1
|
Holzer AK, Suciu I, Karreman C, Goj T, Leist M. Specific Attenuation of Purinergic Signaling during Bortezomib-Induced Peripheral Neuropathy In Vitro. Int J Mol Sci 2022; 23:ijms23073734. [PMID: 35409095 PMCID: PMC8998302 DOI: 10.3390/ijms23073734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Human peripheral neuropathies are poorly understood, and the availability of experimental models limits further research. The PeriTox test uses immature dorsal root ganglia (DRG)-like neurons, derived from induced pluripotent stem cells (iPSC), to assess cell death and neurite damage. Here, we explored the suitability of matured peripheral neuron cultures for the detection of sub-cytotoxic endpoints, such as altered responses of pain-related P2X receptors. A two-step differentiation protocol, involving the transient expression of ectopic neurogenin-1 (NGN1) allowed for the generation of homogeneous cultures of sensory neurons. After >38 days of differentiation, they showed a robust response (Ca2+-signaling) to the P2X3 ligand α,β-methylene ATP. The clinical proteasome inhibitor bortezomib abolished the P2X3 signal at ≥5 nM, while 50−200 nM was required in the PeriTox test to identify neurite damage and cell death. A 24 h treatment with low nM concentrations of bortezomib led to moderate increases in resting cell intracellular Ca2+ concentration but signaling through transient receptor potential V1 (TRPV1) receptors or depolarization-triggered Ca2+ influx remained unaffected. We interpreted the specific attenuation of purinergic signaling as a functional cell stress response. A reorganization of tubulin to form dense structures around the cell somata confirmed a mild, non-cytotoxic stress triggered by low concentrations of bortezomib. The proteasome inhibitors carfilzomib, delanzomib, epoxomicin, and MG-132 showed similar stress responses. Thus, the model presented here may be used for the profiling of new proteasome inhibitors in regard to their side effect (neuropathy) potential, or for pharmacological studies on the attenuation of their neurotoxicity. P2X3 signaling proved useful as endpoint to assess potential neurotoxicants in peripheral neurons.
Collapse
Affiliation(s)
- Anna-Katharina Holzer
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
| | - Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Christiaan Karreman
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
| | - Thomas Goj
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
- CAAT-Europe, University of Konstanz, 78457 Konstanz, Germany
- Correspondence: ; Tel.: +49-(0)-7531-88-5037
| |
Collapse
|
2
|
Li M, Wang Y, Banerjee R, Marinelli F, Silberberg S, Faraldo-Gómez JD, Hattori M, Swartz KJ. Molecular mechanisms of human P2X3 receptor channel activation and modulation by divalent cation bound ATP. eLife 2019; 8:47060. [PMID: 31232692 PMCID: PMC6590987 DOI: 10.7554/elife.47060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023] Open
Abstract
P2X3 receptor channels expressed in sensory neurons are activated by extracellular ATP and serve important roles in nociception and sensory hypersensitization, making them attractive therapeutic targets. Although several P2X3 structures are known, it is unclear how physiologically abundant Ca2+-ATP and Mg2+-ATP activate the receptor, or how divalent cations regulate channel function. We used structural, computational and functional approaches to show that a crucial acidic chamber near the nucleotide-binding pocket in human P2X3 receptors accommodates divalent ions in two distinct modes in the absence and presence of nucleotide. The unusual engagement between the receptor, divalent ion and the γ-phosphate of ATP enables channel activation by ATP-divalent complex, cooperatively stabilizes the nucleotide on the receptor to slow ATP unbinding and recovery from desensitization, a key mechanism for limiting channel activity. These findings reveal how P2X3 receptors recognize and are activated by divalent-bound ATP, aiding future physiological investigations and drug development.
Collapse
Affiliation(s)
- Mufeng Li
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Yao Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute for Complex Systems, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Rahul Banerjee
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Fabrizio Marinelli
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Shai Silberberg
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute for Complex Systems, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Kenton Jon Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
3
|
Rokic MB, Castro P, Leiva-Salcedo E, Tomic M, Stojilkovic SS, Coddou C. Opposing Roles of Calcium and Intracellular ATP on Gating of the Purinergic P2X2 Receptor Channel. Int J Mol Sci 2018; 19:ijms19041161. [PMID: 29641486 PMCID: PMC5979340 DOI: 10.3390/ijms19041161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022] Open
Abstract
P2X2 receptors (P2X2R) exhibit a slow desensitization during the initial ATP application and a progressive, calcium-dependent increase in rates of desensitization during repetitive stimulation. This pattern is observed in whole-cell recordings from cells expressing recombinant and native P2X2R. However, desensitization is not observed in perforated-patched cells and in two-electrode voltage clamped oocytes. Addition of ATP, but not ATPγS or GTP, in the pipette solution also abolishes progressive desensitization, whereas intracellular injection of apyrase facilitates receptor desensitization. Experiments with injection of alkaline phosphatase or addition of staurosporine and ATP in the intracellular solution suggest a role for a phosphorylation-dephosphorylation in receptor desensitization. Mutation of residues that are potential phosphorylation sites identified a critical role of the S363 residue in the intracellular ATP action. These findings indicate that intracellular calcium and ATP have opposing effects on P2X2R gating: calcium allosterically facilitates receptor desensitization and ATP covalently prevents the action of calcium. Single cell measurements further revealed that intracellular calcium stays elevated after washout in P2X2R-expressing cells and the blockade of mitochondrial sodium/calcium exchanger lowers calcium concentrations during washout periods to basal levels, suggesting a role of mitochondria in this process. Therefore, the metabolic state of the cell can influence P2X2R gating.
Collapse
Affiliation(s)
- Milos B Rokic
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Patricio Castro
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile.
- Laboratory of Developmental Physiology, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4030000, Chile.
| | - Elias Leiva-Salcedo
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
- Centro para el Desarrollo de Nanociencias y Nanotecnología (CEDENNA), Santiago 9170022, Chile.
| | - Melanija Tomic
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Claudio Coddou
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile.
| |
Collapse
|
4
|
Ishchenko Y, Shakirzyanova A, Giniatullina R, Skorinkin A, Bart G, Turhanen P, Määttä JA, Mönkkönen J, Giniatullin R. Selective Calcium-Dependent Inhibition of ATP-Gated P2X3 Receptors by Bisphosphonate-Induced Endogenous ATP Analog ApppI. J Pharmacol Exp Ther 2017; 361:472-481. [PMID: 28404687 DOI: 10.1124/jpet.116.238840] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/07/2017] [Indexed: 12/30/2022] Open
Abstract
Pain is the most unbearable symptom accompanying primary bone cancers and bone metastases. Bone resorptive disorders are often associated with hypercalcemia, contributing to the pathologic process. Nitrogen-containing bisphosphonates (NBPs) are efficiently used to treat bone cancers and metastases. Apart from their toxic effect on cancer cells, NBPs also provide analgesia via poorly understood mechanisms. We previously showed that NBPs, by inhibiting the mevalonate pathway, induced formation of novel ATP analogs such as ApppI [1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) triphosphoric acid diester], which can potentially be involved in NBP analgesia. In this study, we used the patch-clamp technique to explore the action of ApppI on native ATP-gated P2X receptors in rat sensory neurons and rat and human P2X3, P2X2, and P2X7 receptors expressed in human embryonic kidney cells. We found that although ApppI has weak agonist activity, it is a potent inhibitor of P2X3 receptors operating in the nanomolar range. The inhibitory action of ApppI was completely blocked in hypercalcemia-like conditions and was stronger in human than in rat P2X3 receptors. In contrast, P2X2 and P2X7 receptors were insensitive to ApppI, suggesting a high selectivity of ApppI for the P2X3 receptor subtype. NBP, metabolite isopentenyl pyrophosphate, and endogenous AMP did not exert any inhibitory action, indicating that only intact ApppI has inhibitory activity. Ca2+-dependent inhibition was stronger in trigeminal neurons preferentially expressing desensitizing P2X3 subunits than in nodose ganglia neurons, which also express nondesensitizing P2X2 subunits. Altogether, we characterized previously unknown purinergic mechanisms of NBP-induced metabolites and suggest ApppI as the endogenous pain inhibitor contributing to cancer treatment with NBPs.
Collapse
Affiliation(s)
- Yevheniia Ishchenko
- A. I. Virtanen Institute (Y.I., A.Sh., Rai.G., G.B., Ras.G.) and School of Pharmacy (P.T., J. M.), University of Eastern Finland, Kuopio, Finland; Kazan Institute of Biochemistry and Biophysics, Kazan, Russia (A.Sh., A.Sk.); Institute of Biomedicine, University of Turku, Turku, Finland (J.A.M.); and Kazan Federal University, Kazan, Russia (A.Sh., A.Sk., R.Gas.)
| | - Anastasia Shakirzyanova
- A. I. Virtanen Institute (Y.I., A.Sh., Rai.G., G.B., Ras.G.) and School of Pharmacy (P.T., J. M.), University of Eastern Finland, Kuopio, Finland; Kazan Institute of Biochemistry and Biophysics, Kazan, Russia (A.Sh., A.Sk.); Institute of Biomedicine, University of Turku, Turku, Finland (J.A.M.); and Kazan Federal University, Kazan, Russia (A.Sh., A.Sk., R.Gas.)
| | - Raisa Giniatullina
- A. I. Virtanen Institute (Y.I., A.Sh., Rai.G., G.B., Ras.G.) and School of Pharmacy (P.T., J. M.), University of Eastern Finland, Kuopio, Finland; Kazan Institute of Biochemistry and Biophysics, Kazan, Russia (A.Sh., A.Sk.); Institute of Biomedicine, University of Turku, Turku, Finland (J.A.M.); and Kazan Federal University, Kazan, Russia (A.Sh., A.Sk., R.Gas.)
| | - Andrei Skorinkin
- A. I. Virtanen Institute (Y.I., A.Sh., Rai.G., G.B., Ras.G.) and School of Pharmacy (P.T., J. M.), University of Eastern Finland, Kuopio, Finland; Kazan Institute of Biochemistry and Biophysics, Kazan, Russia (A.Sh., A.Sk.); Institute of Biomedicine, University of Turku, Turku, Finland (J.A.M.); and Kazan Federal University, Kazan, Russia (A.Sh., A.Sk., R.Gas.)
| | - Genevieve Bart
- A. I. Virtanen Institute (Y.I., A.Sh., Rai.G., G.B., Ras.G.) and School of Pharmacy (P.T., J. M.), University of Eastern Finland, Kuopio, Finland; Kazan Institute of Biochemistry and Biophysics, Kazan, Russia (A.Sh., A.Sk.); Institute of Biomedicine, University of Turku, Turku, Finland (J.A.M.); and Kazan Federal University, Kazan, Russia (A.Sh., A.Sk., R.Gas.)
| | - Petri Turhanen
- A. I. Virtanen Institute (Y.I., A.Sh., Rai.G., G.B., Ras.G.) and School of Pharmacy (P.T., J. M.), University of Eastern Finland, Kuopio, Finland; Kazan Institute of Biochemistry and Biophysics, Kazan, Russia (A.Sh., A.Sk.); Institute of Biomedicine, University of Turku, Turku, Finland (J.A.M.); and Kazan Federal University, Kazan, Russia (A.Sh., A.Sk., R.Gas.)
| | - Jorma A Määttä
- A. I. Virtanen Institute (Y.I., A.Sh., Rai.G., G.B., Ras.G.) and School of Pharmacy (P.T., J. M.), University of Eastern Finland, Kuopio, Finland; Kazan Institute of Biochemistry and Biophysics, Kazan, Russia (A.Sh., A.Sk.); Institute of Biomedicine, University of Turku, Turku, Finland (J.A.M.); and Kazan Federal University, Kazan, Russia (A.Sh., A.Sk., R.Gas.)
| | - Jukka Mönkkönen
- A. I. Virtanen Institute (Y.I., A.Sh., Rai.G., G.B., Ras.G.) and School of Pharmacy (P.T., J. M.), University of Eastern Finland, Kuopio, Finland; Kazan Institute of Biochemistry and Biophysics, Kazan, Russia (A.Sh., A.Sk.); Institute of Biomedicine, University of Turku, Turku, Finland (J.A.M.); and Kazan Federal University, Kazan, Russia (A.Sh., A.Sk., R.Gas.)
| | - Rashid Giniatullin
- A. I. Virtanen Institute (Y.I., A.Sh., Rai.G., G.B., Ras.G.) and School of Pharmacy (P.T., J. M.), University of Eastern Finland, Kuopio, Finland; Kazan Institute of Biochemistry and Biophysics, Kazan, Russia (A.Sh., A.Sk.); Institute of Biomedicine, University of Turku, Turku, Finland (J.A.M.); and Kazan Federal University, Kazan, Russia (A.Sh., A.Sk., R.Gas.)
| |
Collapse
|
5
|
Viatchenko-Karpinski V, Novosolova N, Ishchenko Y, Azhar MA, Wright M, Tsintsadze V, Kamal A, Burnashev N, Miller AD, Voitenko N, Giniatullin R, Lozovaya N. Stable, synthetic analogs of diadenosine tetraphosphate inhibit rat and human P2X3 receptors and inflammatory pain. Mol Pain 2016; 12:1744806916637704. [PMID: 27030723 PMCID: PMC4955970 DOI: 10.1177/1744806916637704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/08/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A growing body of evidence suggests that ATP-gated P2X3 receptors (P2X3Rs) are implicated in chronic pain. We address the possibility that stable, synthetic analogs of diadenosine tetraphosphate (Ap4A) might induce antinociceptive effects by inhibiting P2X3Rs in peripheral sensory neurons. RESULTS The effects of two stable, synthetic Ap4A analogs (AppNHppA and AppCH2ppA) are studied firstly in vitro on HEK293 cells expressing recombinant rat P2XRs (P2X2Rs, P2X3Rs, P2X4Rs, and P2X7Rs) and then using native rat brain cells (cultured trigeminal, nodose, or dorsal root ganglion neurons). Thereafter, the action of these stable, synthetic Ap4A analogs on inflammatory pain and thermal hyperalgesia is studied through the measurement of antinociceptive effects in formalin and Hargreaves plantar tests in rats in vivo. In vitro inhibition of rat P2X3Rs (not P2X2Rs, P2X4Rs nor P2X7Rs) is shown to take place mediated by high-affinity desensitization (at low concentrations; IC50 values 100-250 nM) giving way to only weak partial agonism at much higher concentrations (EC50 values ≥ 10 µM). Similar inhibitory activity is observed with human recombinant P2X3Rs. The inhibitory effects of AppNHppA on nodose, dorsal root, and trigeminal neuron whole cell currents suggest that stable, synthetic Ap4A analogs inhibit homomeric P2X3Rs in preference to heteromeric P2X2/3Rs. Both Ap4A analogs mediate clear inhibition of pain responses in both in vivo inflammation models. CONCLUSIONS Stable, synthetic Ap4A analogs (AppNHppA and AppCH2ppA) being weak partial agonist provoke potent high-affinity desensitization-mediated inhibition of homomeric P2X3Rs at low concentrations. Therefore, both analogs demonstrate clear potential as potent analgesic agents for use in the management of chronic pain associated with heightened P2X3R activation.
Collapse
Affiliation(s)
- Viacheslav Viatchenko-Karpinski
- Laboratory of Sensory Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine International Center for Molecular Physiology, Kiev, Ukraine
| | | | | | - M Ameruddin Azhar
- Indian Institute of Chemical Technology, Hyderabad, India Imperial College Genetic Therapies Centre, Department of Chemistry, Imperial College London, London, UK
| | - Michael Wright
- Imperial College Genetic Therapies Centre, Department of Chemistry, Imperial College London, London, UK Institute of Pharmaceutical Science, King's College London, London, UK
| | - Vera Tsintsadze
- INSERM UMR901 Aix-Marseille Université, Marseille, France INMED, Institut de Neurobiologie de la Méditerranée, Marseille, France
| | - Ahmed Kamal
- Indian Institute of Chemical Technology, Hyderabad, India
| | - Nail Burnashev
- INSERM UMR901 Aix-Marseille Université, Marseille, France INMED, Institut de Neurobiologie de la Méditerranée, Marseille, France
| | - Andrew D Miller
- Institute of Pharmaceutical Science, King's College London, London, UK GlobalAcorn Ltd, London, UK
| | - Nana Voitenko
- Laboratory of Sensory Signaling, Bogomoletz Institute of Physiology, Kiev, Ukraine International Center for Molecular Physiology, Kiev, Ukraine
| | - Rashid Giniatullin
- Department of Neurobiology, A. I. Virtanen Institute, Kuopio, Finland Kazan Federal University, Kazan, Russia
| | - Natalia Lozovaya
- INSERM UMR901 Aix-Marseille Université, Marseille, France INMED, Institut de Neurobiologie de la Méditerranée, Marseille, France Neurochlore, Marseille, France
| |
Collapse
|
6
|
Coddou C, Yan Z, Stojilkovic SS. Role of domain calcium in purinergic P2X2 receptor channel desensitization. Am J Physiol Cell Physiol 2015; 308:C729-36. [PMID: 25673774 DOI: 10.1152/ajpcell.00399.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/10/2015] [Indexed: 11/22/2022]
Abstract
Activation of P2X2 receptor channels (P2X2Rs) is characterized by a rapid current growth accompanied by a decay of current during sustained ATP application, a phenomenon known as receptor desensitization. Using rat, mouse, and human receptors, we show here that two processes contribute to receptor desensitization: bath calcium-independent desensitization and calcium-dependent desensitization. Calcium-independent desensitization is minor and comparable during repetitive agonist application in cells expressing the full size of the receptor but is pronounced in cells expressing shorter versions of receptors, indicating a role of the COOH terminus in control of receptor desensitization. Calcium-dependent desensitization is substantial during initial agonist application and progressively increases during repetitive agonist application in bath ATP and calcium concentration-dependent manners. Experiments with substitution of bath Na(+) with N-methyl-d-glucamine (NMDG(+)), a large organic cation, indicate that receptor pore dilation is a calcium-independent process in contrast to receptor desensitization. A decrease in the driving force for calcium by changing the holding potential from -60 to +120 mV further indicates that calcium influx through the channel pores at least partially accounts for receptor desensitization. Experiments with various receptor chimeras also indicate that the transmembrane and/or intracellular domains of P2X2R are required for development of calcium-dependent desensitization and that a decrease in the amplitude of current slows receptor desensitization. Simultaneous calcium and current recording shows development of calcium-dependent desensitization without an increase in global intracellular calcium concentrations. Combined with experiments with clamping intrapipette concentrations of calcium at various levels, these experiments indicate that domain calcium is sufficient to establish calcium-dependent receptor desensitization in experiments with whole-cell recordings.
Collapse
Affiliation(s)
- Claudio Coddou
- From the Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile
| | - Zonghe Yan
- From the Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Stanko S Stojilkovic
- From the Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Pankratov Y, Lalo U. Calcium permeability of ligand-gated Ca2+ channels. Eur J Pharmacol 2014; 739:60-73. [DOI: 10.1016/j.ejphar.2013.11.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 10/22/2013] [Accepted: 11/07/2013] [Indexed: 11/28/2022]
|
8
|
Stojilkovic SS, Leiva-Salcedo E, Rokic MB, Coddou C. Regulation of ATP-gated P2X channels: from redox signaling to interactions with other proteins. Antioxid Redox Signal 2014; 21:953-70. [PMID: 23944253 PMCID: PMC4116155 DOI: 10.1089/ars.2013.5549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The family of purinergic P2X receptors (P2XRs) is a part of ligand-gated superfamily of channels activated by extracellular adenosine-5'-triphosphate. P2XRs are present in virtually all mammalian tissues as well as in tissues of other vertebrate and nonvertebrate species and mediate a large variety of functions, including fast transmission at central synapses, contraction of smooth muscle cells, platelet aggregation, and macrophage activation to proliferation and cell death. RECENT ADVANCES The recent solving of crystal structure of the zebrafish P2X4.1R is a major advance in the understanding of structural correlates of channel activation and regulation. Combined with growing information obtained in the post-structure era and the reinterpretation of previous work within the context of the tridimensional structure, these data provide a better understanding of how the channel operates at the molecular levels. CRITICAL ISSUES This review focuses on the relationship between redox signaling and P2XR function. We also discuss other allosteric modulation of P2XR gating in the physiological/pathophysiological context. This includes the summary of extracellular actions of trace metals, which can be released to the synaptic cleft, pH decrease that happens during ischemia and inflammation, and calcium, an extracellular and intracellular messenger. FUTURE DIRECTIONS Our evolving understanding of activation and regulation of P2XRs is helpful in clarifying the mechanism by which these channels trigger and modulate cellular functions. Further research is required to identify the signaling pathways contributing to the regulation of the receptor activity and to develop novel and receptor-specific allosteric modulators, which could be used in vivo with therapeutic potential.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- 1 Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| | | | | | | |
Collapse
|
9
|
Wang L, Feng D, Yan H, Wang Z, Pei L. Comparative analysis of P2X1, P2X2, P2X3, and P2X4 receptor subunits in rat nodose ganglion neurons. PLoS One 2014; 9:e96699. [PMID: 24798490 PMCID: PMC4010501 DOI: 10.1371/journal.pone.0096699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/10/2014] [Indexed: 12/31/2022] Open
Abstract
Nodose ganglion (NG) neurons are visceral primary sensory neurons. The transmission and regulation of visceral sensation is mediated mainly by the P2X purinoceptor (P2X receptor). Although the characteristics of different P2X receptor subunits in the NG have been studied previously, comprehensive analyses have not been performed. In this study, we used immunohistochemistry, immunocytochemistry, and whole cell patch clamp techniques to compare the expression and function of P2X1, P2X2, P2X3, and P2X4 receptor subunits in adult rat NG neurons. Polyclonal antibodies against the four P2X subunits labeled different subpopulations of NG neurons. P2X1 and P2X3 were expressed mainly in small-to-medium sized NG neurons, whereas P2X2 and P2X4 were located mostly in medium- and larger-sized NG neurons. Over 36% of NG neurons were P2X3 positive, which was higher than the other three P2X subunits. In addition, different types of currents were recorded from neurons expressing different P2X subunits. The fast type of ATP current was recorded from neurons containing P2X1–4 subunits, the intermediate type of current was recorded from neurons containing the P2X1, P2X3, and P2X4 subunits, the slow type was recorded from neurons expressing P2X1–3, and/or P2X4 subunits, whereas the very slow type was recorded from neurons containing the P2X2 and P2X3 subunits. These comparative results provide an anatomical verification of the different subunits in NG neurons, and offer direct support for the idea that various functional NG populations have distinct responses to ATP, which might be in part due to the different expression profiles of diverse P2X subunits.
Collapse
Affiliation(s)
- Lizhao Wang
- Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- CNS Pharmacology & Ion Channel Group Shanghai Chempartner, Shanghai, China
| | - Dan Feng
- Department of Pain Clinic, Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huanhuan Yan
- Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongping Wang
- Department of Physiology and Pathophysiology, Jiujiang University, Jiujiang, China
- * E-mail: (ZW); (LP)
| | - Lei Pei
- Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (ZW); (LP)
| |
Collapse
|
10
|
Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+. Proc Natl Acad Sci U S A 2013; 110:E3455-63. [PMID: 23959888 DOI: 10.1073/pnas.1308088110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg(2+). Here we investigated the active forms of ATP and found that the action of MgATP(2-) and ATP(4-) differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP(2-) promotes opening with very low efficacy. In contrast, both free ATP and MgATP(2-) robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg(2+) to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP(2-) and weak regulation by Mg(2+). These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP(2-) and regulation by Mg(2+), and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons.
Collapse
|
11
|
Abstract
Extracellular adenosine 5' triphosphate (ATP) is a widespread cell-to-cell signaling molecule in the brain, where it activates cell surface P2X and P2Y receptors. P2X receptors define a protein family unlike other neurotransmitter-gated ion channels in terms of sequence, subunit topology, assembly, and architecture. Within milliseconds of binding ATP, they catalyze the opening of a cation-selective pore. However, recent data show that P2X receptors often underlie neuromodulatory responses on slower time scales of seconds or longer. Herein, we review these findings at molecular, cellular and systems levels. We propose that, while P2X receptors are fast ligand-gated cation channels, they are most adept at mediating slow neuromodulatory functions that are more widespread and more physiologically utilized than fast ATP synaptic transmission in the CNS.
Collapse
Affiliation(s)
- Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA.
| | | |
Collapse
|
12
|
Sundukova M, Vilotti S, Abbate R, Fabbretti E, Nistri A. Functional differences between ATP-gated human and rat P2X3 receptors are caused by critical residues of the intracellular C-terminal domain. J Neurochem 2012; 122:557-67. [PMID: 22639984 DOI: 10.1111/j.1471-4159.2012.07810.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP-activated P2X3 receptors of sensory ganglion neurons contribute to pain transduction and are involved in chronic pain signaling. Although highly homologous (97%) in rat and human species, it is unclear whether P2X3 receptors have identical function. Studying human and rat P2X3 receptors expressed in patch-clamped human embryonic kidney (HEK) cells, we investigated the role of non-conserved tyrosine residues in the C-terminal domain (rat tyrosine-393 and human tyrosine-376) as key determinants of receptor function. In comparison with rat P2X3 receptors, human P2X3 receptors were more expressed and produced larger responses with slower desensitization and faster recovery. In general, desensitization was closely related to peak current amplitude for rat and human receptors. Downsizing human receptor expression to the same level of the rat one still yielded larger responses retaining slower desensitization and faster recovery. Mutating phenylalanine-376 into tyrosine in the rat receptor did not change current amplitude; yet, it retarded desensitization onset, demonstrating how this residue was important to functionally link these two receptor states. Conversely, removing tyrosine from position 376 strongly down-regulated human receptor function. The different topology of tyrosine residues in the C-terminal domain has contrasting functional consequences and is sufficient to account for species-specific properties of this pain-transducing channel.
Collapse
Affiliation(s)
- Mayya Sundukova
- Neuroscience Department and Italian Institute of Technology Unit, International School for Advanced Studies-SISSA, Trieste, Italy
| | | | | | | | | |
Collapse
|
13
|
Ford AP. P2X3 antagonists: novel therapeutics for afferent sensitization and chronic pain. Pain Manag 2012; 2:267-77. [DOI: 10.2217/pmt.12.16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
SUMMARY Despite decades of innovation and effort, the pharmaceutical needs of countless patients with chronic pain remain underserved. Effective and safe treatments must clearly come from novel approaches, yet targets and molecules selected hitherto have returned little benefit. Antagonism of P2X3 purinoceptors on pain-conveying nerves is a highly novel approach, and compounds from this class are advancing into patient studies. P2X3 channels are found in C- and Aδ-primary afferent neurons in most tissues, and are strikingly specific to pain detection. P2X3 antagonists block peripheral activation of these fibers via ATP, released from most cells by inflammation, injury, stress and distension, and clearly provide an alternative pharmacological mechanism to attenuate pain signals. P2X3 is also expressed presynaptically at central spinal terminals of afferent neurons, where ATP further sensitizes painful signals en route to the brain. The selectivity of P2X3 expression allows hope of a lower potential for adverse effects in brain, gut and cardiovascular tissues – limiting factors for most analgesics. P2X3 receptor-mediated sensitization has been implicated in rodent models in inflammatory, visceral, neuropathic and cancer pain states, as well as in airways hyper-reactivity, migraine and visceral organ irritability. Although we are often reminded that the effects of new medicines can translate poorly into clinical effectiveness, the broad efficacy seen following P2X3 inhibition in rodent models strengthens the prospect that an unprecedented mechanism to counter sensitization of afferent pathways may offer some merciful relief to millions of patients struggling daily with persistent discomfort and pain.
Collapse
Affiliation(s)
- Anthony P Ford
- Afferent Pharmaceuticals, 2755 Campus Drive, Suite 100, San Mateo, CA 94403, USA
| |
Collapse
|
14
|
The inhibitory action of the antimigraine nonsteroidal anti-inflammatory drug naproxen on P2X3 receptor-mediated responses in rat trigeminal neurons. Neuroscience 2012; 209:32-8. [DOI: 10.1016/j.neuroscience.2012.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/30/2012] [Accepted: 02/10/2012] [Indexed: 11/18/2022]
|
15
|
Jindrichova M, Khafizov K, Skorinkin A, Fayuk D, Bart G, Zemkova H, Giniatullin R. Highly conserved tyrosine 37 stabilizes desensitized states and restricts calcium permeability of ATP-gated P2X3 receptor. J Neurochem 2011; 119:676-85. [PMID: 21883226 DOI: 10.1111/j.1471-4159.2011.07463.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tyrosine 37 in the first transmembrane (TM1) domain is highly conserved in ATP-gated P2X receptors suggesting its fundamental role. We tested whether Y37 contributes to the desensitization of P2X3 receptors, which is currently not well understood. By combining electrophysiological, imaging and modeling approaches, we studied desensitization of various Y37 P2X3 mutants and potential partners of Y37. Unlike the membrane current of the WT receptor, which desensitized in seconds, Y37A mutant current did not fully desensitize even after minutes-long applications of β,γ-meATP, α,β-meATP, ATP or 2MeS-ATP. The fractional calcium current was enhanced in the Y37A mutant. Y37F did not rescue the native P2X3 phenotype indicating a role for the hydroxyl group of Y37 for the WT receptor. Homology modeling indicated I318 or I319 in TM2 as potential partners for Y37 in the receptor closed state. We tested this hypothesis by creating a permanent interaction between the two residues via disulfide bond. Whereas single Y37C, I318C and I319C mutants were functional, the double mutants Y37C-I318C and Y37C-I319C were non-functional. Using a cyclic model of receptor operation, we suggest that the conserved tyrosine 37 links TM1 to TM2 of adjacent subunit to stabilize desensitized states and restricts calcium permeability through the ion channel.
Collapse
Affiliation(s)
- Marie Jindrichova
- Department of Neurobiology, AI Virtanen Institute, University of Eastern Finland, Finland
| | | | | | | | | | | | | |
Collapse
|
16
|
Petrenko N, Khafizov K, Tvrdonova V, Skorinkin A, Giniatullin R. Role of the ectodomain serine 275 in shaping the binding pocket of the ATP-gated P2X3 receptor. Biochemistry 2011; 50:8427-36. [PMID: 21879712 DOI: 10.1021/bi200812u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
ATP-activated P2X3 receptors expressed in nociceptive sensory neurons play an important role in pain signaling. Basic properties of this receptor subtype, including very strong desensitization, depend on the rate of dissociation of the agonist from the binding site. Even though the rough structure of the ATP binding site has been proposed on the basis of the X-ray structure of the zebrafish P2X4 receptor and mutagenesis studies, the fine subunit-specific structural properties predisposing the receptor to tight capture of the agonist inside the binding pocket have not been elucidated. In this work, by exploring in silico the functional role for the left flipper located in the ectodomain region, we identified within this loop a candidate residue S275, which could contribute to the closure of the agonist-binding pocket. Testing of the S275 mutants using the patch-clamp technique revealed a crucial role for S275 in agonist binding and receptor desensitization. The S275A mutant showed a reduced rate of onset of desensitization and accelerated resensitization and was weakly inhibited by nanomolar agonist. Extracellular calcium application produced inhibition instead of facilitation of membrane currents. Moreover, some full agonists became only partial agonists when applied to the S275A receptor. These effects were stronger with the more hydrophobic mutants S275C and S275V. Taken together, our data suggest that S275 contributes to the closure of the agonist-binding pocket and that effective capture of the agonist provided by the left flipper in calcium-dependent manner determines the high rate of desensitization, slow recovery, and sensitivity to nanomolar agonist of the P2X3 receptor.
Collapse
Affiliation(s)
- Nataliia Petrenko
- Department of Neurobiology, AI Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | |
Collapse
|
17
|
Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 2011; 63:641-83. [PMID: 21737531 DOI: 10.1124/pr.110.003129] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Developmant, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
18
|
Tan Y, Sun L, Zhang Q. Noradrenaline enhances ATP P2X3 receptor expression in dorsal root ganglion neurons of rats. Neuroscience 2011; 176:32-8. [DOI: 10.1016/j.neuroscience.2010.12.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/02/2010] [Accepted: 12/24/2010] [Indexed: 01/15/2023]
|
19
|
Abstract
P2X receptors for ATP are ligand gated cation channels that form from the trimeric assembly of subunits with two transmembrane segments, a large extracellular ligand binding loop, and intracellular amino and carboxy termini. The receptors are expressed throughout the body, involved in functions ranging from blood clotting to inflammation, and may provide important targets for novel therapeutics. Mutagenesis based studies have been used to develop an understanding of the molecular basis of their pharmacology with the aim of developing models of the ligand binding site. A crystal structure for the zebra fish P2X4 receptor in the closed agonist unbound state has been published recently, which provides a major advance in our understanding of the receptors. This review gives an overview of mutagenesis studies that have led to the development of a model of the ATP binding site, as well as identifying residues contributing to allosteric regulation and antagonism. These studies are discussed with reference to the crystal to provide a structural interpretation of the molecular basis of drug action.
Collapse
Affiliation(s)
- Richard J Evans
- Cell Physiology & Pharmacology, University of Leicester, Leicester, UK.
| |
Collapse
|
20
|
Volpini R, Mishra RC, Kachare DD, Dal Ben D, Lambertucci C, Antonini I, Vittori S, Marucci G, Sokolova E, Nistri A, Cristalli G. Adenine-based acyclic nucleotides as novel P2X3 receptor ligands. J Med Chem 2009; 52:4596-603. [PMID: 19606867 DOI: 10.1021/jm900131v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new series of acyclic nucleotides based on the adenine skeleton and bearing in 9-position a phosphorylated four carbon chain has been synthesized. Various substituents were introduced in 2-position of the adenine core. The new compounds were evaluated on rat P2X3 receptors, using patch clamp recording from HEK transfected cells and the full P2X3 agonist alpha,beta-meATP as reference compound. The results suggest that certain acyclic nucleotides, in particular compounds 28 and 29, are endowed with modest partial agonism on P2X3 receptors. This is an interesting property that can depress the function of P2X3 receptors, whose activation is believed to be involved in a number of chronic pain conditions including neuropathic pain and migraine. In fact, the new acyclic nucleotides are able to persistently block (by desensitization) P2X3 receptor activity after a brief, modest activation, yet leaving the ability of sensory neurons to mediate responses to standard painful stimuli via a lower level of signaling.
Collapse
Affiliation(s)
- Rosaria Volpini
- Department of Chemical Sciences, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Characteristics of ATP-activated current in nodose ganglion neurons of rats. Neurosci Lett 2009; 459:25-9. [PMID: 19409446 DOI: 10.1016/j.neulet.2009.04.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 04/08/2009] [Accepted: 04/14/2009] [Indexed: 11/22/2022]
Abstract
The characteristics of ATP-activated currents (I(ATP)) in rat nodose ganglion (NG) neurons have not been fully clarified. Especially, the correlation between I(ATP) phenotype and P2X receptor subunit genotype in rat NG neuron is not clear. By whole-cell patch-clamp and single cell immunocytochemical techniques, we explored the characteristics of the I(ATP) phenotype and its correlation with P2X receptor subunits in acutely isolated NG neuron of rats. The results indicated that I(ATP) of NG neurons can be classified into four types: F type (fast type, 8.1%), I type (intermediate type, 14.8%), S type (slowing type, 37.0%) and vS type (very slowing type, 21.5%). The single immunocytochemical studies have demonstrated that F type cells express P2X1 and P2X3 subunits, I type cells P2X1, P2X3 and P2X4 subunits, S type cells P2X1, P2X2 and P2X3 subunits and vS type cells P2X2, P2X3 and P2X4 subunits. The results reveal that there are four types of I(ATP) in NG neurons, differential expression of distinct P2X subunits may underlie the I(ATP) phenotype.
Collapse
|
22
|
Ambalavanar R, Dessem D. Emerging peripheral receptor targets for deep-tissue craniofacial pain therapies. J Dent Res 2009; 88:201-11. [PMID: 19329451 DOI: 10.1177/0022034508330176] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
While effective therapies are available for some types of craniofacial pain, treatments for deep-tissue craniofacial pain such as temporomandibular disorders are less efficacious. Several ion channels and receptors which are prominent in craniofacial nociceptive mechanisms have been identified on trigeminal primary afferent neurons. Many of these receptors and channels exhibit unusual distributions compared with extracranial regions. For example, expression of the ATP receptor P2X(3) is strongly implicated in nociception and is more abundant on trigeminal primary afferent neurons than analogous extracranial neurons, making them potentially productive targets specifically for craniofacial pain therapies. The initial part of this review therefore focuses on P2X(3) as a potential therapeutic target to treat deep-tissue craniofacial pain. In the trigeminal ganglion, P2X(3) receptors are often co-expressed with the nociceptive neuropeptides CGRP and SP. Therefore, we discuss the role of CGRP and SP in deep-tissue craniofacial pain and suggest that neuropeptide antagonists, which have shown promise for the treatment of migraine, may have wider therapeutic potential, including the treatment of deep-tissue craniofacial pain. P2X(3), TRPV1, and ASIC3 are often co-expressed in trigeminal neurons, implying the formation of functional complexes that allow craniofacial nociceptive neurons to respond synergistically to altered ATP and pH in pain. Future therapeutics for craniofacial pain thus might be more efficacious if targeted at combinations of P2X(3), CGRP, TRPV1, and ASIC3.
Collapse
Affiliation(s)
- R Ambalavanar
- Department of Neural and Pain Sciences and Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | | |
Collapse
|
23
|
Grote A, Hans M, Boldogkoi Z, Zimmer A, Steinhäuser C, Jabs R. Nanomolar ambient ATP decelerates P2X3 receptor kinetics. Neuropharmacology 2008; 55:1212-8. [PMID: 18768143 DOI: 10.1016/j.neuropharm.2008.07.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/17/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
Abstract
Homomeric P2X receptors differ in their electrophysiological and pharmacological profiles. The rapidly activating and desensitizing P2X3 receptors are known for their involvement in pain signalling pathways. Modulatory effects on P2X3 receptors have been reported for low concentrations of ATP ([ATP]). This includes both, enhancement and reduction of receptor currents. The first has been reported to be mediated by activation of ectoprotein kinases and high affinity desensitization (HAD), respectively. Both processes influence receptor current amplitudes. Here we describe a new phenomenon, the modulatory influence of ambient low [ATP] on P2X3 receptor kinetics. First, we studied in HEK cells whether persistent ATP affects current decay. To this end, P2X3 receptor mediated currents, elicited by pressure application of saturating [ATP], were analyzed after pre-application of low [ATP]. Second, UV-flash photolysis of ATP was employed to investigate whether submicromolar [ATP] affects receptor activation. Finally we confirmed the action of nanomolar [ATP] on native P2X3 receptors of neurons freshly isolated from rat dorsal root ganglia. We found that persistent low [ATP] caused pronounced deceleration of receptor current activation and decay. This priming effect indicates a mechanism different from HAD. It could be explained by a pre-opening receptor isomerization, induced by the occupation of a high affinity binding site already at the resting state. The observed modulation of the receptor kinetics could be considered as a physiological fine tuning mechanism of the nociceptive system, driven by the actual ambient agonist concentration.
Collapse
Affiliation(s)
- Alexander Grote
- Institute of Cellular Neurosciences, University of Bonn, Sigmund-Freud-Street 25, 53105 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Molecular Mechanisms of Sensitization of Pain-transducing P2X3 Receptors by the Migraine Mediators CGRP and NGF. Mol Neurobiol 2008; 37:83-90. [DOI: 10.1007/s12035-008-8020-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 04/02/2008] [Indexed: 12/24/2022]
|
25
|
P2X3 receptor gating near normal body temperature. Pflugers Arch 2007; 456:339-47. [DOI: 10.1007/s00424-007-0376-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
|
26
|
Wang C, Li GW, Huang LYM. Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons. Mol Pain 2007; 3:22. [PMID: 17692121 PMCID: PMC2063498 DOI: 10.1186/1744-8069-3-22] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 08/10/2007] [Indexed: 02/07/2023] Open
Abstract
Prostaglandin E2 (PGE2) is a well-known inflammatory mediator that enhances the
excitability of DRG neurons. Homomeric P2X3 and heteromeric P2X2/3 receptors are
abundantly expressed in dorsal root ganglia (DRG) neurons and participate in the
transmission of nociceptive signals. The interaction between PGE2 and P2X3 receptors
has not been well delineated. We studied the actions of PGE2 on ATP-activated
currents in dissociated DRG neurons under voltage-clamp conditions. PGE2 had no
effects on P2X2/3 receptor-mediated responses, but significantly potentiated
fast-inactivating ATP currents mediated by homomeric P2X3 receptors. PGE2 exerted its
action by activating EP3 receptors. To study the mechanism underlying the action of
PGE2, we found that the adenylyl cyclase activator, forskolin and the
membrane-permeable cAMP analogue, 8-Br-cAMP increased ATP currents, mimicking the
effect of PGE2. In addition, forskolin occluded the enhancement produced by PGE2. The
protein kinase A (PKA) inhibitors, H89 and PKA-I blocked the PGE2 effect. In
contrast, the PKC inhibitor, bisindolymaleimide (Bis) did not change the potentiating
action of PGE2. We further showed that PGE2 enhanced α,β-meATP-induced
allodynia and hyperalgesia and the enhancement was blocked by H89. These observations
suggest that PGE2 binds to EP3 receptors, resulting in the activation of cAMP/PKA
signaling pathway and leading to an enhancement of P2X3 homomeric receptor-mediated
ATP responses in DRG neurons.
Collapse
Affiliation(s)
- Congying Wang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch,
Galveston, TX 77555-1069, USA
| | - Guang-Wen Li
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch,
Galveston, TX 77555-1069, USA
| | - Li-Yen Mae Huang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch,
Galveston, TX 77555-1069, USA
| |
Collapse
|
27
|
Abstract
There is abundant evidence that extracellular ATP and other nucleotides have an important role in pain signaling at both the periphery and in the CNS. The focus of attention now is on the possibility that endogenous ATP and its receptor system might be activated in chronic pathological pain states, particularly in neuropathic and inflammatory pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes or infection. This type of pain can be so severe that even light touching can be intensely painful; unfortunately, this state is generally resistant to currently available treatments. In this review, we summarize the role of ATP receptors, particularly the P2X4, P2X3 and P2X7 receptors, in neuropathic and inflammatory pain. The expression of P2X4 receptors in the spinal cord is enhanced in spinal microglia after peripheral nerve injury, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain behaviour. Understanding the key roles of these ATP receptors may lead to new strategies for the management of intractable chronic pain.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan,
| |
Collapse
|
28
|
Luo J, Yin GF, Gu YZ, Liu Y, Dai JP, Li C, Li ZW. Characterization of three types of ATP-activated current in relation to P2X subunits in rat trigeminal ganglion neurons. Brain Res 2006; 1115:9-15. [PMID: 16934235 DOI: 10.1016/j.brainres.2006.07.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 07/13/2006] [Accepted: 07/24/2006] [Indexed: 11/27/2022]
Abstract
In the present study, ATP-activated currents (I(ATP)s) recorded from rat trigeminal ganglion (TG) neurons using whole-cell patch clamp technique are classified into three types (F, I and S) based on the characteristics of their activation and desensitization. The time of rising phase (R(10-90)) of types F, I and S of I(ATP) is measured to be 33.6+/-4.5, 62.2+/-9.9 and 302.1+/-62.0 ms respectively, and positively correlated to cell size. The time of decaying phases (D(10-90)) of types F and S is 399.4+/-58.2 and >1500 ms, respectively. The dose-response curves for the three types of I(ATP) show that their EC(50) values are close (3.44 x 10(-5), 4.89 x 10(-5) and 4.14 x 10(-5) M for types F, I and S respectively, P>0.05). Their reversal potentials are basically the same, varying from +4 to +10 mV. In addition, using whole-cell patch clamp technique in combination with single cell immunohistochemical staining for P2X receptor subunits, our results suggest that the type distinction of ATP-activated current was associated with cell size and P2X receptor subunits: small-sized cells with type F of I(ATP) express only P2X1 and/or P2X3 subunits, while cells with types S and I of I(ATP) express P2X2 or P2X4 in addition to P2X1 and P2X3.
Collapse
MESH Headings
- Adenosine Triphosphate/agonists
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/metabolism
- Animals
- Animals, Newborn
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cells, Cultured
- Dose-Response Relationship, Drug
- Immunohistochemistry
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Patch-Clamp Techniques
- Protein Subunits/drug effects
- Protein Subunits/metabolism
- Purinergic P2 Receptor Agonists
- Purinergic P2 Receptor Antagonists
- Rats
- Rats, Sprague-Dawley
- Receptors, Purinergic P2/chemistry
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X
- Receptors, Purinergic P2X2
- Receptors, Purinergic P2X3
- Receptors, Purinergic P2X4
- Trigeminal Ganglion/drug effects
- Trigeminal Ganglion/metabolism
Collapse
Affiliation(s)
- Jialie Luo
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | | | | | | | | | | | | |
Collapse
|
29
|
Gever JR, Cockayne DA, Dillon MP, Burnstock G, Ford APDW. Pharmacology of P2X channels. Pflugers Arch 2006; 452:513-37. [PMID: 16649055 DOI: 10.1007/s00424-006-0070-9] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 03/08/2006] [Indexed: 02/07/2023]
Abstract
Significant progress in understanding the pharmacological characteristics and physiological importance of homomeric and heteromeric P2X channels has been achieved in recent years. P2X channels, gated by ATP and most likely trimerically assembled from seven known P2X subunits, are present in a broad distribution of tissues and are thought to play an important role in a variety of physiological functions, including peripheral and central neuronal transmission, smooth muscle contraction, and inflammation. The known homomeric and heteromeric P2X channels can be distinguished from each other on the basis of pharmacological differences when expressed recombinantly in cell lines, but whether this pharmacological classification holds true in native cells and in vivo is less well-established. Nevertheless, several potent and selective P2X antagonists have been discovered in recent years and shown to be efficacious in various animal models including those for visceral organ function, chronic inflammatory and neuropathic pain, and inflammation. The recent advancement of drug candidates targeting P2X channels into human trials, confirms the medicinal exploitability of this novel target family and provides hope that safe and effective medicines for the treatment of disorders involving P2X channels may be identified in the near future.
Collapse
Affiliation(s)
- Joel R Gever
- Department of Biochemical Pharmacology, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
30
|
Sokolova E, Skorinkin A, Moiseev I, Agrachev A, Nistri A, Giniatullin R. Experimental and modeling studies of desensitization of P2X3 receptors. Mol Pharmacol 2006; 70:373-82. [PMID: 16627751 DOI: 10.1124/mol.106.023564] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The function of ATP-activated P2X3 receptors involved in pain sensation is modulated by desensitization, a phenomenon poorly understood. The present study used patch-clamp recording from cultured rat or mouse sensory neurons and kinetic modeling to clarify the properties of P2X3 receptor desensitization. Two types of desensitization were observed, a fast process (t1/2 = 50 ms; 10 microM ATP) following the inward current evoked by micromolar agonist concentrations, and a slow process (t1/2 = 35 s; 10 nM ATP) that inhibited receptors without activating them. We termed the latter high-affinity desensitization (HAD). Recovery from fast desensitization or HAD was slow and agonist-dependent. When comparing several agonists, there was analogous ranking order for agonist potency, rate of desensitization and HAD effectiveness, with 2-methylthioadenosine triphosphate the strongest and beta,gamma-methylene-ATP the weakest. HAD was less developed with recombinant (ATP IC50 = 390 nM) than native P2X3 receptors (IC50 = 2.3 nM). HAD could also be induced by nanomolar ATP when receptors seemed to be nondesensitized, indicating that resting receptors could express high-affinity binding sites. Desensitization properties were well accounted for by a cyclic model in which receptors could be desensitized from either open or closed states. Recovery was assumed to be a multistate process with distinct kinetics dependent on the agonist-dependent dissociation rate from desensitized receptors. Thus, the combination of agonist-specific mechanisms such as desensitization onset, HAD, and resensitization could shape responsiveness of sensory neurons to P2X3 receptor agonists. By using subthreshold concentrations of an HAD-potent agonist, it might be possible to generate sustained inhibition of P2X3 receptors for controlling chronic pain.
Collapse
Affiliation(s)
- Elena Sokolova
- International School for Advanced Studies, Via Beirut 4, 34104 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Roberts JA, Vial C, Digby HR, Agboh KC, Wen H, Atterbury-Thomas A, Evans RJ. Molecular properties of P2X receptors. Pflugers Arch 2006; 452:486-500. [PMID: 16607539 DOI: 10.1007/s00424-006-0073-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 03/10/2006] [Indexed: 12/23/2022]
Abstract
P2X receptors for adenosine tri-phosphate (ATP) are a distinct family of ligand-gated cation channels with two transmembrane domains, intracellular amino and carboxy termini and a large extracellular ligand binding loop. Seven genes (P2X(1-7)) have been cloned and the channels form as either homo or heterotrimeric channels giving rise to a wide range of phenotypes. This review aims to give an account of recent work on the molecular basis of the properties of P2X receptors. In particular, to consider emerging information on the assembly of P2X receptor subunits, channel regulation and desensitisation, targeting, the molecular basis of drug action and the functional contribution of P2X receptors to physiological processes.
Collapse
Affiliation(s)
- Jonathan A Roberts
- Department of Cell Physiology & Pharmacology, Medical Sciences Building, University of Leicester, Leicester, LE1 9HN, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Inoue K. The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 2005; 109:210-26. [PMID: 16169595 DOI: 10.1016/j.pharmthera.2005.07.001] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 07/11/2005] [Indexed: 12/18/2022]
Abstract
Microglia play an important role as immune cells in the central nervous system (CNS). Microglia are activated in threatened physiological homeostasis, including CNS trauma, apoptosis, ischemia, inflammation, and infection. Activated microglia show a stereotypic, progressive series of changes in morphology, gene expression, function, and number and produce and release various chemical mediators, including proinflammatory cytokines that can produce immunological actions and can also act on neurons to alter their function. Recently, a great deal of attention is focusing on the relation between activated microglia through adenosine 5'-triphosphate (ATP) receptors and neuropathic pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes, or infection. This type of pain can be so severe that even light touching can be intensely painful and it is generally resistant to currently available treatments. There is abundant evidence that extracellular ATP and microglia have an important role in neuropathic pain. The expression of P2X4 receptor, a subtype of ATP receptors, is enhanced in spinal microglia after peripheral nerve injury model, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain. Several cytokines such as interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha) in the dorsal horn are increased after nerve lesion and have been implicated in contributing to nerve-injury pain, presumably by altering synaptic transmission in the CNS, including the spinal cord. Nerve injury also leads to persistent activation of p38 mitogen-activated protein kinase (MAPK) in microglia. An inhibitor of this enzyme reverses mechanical allodynia following spinal nerve ligation (SNL). ATP is able to activate MAPK, leading to the release of bioactive substances, including cytokines, from microglia. Thus, diffusible factors released from activated microglia by the stimulation of purinergic receptors may have an important role in the development of neuropathic pain. Understanding the key roles of ATP receptors, including P2X4 receptors, in the microglia may lead to new strategies for the management of neuropathic pain.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
33
|
Inoue K, Tsuda M, Koizumi S. ATP receptors in pain sensation: Involvement of spinal microglia and P2X(4) receptors. Purinergic Signal 2005; 1:95-100. [PMID: 18404495 PMCID: PMC2096535 DOI: 10.1007/s11302-005-6210-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 10/29/2004] [Indexed: 01/23/2023] Open
Abstract
There is abundant evidence that extracellular ATP and other nucleotides have an important role in pain signaling at both the periphery and in the CNS. At first, it was thought that ATP was simply involved in acute pain, since ATP is released from damaged cells and excites directly primary sensory neurons by activating their receptors. However, neither blocking P2X/Y receptors pharmacologically nor suppressing the expression of P2X/Y receptors molecularly in sensory neurons or in the spinal cord had an effect on acute physiological pain. The focus of attention now is on the possibility that endogenous ATP and its receptor system might be activated in pathological pain states, particularly in neuropathic pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes or infection. This type of pain can be so severe that even light touching can be intensely painful; unfortunately, this state is generally resistant to currently available treatments. An important advance in our understanding of the mechanisms involved in neuropathic pain has been made by a recent work demonstrating the crucial role of ATP receptors (i.e., P2X3 and P2X4 receptors). In this review, we summarize the role of ATP receptors, particularly the P2X4 receptor, in neuropathic pain. The expression of P2X4 receptors in the spinal cord is enhanced in spinal microglia after peripheral nerve injury, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain behaviour. Understanding the key roles of ATP receptors including P2X4 receptors may lead to new strategies for the management of neuropathic pain.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Division of Biosignaling, National Institute of Health Sciences, Tokyo, Japan,
| | | | | |
Collapse
|
34
|
Fabbretti E, Sokolova E, Masten L, D'Arco M, Fabbro A, Nistri A, Giniatullin R. Identification of negative residues in the P2X3 ATP receptor ectodomain as structural determinants for desensitization and the Ca2+-sensing modulatory sites. J Biol Chem 2004; 279:53109-15. [PMID: 15475563 DOI: 10.1074/jbc.m409772200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
On nociceptive neurons, one important mechanism to generate pain signals is the activation of P2X(3) receptors, which are membrane proteins gated by extracellular ATP. In the presence of the agonist, P2X(3) receptors rapidly desensitize and then recover slowly. One unique property of P2X(3) receptors is the recovery acceleration by extracellular Ca(2+) that can play the role of the gain-setter of receptor function only when P2X(3) receptors are desensitized. To study negatively charged sites potentially responsible for this action of Ca(2+), we mutated 15 non-conserved aspartate or glutamate residues in the P2X(3) receptor ectodomain with alanine and expressed such mutated receptors in human embryonic kidney cells studied with patch clamping. Unlike most mutants, D266A (P2X(3) receptor numbering) desensitized very slowly, indicating that this residue is important for generating desensitization. Recovery appeared structurally distinct from desensitization because E111A and D266A had a much faster recovery and D220A and D289A had a much slower one despite their standard desensitization. Furthermore, E161A, E187A, or E270A mutants showed lessened sensitivity to the action of extracellular Ca(2+), suggesting that these determinants were important for the effect of this cation on desensitization recovery. This study is the first report identifying several negative residues in the P2X(3) receptor ectodomain differentially contributing to the general process of receptor desensitization. At least one residue was important to enable the development of rapid desensitization, whereas others controlled recovery from it or the facilitating action of Ca(2+). Thus, these findings outline diverse potential molecular targets to modulate P2X(3) receptor function in relation to its functional state.
Collapse
Affiliation(s)
- Elsa Fabbretti
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Dubuis E, Kumar P, Gautier M, Girardin C, Vandier C. Acidosis abolishes the effect of repeated applications of ATP on pulmonary artery force and [Ca2+]i. Respir Physiol Neurobiol 2004; 141:157-66. [PMID: 15239966 DOI: 10.1016/j.resp.2004.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2004] [Indexed: 10/26/2022]
Abstract
The purine nucleotide, ATP, can cause receptor-mediated desensitizing contractions of smooth muscle that may be modulated by pH. We investigated in the rat the effect of acidosis upon the contractile and Ca2+ responses induced by ATP upon intrapulmonary artery (PA) smooth muscle. Four successive applications of ATP (300 microM) at pH 7.4 induced desensitising contractile responses that showed progressively decreasing peak amplitudes that correlated with decreases of [Ca2+]i. Acidosis significantly reduced the peak contractile response to the first application of ATP without modifying the rate or degree of desensitisation in response to ATP and without decreasing the [Ca2+]i. Successive applications of ATP did not further reduce contractile force nor [Ca2+]i. These results demonstrated that acidosis abolishes the effect of repeat applications of ATP on pulmonary artery force and [Ca2+]i via alteration in the desensitization-resensitisation characteristics of ATP receptor. This suggest a potentially important physiological role for changes in external pH in the regulation of ATP-mediated control of the pulmonary circulation.
Collapse
Affiliation(s)
- Eric Dubuis
- Laboratoire de Physiopathologie de la Paroi Artérielle, Faculté de Médecine, 2 bis Boulevard Tonnellé, 37032 Tours, France
| | | | | | | | | |
Collapse
|
36
|
Xu GY, Huang LYM. Ca2+/calmodulin-dependent protein kinase II potentiates ATP responses by promoting trafficking of P2X receptors. Proc Natl Acad Sci U S A 2004; 101:11868-73. [PMID: 15292517 PMCID: PMC511066 DOI: 10.1073/pnas.0401490101] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 06/28/2004] [Indexed: 11/18/2022] Open
Abstract
To elucidate the functional link between Ca(2+)/calmodulin protein kinase II (CaMKII) and P2X receptor activation, we studied the effects of electrical stimulation, such as occurs in injurious conditions, on P2X receptor-mediated ATP responses in primary sensory dorsal root ganglion neurons. We found that endogenously active CaMKII up-regulates basal P2X3 receptor activity in dorsal root ganglion neurons. Electrical stimulation causes prolonged increases in ATP currents that lasts up to approximately 45 min. In addition, the total and phosphorylated CaMKII are also up-regulated. The enhancement of ATP currents depends on Ca(2+) and calmodulin and is completely blocked by the CaMKII inhibitor, 2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine). Western analyses indicate that electrical stimulation enhances the expression of P2X3 receptors in the membrane and that the enhancement is blocked by the inhibitor. These results suggest that CaMKII up-regulated by electrical stimulation enhances ATP responses by promoting trafficking of P2X receptors to the membrane and may play a key role in the sensitization of P2X receptors under injurious conditions.
Collapse
Affiliation(s)
- Guang-Yin Xu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA
| | | |
Collapse
|
37
|
Spehr J, Spehr M, Hatt H, Wetzel CH. Subunit-specific P2X-receptor expression defines chemosensory properties of trigeminal neurons. Eur J Neurosci 2004; 19:2497-510. [PMID: 15128403 DOI: 10.1111/j.0953-816x.2004.03329.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The facial innervation pattern of trigeminal nerve fibres comprises the innervation of the nasal epithelium, where free trigeminal nerve endings contribute to detection and discrimination of chemical stimuli including odourants. The signal transduction mechanisms in sensory nerve endings underlying perception of chemical stimuli remain widely uncovered. Here, we characterized trigeminal ATP-activated P2X receptors in cultured rat trigeminal neurons and investigated their role in chemoperception. We identified a new subpopulation of neurons lacking typical nociceptive characteristics and expressing homomeric P2X(2) receptors. Using a certain group of chemicals known as trigeminal stimuli we found no direct activation of trigeminal neurons, but a modulation of P2X(2) receptor mediated currents. In contrast, P2X(3) receptor mediated currents of nociceptive trigeminal neurons remained unaffected by the tested chemicals. Therefore, we assume a functional role for the newly identified subpopulation in chemodetection of certain trigeminal stimuli.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Animals
- Animals, Newborn
- Benzaldehydes/pharmacology
- Calcium/metabolism
- Cells, Cultured
- Colforsin/pharmacology
- DNA, Complementary/chemistry
- Diagnostic Imaging/methods
- Dinucleoside Phosphates/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Embryo, Mammalian
- Enzyme Inhibitors/pharmacology
- Green Fluorescent Proteins
- Humans
- Immunohistochemistry/methods
- Kidney
- Luminescent Proteins/metabolism
- Membrane Potentials/drug effects
- Neurites/drug effects
- Neurons/classification
- Neurons/metabolism
- Olfactory Receptor Neurons/physiology
- Organic Chemicals/pharmacology
- Patch-Clamp Techniques/methods
- Potassium/pharmacology
- Protein Subunits/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Rats, Wistar
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X2
- Receptors, Purinergic P2X3
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Stimulation, Chemical
- Transfection/methods
- Triazines/pharmacology
- Trigeminal Ganglion/cytology
Collapse
Affiliation(s)
- Jennifer Spehr
- Lehrstuhl fuer Zellphysiologie, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
38
|
Sokolova E, Skorinkin A, Fabbretti E, Masten L, Nistri A, Giniatullin R. Agonist-dependence of recovery from desensitization of P2X(3) receptors provides a novel and sensitive approach for their rapid up or downregulation. Br J Pharmacol 2004; 141:1048-58. [PMID: 14980981 PMCID: PMC1574273 DOI: 10.1038/sj.bjp.0705701] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Fast-desensitizing P2X(3) receptors of nociceptive dorsol root ganglion (DRG) neurons are thought to mediate pain sensation. Since P2X(3) receptor efficiency is powerfully modulated by desensitization, its underlying properties were studied with patch-clamp recording. 2. On rat cultured DRG neurons, 2 s application of ATP (EC(50)=1.52 microm), ADP (EC(50)=1.1 microm) or alpha,beta-meATP (EC(50)=1.78 microm) produced similar inward currents that fully desensitized, at the same rate, back to baseline. Recovery from desensitization was much slower after ATP and ADP than after alpha,beta-meATP and, in all cases, it had sigmoidal time course. 3. By alternating the application of ATP and alpha,beta-meATP, we observed complete cross-desensitization indicating that these agonists activated the same receptors. This notion was confirmed by the similar antagonism induced by 2', 3'-O-(2,4,6,trinitrophenyl)-adenosine triphosphate (TNP-ATP). 4. Recovery from desensitization elicited by ATP was unexpectedly shaped by transient application of alpha,beta-methylene-adenosine triphosphate (alpha,beta-meATP), and vice versa. Thus, short-lasting, full desensitization produced by alpha,beta-meATP protected receptors from long-lasting desensitization induced by subsequent ATP applications. ATP and ADP had similar properties of recovery from desensitization. 5. Low nm concentrations of alpha,beta-meATP (unable to evoke membrane currents) could speed up recovery from ATP-induced desensitization, while low nm concentrations of ATP enhanced it. Ambient ATP levels were found to be in the pm range (52+/-3 pm). 6. The phenomenon of cross-desensitization and protection was reproduced by rP2X(3) receptors expressed by rat osteoblastic cell 17/2.8 or human embryonic kidney cell 293 cells, indicating P2X(3) receptor specificity. 7. It is suggested that transient application of an agonist that generates rapid recovery from desensitization, is a novel, powerful tool to modulate P2X(3) receptor responsiveness to the natural agonist ATP.
Collapse
Affiliation(s)
- Elena Sokolova
- Sector of Neurobiology, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
- INFM Unit, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
| | - Andrei Skorinkin
- Sector of Neurobiology, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
- Biochemical and Biophysical Institute of the Russian Academy of Sciences, 420008 Kazan, Russia
| | - Elsa Fabbretti
- Sector of Neurobiology, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
- INFM Unit, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
| | - Lara Masten
- Sector of Neurobiology, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
| | - Andrea Nistri
- Sector of Neurobiology, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
- INFM Unit, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
- Author for correspondence:
| | - Rashid Giniatullin
- Sector of Neurobiology, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
- INFM Unit, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
- Kazan Medical University, 420012 Kazan, Russia
| |
Collapse
|
39
|
Sokolova E, Nistri A, Giniatullin R. The ATP-mediated fast current of rat dorsal root ganglion neurons is a novel effector for GABA(B) receptor activation. Neurosci Lett 2003; 338:181-4. [PMID: 12581826 DOI: 10.1016/s0304-3940(02)01369-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Because gamma-aminobutyric acid(B) (GABA(B)) agonists produce strong antinociception, the present study analyzed if GABA(B) receptors might operate through depression of P2X(3) receptors responsible for fast adenosine triphosphate (ATP) currents involved in transmitting pain. On rat dorsal root ganglion (DRG) nociceptive neurons, inward currents induced by ATP were inhibited after 2 s or 60 s GABA application and unaffected after 10 s application. SKF-97541 or baclofen, potent GABA(B) agonists, mimicked only the late inhibition of ATP currents. The effect of SKF-97541 or GABA was observed even after their transient application prior to ATP. The GABA(B) antagonist CGP-52432 blocked the action of SKF-97541, suggesting a GABA(B) receptor-mediated mechanism (the GABA(A) antagonist picrotoxin was ineffective). It is suggested that, on nociceptive DRG neurons, GABA produced slow inhibition of P2X(3) receptors via metabotropic GABA(B) receptors.
Collapse
Affiliation(s)
- Elena Sokolova
- Biophysics Sector and INFM Unit, International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
| | | | | |
Collapse
|
40
|
Giniatullin R, Sokolova E, Nistri A. Modulation of P2X3 receptors by Mg2+ on rat DRG neurons in culture. Neuropharmacology 2003; 44:132-40. [PMID: 12559131 DOI: 10.1016/s0028-3908(02)00338-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
On nociceptive neurons the commonest response to ATP is a rapidly desensitizing current mediated by P2X(3) receptors and believed to be involved in certain forms of pain. P2X(3) receptor recovery from desensitization is a slow process. We studied whether Mg(2+) might modulate such ATP-evoked currents on rat cultured DRG neurons, and thus account for its analgesic action in vivo. Transient increases in extracellular Mg(2+) strongly and reversibly depressed ATP currents which had not recovered from desensitization. Ca(2+)-free solution had the same action as Mg(2+). High Mg(2+) or Ca(2+)-free modulation depended on exposure length to modified divalent cation solutions, whereas it was independent from membrane potential or intracellular Ca(2+) buffering. Paired-pulse protocols showed that high Mg(2+) or Ca(2+)-free medium delayed ATP receptor recovery from desensitization, while leaving desensitization onset apparently unchanged. Tests with various concentrations of Ca(2+) and Mg(2+) showed that the depressant action by Mg(2+) was primarily due to functional antagonism of a facilitatory effect of Ca(2+) on ATP receptor function. The present results suggest that, on sensory neurons, P2X(3) receptors could be inhibited by high Mg(2+) or lack of Ca(2+), representing a negative feedback process to limit ATP-mediated nociception.
Collapse
Affiliation(s)
- Rashid Giniatullin
- Biophysics Sector and Istituto Nazionale di Fisica della Materia Unit, International School for Advanced Studies (SISSA), via Beirut 4, 34014 Trieste, Italy
| | | | | |
Collapse
|
41
|
He ML, Koshimizu TA, Tomić M, Stojilkovic SS. Purinergic P2X(2) receptor desensitization depends on coupling between ectodomain and C-terminal domain. Mol Pharmacol 2002; 62:1187-97. [PMID: 12391283 DOI: 10.1124/mol.62.5.1187] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The wild-type P2X(2) purinergic receptor (P2X(2a)R) and its splice form lacking the intracellular Val(370)-Gln(438) C-terminal sequence (P2X(2b)R) respond to ATP stimulation with comparable EC(50) values and peak current/calcium responses but desensitize in a receptor-specific manner. P2X(2a)R desensitizes slowly and P2X(2b)R desensitizes rapidly. We studied the effects of different agonists, and of substituting the ectodomain, on the pattern of calcium signaling by P2X(2a)R and P2X(2b)R. Both receptors showed similar EC(50) values (estimated from the peak calcium response) and IC(50) values (estimated from the rate of calcium signal desensitization) for agonists, in the order 2-MeS-ATP <or= ATP <or= ATPgammaS < BzATP << alphabeta-meATP, and the IC(50) values for agonists were shifted to the right compared with their EC(50) values. Furthermore, the ATP-induced receptor-subtype specific pattern of desensitization was mimicked by high- but not by low-efficacy agonists, suggesting a ligand-specific desensitization pattern. To test this hypothesis, we generated chimeric P2X(2a)R and P2X(2b)R containing the Val(60)-Phe(301) ectodomain sequence of P2X(3)R and Val(61)-Phe(313) ectodomain sequence of P2X(7)R instead the native Ile(66)-Tyr(310) sequence. The mutated P2X(2a)+X(3)R and P2X(2b)+X(3)R exhibited comparable EC(50) values for ATP, BzATP, and alphabeta-meATP in the submicromolar concentration range and desensitized in a receptor-specific and ligand-nonspecific manner. On the other hand, the chimeric P2X(2)+X(7)R exhibited decreased sensitivity for ATP and desensitized in a receptor-nonspecific manner. These results suggest that efficacy of agonists for the ligand-binding domain of P2X(2)Rs reflects the strength of desensitization controlled by their C-terminal structures.
Collapse
Affiliation(s)
- Mu-Lan He
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
42
|
Babini E, Paukert M, Geisler HS, Grunder S. Alternative splicing and interaction with di- and polyvalent cations control the dynamic range of acid-sensing ion channel 1 (ASIC1). J Biol Chem 2002; 277:41597-603. [PMID: 12198124 DOI: 10.1074/jbc.m205877200] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homomeric acid-sensing ion channel 1 (ASIC1) can be activated by extracellular H(+) in the physiological pH range and may, therefore, contribute to neurotransmission and peripheral pain perception. ASIC1a and ASIC1b are alternative splice products of the ASIC1 gene. Here we show that both splice variants show steady-state inactivation when exposed to slightly decreased pH, limiting their operational range. Compared with ASIC1a, steady-state inactivation and pH activation of ASIC1b are shifted to more acidic values by 0.25 and 0.7 pH units, respectively, extending the dynamic range of ASIC1. Shifts of inactivation and activation are intimately linked; only two amino acids in the ectodomain, which are exchanged by alternative splicing, control both properties. Moreover, we show that extracellular, divalent cations like Ca(2+) and Mg(2+) as well as the polyvalent cation spermine shift the steady-state inactivation of ASIC1a and ASIC1b to more acidic values. This leads to a potentiation of the channel response and is due to a stabilization of the resting state. Our results indicate that ASIC1b is an effective sensor of transient H(+) signals during slight acidosis and that, in addition to alternative splicing, interaction with di- and polyvalent cations extends the dynamic range of ASIC H(+) sensors.
Collapse
Affiliation(s)
- Elena Babini
- Department of Otolaryngology, Research Group of Sensory Physiology, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
43
|
Abstract
P2X receptors are membrane ion channels that open in response to the binding of extracellular ATP. Seven genes in vertebrates encode P2X receptor subunits, which are 40-50% identical in amino acid sequence. Each subunit has two transmembrane domains, separated by an extracellular domain (approximately 280 amino acids). Channels form as multimers of several subunits. Homomeric P2X1, P2X2, P2X3, P2X4, P2X5, and P2X7 channels and heteromeric P2X2/3 and P2X1/5 channels have been most fully characterized following heterologous expression. Some agonists (e.g., alphabeta-methylene ATP) and antagonists [e.g., 2',3'-O-(2,4,6-trinitrophenyl)-ATP] are strongly selective for receptors containing P2X1 and P2X3 subunits. All P2X receptors are permeable to small monovalent cations; some have significant calcium or anion permeability. In many cells, activation of homomeric P2X7 receptors induces a permeability increase to larger organic cations including some fluorescent dyes and also signals to the cytoskeleton; these changes probably involve additional interacting proteins. P2X receptors are abundantly distributed, and functional responses are seen in neurons, glia, epithelia, endothelia, bone, muscle, and hemopoietic tissues. The molecular composition of native receptors is becoming understood, and some cells express more than one type of P2X receptor. On smooth muscles, P2X receptors respond to ATP released from sympathetic motor nerves (e.g., in ejaculation). On sensory nerves, they are involved in the initiation of afferent signals in several viscera (e.g., bladder, intestine) and play a key role in sensing tissue-damaging and inflammatory stimuli. Paracrine roles for ATP signaling through P2X receptors are likely in neurohypophysis, ducted glands, airway epithelia, kidney, bone, and hemopoietic tissues. In the last case, P2X7 receptor activation stimulates cytokine release by engaging intracellular signaling pathways.
Collapse
Affiliation(s)
- R Alan North
- Institute of Molecular Physiology, University of Sheffield, Western Bank, Sheffield, United Kingdom.
| |
Collapse
|
44
|
Wildman SS, Brown SG, Rahman M, Noel CA, Churchill L, Burnstock G, Unwin RJ, King BF. Sensitization by extracellular Ca(2+) of rat P2X(5) receptor and its pharmacological properties compared with rat P2X(1). Mol Pharmacol 2002; 62:957-66. [PMID: 12237343 DOI: 10.1124/mol.62.4.957] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The recombinant rat P2X(5) (rP2X(5)) receptor, a poorly understood ATP-gated ion channel, was studied under voltage-clamp conditions and compared with the better understood homomeric rP2X(1) receptor with which it may coexist in vivo. Expressed in defolliculated Xenopus laevis oocytes, rP2X(5) responded to ATP with slowly desensitizing inward currents that, for successive responses, ran down in the presence of extracellular Ca(2+) (1.8 mM). Replacement of Ca(2+) with either Ba(2+) or Mg(2+) prevented rundown, although agonist responses were very small, whereas reintroduction of Ca(2+) for short periods of time (<300 s) before and during agonist application yielded consistently larger responses. Using this Ca(2+)-pulse conditioning, rP2X(5) responded to ATP and other nucleotides (ATP, 2-methylthio-ATP, adenosine-5'-O-(thiotriphosphate), 2'-&-3'-O-(4-benzoylbenzoyl)-ATP, alpha,beta-methylene-ATP, P(1)-P((4))-diadenosine-5'-phosphate, and more) with pEC(50) values within 1 log unit of respective determinations for rP2X(1). Only GTP was selective for rP2X(5), although 60-fold less potent than ATP. At rP2X(5), lowering extracellular pH reduced the potency and efficacy of ATP, whereas extracellular Zn(2+) ions (0.1-1000 microM) potentiated then inhibited ATP responses in a concentration-dependent manner. However, these modulators affected rP2X(1) receptors in subtly different ways-with increasing H(+) and Zn(2+) ion concentrations reducing agonist potency. For P2 receptor antagonists, the potency order at rP2X(5) was pyridoxal-5-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) > 2',3'-O-(2,4,6-trinitrophenyl)ATP (TNP-ATP) > suramin > reactive blue 2 (RB-2) > diinosine pentaphosphate (Ip(5)I). In contrast, the potency order at rP2X(1) was TNP-ATP = Ip(5)I > PPADS > suramin = RB-2. Thus, the Ca(2+)-sensitized homomeric rP2X(5) receptor is similar in agonist profile to homomeric rP2X(1)-although it can be distinguished from the latter by GTP agonism, antagonist profile, and the modulatory effects of H(+) and Zn(2+) ions.
Collapse
Affiliation(s)
- Scott S Wildman
- Department of Physiology (Centre for Nephrology), Royal Free and University College Medical School, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
45
|
McDonald HA, Chu KL, Bianchi BR, McKenna DG, Briggs CA, Burgard EC, Lynch KJ, Faltynek C, Cartmell J, Jarvis MF. Potent desensitization of human P2X3 receptors by diadenosine polyphosphates. Eur J Pharmacol 2002; 435:135-42. [PMID: 11821019 DOI: 10.1016/s0014-2999(01)01568-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study, the receptor desensitizing effects of diadenosine polyphosphates at recombinant human P2X3 (hP2X3) receptors were examined. Administration of Ap3A, Ap4A, Ap5A or Ap6A inhibited the hP2X3 receptor-mediated response to a subsequent application of 3 muM alphabeta-methyleneATP (alphabeta-meATP), in a concentration-dependent manner, with IC50 values 2707, 42, 59 and 46 nM, respectively. These agonists did not desensitize alphabeta-meATP responses mediated by the slowly desensitizing heteromeric human P2X2/3 receptor. hP2X3 receptor desensitization was reversible and was not observed following the increase in intracellular Ca2+ levels produced by carbachol. A similar pattern of desensitization evoked by Ap5A was also observed using electrophysiological recordings of Xenopus oocytes expressing hP2X3 receptors. These data demonstrate that diadenosine polyphosphates, found endogenously in the central nervous system, can readily desensitize hP2X3 receptors at nanomolar concentrations that are 10-fold lower than are required to produce agonist-induced receptor activation. Thus, P2X3 receptor desensitization by diadenosine polyphosphates may provide an important modulatory mechanism of P2X3 receptor activation in vivo.
Collapse
Affiliation(s)
- Heath A McDonald
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, R04PM, AP9A/218, 100 Abbott Park Road, Abbott Park, IL 60064-6123, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
P2X receptors are a family of ligand-gated ion channels, activated by extracellular ATP. The seven subunits cloned (P2X1-7) can assemble to form homomeric and heteromeric receptors. Peripheral neurons of neural crest origin (e.g. those in dorsal root, trigeminal, sympathetic and enteric ganglia) and placodal origin (e.g. those in nodose and petrosal ganglia) express mRNAs for multiple P2X subunits. In this review, we summarize the molecular biological, electrophysiological and immunohistochemical evidence for P2X receptor subunits in sensory, sympathetic, parasympathetic, pelvic and myenteric neurons and adrenomedullary chromaffin cells. We consider the pharmacological properties of these native P2X receptors and their physiological roles. The responses of peripheral neurons to ATP show considerable heterogeneity between cells in the same ganglia, between ganglia and between species. Nevertheless, these responses can all be accounted for by the presence of P2X2 and P2X3 subunits, giving rise to varying proportions of homomeric and heteromeric receptors. While dorsal root ganglion neurons express predominantly P2X3 and rat sympathetic neurons express mainly P2X2 receptors, nodose and guinea-pig sympathetic neurons express mixed populations of P2X2 and heteromeric P2X2/3 receptors. P2X receptors are important for synaptic transmission in enteric ganglia, although their roles in sympathetic and parasympathetic ganglia are less clear. Their presence on sensory neurons is essential for some processes including detection of filling of the urinary bladder. The regulation of P2X receptor expression in development and in pathological conditions, along with the interactions between purinergic and other signalling systems, may reveal further physiological roles for P2X receptors in autonomic and sensory ganglia.
Collapse
Affiliation(s)
- P M Dunn
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, Rowland Hill Street, NW3 2PF, London, UK
| | | | | |
Collapse
|
47
|
Sokolova E, Nistri A, Giniatullin R. Negative cross talk between anionic GABAA and cationic P2X ionotropic receptors of rat dorsal root ganglion neurons. J Neurosci 2001; 21:4958-68. [PMID: 11438571 PMCID: PMC6762830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
Using whole-cell patch-clamp recording and intracellular Ca(2+) imaging of rat cultured DRG neurons, we studied the cross talk between GABA(A) and P2X receptors. A rapidly fading current was the main response to ATP, whereas GABA elicited slowly desensitizing inward currents. Coapplication of these agonists produced a total current much smaller than the linear summation of individual responses (68 +/- 5% with 10 microm ATP plus 100 microm GABA). Occlusion was observed regardless of ATP response type. Neurons without functional P2X receptors manifested no effect of ATP on GABA currents (and vice versa). Occlusion was also absent in the presence of the P2X blocker trinitrophenyl-ATP (TNP-ATP) or of the GABA blocker picrotoxin, indicating a lack of involvement by metabotropic ATP or GABA receptors. Less occlusion was obtained when ATP was applied 2 sec after GABA than when GABA was applied after ATP. Changing the polarity of GABA currents by using intracellular SO(4)2- instead of Cl(-) significantly reduced the occlusion of ATP currents by GABA, suggesting an important role for Cl(-) efflux in this phenomenon. Occlusion was enhanced whenever intracellular Ca(2+) ([Ca(2+)](i)) was not buffered, indicating the cross talk-facilitating role of this divalent cation. Ca(2+) imaging showed that ATP (but not GABA) increased [Ca(2+)](i) in voltage-clamped or intact neurons. Our data demonstrated a novel Cl(-) and Ca(2+)-dependent interaction between cationic P2X and anionic GABA(A) receptors of DRG neurons. Such negative cross talk might represent a model for a new mechanism to inhibit afferent excitation to the spinal cord as GABA and ATP are coreleased within the dorsal horn.
Collapse
Affiliation(s)
- E Sokolova
- Biophysics Sector and National Institute for Physics of Matter Unit, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
| | | | | |
Collapse
|
48
|
Khakh BS, Smith WB, Chiu CS, Ju D, Davidson N, Lester HA. Activation-dependent changes in receptor distribution and dendritic morphology in hippocampal neurons expressing P2X2-green fluorescent protein receptors. Proc Natl Acad Sci U S A 2001; 98:5288-93. [PMID: 11296257 PMCID: PMC33202 DOI: 10.1073/pnas.081089198] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-gated P2X(2) receptors are widely expressed in neurons, but the cellular effects of receptor activation are unclear. We engineered functional green fluorescent protein (GFP)-tagged P2X(2) receptors and expressed them in embryonic hippocampal neurons, and report an approach to determining functional and total receptor pool sizes in living cells. ATP application to dendrites caused receptor redistribution and the formation of varicose hot spots of higher P2X(2)-GFP receptor density. Redistribution in dendrites was accompanied by an activation-dependent enhancement of the ATP-evoked current. Substate-specific mutant T18A P2X(2)-GFP receptors showed no redistribution or activation-dependent enhancement of the ATP-evoked current. Thus fluorescent P2X(2)-GFP receptors function normally, can be quantified, and reveal the dynamics of P2X(2) receptor distribution on the seconds time scale.
Collapse
Affiliation(s)
- B S Khakh
- Division of Biology, 156-29, California Institute of Technology, Pasadena, CA 91125, USA. [corrected]
| | | | | | | | | | | |
Collapse
|
49
|
Lewis CJ, Evans RJ. Lack of run-down of smooth muscle P2X receptor currents recorded with the amphotericin permeabilized patch technique, physiological and pharmacological characterization of the properties of mesenteric artery P2X receptor ion channels. Br J Pharmacol 2000; 131:1659-66. [PMID: 11139444 PMCID: PMC1572503 DOI: 10.1038/sj.bjp.0703744] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Immunoreactivity for P2X(1), P2X(4) and P2X(5) receptor subtypes was detected in the smooth muscle cell layer of second and third order rat mesenteric arteries immunoreactivity, for P2X(2), P2X(3), P2X(6) and P2X(7) receptors was below the level of detection in the smooth muscle layer. P2X receptor-mediated currents were recorded in patch clamp studies on acutely dissociated mesenteric artery smooth muscle cells. Purinergic agonists evoked transient inward currents that decayed rapidly in the continued presence of agonist (tau approximately 200 ms). Standard whole cell responses to repeated applications of agonist at 5 min intervals ran down. Run-down was unaffected by changes in extracellular calcium concentration, intracellular calcium buffering or the inclusion of ATP and GTP in the pipette solution. Run-down was overcome and reproducible responses to purinergic agonists were recorded using the amphotericin permeabilized patch recording configuration. The rank order of potency at the P2X receptor was ATP=2 methylthio ATP>alpha, beta-methylene ATP>CTP=l-beta,gamma-methylene ATP. Only ATP and 2meSATP were full agonists. The P2 receptor antagonists suramin and PPADS inhibited P2X receptor-mediated currents with IC(50)s of 4 microM and 70 nM respectively. These results provide further characterization of artery P2X receptors and demonstrate that the properties are dominated by a P2X(1)-like receptor phenotype. No evidence could be found for a phenotype corresponding to homomeric P2X(4) or P2X(5) receptors or to heteromeric P2X(1/5) receptors and the functional role of these receptors in arteries remains unclear.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Amphotericin B/pharmacology
- Animals
- Calcium/metabolism
- Calcium/pharmacology
- Cell Membrane Permeability/drug effects
- Dose-Response Relationship, Drug
- Guanosine Triphosphate/pharmacology
- Immunohistochemistry
- Ion Channels/drug effects
- Ion Channels/physiology
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mesenteric Arteries/cytology
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiology
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Patch-Clamp Techniques
- Pyridoxal Phosphate/analogs & derivatives
- Pyridoxal Phosphate/pharmacology
- Rats
- Rats, Wistar
- Receptors, Purinergic P2/analysis
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2X
- Receptors, Purinergic P2X2
- Receptors, Purinergic P2X3
- Receptors, Purinergic P2X4
- Receptors, Purinergic P2X5
- Receptors, Purinergic P2X7
- Suramin/pharmacology
- Thionucleotides/pharmacology
- Time Factors
Collapse
Affiliation(s)
- C J Lewis
- Department of Cell Physiology & Pharmacology, Medical Sciences Building, University of Leicester, University Road, Leicester, LE1 9HN
| | - R J Evans
- Department of Cell Physiology & Pharmacology, Medical Sciences Building, University of Leicester, University Road, Leicester, LE1 9HN
- Author for correspondence:
| |
Collapse
|
50
|
York RD, Molliver DC, Grewal SS, Stenberg PE, McCleskey EW, Stork PJ. Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol Cell Biol 2000; 20:8069-83. [PMID: 11027277 PMCID: PMC86417 DOI: 10.1128/mcb.20.21.8069-8083.2000] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurotrophins promote multiple actions on neuronal cells including cell survival and differentiation. The best-studied neurotrophin, nerve growth factor (NGF), is a major survival factor in sympathetic and sensory neurons and promotes differentiation in a well-studied model system, PC12 cells. To mediate these actions, NGF binds to the TrkA receptor to trigger intracellular signaling cascades. Two kinases whose activities mediate these processes include the mitogen-activated protein (MAP) kinase (or extracellular signal-regulated kinase [ERK]) and phosphoinositide 3-kinase (PI3-K). To examine potential interactions between the ERK and PI3-K pathways, we studied the requirement of PI3-K for NGF activation of the ERK signaling cascade in dorsal root ganglion cells and PC12 cells. We show that PI3-K is required for TrkA internalization and participates in NGF signaling to ERKs via distinct actions on the small G proteins Ras and Rap1. In PC12 cells, NGF activates Ras and Rap1 to elicit the rapid and sustained activation of ERKs respectively. We show here that Rap1 activation requires both TrkA internalization and PI3-K, whereas Ras activation requires neither TrkA internalization nor PI3-K. Both inhibitors of PI3-K and inhibitors of endocytosis prevent GTP loading of Rap1 and block sustained ERK activation by NGF. PI3-K and endocytosis may also regulate ERK signaling at a second site downstream of Ras, since both rapid ERK activation and the Ras-dependent activation of the MAP kinase kinase kinase B-Raf are blocked by inhibition of either PI3-K or endocytosis. The results of this study suggest that PI3-K may be required for the signals initiated by TrkA internalization and demonstrate that specific endocytic events may distinguish ERK signaling via Rap1 and Ras.
Collapse
Affiliation(s)
- R D York
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|