or disorders of the retinal pigment epithelium, defects in the adenosine triphosphate binding cassette transporter, ABCR gene defects, receptor tyrosine kinase defects, ciliopathies and transport defects, defects in both transducin and arrestin, defects in rod cyclic guanosine 3',5'-monophosphate phosphodiesterase, peripherin defects, defects in metabotropic glutamate receptors, synthetic enzymatic defects, defects in genes associated with signaling, and many more can all result in retinal degenerative disease like retinitis pigmentosa (RP) or RP-like disorders. Age-related macular degeneration (AMD) and AMD-like disorders are possibly due to a constellation of potential gene targets and gene/gene interactions, while other defects result in diabetic retinopathy or glaucoma. However, all of these insults as well as traumatic insults to the retina result in retinal remodeling. Retinal remodeling is a universal finding subsequent to retinal degenerative disease that results in deafferentation of the neural retina from photoreceptor input as downstream neuronal elements respond to loss of input with negative plasticity. This negative plasticity is not passive in the face of photoreceptor degeneration, with a phased revision of retinal structure and function found at the molecular, synaptic, cell, and tissue levels involving all cell classes in the retina, including neurons and glia. Retinal remodeling has direct implications for the rescue of vision loss through bionic or biological approaches, as circuit revision in the retina corrupts any potential surrogate photoreceptor input to a remnant neural retina. However, there are a number of potential opportunities for intervention that are revealed through the study of retinal remodeling, including therapies that are designed to slow down photoreceptor loss, interventions that are designed to limit or arrest remodeling events, and optogenetic approaches that target appropriate classes of neurons in the remnant neural retina.
Collapse
|
28
|
Aumann T, Horne M. Activity‐dependent regulation of the dopamine phenotype in substantia nigra neurons. J Neurochem 2012; 121:497-515. [DOI: 10.1111/j.1471-4159.2012.07703.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tim Aumann
- Florey Neuroscience Institutes, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Neuroscience, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Mal Horne
- Florey Neuroscience Institutes, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
- St Vincent’s Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
29
|
Jang YJ, Yu SH, Lee ES, Jeon CJ. Two types of tyrosine hydroxylase-immunoreactive neurons in the zebrafish retina. Neurosci Res 2011; 71:124-33. [PMID: 21784111 DOI: 10.1016/j.neures.2011.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
The purpose of the present study is to identify the dopaminergic amacrine (DA) cells in the inner nuclear layer (INL) of zebrafish retina through immunocytochemistry and quantitative analysis. Two types of tyrosine hydroxylase-immunoreactive (TH-IR) cells appeared on the basis of dendritic morphology and stratification patterns in the inner plexiform layer (IPL). The first (DA1) was bistratified, with branching planes in both s1 and s5 of the IPL. The second (DA2) was diffuse, with dendritic processes branched throughout the IPL. DA1 and DA2 cells corresponded morphologically to A(on)(-s1/s5) and A(diffuse)(-1) (Connaughton et al., 2004). The average number of total TH-IR cells was 1088±79cells per retina (n=5), and the mean density was 250±27cells/mm(2). Their density was highest in the mid central region of ventrotemporal retina and lowest in the periphery of dorsonasal retina. Quantitatively, 45.71% of the TH-IR cells were DA1 cells, while 54.29% were DA2 cells. No TH-IR cells expressed calbindin D28K, calretinin or parvalbumin, markers for the various INL cells present in several animals. Therefore the TH-IR cells in zebrafish are limited to very specific subpopulations of the amacrine cells.
Collapse
Affiliation(s)
- Yu-Jin Jang
- Department of Biology, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea
| | | | | | | |
Collapse
|
30
|
Shirahata T. The effect of variations in sodium conductances on pacemaking in a dopaminergic retinal neuron model. ACTA BIOLOGICA HUNGARICA 2011; 62:211-4. [PMID: 21555273 DOI: 10.1556/abiol.62.2011.2.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dopaminergic neurons in the retina show spontaneous tetrodotoxin-sensitive pacemaking, which has been explained by a reduced Hodgkin-Huxley-type computer model. The present study used this model to investigate the effect of variations in transient and persistent sodium conductance values on pacemaking, under variable leakage conductance levels. This study indicated that transient sodium conductance plays an indispensable role in pacemaking, which occurs under conditions in which only a persistent sodium conductance is considerably reduced, thus contributing to a detailed understanding of the relationship between sodium conductance and pacemaking.
Collapse
Affiliation(s)
- T Shirahata
- Tokushima Bunri University, Kagawa School of Pharmaceutical Sciences, Sanuki, Kagawa, Japan.
| |
Collapse
|
31
|
Abstract
Life on earth is subject to alternating cycles of day and night imposed by the rotation of the earth. Consequently, living things have evolved photodetective systems to synchronize their physiology and behavior with the external light-dark cycle. This form of photodetection is unlike the familiar "image vision," in that the basic information is light or darkness over time, independent of spatial patterns. "Nonimage" vision is probably far more ancient than image vision and is widespread in living species. For mammals, it has long been assumed that the photoreceptors for nonimage vision are also the textbook rods and cones. However, recent years have witnessed the discovery of a small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. These ganglion cells are intrinsically photosensitive and drive a variety of nonimage visual functions. In addition to being photoreceptors themselves, they also constitute the major conduit for rod and cone signals to the brain for nonimage visual functions such as circadian photoentrainment and the pupillary light reflex. Here we review what is known about these novel mammalian photoreceptors.
Collapse
Affiliation(s)
- Michael Tri Hoang Do
- Solomon H. Snyder Department of Neuroscience and Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
32
|
Cellular origin of spontaneous ganglion cell spike activity in animal models of retinitis pigmentosa. J Ophthalmol 2010; 2011. [PMID: 20936060 PMCID: PMC2948917 DOI: 10.1155/2011/507037] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/07/2010] [Indexed: 11/25/2022] Open
Abstract
Here we review evidence that loss of photoreceptors due to degenerative retinal disease causes an increase in the rate of spontaneous ganglion spike discharge. Information about persistent spike activity is important since it is expected to add noise to the communication between the eye and the brain and thus impact the design and effective use of retinal prosthetics for restoring visual function in patients blinded by disease. Patch-clamp recordings from identified types of ON and OFF retinal ganglion cells in the adult (36–210 d old) rd1 mouse show that the ongoing oscillatory spike activity in both cell types is driven by strong rhythmic synaptic input from presynaptic neurons that is blocked by CNQX. The recurrent synaptic activity may arise in a negative feedback loop between a bipolar cell and an amacrine cell that exhibits resonant behavior and oscillations in membrane potential when the normal balance between excitation and inhibition is disrupted by the absence of photoreceptor input.
Collapse
|
33
|
O’Brien BJ, Hirano AA, Buttermore ED, Bhat MA, Peles E. Localization of the paranodal protein Caspr in the mammalian retina. Mol Vis 2010; 16:1854-63. [PMID: 21031018 PMCID: PMC2956666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/08/2010] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The retina has the demanding task of encoding all aspects of the visual scene within the space of one fixation period lasting only a few hundred milliseconds. To accomplish this feat, information is encoded in specialized parallel channels and passed on to numerous central nuclei via the optic nerve. These parallel channels achieve specialization in at least three ways: the synaptic networks in which they participate, the neurotransmitter receptors expressed and the types and locations of ion channels or transporters used. Subcellular localization of receptors, channels and transporters is made yet more complex in the retina by the double duty many retinal processes serve. In the present work, we show that the protein Caspr (Contactin Associated Protein), best known for its critical role in the localization of voltage-gated ion channels at the nodes of Ranvier, is present in several types of retinal neurons including amacrine, bipolar, horizontal, and ganglion cells. METHODS Using standard double label immunofluorescence protocols, we characterized the pattern of Caspr expression in the rodent retina. RESULTS Caspr labeling was observed through much of the retina, including horizontal, bipolar, amacrine, and ganglion cells. Among amacrine cells, Caspr was observed in AII amacrine cells through co-localization with Parvalbumin and Disabled-1 in rat and mouse retinas, respectively. An additional amacrine cell type containing Calretinin also co-localized with Caspr, but did not co-localize with choline-acetyltransferase. Nearly all cells in the ganglion cell layer contain Caspr, including both displaced amacrine and ganglion cells. In the outer retina, Caspr was co-localized with PKC labeling in rod bipolar cell dendrites. In addition, Caspr labeling was found inside syntaxin-4 'sandwiches' in the outer plexiform layer, most likely indicating its presence in cone bipolar cell dendrites. Finally, Caspr was co-localized in segments of horizontal cell dendrites labeled with Calbindin-D28k. CONCLUSIONS Caspr is best known for its role in organizing the localization of different voltage-gated ion channels in and around nodes of Ranvier. As neuronal processes in the retina often play a dual role involving both input and output, it is possible that the localization of Caspr in the retina will help us decipher the way retinal cells localize ion channels in their processes to increase computational capacity.
Collapse
Affiliation(s)
- Brendan J. O’Brien
- Research School of Biology, The Australian National University, Canberra, ACT, Australia,Optometry & Vision Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Arlene A. Hirano
- Department of Neurobiology, Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Elizabeth D. Buttermore
- Curriculum in Neurobiology, Department of Cell and Molecular Physiology, UNC-Neuroscience Center and Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Manzoor A. Bhat
- Curriculum in Neurobiology, Department of Cell and Molecular Physiology, UNC-Neuroscience Center and Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Elior Peles
- Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
34
|
Hirasawa H, Puopolo M, Raviola E. Extrasynaptic release of GABA by retinal dopaminergic neurons. J Neurophysiol 2009; 102:146-58. [PMID: 19403749 DOI: 10.1152/jn.00130.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA release by dopaminergic amacrine (DA) cells of the mouse retina was detected by measuring Cl- currents generated by isolated perikarya in response to their own neurotransmitter. The possibility that the Cl- currents were caused by GABA release from synaptic endings that had survived the dissociation of the retina was ruled out by examining confocal Z series of the surface of dissociated tyrosine hydroxylase-positive perikarya after staining with antibodies to pre and postsynaptic markers. GABA release was caused by exocytosis because 1) the current events were transient on the millisecond time scale and thus resembled miniature synaptic currents; 2) they were abolished by treatment with a blocker of the vesicular proton pump, bafilomycin A1; and 3) their frequency was controlled by the intracellular Ca2+ concentration. Because DA cell perikarya do not contain presynaptic active zones, release was by necessity extrasynaptic. A range of depolarizing stimuli caused GABA exocytosis, showing that extrasynaptic release of GABA is controlled by DA cell electrical activity. With all modalities of stimulation, including long-lasting square pulses, segments of pacemaker activity delivered by the action-potential-clamp method and high-frequency trains of ramps, discharge of GABAergic currents exhibited considerable variability in latency and duration, suggesting that coupling between Ca2+ influx and transmitter exocytosis is extremely loose in comparison with the synapse. Paracrine signaling based on extrasynaptic release of GABA by DA cells and other GABAergic amacrines may participate in controlling the excitability of the neuronal processes that interact synaptically in the inner plexiform layer.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
35
|
Abstract
As a more complete picture of the clinical phenotype of Parkinson's disease emerges, non-motor symptoms have become increasingly studied. Prominent among these non-motor phenomena are mood disturbance, cognitive decline and dementia, sleep disorders, hyposmia and autonomic failure. In addition, visual symptoms are common, ranging from complaints of dry eyes and reading difficulties, through to perceptual disturbances (feelings of presence and passage) and complex visual hallucinations. Such visual symptoms are a considerable cause of morbidity in Parkinson's disease and, with respect to visual hallucinations, are an important predictor of cognitive decline as well as institutional care and mortality. Evidence exists of visual dysfunction at several levels of the visual pathway in Parkinson's disease. This includes psychophysical, electrophysiological and morphological evidence of disruption of retinal structure and function, in addition to disorders of 'higher' (cortical) visual processing. In this review, we will draw together work from animal and human studies in an attempt to provide an insight into how Parkinson's disease affects the retina and how these changes might contribute to the visual symptoms experienced by patients.
Collapse
Affiliation(s)
- Neil K Archibald
- Clinical Research Fellow, Clinical Ageing Research Unit, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | | | | | | |
Collapse
|
36
|
Meng S, Ryu S, Zhao B, Zhang DQ, Driever W, McMahon DG. Targeting retinal dopaminergic neurons in tyrosine hydroxylase-driven green fluorescent protein transgenic zebrafish. Mol Vis 2008; 14:2475-83. [PMID: 19112533 PMCID: PMC2610293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 12/12/2008] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Dopamine plays key roles in a variety of basic functions in the central nervous system. To study developmental and functional roles of dopaminergic cells in zebrafish, we have generated a transgenic line of zebrafish expressing green fluorescent protein (GFP) under the control of the tyrosine hydroxylase (th1) promoter. METHODS A 12 kb gene fragment that contains the th1 promoter was isolated and ligated to the MmGFP coding sequence, linearized, microinjected into 1-2 cell stage embryos and the founders crossed with wild-type fish to screen for transgenic lines. Tg(-12th:MmGFP) embryos were visualized under fluorescence microscopy for GFP expression during development. Confocal microscopy was used to visualize GFP-labeled cells in the living whole mount retina and immunostained vertical sections of adult zebrafish retina. Single-cell reverse transcription polymerase chain reaction (RT-PCR) was performed on individual GFP+ cells collected from dispersed retinal cell cultures for th1 and dopamine transporter (dat). Loose-patch recordings of spike activity of GFP+ neurons were made in isolated whole mount retinas. RESULTS th1 promoter-driven GFP exhibited robust expression in the brain and retina during zebrafish development. In juvenile and adult fish retinas, GFP was expressed in cells located in the inner nuclear layer. Immunocytochemistry with antibodies for GFP and TH showed that 29+/-2% of GFP-labeled cells also expressed TH. Two subpopulations of GFP-labeled cells were identified by fluorescent microscopy: bright GFP-expressing cells and dim GFP-expressing cells. Seminested single-cell RT-PCR showed that 71% of dim GFP-expressing cells expressed both th and dat mRNA. Loose-patch voltage-clamp recording from dim GFP-labeled cells in retinal whole mounts revealed that many of these dopaminergic neurons are spontaneously active in darkness. CONCLUSIONS Although this Tg(-12th:MmGFP) line is not a completely specific reporter for dopaminergic neurons, using relative GFP intensity we are able to enrich for the selection of retinal dopaminergic cells in vitro and in situ in molecular and electrophysiological experiments. This transgenic line provides a useful tool for studying retinal dopaminergic cells in the zebrafish.
Collapse
Affiliation(s)
- Shi Meng
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Soojin Ryu
- Developmental Biology, Institute of Biology 1, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bin Zhao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Dao-Qi Zhang
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Wolfgang Driever
- Developmental Biology, Institute of Biology 1, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
37
|
Chevalier M, Mironneau C, Macrez N, Quignard J. Intracellular Ca2+ oscillations induced by over-expressed CaV3.1 T-type Ca2+ channels in NG108-15 cells. Cell Calcium 2008; 44:592-603. [DOI: 10.1016/j.ceca.2008.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/04/2008] [Accepted: 04/28/2008] [Indexed: 11/29/2022]
|
38
|
Raymond ID, Vila A, Huynh UCN, Brecha NC. Cyan fluorescent protein expression in ganglion and amacrine cells in a thy1-CFP transgenic mouse retina. Mol Vis 2008; 14:1559-74. [PMID: 18728756 PMCID: PMC2519030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 08/08/2008] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To characterize cyan fluorescent protein (CFP) expression in the retina of the thy1-CFP (B6.Cg-Tg(Thy1-CFP)23Jrs/J) transgenic mouse line. METHODS CFP expression was characterized using morphometric methods and immunohistochemistry with antibodies to neurofilament light (NF-L), neuronal nuclei (NeuN), POU-domain protein (Brn3a) and calretinin, which immunolabel ganglion cells, and syntaxin 1 (HPC-1), glutamate decarboxylase 67 (GAD(67)), GABA plasma membrane transporter-1 (GAT-1), and choline acetyltransferase (ChAT), which immunolabel amacrine cells. RESULTS CFP was extensively expressed in the inner retina, primarily in the inner plexiform layer (IPL), ganglion cell layer (GCL), nerve fiber layer, and optic nerve. CFP fluorescent cell bodies were in all retinal regions and their processes ramified in all laminae of the IPL. Some small, weakly CFP fluorescent somata were in the inner nuclear layer (INL). CFP-containing somata in the GCL ranged from 6 to 20 microm in diameter, and they had a density of 2636+/-347 cells/mm2 at 1.5 mm from the optic nerve head. Immunohistochemical studies demonstrated colocalization of CFP with the ganglion cell markers NF-L, NeuN, Brn3a, and calretinin. Immunohistochemistry with antibodies to HPC-1, GAD(67), GAT-1, and ChAT indicated that the small, weakly fluorescent CFP cells in the INL and GCL were cholinergic amacrine cells. CONCLUSIONS The total number and density of CFP-fluorescent cells in the GCL were within the range of previous estimates of the total number of ganglion cells in the C57BL/6J line. Together these findings suggest that most ganglion cells in the thy1-CFP mouse line 23 express CFP. In conclusion, the thy1-CFP mouse line is highly useful for studies requiring the identification of ganglion cells.
Collapse
Affiliation(s)
- Iona D Raymond
- Department of Neurobiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1763, USA.
| | | | | | | |
Collapse
|
39
|
Petit-Jacques J, Bloomfield SA. Synaptic regulation of the light-dependent oscillatory currents in starburst amacrine cells of the mouse retina. J Neurophysiol 2008; 100:993-1006. [PMID: 18497354 DOI: 10.1152/jn.01399.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Responses of on-center starburst amacrine cells to steady light stimuli were recorded in the dark-adapted mouse retina. The response to spots of dim white light appear to show two components, an initial peak that correspond to the onset of the light stimulus and a series of oscillations that ride on top of the initial peak relaxation. The frequency of oscillations during light stimulation was three time higher than the frequency of spontaneous oscillations recorded in the dark. The light-evoked responses in starburst cells were exclusively dependent on the release of glutamate likely from presynaptic bipolar axon terminals and the binding of glutamate to AMPA/kainate receptors because they were blocked by 6-cyano-7-nitroquinoxalene-2,3-dione. The synaptic pathway responsible for the light responses was blocked by AP4, an agonist of metabotropic glutamate receptors that hyperpolarize on-center bipolar cells on activation. Light responses were inhibited by the calcium channel blockers cadmium ions and nifedipine, suggesting that the release of glutamate was calcium dependent. The oscillatory component of the response was specifically inhibited by blocking the glutamate transporter with d-threo-beta-benzyloxyaspartic acid, suggesting that glutamate reuptake is necessary for the oscillatory release. GABAergic antagonists bicuculline, SR 95531, and picrotoxin increased the amplitude of the initial peak while they inhibit the frequency of oscillations. TTX had a similar effect. Strychnine, the blocker of glycine receptors did not affect the initial peak but strongly decreased the oscillations frequency. These inhibitory inputs onto the bipolar axon terminals shape and synchronize the oscillatory component.
Collapse
Affiliation(s)
- Jerome Petit-Jacques
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA.
| | | |
Collapse
|
40
|
Effects of celecoxib on ionic currents and spontaneous firing in rat retinal neurons. Neuroscience 2008; 154:1525-32. [PMID: 18554814 DOI: 10.1016/j.neuroscience.2008.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 04/22/2008] [Accepted: 05/06/2008] [Indexed: 12/26/2022]
Abstract
Accumulating evidence suggests that the side effects of celecoxib, widely used to treat muscle and joint pain, may be mediated in part through cyclooxygenase-2 (COX-2) independent mechanisms, such as inhibition of ion channels. In this study we report effects of celecoxib on ionic currents and neuronal activity in isolated rat retinal neurons. We found that celecoxib suppressed voltage-gated potassium currents in retinal bipolar cells with an effective concentration to inhibit 50% of function (EC(50)) of 5.5 microM. In retinal amacrine and ganglion cells, celecoxib inhibited voltage-dependent sodium channels with an EC(50) of 5.2 microM, and voltage-dependent transient and sustained potassium currents with EC(50)s of 16.3 and 9.1 microM, respectively. Notably, the rate of spontaneous spike activity was dramatically suppressed in ganglion and amacrine cells with an EC(50) of 0.76 microM. All actions of celecoxib on ionic currents and action potentials occurred from the extracellular side and were completely reversible. These findings indicate that inhibition of ion channels by celecoxib in the CNS may affect neuronal function at clinically relevant concentrations.
Collapse
|
41
|
Mojumder DK, Sherry DM, Frishman LJ. Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram. J Physiol 2008; 586:2551-80. [PMID: 18388140 DOI: 10.1113/jphysiol.2008.150755] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Voltage-gated sodium channels (Na(v) channels) in retinal neurons are known to contribute to the mammalian flash electroretinogram (ERG) via activity of third-order retinal neurons, i.e. amacrine and ganglion cells. This study investigated the effects of tetrodotoxin (TTX) blockade of Na(v) channels on the b-wave, an ERG wave that originates mainly from activity of second-order retinal neurons. ERGs were recorded from anaesthetized Brown Norway rats in response to brief full-field flashes presented over a range of stimulus energies, under dark-adapted conditions and in the presence of steady mesopic and photopic backgrounds. Recordings were made before and after intravitreal injection of TTX (approximately 3 microm) alone, 3-6 weeks after optic nerve transection (ONTx) to induce ganglion cell degeneration, or in combination with an ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 200 microm) to block light-evoked activity of inner retinal, horizontal and OFF bipolar cells, or with the glutamate agonist N-methyl-D-aspartate (NMDA, 100-200 microm) to reduce light-evoked inner retinal activity. TTX reduced ERG amplitudes measured at fixed times corresponding to b-wave time to peak. Effects of TTX were seen under all background conditions, but were greatest for mesopic backgrounds. In dark-adapted retina, b-wave amplitudes were reduced only when very low stimulus energies affecting the inner retina, or very high stimulus energies were used. Loss of ganglion cells following ONTx did not affect b-wave amplitudes, and injection of TTX in eyes with ONTx reduced b-wave amplitudes by the same amount for each background condition as occurred when ganglion cells were intact, thereby eliminating a ganglion cell role in the TTX effects. Isolation of cone-driven responses by presenting test flashes after cessation of a rod-saturating conditioning flash indicated that the TTX effects were primarily on cone circuits contributing to the mixed rod-cone ERG. NMDA significantly reduced only the additional effects of TTX on the mixed rod-cone ERG observed under mesopic conditions, implicating inner retinal involvement in those effects. After pharmacological blockade with CNQX, TTX still reduced b-wave amplitudes in cone-isolated ERGs indicating Na(v) channels in ON cone bipolar cells themselves augment b-wave amplitude and sensitivity. This augmentation was largest under dark-adapted conditions, and decreased with increasing background illumination, indicating effects of background illumination on Na(v) channel function. These findings indicate that activation of Na(v) channels in ON cone bipolar cells affects the b-wave of the rat ERG and must be considered when analysing results of ERG studies of retinal function.
Collapse
Affiliation(s)
- Deb Kumar Mojumder
- College of Optometry, University of Houston, 505 J Davis Armistead Bldg, 4901 Calhoun Road, Houston, TX 77204-2020, USA
| | | | | |
Collapse
|
42
|
Weiss J, O'Sullivan G, Heinze L, Chen HX, Betz H, Wässle H. Glycinergic input of small-field amacrine cells in the retinas of wildtype and glycine receptor deficient mice. Mol Cell Neurosci 2008; 37:40-55. [DOI: 10.1016/j.mcn.2007.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/14/2007] [Accepted: 08/16/2007] [Indexed: 11/29/2022] Open
|
43
|
Bloomfield SA, Völgyi B. Response properties of a unique subtype of wide-field amacrine cell in the rabbit retina. Vis Neurosci 2007; 24:459-69. [PMID: 17900375 DOI: 10.1017/s0952523807070071] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 01/14/2007] [Indexed: 11/06/2022]
Abstract
We studied the morphology and physiology of a unique wide-field amacrine cell in the rabbit retina. These cells displayed a stereotypic dendritic morphology consisting of a large, circular and monostratified arbor that often extended over 2 mm. Their responses contained both somatic and dendritic sodium spikes suggesting active propagation of synaptic signals within the dendritic arbor. This idea is supported by the enormous size of their ON-OFF receptive fields. Interestingly, these cells exhibited separate ON and OFF receptive fields that, while concentric, were vastly different in size. Whereas the ON receptive field of these cells extended nearly 2 mm, the OFF receptive field was typically 75% smaller. Blockade of voltage-gated sodium channels with QX-314 dramatically reduced the large ON receptive field, but had little effect on the smaller OFF receptive field. These results indicate a spatial disparity in the location of on- and off-center bipolar cell inputs to the dendritic arbor of wide-field amacrine cells. In addition, the active propagation of signals suggests that synaptic inputs are integrated both locally and globally within the dendritic arbor.
Collapse
Affiliation(s)
- Stewart A Bloomfield
- Departments of Ophthalmology and Physiology & Neuroscience, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
44
|
Russo MJ, Mugnaini E, Martina M. Intrinsic properties and mechanisms of spontaneous firing in mouse cerebellar unipolar brush cells. J Physiol 2007; 581:709-24. [PMID: 17379636 PMCID: PMC2075188 DOI: 10.1113/jphysiol.2007.129106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Neuronal firing patterns are determined by the cell's intrinsic electrical and morphological properties and are regulated by synaptic interactions. While the properties of cerebellar neurons have generally been studied in much detail, little is known about the unipolar brush cells (UBCs), a type of glutamatergic interneuron that is enriched in the granular layer of the mammalian vestibulocerebellum and participates in the representation of head orientation in space. Here we show that UBCs can be distinguished from adjacent granule cells on the basis of differences in membrane capacitance, input resistance and response to hyperpolarizing current injection. We also show that UBCs are intrinsically firing neurons. Using action potential clamp experiments and whole-cell recordings we demonstrate that two currents contribute to this property: a persistent TTX-sensitive sodium current and a ruthenium red-sensitive, TRP-like cationic current, both of which are active during interspike intervals and have reversal potentials positive to threshold. Interestingly, although UBCs are also endowed with a large I(h) current, this current is not involved in their intrinsic firing, perhaps because it activates at voltages that are more hyperpolarized than those associated with autonomous activity.
Collapse
Affiliation(s)
- Marco J Russo
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
45
|
Biehlmaier O, Alam M, Schmidt WJ. A rat model of Parkinsonism shows depletion of dopamine in the retina. Neurochem Int 2007; 50:189-95. [PMID: 16962686 DOI: 10.1016/j.neuint.2006.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 07/28/2006] [Accepted: 08/01/2006] [Indexed: 12/21/2022]
Abstract
The retinal dopamine (DA) deficiency is an important feature of the pathogenesis in Parkinson's disease (PD) visual dysfunction. Systemic inhibition of complex I (rotenone) in rats has been proposed as a model of PD. In this study, we investigated whether systemic inhibition of complex I can induce impairment of DA-ergic cells in the retina, similar to the destruction of retinal cells found in PD patients. Rotenone (2.5mg/kg i.p., daily) was administered over 60 days. Neurochemically, rotenone treated rats showed a depletion of DA in the striatum and substantia nigra (SN). In addition, the number of retinal DA-ergic amacrine cells was significantly reduced in the rotenone treated animals. This study is the first one giving highlight towards a deeper understanding of systemic complex I inhibition (rotenone as an environmental toxin) and the connection between both, DA-ergic degeneration in the nigrostriatal pathway, and in the DA-ergic amacrine cells of the retina.
Collapse
Affiliation(s)
- Oliver Biehlmaier
- Swiss Federal Institute of Technology (ETH) Zurich, Department of Biology, and the Brain Research Institute at the University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | |
Collapse
|
46
|
Sarthy V, Hoshi H, Mills S, Dudley VJ. Characterization of green fluorescent protein-expressing retinal cells in CD 44-transgenic mice. Neuroscience 2006; 144:1087-93. [PMID: 17161542 PMCID: PMC1810375 DOI: 10.1016/j.neuroscience.2006.09.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 09/27/2006] [Accepted: 09/28/2006] [Indexed: 11/24/2022]
Abstract
Sensory information in the retina is transferred from rod and cone photoreceptors to higher visual centers via numerous parallel circuits that sample the photoreceptor mosaic independently. Each circuit consists of a unique combination of ganglion cell, bipolar and amacrine cell types. The morphology and physiological responses of many amacrine cells have been characterized. However, the synaptic connections and retinal circuits in which they participate are only rarely understood. A major problem that has prevented fuller characterization of retinal circuitry is the need for specific cellular markers for the more than 50 inner retinal cell types. One potential strategy for labeling cells is to use transgenic expression of a reporter gene in a specific cell type. In a recent study of cluster of differentiation 44 (CD44)-enhanced green fluorescent protein (EGFP) transgenic mice, we observed that the green fluorescent protein (GFP) was expressed in a population of amacrine and ganglion cells in the inner nuclear layer (INL) and the GCL. To characterize the morphology of the GFP-labeled cells, whole mount preparations of the retina were used for targeted iontophoretic injections of Lucifer Yellow and Neurobiotin. Furthermore, immunocytochemistry was used to characterize the antigenic properties of the cells. We found that many GFP-expressing cells were GABAergic and also expressed calretinin. In addition to the somatic staining, there was a strong GFP(+)-band located about 50-60% depth in the inner plexiform layer (IPL). Double labeling with an antibody to choline acetyltransferase (ChAT) revealed that the GFP-band was located at strata 3 inner retina. The best-labeled GFP-expressing cell type in the INL was a wide-field amacrine cell that ramified in stratum 3. The GFP-expressing cells in the GCL resemble the type B1, or possibly A2 ganglion cells. The CD44-EGFP mice should provide a valuable resource for electrophysiological and connectivity studies of amacrine cells in the mouse retina.
Collapse
Affiliation(s)
- V Sarthy
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Northwestern University, Tarry Building, 5-715, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
47
|
Gocht D, Heinrich R. Postactivation inhibition of spontaneously active neurosecretory neurons in the medicinal leech. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 193:347-61. [PMID: 17123088 DOI: 10.1007/s00359-006-0190-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 10/23/2006] [Accepted: 10/28/2006] [Indexed: 11/24/2022]
Abstract
Spontaneously active neurosecretory neurons in vertebrate and invertebrate nervous systems share similarities in firing frequencies, spike shapes, inhibition by the transmitters they themselves release and postactivation inhibition, an intensity-dependent period of suppressed spontaneous generation of action potentials following phases of high-frequency activity. High-frequency activation of spontaneously active serotonin-containing Retzius cells in isolated ganglia of the leech Hirudo medicinalis induced prolonged membrane hyperpolarisations causing periods of postactivation inhibition of up to 33 s. The duration of the inhibitory periods was directly related to both the number and rate of spikes during activation and was inversely proportional to a cell's spontaneous firing frequency. The periods of postactivation inhibition remained unaffected by both serotonin depletion through repeated injections of 5,7-dihydroxytryptamine and suppressing the afterhyperpolarisation following each action potential with tetraethylammonium (TEA), iberiotoxin or charybdotoxin, suggesting that neither autoinhibition by synaptic release of serotonin nor calcium-activated potassium channels contribute to the underlying mechanism. In contrast, the postactivation inhibitory period was significantly affected both by differential electrical stimulation of the same Retzius cells via microelectrodes filled with molar concentrations of either Na(+)-acetate or K(+)-acetate, and by partial inhibition of Na(+)/K(+)-ATPase with ouabain. Thus, postactivation inhibition in Retzius cells results from prolonged hyperpolarising activity of Na(+)/K(+)-ATPase stimulated by the accumulation of cytosolic Na(+ )during phases of high-frequency spike activity.
Collapse
Affiliation(s)
- Daniela Gocht
- Department of Neurobiology, Institute of Zoology, Berliner Strasse 28, 37073, Göttingen, Germany
| | | |
Collapse
|
48
|
Chevalier M, Lory P, Mironneau C, Macrez N, Quignard JF. T-type CaV3.3 calcium channels produce spontaneous low-threshold action potentials and intracellular calcium oscillations. Eur J Neurosci 2006; 23:2321-9. [PMID: 16706840 DOI: 10.1111/j.1460-9568.2006.04761.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The precise contribution of T-type Ca2+ channels in generating action potentials (APs), burst firing and intracellular Ca2+ signals needs further elucidation. Here, we show that CaV3.3 channels can trigger repetitive APs, generating spontaneous membrane potential oscillations (MPOs), and a concomitant increase in the intracellular Ca2+ concentration ([Ca2+]i) when overexpressed in NG108-15 cells. MPOs were dependent on CaV3.3 channel activity given that they were recorded from a potential range of -55 to -70 mV, blocked by nickel and mibefradil, as well as by low external Ca2+ concentration. APs of distinct duration were recorded: short APs (sAP) or prolonged APs (pAP) with a plateau potential near -40 mV. The voltage-dependent properties of the CaV3.3 channels constrained the AP duration and the plateau potential was supported by sustained calcium current through CaV3.3 channels. The sustained current amplitude decreased when the resting holding potential was depolarized, thereby inducing a switch of AP shape from pAP to sAP. Duration of the [Ca2+]i oscillations was also closely related to the shape of APs. The CaV3.3 window current was the oscillation trigger as shown by shifting the CaV3.3 window current potential range as a result of increasing the external Ca2+ concentration, which resulted in a corresponding shift of the AP threshold. Overall, the data demonstrate that the CaV3.3 window current is critical in triggering intrinsic electrical and [Ca2+]i oscillations. The functional expression of CaV3.3 channels can generate spontaneous low-threshold calcium APs through its window current, indicating that CaV3.3 channels can play a primary role in pacemaker activity.
Collapse
Affiliation(s)
- Marc Chevalier
- Laboratoire de Signalization et Interactions cellulaires, CNRS UMR 5017, Université Bordeaux II, UFR Sciences Pharmaceutiques, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
49
|
Gingl E, Tichy H. Continuous tonic spike activity in spider warm cells in the absence of sensory input. J Neurophysiol 2006; 96:989-97. [PMID: 16899647 DOI: 10.1152/jn.00207.2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The warm cells of the spider tarsal organ respond very sensitively to low-amplitude changes in temperature and discharge continuously as the rate of change in temperature reaches zero. To test whether the continuous tonic discharge remains without sensory input, we blocked the warm cell's receptive region by Epoxy glue. The activity continued in this situation, but its dependence on temperature changes was strongly reduced. We interpret this to mean that the warm cells exhibit specific intrinsic properties that underlie the generation of the tonic discharge. Experiments with electrical stimulation confirmed the observation that the warm cells persist in activity without an external drive. In warm cells with blocked receptive region, the response curves describing the relationship between the tonic discharge and the level of depolarization is the same for different temperatures. In warm cells with intact receptive region, the curves are shifted upward with rising temperature, as if the injected current is simply added to the receptor current. This indicates a modulating effect of the receptor current on the tonic discharge. Stimulation causes a change in the tonic discharge rate and thereby enables individual warm cells to signal the direction in addition to the magnitude of temperature changes.
Collapse
Affiliation(s)
- E Gingl
- Department of Neurobiology and Behavioral Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | | |
Collapse
|
50
|
Firth SI, Feller MB. Dissociated GABAergic retinal interneurons exhibit spontaneous increases in intracellular calcium. Vis Neurosci 2006; 23:807-14. [PMID: 17020635 DOI: 10.1017/s095252380623013x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 06/13/2006] [Indexed: 11/06/2022]
Abstract
Early in development, before the retina is responsive to light, neurons exhibit spontaneous activity. Recently it was demonstrated that starburst amacrine cells, a unique class of neurons that secretes both GABA and acetylcholine, spontaneously depolarize. Networks comprised of spontaneously active starburst cells initiate correlated bursts of action potentials that propagate across the developing retina with a periodicity on the order minutes. To determine whether other retinal interneurons have similar “pacemaking” properties, we have utilized cultures of dissociated neurons from the rat retina. In the presence of antagonists for fast neurotransmitter receptors, distinct populations of neurons exhibited spontaneous, uncorrelated increases in intracellular calcium concentration. These increases in intracellular calcium concentration were sensitive to tetrodotoxin, indicating they are mediated by spontaneous membrane depolarizations. By combining immunofluorescence and calcium imaging, we found that 44% of spontaneously active neurons were GABAergic and included starburst amacrine cells. Whole cell voltage clamp recordings in the absence of antagonists for fast neurotransmitters revealed that after 7 days in culture, individual retinal neurons receive bursts of GABA-A receptor mediated synaptic input with a periodicity similar to that measured in spontaneously active GABAergic neurons. Low concentrations of GABA-A receptor antagonists did not alter the inter-burst interval despite significant reduction of post-synaptic current amplitude, indicating that pacemaker activity of GABAergic neurons was not influenced by network interactions. Together, these findings indicate that spiking GABAergic interneurons can function as pacemakers in the developing retina.
Collapse
Affiliation(s)
- Sally I Firth
- Neurobiology Section, Division of Biological Sciences, University of California at San Diego, San Diego, California, USA
| | | |
Collapse
|