1
|
Saha D, Paul S, Gaharwar U, Priya A, Neog A, Singh A, Bk B. Cdk5-Mediated Brain Unfolded Protein Response Upregulation Associated with Cognitive Impairments in Type 2 Diabetes and Ameliorative Action of NAC. ACS Chem Neurosci 2023; 14:2761-2774. [PMID: 37468304 DOI: 10.1021/acschemneuro.3c00341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The role of cyclin-dependent kinase 5 (Cdk5) in the normal functioning of the central nervous system and synaptic plasticity is well established. However, dysregulated kinase activity can have a significant impact on neurodegeneration and cognitive impairment. Cdk5 hyperactivation is linked to diabetes-associated neurodegeneration, but the underlying mechanism is not fully understood. Our study reveals that oxidative stress can lead to Cdk5 hyperactivity, which in turn is linked to neurodegeneration and cognitive impairment. Specifically, our experiments with N2A cells overexpressing Cdk5 and its activators p35 and p25 show ER stress, resulting in activation of the unfolded protein response (UPR) pathway. We identified Cdk5 as the epicenter of this regulatory process, leading to the activation of the CDK5-IRE1-XBP1 arm of UPR. Moreover, our study demonstrated that Cdk5 hyperactivation can lead to ER stress and activation of the UPR pathway, which may contribute to cognitive impairments associated with diabetes. Our findings also suggest that antioxidants such as NAC and GSH can decrease deregulated Cdk5 kinase activity and rescue cells from UPR-mediated ER stress. The accumulation of phosphorylated Tau protein in AD brain protein has been widely described earlier. Notably, we observed that oral treatment with NAC decreased Cdk5 kinase activity in the hippocampus, attenuated high levels of phospho-tau (ser396), and ameliorated memory and learning impairments in a type 2 diabetic (T2D) mouse model. Additionally, the high-fat-induced T2D model exhibits elevated phospho-tau levels, which are rescued by the NAC treatment. Taken together, these results suggest that targeting Cdk5 may be a promising therapeutic strategy for treating diabetes-associated cognitive impairments.
Collapse
Affiliation(s)
- Debarpita Saha
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Sangita Paul
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utkarsh Gaharwar
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Anshu Priya
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anindita Neog
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Archana Singh
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Binukumar Bk
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Principal Scientist, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi 110025, India
| |
Collapse
|
2
|
A review on cyclin-dependent kinase 5: An emerging drug target for neurodegenerative diseases. Int J Biol Macromol 2023; 230:123259. [PMID: 36641018 DOI: 10.1016/j.ijbiomac.2023.123259] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cyclin-dependent kinase 5 (CDK5) is the serine/threonine-directed kinase mainly found in the brain and plays a significant role in developing the central nervous system. Recent evidence suggests that CDK5 is activated by specific cyclins regulating its expression and activity. P35 and p39 activate CDK5, and their proteolytic degradation produces p25 and p29, which are stable products involved in the hyperphosphorylation of tau protein, a significant hallmark of various neurological diseases. Numerous high-affinity inhibitors of CDK5 have been designed, and some are marketed drugs. Roscovitine, like other drugs, is being used to minimize neurological symptoms. Here, we performed an extensive literature analysis to highlight the role of CDK5 in neurons, synaptic plasticity, DNA damage repair, cell cycle, etc. We have investigated the structural features of CDK5, and their binding mode with the designed inhibitors is discussed in detail to develop attractive strategies in the therapeutic targeting of CDK5 for neurodegenerative diseases. This review provides deeper mechanistic insights into the therapeutic potential of CDK5 inhibitors and their implications in the clinical management of neurodegenerative diseases.
Collapse
|
3
|
Desbois M, Opperman KJ, Amezquita J, Gaglio G, Crawley O, Grill B. Ubiquitin ligase activity inhibits Cdk5 to control axon termination. PLoS Genet 2022; 18:e1010152. [PMID: 35421092 PMCID: PMC9041834 DOI: 10.1371/journal.pgen.1010152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/26/2022] [Accepted: 03/17/2022] [Indexed: 01/29/2023] Open
Abstract
The Cdk5 kinase plays prominent roles in nervous system development, plasticity, behavior and disease. It also has important, non-neuronal functions in cancer, the immune system and insulin secretion. At present, we do not fully understand negative regulatory mechanisms that restrict Cdk5. Here, we use Caenorhabditis elegans to show that CDK-5 is inhibited by the RPM-1/FSN-1 ubiquitin ligase complex. This atypical RING ubiquitin ligase is conserved from C. elegans through mammals. Our finding originated from unbiased, in vivo affinity purification proteomics, which identified CDK-5 as a putative RPM-1 substrate. CRISPR-based, native biochemistry showed that CDK-5 interacts with the RPM-1/FSN-1 ubiquitin ligase complex. A CRISPR engineered RPM-1 substrate ‘trap’ enriched CDK-5 binding, which was mediated by the FSN-1 substrate recognition module. To test the functional genetic relationship between the RPM-1/FSN-1 ubiquitin ligase complex and CDK-5, we evaluated axon termination in mechanosensory neurons and motor neurons. Our results indicate that RPM-1/FSN-1 ubiquitin ligase activity restricts CDK-5 to control axon termination. Collectively, these proteomic, biochemical and genetic results increase our understanding of mechanisms that restrain Cdk5 in the nervous system. Cdk5 is an atypical cyclin dependent kinase and an important player in nervous system development, plasticity, and disease. Decades of research has focused on understanding how Cdk5 is activated. In contrast, we know much less about the genetic and molecular mechanisms that restrict Cdk5 activity. Here, we examined how Cdk5 is inhibited in the nervous system using the model organism C. elegans. Our results indicate that the RPM-1/FSN-1 E3 ubiquitin ligase complex inhibits Cdk5 to control termination of axon growth. Our finding that ubiquitin ligase activity restricts Cdk5 in the nervous system in vivo now opens up the interesting possibility that ubiquitin ligase activity might regulate Cdk5 in other cellular contexts and disease settings.
Collapse
Affiliation(s)
- Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jonathan Amezquita
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Gabriel Gaglio
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Oliver Crawley
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington M1-A303/305 Behnke Conference Room, Arnold building, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
4
|
Abstract
Cdk5 is a proline-directed serine/threonine protein kinase that governs a variety of cellular processes in neurons, the dysregulation of which compromises normal brain function. The mechanisms underlying the modulation of Cdk5, its modes of action, and its effects on the nervous system have been a great focus in the field for nearly three decades. In this review, we provide an overview of the discovery and regulation of Cdk5, highlighting recent findings revealing its role in neuronal/synaptic functions, circadian clocks, DNA damage, cell cycle reentry, mitochondrial dysfunction, as well as its non-neuronal functions under physiological and pathological conditions. Moreover, we discuss evidence underscoring aberrant Cdk5 activity as a common theme observed in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
5
|
Fernández G, Krapacher F, Ferreras S, Quassollo G, Mari MM, Pisano MV, Montemerlo A, Rubianes MD, Bregonzio C, Arias C, Paglini MG. Lack of Cdk5 activity is involved on Dopamine Transporter expression and function: Evidences from an animal model of Attention-Deficit Hyperactivity Disorder. Exp Neurol 2021; 346:113866. [PMID: 34537209 DOI: 10.1016/j.expneurol.2021.113866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022]
Abstract
Attention deficit/Hyperactivity disorder (ADHD) is one of the most diagnosed psychiatric disorders nowadays. The core symptoms of the condition include hyperactivity, impulsiveness and inattention. The main pharmacological treatment consists of psychostimulant drugs affecting Dopamine Transporter (DAT) function. We have previously shown that genetically modified mice lacking p35 protein (p35KO), which have reduced Cdk5 activity, present key hallmarks resembling those described in animal models useful for studying ADHD. The p35KO mouse displays spontaneous hyperactivity and shows a calming effect of methylphenidate or amphetamine treatment. Interestingly, dopaminergic neurotransmission is altered in these mice as they have an increased Dopamine (DA) content together with a low DA turnover. This led us to hypothesize that the lack of Cdk5 activity affects DAT expression and/or function in this animal model. In this study, we performed biochemical assays, cell-based approaches, quantitative fluorescence analysis and functional studies that allowed us to demonstrate that p35KO mice exhibit decreased DA uptake and reduced cell surface DAT expression levels in the striatum (STR). These findings are supported by in vitro observations in which the inhibition of Cdk5 activity in N2a cells induced a significant increase in constitutive DAT endocytosis with a concomitant increase in DAT localization to recycling endosomes. Taken together, these data provide evidences regarding the role of Cdk5/p35 in DAT expression and function, thus contributing to the knowledge of DA neurotransmission physiology and also providing therapeutic options for the treatment of DA pathologies such as ADHD.
Collapse
Affiliation(s)
- Guillermo Fernández
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Favio Krapacher
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Soledad Ferreras
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gonzalo Quassollo
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Macarena Mariel Mari
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Victoria Pisano
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Antonella Montemerlo
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Dolores Rubianes
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba, IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carlos Arias
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Investigaciones Psicológicas, IIPSI-CONICET, Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Gabriela Paglini
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
6
|
Pfänder P, Eiers AK, Burret U, Vettorazzi S. Deletion of Cdk5 in Macrophages Ameliorates Anti-Inflammatory Response during Endotoxemia through Induction of C-Maf and Il-10. Int J Mol Sci 2021; 22:9648. [PMID: 34502552 PMCID: PMC8431799 DOI: 10.3390/ijms22179648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 01/11/2023] Open
Abstract
Immune response control is critical as excessive cytokine production can be detrimental and damage the host. Interleukin-10 (Il-10), an anti-inflammatory cytokine produced primarily by macrophages, is a key regulator that counteracts and controls excessive inflammatory response. Il-10 expression is regulated through the transcription factor c-Maf. Another regulator of Il-10 production is p35, an activator of the cyclin-dependent kinase 5 (Cdk5), which decreases Il-10 production in macrophages, thus increasing inflammation. However, Cdk5 regulation of c-Maf and the involvement of Il-10 production in macrophages has not yet been investigated. We used in vitro primary bone marrow-derived macrophages (BMDMs) lacking Cdk5, stimulated them with lipopolysaccharid (LPS) and observed increased levels of c-Maf and Il-10. In an in vivo mouse model of LPS-induced endotoxemia, mice lacking Cdk5 in macrophages showed increased levels of c-Maf and elevated levels of Il-10 in lungs as well as in plasma, resulting in ameliorated survival. Taken together, we identified Cdk5 as a potential novel regulator of Il-10 production through c-Maf in macrophages under inflammatory conditions. Our results suggest that inhibition of Cdk5 enhances the c-Maf-Il-10 axis and thus potentiates improvement of anti-inflammatory therapy.
Collapse
Affiliation(s)
- Pauline Pfänder
- Institute of Comparative Molecular Endocrinology (CME), Faculty of Natural Sciences, Ulm University, 89081 Ulm, Germany; (P.P.); (A.-K.E.); (U.B.)
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Ann-Kathrin Eiers
- Institute of Comparative Molecular Endocrinology (CME), Faculty of Natural Sciences, Ulm University, 89081 Ulm, Germany; (P.P.); (A.-K.E.); (U.B.)
| | - Ute Burret
- Institute of Comparative Molecular Endocrinology (CME), Faculty of Natural Sciences, Ulm University, 89081 Ulm, Germany; (P.P.); (A.-K.E.); (U.B.)
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Faculty of Natural Sciences, Ulm University, 89081 Ulm, Germany; (P.P.); (A.-K.E.); (U.B.)
| |
Collapse
|
7
|
Liu X, Blazejewski SM, Bennison SA, Toyo-oka K. Glutathione S-transferase Pi (Gstp) proteins regulate neuritogenesis in the developing cerebral cortex. Hum Mol Genet 2021; 30:30-45. [PMID: 33437989 PMCID: PMC8033146 DOI: 10.1093/hmg/ddab003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Abstract
GSTP proteins are metabolic enzymes involved in the removal of oxidative stress and intracellular signaling and also have inhibitory effects on JNK activity. However, the functions of Gstp proteins in the developing brain are unknown. In mice, there are three Gstp proteins, Gstp1, 2 and 3, whereas there is only one GSTP in humans. By reverse transcription-polymerase chain reaction (RT-PCR) analysis, we found that Gstp1 was expressed beginning at E15.5 in the cortex, but Gstp2 and 3 started expressing at E18.5. Gstp 1 and 2 knockdown (KD) caused decreased neurite number in cortical neurons, implicating them in neurite initiation. Using in utero electroporation (IUE) to knock down Gstp1 and 2 in layer 2/3 pyramidal neurons in vivo, we found abnormal swelling of the apical dendrite at P3 and reduced neurite number at P15. Using time-lapse live imaging, we found that the apical dendrite orientation was skewed compared with the control. We explored the molecular mechanism and found that JNK inhibition rescued reduced neurite number caused by Gstp knockdown, indicating that Gstp regulates neurite formation through JNK signaling. Thus, we found novel functions of Gstp proteins in neurite initiation during cortical development. These findings not only provide novel functions of Gstp proteins in neuritogenesis during cortical development but also help us to understand the complexity of neurite formation.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - Kazuhito Toyo-oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| |
Collapse
|
8
|
Abstract
The establishment of polarity is crucial for the physiology and wiring of neurons. Therefore, monitoring the axo-dendritic specification allows the mechanisms and signals associated with development, growth, and disease to be explored. Here, we describe major and minor steps to study polarity acquisition, using primary cultures of hippocampal neurons isolated from embryonic rat hippocampi, for in vitro monitoring. Furthermore, we use in utero electroporated, GFP-expressing embryonic mouse brains for visualizing cortical neuron migration and polarization in situ. Some underreported after-protocol steps are also included. For complete details on the use and execution of this protocol, please refer to Wilson et al. (2020). Dissection, isolation, and digestion of embryonic (E18.5) rat hippocampi Culturing isolated hippocampal neurons and monitoring polarity acquisition in vitro In utero electroporation of embryonic (E15.5) mouse brains with GFP plasmids Visualization of migration and polarization of E17.5–E18.5 cortical neurons in situ
Collapse
Affiliation(s)
- Carlos Wilson
- Centro de Investigación en Medicina Traslacional “Severo R Amuchástegui” (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Naciones Unidas 420, 5016 Córdoba, Argentina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC) Friuli 2434, 5016 Córdoba, Argentina
- Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n, 5000 Córdoba, Argentina
- Corresponding author
| | - Victoria Rozés-Salvador
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC) Friuli 2434, 5016 Córdoba, Argentina
- Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Alfredo Cáceres
- Centro de Investigación en Medicina Traslacional “Severo R Amuchástegui” (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Naciones Unidas 420, 5016 Córdoba, Argentina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC) Friuli 2434, 5016 Córdoba, Argentina
- Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n, 5000 Córdoba, Argentina
- Corresponding author
| |
Collapse
|
9
|
Ouyang L, Chen Y, Wang Y, Chen Y, Fu AKY, Fu WY, Ip NY. p39-associated Cdk5 activity regulates dendritic morphogenesis. Sci Rep 2020; 10:18746. [PMID: 33127972 PMCID: PMC7603351 DOI: 10.1038/s41598-020-75264-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Dendrites, branched structures extending from neuronal cell soma, are specialized for processing information from other neurons. The morphogenesis of dendritic structures is spatiotemporally regulated by well-orchestrated signaling cascades. Dysregulation of these processes impacts the wiring of neuronal circuit and efficacy of neurotransmission, which contribute to the pathogeneses of neurological disorders. While Cdk5 (cyclin-dependent kinase 5) plays a critical role in neuronal dendritic development, its underlying molecular control is not fully understood. In this study, we show that p39, one of the two neuronal Cdk5 activators, is a key regulator of dendritic morphogenesis. Pyramidal neurons deficient in p39 exhibit aberrant dendritic morphology characterized by shorter length and reduced arborization, which is comparable to dendrites in Cdk5-deficient neurons. RNA sequencing analysis shows that the adaptor protein, WDFY1 (WD repeat and FYVE domain-containing 1), acts downstream of Cdk5/p39 to regulate dendritic morphogenesis. While WDFY1 is elevated in p39-deficient neurons, suppressing its expression rescues the impaired dendritic arborization. Further phosphoproteomic analysis suggests that Cdk5/p39 mediates dendritic morphogenesis by modulating various downstream signaling pathways, including PI3K/Akt-, cAMP-, or small GTPase-mediated signaling transduction pathways, thereby regulating cytoskeletal organization, protein synthesis, and protein trafficking.
Collapse
Affiliation(s)
- Li Ouyang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Yu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China
| | - Ye Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Yuewen Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China
| | - Amy K Y Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China
| | - Wing-Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China. .,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
10
|
Hwang J, Namgung U. Phosphorylation of STAT3 by axonal Cdk5 promotes axonal regeneration by modulating mitochondrial activity. Exp Neurol 2020; 335:113511. [PMID: 33098871 DOI: 10.1016/j.expneurol.2020.113511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/14/2020] [Accepted: 10/17/2020] [Indexed: 01/03/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is involved in neural organization and synaptic functions in developing and adult brains, yet its role in axonal regeneration is not known well. Here, we characterize Cdk5 function for axonal regeneration after peripheral nerve injury. Levels of Cdk5 and p25 were elevated in sciatic nerve axons after injury. Cdk5 activity was concomitantly induced from injured nerve and increased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) on the serine 727 residue. Pharmacological and genetic blockades of Cdk5 activity phosphorylating STAT3 resulted in the inhibition of axonal regeneration as evidenced by reduction of retrograde labeling of dorsal root ganglion (DRG) sensory neurons and spinal motor neurons and also of neurite outgrowth of preconditioned DRG neurons in culture. Cdk5 and STAT3 were found in mitochondrial membranes of the injured sciatic nerve. Cdk5-GFP, which was translocated into the mitochondria by the mitochondrial target sequence (MTS), induced STAT3 phosphorylation in transfected DRG neurons and was sufficient to induce neurite outgrowth. In the mitochondria, Cdk5 activity was positively correlated with increased mitochondrial membrane potential as measured by fluorescence intensity of JC-1 aggregates. Our data suggest that Cdk5 may play a role in modulating mitochondrial activity through STAT3 phosphorylation, thereby promoting axonal regeneration.
Collapse
Affiliation(s)
- Jinyeon Hwang
- Neurophysiology Laboratory, Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon 34520, South Korea
| | - Uk Namgung
- Neurophysiology Laboratory, Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon 34520, South Korea.
| |
Collapse
|
11
|
Sharma S, Sicinski P. A kinase of many talents: non-neuronal functions of CDK5 in development and disease. Open Biol 2020; 10:190287. [PMID: 31910742 PMCID: PMC7014686 DOI: 10.1098/rsob.190287] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cyclin-dependent kinase 5 (CDK5) represents an unusual member of the family of cyclin-dependent kinases, which is activated upon binding to non-cyclin p35 and p39 proteins. The role of CDK5 in the nervous system has been very well established. In addition, there is growing evidence that CDK5 is also active in non-neuronal tissues, where it has been postulated to affect a variety of functions such as the immune response, angiogenesis, myogenesis, melanogenesis and regulation of insulin levels. Moreover, high levels of CDK5 have been observed in different tumour types, and CDK5 was proposed to play various roles in the tumorigenic process. In this review, we discuss these various CDK5 functions in normal physiology and disease, and highlight the therapeutic potential of targeting CDK5.
Collapse
Affiliation(s)
- Samanta Sharma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
12
|
CDK5: Key Regulator of Apoptosis and Cell Survival. Biomedicines 2019; 7:biomedicines7040088. [PMID: 31698798 PMCID: PMC6966452 DOI: 10.3390/biomedicines7040088] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
The atypical cyclin-dependent kinase 5 (CDK5) is considered as a neuron-specific kinase that plays important roles in many cellular functions including cell motility and survival. The activation of CDK5 is dependent on interaction with its activator p35, p39, or p25. These activators share a CDK5-binding domain and form a tertiary structure similar to that of cyclins. Upon activation, CDK5/p35 complexes localize primarily in the plasma membrane, cytosol, and perinuclear region. Although other CDKs are activated by cyclins, binding of cyclin D and E showed no effect on CDK5 activation. However, it has been shown that CDK5 can be activated by cyclin I, which results in anti-apoptotic functions due to the increased expression of Bcl-2 family proteins. Treatment with the CDK5 inhibitor roscovitine sensitizes cells to heat-induced apoptosis and its phosphorylation, which results in prevention of the apoptotic protein functions. Here, we highlight the regulatory mechanisms of CDK5 and its roles in cellular processes such as gene regulation, cell survival, and apoptosis.
Collapse
|
13
|
Pfänder P, Fidan M, Burret U, Lipinski L, Vettorazzi S. Cdk5 Deletion Enhances the Anti-inflammatory Potential of GC-Mediated GR Activation During Inflammation. Front Immunol 2019; 10:1554. [PMID: 31354714 PMCID: PMC6635475 DOI: 10.3389/fimmu.2019.01554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
Abstract
The suppression of activated pro-inflammatory macrophages during immune response has a major impact on the outcome of many inflammatory diseases including sepsis and rheumatoid arthritis. The pro- and anti-inflammatory functions of macrophages have been widely studied, whereas their regulation under immunosuppressive treatments such as glucocorticoid (GC) therapy is less well-understood. GC-mediated glucocorticoid receptor (GR) activation is crucial to mediate anti-inflammatory effects. In addition, the anti-cancer drug roscovitine, that is currently being tested in clinical trials, was recently described to regulate inflammatory processes by inhibiting different Cdks such as cyclin-dependent kinase 5 (Cdk5). Cdk5 was identified as a modulator of inflammatory processes in different immune cells and furthermore described to influence GR gene expression in the brain. Whether roscovitine can enhance the immunosuppressive effects of GCs and if the inhibition of Cdk5 affects GR gene regulatory function in innate immune cells, such as macrophages, has not yet been investigated. Here, we report that roscovitine enhances the immunosuppressive Dexamethasone (Dex) effect on the inducible nitric oxide synthase (iNos) expression, which is essential for immune regulation. Cdk5 deletion in macrophages prevented iNos protein and nitric oxide (NO) generation after a combinatory treatment with inflammatory stimuli and Dex. Cdk5 deletion in macrophages attenuated the GR phosphorylation on serine 211 after Dex treatment alone and in combination with inflammatory stimuli, but interestingly increased the GR-dependent anti-inflammatory target gene dual-specificity phosphatase 1 (Dusp1, Mkp1). Mkp1 phosphatase activity decreases the activation of its direct target p38Mapk, reduced iNos expression and NO production upon inflammatory stimuli and Dex treatment in the absence of Cdk5. Taken together, we identified Cdk5 as a potential novel regulator of NO generation in inflammatory macrophages under GC treatment. Our data suggest that GC treatment in combination with specific Cdk5 inhibtior(s) provides a stronger suppression of inflammation and could thus replace high-dose GC therapy which has severe side effects in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Pauline Pfänder
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Ute Burret
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Lena Lipinski
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| |
Collapse
|
14
|
The LMTK-family of kinases: Emerging important players in cell physiology and pathogenesis. Biochim Biophys Acta Mol Basis Dis 2018; 1867:165372. [PMID: 30597196 DOI: 10.1016/j.bbadis.2018.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
Lemur Tail (former tyrosine) Kinases (LMTKs) comprise a novel family of regulated serine/threonine specific kinases with three structurally and evolutionary related members. LMTKs exercise a confusing variety of cytosolic functions in cell signalling and membrane trafficking. Moreover, LMTK2 and LMTK3 also reside in the nucleus where they participate in gene transcription/regulation. As a consequence, LMTKs impact cell proliferation and apoptosis, cell growth and differentiation, as well as cell migration. All these fundamental cell behaviours can turn awry, most prominently during neuropathologies and tumour biogenesis. In cancer cells, LMTK levels are often correlated with poor overall prognosis and therapy outcome, not least owned to acquired drug resistance. In brain tissue, LMTKs are highly expressed and have been linked to neuronal and glia cell differentiation and cell homeostasis. For one member of the LMTK-family (LMTK2) a role in cystic fibrosis has been identified. Due to their role in fundamental cell processes, altered LMTK physiology may also warrant a hitherto unappreciated role in other diseases, and expose them as potential valuable drug targets. On the backdrop of a compendium of LMTK cell functions, we hypothesize that the primary role of LMTKs may dwell within the endocytic cargo recycling and/or nuclear receptor transport pathways.
Collapse
|
15
|
Ferreras S, Fernández G, Danelon V, Pisano MV, Masseroni L, Chapleau CA, Krapacher FA, Mlewski EC, Mascó DH, Arias C, Pozzo-Miller L, Paglini MG. Cdk5 Is Essential for Amphetamine to Increase Dendritic Spine Density in Hippocampal Pyramidal Neurons. Front Cell Neurosci 2017; 11:372. [PMID: 29225566 PMCID: PMC5705944 DOI: 10.3389/fncel.2017.00372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant's effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol) increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP) mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine-induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine's effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction.
Collapse
Affiliation(s)
- Soledad Ferreras
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Guillermo Fernández
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Víctor Danelon
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, IIBYT-CONICET, Córdoba, Argentina
| | - María V Pisano
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luján Masseroni
- Laboratory of Neurobiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Christopher A Chapleau
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Favio A Krapacher
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Estela C Mlewski
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel H Mascó
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, IIBYT-CONICET, Córdoba, Argentina
| | - Carlos Arias
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - María G Paglini
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Virology Institute "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
16
|
Sakano H, Zorio DAR, Wang X, Ting YS, Noble WS, MacCoss MJ, Rubel EW, Wang Y. Proteomic analyses of nucleus laminaris identified candidate targets of the fragile X mental retardation protein. J Comp Neurol 2017; 525:3341-3359. [PMID: 28685837 DOI: 10.1002/cne.24281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 12/17/2022]
Abstract
The avian nucleus laminaris (NL) is a brainstem nucleus necessary for binaural processing, analogous in structure and function to the mammalian medial superior olive. In chickens (Gallus gallus), NL is a well-studied model system for activity-dependent neural plasticity. Its neurons have bipolar extension of dendrites, which receive segregated inputs from two ears and display rapid and compartment-specific reorganization in response to unilateral changes in auditory input. More recently, fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates local protein translation, has been shown to be enriched in NL dendrites, suggesting its potential role in the structural dynamics of these dendrites. To explore the molecular role of FMRP in this nucleus, we performed proteomic analysis of NL, using micro laser capture and liquid chromatography tandem mass spectrometry. We identified 657 proteins, greatly represented in pathways involved in mitochondria, translation and metabolism, consistent with high levels of activity of NL neurons. Of these, 94 are potential FMRP targets, by comparative analysis with previously proposed FMRP targets in mammals. These proteins are enriched in pathways involved in cellular growth, cellular trafficking and transmembrane transport. Immunocytochemistry verified the dendritic localization of several proteins in NL. Furthermore, we confirmed the direct interaction of FMRP with one candidate, RhoC, by in vitro RNA binding assays. In summary, we provide a database of highly expressed proteins in NL and in particular a list of potential FMRP targets, with the goal of facilitating molecular characterization of FMRP signaling in future studies.
Collapse
Affiliation(s)
- Hitomi Sakano
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, School of Medicine, Seattle, Washington
| | - Diego A R Zorio
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Xiaoyu Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Ying S Ting
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, School of Medicine, Seattle, Washington
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida.,Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
17
|
Xu B, Kumazawa A, Kobayashi S, Hisanaga SI, Inoue T, Ohshima T. Cdk5 activity is required for Purkinje cell dendritic growth in cell-autonomous and non-cell-autonomous manners. Dev Neurobiol 2017; 77:1175-1187. [PMID: 28589675 DOI: 10.1002/dneu.22507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/27/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is recognized as a unique member among other Cdks due to its versatile roles in many biochemical processes in the nervous system. The proper development of neuronal dendrites is required for the formation of complex neural networks providing the physiological basis of various neuronal functions. We previously reported that sparse dendrites were observed on cultured Cdk5-null Purkinje cells and Purkinje cells in Wnt1cre -mediated Cdk5 conditional knockout (KO) mice. In the present study, we generated L7cre -mediated p35; p39 double KO (L7cre -p35f/f ; p39-/- ) mice whose Cdk5 activity was eliminated specifically in Purkinje cells of the developing cerebellum. Consequently, these mice exhibited defective Purkinje cell migration, motor coordination deficiency and a Purkinje dendritic abnormality similar to what we have observed before, suggesting that dendritic growth of Purkinje cells was cell-autonomous in vivo. We found that mixed and overlay cultures of WT cerebellar cells rescued the dendritic deficits in Cdk5-null Purkinje cells, however, indicating that Purkinje cell dendritic development was also supported by non-cell-autonomous factors. We then again rescued these abnormalities in vitro by applying exogenous brain-derived neurotrophic factor (BDNF). Based on the results from culture experiments, we attempted to rescue the developmental defects of Purkinje cells in L7cre -p35f/f ; p39-/- mice by using a TrkB agonist. We observed partial rescue of morphological defects of dendritic structures of Purkinje cells. These results suggest that Cdk5 activity is required for Purkinje cell dendritic growth in cell-autonomous and non-cell-autonomous manners. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1175-1187, 2017.
Collapse
Affiliation(s)
- Bozong Xu
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, Tokyo, 162-8480, Japan
| | - Ayumi Kumazawa
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, Tokyo, 162-8480, Japan.,Department of Biological Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Shunsuke Kobayashi
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, Tokyo, 162-8480, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, Laboratory for Neurophysiology, Waseda University, Tokyo, 162-8480, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, Tokyo, 162-8480, Japan
| |
Collapse
|
18
|
Fibrin hydrogels induce mixed dorsal/ventral spinal neuron identities during differentiation of human induced pluripotent stem cells. Acta Biomater 2017; 51:237-245. [PMID: 28088670 DOI: 10.1016/j.actbio.2017.01.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 12/21/2022]
Abstract
We hypothesized that generating spinal motor neurons (sMNs) from human induced pluripotent stem cell (hiPSC)-derived neural aggregates (NAs) using a chemically-defined differentiation protocol would be more effective inside of 3D fibrin hydrogels compared to 2D poly-L-ornithine(PLO)/laminin-coated tissue culture plastic surfaces. We performed targeted RNA-Seq using next generation sequencing to determine the substrate-specific differences in gene expression that regulate cell phenotype. Cells cultured on both substrates expressed sMN genes CHAT and MNX1, though persistent WNT signaling contributed to a higher expression of genes associated with interneurons in NAs cultured in 3D fibrin scaffolds. Cells in fibrin also expressed lower levels of astrocyte progenitor genes and higher levels of the neuronal-specific gene TUBB3, suggesting a purer population of neurons compared to 2D cultures. STATEMENT OF SIGNIFICANCE Fibrin scaffolds can support the neuronal differentiation of pluripotent stem cells. This study provides insight into how fibrin hydrogels affect neuronal induction by analyzing of the signaling pathways activated during the differentiation process. These insights can then be used to tailor the properties of these hydrogels to optimize the generation of sMNs for regenerative medicine applications.
Collapse
|
19
|
Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, Sendtner M, Buchner E. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol 2016; 146:489-512. [PMID: 27344443 PMCID: PMC5037158 DOI: 10.1007/s00418-016-1457-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 02/07/2023]
Abstract
Synapse-associated protein 1 (Syap1/BSTA) is the mammalian homologue of Sap47 (synapse-associated protein of 47 kDa) in Drosophila. Sap47 null mutant larvae show reduced short-term synaptic plasticity and a defect in associative behavioral plasticity. In cultured adipocytes, Syap1 functions as part of a complex that phosphorylates protein kinase Bα/Akt1 (Akt1) at Ser(473) and promotes differentiation. The role of Syap1 in the vertebrate nervous system is unknown. Here, we generated a Syap1 knock-out mouse and show that lack of Syap1 is compatible with viability and fertility. Adult knock-out mice show no overt defects in brain morphology. In wild-type brain, Syap1 is found widely distributed in synaptic neuropil, notably in regions rich in glutamatergic synapses, but also in perinuclear structures associated with the Golgi apparatus of specific groups of neuronal cell bodies. In cultured motoneurons, Syap1 is located in axons and growth cones and is enriched in a perinuclear region partially overlapping with Golgi markers. We studied in detail the influence of Syap1 knockdown and knockout on structure and development of these cells. Importantly, Syap1 knockout does not affect motoneuron survival or axon growth. Unexpectedly, neither knockdown nor knockout of Syap1 in cultured motoneurons is associated with reduced Ser(473) or Thr(308) phosphorylation of Akt. Our findings demonstrate a widespread expression of Syap1 in the mouse central nervous system with regionally specific distribution patterns as illustrated in particular for olfactory bulb, hippocampus, and cerebellum.
Collapse
Affiliation(s)
- Dominique Schmitt
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher Str. 5, 97078, Würzburg, Germany
| | - Natalia Funk
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher Str. 5, 97078, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher Str. 5, 97078, Würzburg, Germany
| | - Esther Asan
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070, Würzburg, Germany
| | - Lill Andersen
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher Str. 5, 97078, Würzburg, Germany
| | - Erich Buchner
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher Str. 5, 97078, Würzburg, Germany.
| |
Collapse
|
20
|
Barnat M, Benassy MN, Vincensini L, Soares S, Fassier C, Propst F, Andrieux A, von Boxberg Y, Nothias F. The GSK3–MAP1B pathway controls neurite branching and microtubule dynamics. Mol Cell Neurosci 2016; 72:9-21. [DOI: 10.1016/j.mcn.2016.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/19/2015] [Accepted: 01/06/2016] [Indexed: 01/05/2023] Open
|
21
|
Takada S, Mizuno K, Saito T, Asada A, Giese KP, Hisanaga SI. Effects of p35 Mutations Associated with Mental Retardation on the Cellular Function of p35-CDK5. PLoS One 2015; 10:e0140821. [PMID: 26469698 PMCID: PMC4607440 DOI: 10.1371/journal.pone.0140821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/29/2015] [Indexed: 12/02/2022] Open
Abstract
p35 is an activation subunit of the cyclin-dependent kinase 5 (CDK5), which is a Ser/Thr kinase that is expressed predominantly in neurons. Disruption of the CDK5 or p35 (CDK5R1) genes induces abnormal neuronal layering in various regions of the mouse brain via impaired neuronal migration, which may be relevant for mental retardation in humans. Accordingly, mutations in the p35 gene were reported in patients with nonsyndromic mental retardation; however, their effect on the biochemical function of p35 has not been examined. Here, we studied the biochemical effect of mutant p35 on its known properties, i.e., stability, CDK5 activation, and cellular localization, using heterologous expression in cultured cells. We also examined the effect of the mutations on axon elongation in cultured primary neurons and migration of newborn neurons in embryonic brains. However, we did not detect any significant differences in the effects of the mutant forms of p35 compared with wild-type p35. Therefore, we conclude that these p35 mutations are unlikely to cause mental retardation.
Collapse
Affiliation(s)
- Shunsuke Takada
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, Japan
| | - Keiko Mizuno
- Centre for Cellular Basis of Behavior, Institute of Psychiatry, King's College London, 125 Coldharbour Lane, London, United Kingdom
| | - Taro Saito
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, Japan
| | - Akiko Asada
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, Japan
| | - Karl Peter Giese
- Centre for Cellular Basis of Behavior, Institute of Psychiatry, King's College London, 125 Coldharbour Lane, London, United Kingdom
| | - Shin-ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, Japan
- * E-mail:
| |
Collapse
|
22
|
Abstract
Cyclin dependent kinase-5 (Cdk5), a family member of the cyclin-dependent kinases, plays a pivotal role in the central nervous system. During embryogenesis, Cdk5 is indispensable for brain development and, in the adult brain, it is essential for numerous neuronal processes, including higher cognitive functions such as learning and memory formation. However, Cdk5 activity becomes deregulated in several neurological disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, which leads to neurotoxicity. Therefore, precise control over Cdk5 activity is essential for its physiological functions. This Commentary covers the various mechanisms of Cdk5 regulation, including several recently identified protein activators and inhibitors of Cdk5 that control its activity in normal and diseased brains. We also discuss the autoregulatory activity of Cdk5 and its regulation at the transcriptional, post-transcriptional and post-translational levels. We finally highlight physiological and pathological roles of Cdk5 in the brain. Specific modulation of these protein regulators is expected to provide alternative strategies for the development of effective therapeutic interventions that are triggered by deregulation of Cdk5.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics, Departments of Psychiatry and of Medical & Molecular Genetics, Indiana University School of Medicine, Institute of Psychiatric Research, Neuroscience Research Building, 320 W. 15th St., Indianapolis, IN 46202, USA
| |
Collapse
|
23
|
Analysis of Cdk5-related phosphoproteomics in growth cones. J Mol Neurosci 2014; 52:384-91. [PMID: 24234032 DOI: 10.1007/s12031-013-0162-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
Neurons establish interactions with target cells via elongation and guidance of axons, and the growth cone plays pivotal roles in this process. Cyclin-dependent kinase 5 (Cdk5)is a key regulator of nervous system development. Cdk5 regulates several significant events by phosphorylating substrates that are involved in neurogenesis, and previous studies of Cdk5 have typically focused on single substrates. Here, we took anew approach to investigate Cdk5 substrates using mass spectrometry and bioinformatics analyses. Axonal growth cones were isolated and analyzed by HPLC-MALDI-MS/MS. In total, 178,617 MS/MS spectra were detected. Candidates were analyzed by GPS 2.1 and Scansite 3, which predicted that 2,664 and 275 sites, respectively, were potential phosphorylation sites of Cdk5. There were 190 overlapped phosphorylation sites, corresponding to 89 proteins. Those proteins correlated with axonal functions were classified, and two of them were verified using a classic site-specific mutation strategy. This is the first study in which the phosphoproteome of axonal growth cones was identified. The systematic examination of Cdk5 substrates could provide a reference for further study of molecular mechanisms of axonal growth cones, and new insights into treatments of neuronal disorders.
Collapse
|
24
|
He X, Ishizeki M, Mita N, Wada S, Araki Y, Ogura H, Abe M, Yamazaki M, Sakimura K, Mikoshiba K, Inoue T, Ohshima T. Cdk5/p35 is required for motor coordination and cerebellar plasticity. J Neurochem 2014; 131:53-64. [PMID: 24802945 DOI: 10.1111/jnc.12756] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/27/2014] [Accepted: 04/30/2014] [Indexed: 12/24/2022]
Abstract
Previous studies have implicated the role of Purkinje cells in motor learning and the underlying mechanisms have also been identified in great detail during the last decades. Here we report that cyclin-dependent kinase 5 (Cdk5)/p35 in Purkinje cell also contributes to synaptic plasticity. We previously showed that p35(-/-) (p35 KO) mice exhibited a subtle abnormality in brain structure and impaired spatial learning and memory. Further behavioral analysis showed that p35 KO mice had a motor coordination defect, suggesting that p35, one of the activators of Cdk5, together with Cdk5 may play an important role in cerebellar motor learning. Therefore, we created Purkinje cell-specific conditional Cdk5/p35 knockout (L7-p35 cKO) mice, analyzed the cerebellar histology and Purkinje cell morphology of these mice, evaluated their performance with balance beam and rota-rod test, and performed electrophysiological recordings to assess long-term synaptic plasticity. Our analyses showed that Purkinje cell-specific deletion of Cdk5/p35 resulted in no changes in Purkinje cell morphology but severely impaired motor coordination. Furthermore, disrupted cerebellar long-term synaptic plasticity was observed at the parallel fiber-Purkinje cell synapse in L7-p35 cKO mice. These results indicate that Cdk5/p35 is required for motor learning and involved in long-term synaptic plasticity.
Collapse
Affiliation(s)
- Xiaojuan He
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ito Y, Asada A, Kobayashi H, Takano T, Sharma G, Saito T, Ohta Y, Amano M, Kaibuchi K, Hisanaga SI. Preferential targeting of p39-activated Cdk5 to Rac1-induced lamellipodia. Mol Cell Neurosci 2014; 61:34-45. [PMID: 24877974 DOI: 10.1016/j.mcn.2014.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/29/2014] [Accepted: 05/26/2014] [Indexed: 01/15/2023] Open
Abstract
Cdk5 is a member of the cyclin-dependent kinase (Cdk) family that plays a role in various neuronal activities including brain development, synaptic regulation, and neurodegeneration. Cdk5 requires the neuronal specific activators, p35 and p39 for subcellular compartmentalization. However, it is not known how active Cdk5 is recruited to F-actin cytoskeleton, which is a Cdk5 target. Here we found p35 and p39 localized to F-actin rich regions of the plasma membrane and investigated the underlying targeting mechanism in vitro by expressing them with Rho family GTPases in Neuro2A cells. Both p35 and p39 accumulated at the cell peripheral lamellipodia and perinuclear regions, where active Rac1 is localized. Interestingly, p35 and p39 displayed different localization patterns as p35 was found more at the perinuclear region and p39 was found more in peripheral lamellipodia. We then confirmed this distinct localization in primary hippocampal neurons. We also determined that the localization of p39 to lamellipodia requires myristoylation and Lys clusters within the N-terminal p10 region. Additionally, we found that p39-Cdk5, but not p35-Cdk5 suppressed lamellipodia formation by reducing Rac1 activity. These results suggest that p39-Cdk5 has a dominant role in Rac1-dependent lamellipodial activity.
Collapse
Affiliation(s)
- Yuki Ito
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Akiko Asada
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hiroyuki Kobayashi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuya Takano
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Govinda Sharma
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Taro Saito
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara 252-0373, Japan
| | - Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
26
|
Liu X, Liu Y, Zhang J, Zhang W, Sun YE, Gu X, Ma Z. Intrathecal administration of roscovitine prevents remifentanil-induced postoperative hyperalgesia and decreases the phosphorylation of N-methyl-D-aspartate receptor and metabotropic glutamate receptor 5 in spinal cord. Brain Res Bull 2014; 106:9-16. [PMID: 24769228 DOI: 10.1016/j.brainresbull.2014.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 11/27/2022]
Abstract
N-methyl-D-aspartate receptor (NMDAR) and metabotropic glutamate receptor 5 (mGluR5) play an important role in nociceptive processing and central sensitization. Our previous study showed that tyrosine phosphorylation of NMDAR subunit 2B (NR2B) at Tyr1472 in spinal dorsal horn contributes to the postoperative hyperalgesia induced by remifentanil. Cyclin-dependent kinase 5 (Cdk5) has been implicated in synaptic plasticity, learning, memory and pain signaling via regulating the phosphorylation of NMDAR and mGluR5. In the present study, a rat model of postoperative pain was used to investigate the role of Cdk5 in spinal dorsal horn in remifentanil-induced hyperalgesia and the intervention of pretreatment with Cdk5 inhibitor roscovitine. Intraoperative infusion of remifentanil (0.04 mg/kg, subcutaneous) significantly enhanced mechanical allodynia and thermal hyperalgesia induced by plantar incision during the postoperative period (each lasting between 2 h and 48 h), which were attenuated by pretreatment with roscovitine. Correlated with the pain behavior changes, Western blotting revealed that there was a significant increase in the expression of Cdk5 and its activator p35/p25, and further the kinase activity of Cdk5 in spinal dorsal horn after intraoperative infusion of remifentanil. The phosphorylation of NR2A at Ser1232, the phosphorylation of NR2B at Tyr1472 and the phosphorylation of mGluR5 at Ser1167 were also significantly up-regulated. Furthermore, these increases were attenuated by pretreatment with roscovitine. These results suggested that Cdk5 may contribute to remifentanil-induced postoperative hyperalgesia via regulating the phosphorylation of NMDAR and mGluR5 in spinal dorsal horn. These findings provide experimental evidence for the further application of Cdk5 inhibitor in preventing remifentanil-induced hyperalgesia.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Juan Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Wei Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yu-E Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China.
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
27
|
Villarroel-Campos D, Gonzalez-Billault C. The MAP1B case: an old MAP that is new again. Dev Neurobiol 2014; 74:953-71. [PMID: 24700609 DOI: 10.1002/dneu.22178] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 12/24/2022]
Abstract
The functions of microtubule-associated protein 1B (MAP1B) have historically been linked to the development of the nervous system, based on its very early expression in neurons and glial cells. Moreover, mice in which MAP1B is genetically inactivated have been used extensively to show its role in axonal elongation, neuronal migration, and axonal guidance. In the last few years, it has become apparent that MAP1B has other cellular and molecular functions that are not related to its microtubule-stabilizing properties in the embryonic and adult brain. In this review, we present a systematic review of the canonical and novel functions of MAP1B and propose that, in addition to regulating the polymerization of microtubule and actin microfilaments, MAP1B also acts as a signaling protein involved in normal physiology and pathological conditions in the nervous system.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
28
|
Phosphorylation of drebrin by cyclin-dependent kinase 5 and its role in neuronal migration. PLoS One 2014; 9:e92291. [PMID: 24637538 PMCID: PMC3956921 DOI: 10.1371/journal.pone.0092291] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/20/2014] [Indexed: 01/30/2023] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5)-p35 is a proline-directed Ser/Thr kinase which plays a key role in neuronal migration, neurite outgrowth, and spine formation during brain development. Dynamic remodeling of cytoskeletons is required for all of these processes. Cdk5-p35 phosphorylates many cytoskeletal proteins, but it is not fully understood how Cdk5-p35 regulates cytoskeletal reorganization associated with neuronal migration. Since actin filaments are critical for the neuronal movement and process formation, we aimed to find Cdk5 substrates among actin-binding proteins. In this study, we isolated actin gels from mouse brain extracts, which contain many actin-binding proteins, and phosphorylated them by Cdk5-p35 in vitro. Drebrin, a side binding protein of actin filaments and well known for spine formation, was identified as a phosphorylated protein. Drebrin has two isoforms, an embryonic form drebrin E and an adult type long isoform drebrin A. Ser142 was identified as a common phosphorylation site to drebrin E and A and Ser342 as a drebrin A-specific site. Phosphorylated drebrin is localized at the distal area of total drebrin in the growth cone of cultured primary neurons. By expressing nonphosphorylatable or phosphorylation mimicking mutants in developing neurons in utero, the reversible phosphorylation/dephosphorylation reaction of drebrin was shown to be involved in radial migration of cortical neurons. These results suggest that Cdk5-p35 regulates neuronal migration through phosphorylation of drebrin in growth cone processes.
Collapse
|
29
|
Quan H, Wu X, Tian Y, Wang Y, Li C, Li H. Overexpression of CDK5 in Neural Stem Cells Facilitates Maturation of Embryonic Neurocytes Derived from Rats In Vitro. Cell Biochem Biophys 2014; 69:445-53. [DOI: 10.1007/s12013-014-9816-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 2013; 115:157-88. [PMID: 24361499 DOI: 10.1016/j.pneurobio.2013.11.006] [Citation(s) in RCA: 780] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/28/2013] [Accepted: 11/29/2013] [Indexed: 01/22/2023]
Abstract
Excitotoxicity, the specific type of neurotoxicity mediated by glutamate, may be the missing link between ischemia and neuronal death, and intervening the mechanistic steps that lead to excitotoxicity can prevent stroke damage. Interest in excitotoxicity began fifty years ago when monosodium glutamate was found to be neurotoxic. Evidence soon demonstrated that glutamate is not only the primary excitatory neurotransmitter in the adult brain, but also a critical transmitter for signaling neurons to degenerate following stroke. The finding led to a number of clinical trials that tested inhibitors of excitotoxicity in stroke patients. Glutamate exerts its function in large by activating the calcium-permeable ionotropic NMDA receptor (NMDAR), and different subpopulations of the NMDAR may generate different functional outputs, depending on the signaling proteins directly bound or indirectly coupled to its large cytoplasmic tail. Synaptic activity activates the GluN2A subunit-containing NMDAR, leading to activation of the pro-survival signaling proteins Akt, ERK, and CREB. During a brief episode of ischemia, the extracellular glutamate concentration rises abruptly, and stimulation of the GluN2B-containing NMDAR in the extrasynaptic sites triggers excitotoxic neuronal death via PTEN, cdk5, and DAPK1, which are directly bound to the NMDAR, nNOS, which is indirectly coupled to the NMDAR via PSD95, and calpain, p25, STEP, p38, JNK, and SREBP1, which are further downstream. This review aims to provide a comprehensive summary of the literature on excitotoxicity and our perspectives on how the new generation of excitotoxicity inhibitors may succeed despite the failure of the previous generation of drugs.
Collapse
Affiliation(s)
- Ted Weita Lai
- Graduate Institute of Clinical Medical Science, China Medical University, 91 Hsueh-Shih Road, 40402 Taichung, Taiwan; Translational Medicine Research Center, China Medical University Hospital, 2 Yu-De Road, 40447 Taichung, Taiwan.
| | - Shu Zhang
- Translational Medicine Research Center, China Medical University Hospital, 2 Yu-De Road, 40447 Taichung, Taiwan; Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, V6T 2B5 Vancouver, Canada
| | - Yu Tian Wang
- Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, V6T 2B5 Vancouver, Canada.
| |
Collapse
|
31
|
Gonzalez-Billault C, Muñoz-Llancao P, Henriquez DR, Wojnacki J, Conde C, Caceres A. The role of small GTPases in neuronal morphogenesis and polarity. Cytoskeleton (Hoboken) 2012; 69:464-85. [PMID: 22605667 DOI: 10.1002/cm.21034] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 12/21/2022]
Abstract
The highly dynamic remodeling and cross talk of the microtubule and actin cytoskeleton support neuronal morphogenesis. Small RhoGTPases family members have emerged as crucial regulators of cytoskeletal dynamics. In this review we will comprehensively analyze findings that support the participation of RhoA, Rac, Cdc42, and TC10 in different neuronal morphogenetic events ranging from migration to synaptic plasticity. We will specifically address the contribution of these GTPases to support neuronal polarity and axonal elongation.
Collapse
Affiliation(s)
- Christian Gonzalez-Billault
- Faculty of Sciences, Laboratory of Cell and Neuronal Dynamics, Department of Biology and Institute for Cell Dynamics and Biotechnology, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
32
|
Asada A, Saito T, Hisanaga SI. Phosphorylation of p35 and p39 by Cdk5 determines the subcellular location of the holokinase in a phosphorylation-site-specific manner. J Cell Sci 2012; 125:3421-9. [PMID: 22467861 DOI: 10.1242/jcs.100503] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cdk5 is a member of the cyclin-dependent kinase (Cdk) family, which is activated by neuronal activators p35 or p39. Cdk5 regulates a variety of neuronal activities including migration, synaptic activity and neuronal death. p35 and p39 impart cytoplasmic membrane association of p35-Cdk5 and p39-Cdk5, respectively, through their myristoylation, but it is not clearly understood how the cellular localization is related to different functions. We investigated the role of Cdk5 activity in the subcellular localization of p35-Cdk5 and p39-Cdk5. Cdk5 activity affected the localization of p35-Cdk5 and p39-Cdk5 through phosphorylation of p35 or p39. Using unphosphorylated or phosphomimetic mutants of p35 and p39, we found that phosphorylation at Ser8, common to p35 and p39, by Cdk5 regulated the cytoplasmic localization and perinuclear accumulation of unphosphorylated S8A mutants, and whole cytoplasmic distribution of phosphomimetic S8E mutants. Cdk5 activity was necessary to retain Cdk5-activator complexes in the cytoplasm. Nevertheless, small but distinct amounts of p35 and p39 were detected in the nucleus. In particular, nuclear p35 and p39 were increased when the Cdk5 activity was inhibited. p39 had a greater propensity to accumulate in the nucleus than p35, and phosphorylation at Thr84, specific to p39, regulated the potential nuclear localization activity of the Lys cluster in p39. These results suggest that the subcellular localization of the Cdk5-activator complexes is determined by its kinase activity, and also implicate a role for p39-Cdk5 in the nucleus.
Collapse
Affiliation(s)
- Akiko Asada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| | | | | |
Collapse
|
33
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a multifaceted serine/threonine kinase protein with important roles in the nervous system. Two related proteins, p35 and p39, activate Cdk5 upon direct binding. Over the past decade, Cdk5 activity has been demonstrated to regulate many events during brain development, including neuronal migration as well as axon and dendrite development. Recent evidence also suggests a pivotal role for Cdk5 in synaptic plasticity, behavior, and cognition. Dysfunction of Cdk5 has been implicated in a number of neurological disorders and neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick type C disease, and ischemia. Hyperactivation of Cdk5 due to the conversion of p35 to p25 by the calcium-dependent protease calpain during neurotoxicity also contributes to the pathological state. This review surveys recent literature surrounding Cdk5 in synaptic plasticity and homeostasis, with particular emphasis on Cdk5 kinase activity under neurodegenerative conditions.
Collapse
Affiliation(s)
- Susan C Su
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
34
|
Ye T, Fu AK, Ip NY. Cyclin-Dependent Kinase 5 in Axon Growth and Regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [DOI: 10.1016/b978-0-12-398309-1.00006-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Contreras-Vallejos E, Utreras E, Gonzalez-Billault C. Going out of the brain: non-nervous system physiological and pathological functions of Cdk5. Cell Signal 2011; 24:44-52. [PMID: 21924349 DOI: 10.1016/j.cellsig.2011.08.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/29/2011] [Indexed: 12/23/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that is mostly active in the nervous system, where it regulates several processes such as neuronal migration, actin and microtubule dynamics, axonal guidance, and synaptic plasticity, among other processes. In addition to these known functions, in the past few years, novel roles for Cdk5 outside of the nervous system have been proposed. These include roles in gene transcription, vesicular transport, apoptosis, cell adhesion, and migration in many cell types and tissues such as pancreatic cells, muscle cells, neutrophils, and others. In this review, we will summarize the recently studied non-neuronal functions of Cdk5, with a thorough analysis of the biological consequences of these novel roles.
Collapse
Affiliation(s)
- Erick Contreras-Vallejos
- Department of Biology and Institute for Cell Dynamics and Biotechnology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|
36
|
Zhu J, Li W, Mao Z. Cdk5: mediator of neuronal development, death and the response to DNA damage. Mech Ageing Dev 2011; 132:389-94. [PMID: 21600237 DOI: 10.1016/j.mad.2011.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/20/2011] [Accepted: 04/29/2011] [Indexed: 10/25/2022]
Abstract
In the central nervous system, cyclin-dependent kinase 5 (Cdk5), an unusual member of the Cdk family, is implicated in the regulation of various physiological processes ranging from neuronal survival, migration and differentiation, to synaptogenesis, synaptic plasticity and neurotransmission. Dysregulation of this kinase has been demonstrated to play a critical role in the pathogenic process of neurodegenerative disorders. DNA damage is emerging as an important pathological component in various neurodegenerative conditions. In this review, we discuss the recent progress regarding the regulation and roles of Cdk5 under physiological conditions, and its dysregulation under pathological conditions, especially in neuronal death mediated by DNA damage.
Collapse
Affiliation(s)
- Jinqiu Zhu
- Department of Pharmacology, Emory University School of Medicine, Whitehead Bldg., Rm505L 615 Michael St., Atlanta, GA 30322, USA
| | | | | |
Collapse
|
37
|
Lopes JP, Agostinho P. Cdk5: multitasking between physiological and pathological conditions. Prog Neurobiol 2011; 94:49-63. [PMID: 21473899 DOI: 10.1016/j.pneurobio.2011.03.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 01/11/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a peculiar proline-directed serine/threonine kinase. Unlike the other members of the Cdk family, Cdk5 is not directly involved in cell cycle regulation, being normally associated with neuronal processes such as migration, cortical layering and synaptic plasticity. This kinase is present mainly in post-mitotic neurons and its activity is tightly regulated by the interaction with the specific activators, p35 and p39. Despite its pivotal role in CNS development, Cdk5 dysregulation has been implicated in different pathologies, such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and, most recently, prion-related encephalopathies (PRE). In these neurodegenerative conditions, Cdk5 overactivation and relocalization occurs upon association with p25, a truncated form of the normal activator p35. This activator switching will cause a shift in the phosphorylative pattern of Cdk5, with an alteration both in targets and activity, ultimately leading to neuronal demise. In AD and PRE, two disorders that share clinical and neuropathological features, Cdk5 dysregulation is a linking event between the major neuropathological markers: amyloid plaques, tau hyperphosphorylation and synaptic and neuronal loss. Moreover, this kinase was shown to be involved in abortive cell cycle re-entry, a feature recently proposed as a possible step in the neuronal apoptosis mechanism of several neurological diseases. This review focuses on the role of Cdk5 in neurons, namely in the regulation of cytoskeletal dynamics, synaptic function and cell survival, both in physiological and in pathological conditions, highlighting the relevance of Cdk5 in the main mechanisms of neurodegeneration in Alzheimer's disease and other brain pathologies.
Collapse
Affiliation(s)
- Joao P Lopes
- Center for Neuroscience and Cell Biology, Faculty of Medicine, Biochemistry Institute, University of Coimbra, 3004 Coimbra, Portugal.
| | | |
Collapse
|
38
|
Hisanaga SI, Endo R. Regulation and role of cyclin-dependent kinase activity in neuronal survival and death. J Neurochem 2010; 115:1309-21. [PMID: 21044075 DOI: 10.1111/j.1471-4159.2010.07050.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclin-dependent kinase (Cdk)5 is a proline-directed Ser/Thr protein kinase that functions mainly in neurons and is activated by binding to a regulatory subunit, p35 or p39. Kinase activity is mainly determined by the amount of p35 available, which is controlled by a balance between synthesis and degradation. Kinase activity is also regulated by Cdk5 phosphorylation, but the activity of phosphorylated Cdk5 is in contrast to that of cycling Cdks. Cdk5 is a versatile protein kinase that regulates multiple neuronal activities including neuronal migration and synaptic signaling. Further, Cdk5 plays a role in both survival and death of neurons. Long-term inactivation of Cdk5 triggers cell death, and the survival activity of Cdk5 is apparent when neurons suffer from stress. In contrast, hyper-activation of Cdk5 by p25 promotes cell death, probably by reactivating cell-cycle machinery in the nucleus. The pro-death activity is suppressed by membrane association of Cdk5 via myristoylation of p35. Appropriate activity, localization, and regulation of Cdk5 may be critical for long-term survival of neurons, which is more than 80 years in the case of humans.
Collapse
Affiliation(s)
- Shin-ichi Hisanaga
- Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| | | |
Collapse
|
39
|
Krapacher FA, Mlewski EC, Ferreras S, Pisano V, Paolorossi M, Hansen C, Paglini G. Mice lacking p35 display hyperactivity and paradoxical response to psychostimulants. J Neurochem 2010; 114:203-14. [PMID: 20403084 DOI: 10.1111/j.1471-4159.2010.06748.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclin-dependent kinase 5/p35 kinase complex plays a critical role in dopaminergic neurotransmission. Dysregulation of dopamine (DA) signaling is associated with neurological and neuropsychiatric disorders. As cyclin-dependent kinase 5 (Cdk5) requires association with p35 for its proper activation, we hypothesized that dysregulation of Cdk5 activity might have an effect on striatal-mediated behavior. We used a mutant mouse, deficient in p35 protein (p35 KO), which displayed reduced Cdk5 activity. Throughout behavioral and biochemical characterization of naïve and psychostimulant-treated mice, we demonstrated that only juvenile p35 KO mice displayed spontaneous hyperactivity, responded with a paradoxical hypolocomotor effect to psychostimulant drugs and exhibited deficit on proper behavioral inhibition. Strong immunolabeling for tyrosine-hydroxylase and high striatal DA synthesis and contents with a low DA turnover, which were reverted by psychostimulants, were also found in mutant mice. Our results demonstrate that p35 deficiency is critically involved in the expression of a hyperactive behavioral phenotype with hyper-functioning of the dopaminergic system, emphasizing the importance of proper Cdk5 kinase activity for normal motor and emotional features. Thus, p35 KO mice may be another useful animal model for understanding cellular and molecular events underlying attention deficit hyperactivity disorder-like disorders.
Collapse
Affiliation(s)
- Favio Ariel Krapacher
- Laboratory of Neurobiology and Cell Biology, Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), 5016 Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
40
|
Tymanskyj SR, Lin S, Gordon-Weeks PR. Evolution of the spatial distribution of MAP1B phosphorylation sites in vertebrate neurons. J Anat 2010; 216:692-704. [PMID: 20408908 DOI: 10.1111/j.1469-7580.2010.01228.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The microtubule-associated protein MAP1B has important roles in neural development, particularly in migrating and differentiating neurons. MAP1B is phosphorylated by glycogen synthase kinase 3beta (GSK-3beta) at a site that requires prior phosphorylation by another kinase four amino acid residues downstream of the GSK-3beta site, a so-called primed site, and at non-primed sites that have no such requirement. In developing mammalian neurons, MAP1B phosphorylated by GSK-3beta at primed and non-primed sites is distributed in spatially distinct patterns. Non-primed GSK-3beta-phosphorylated MAP1B sites are only expressed in axons and are present in the form of a gradient that is highest distally, towards the growth cone. In contrast, primed GSK-3beta-phosphorylated MAP1B sites are present throughout the neuron including the somato-dendritic compartment and uniformly throughout the axon. To examine the function of these two sites, we explored the evolutionary conservation of the spatial distribution of GSK-3beta primed and non-primed sites on MAP1B in vertebrate neurons. We immunostained spinal cord sections from embryonic or newly hatched representatives of all of the main vertebrate groups using phospho-specific antibodies to GSK-3beta primed and non-primed sites on MAP1B. This revealed a remarkable evolutionary conservation of the distribution of primed and non-primed GSK-3beta-phosphorylated MAP1B sites in developing vertebrate neurons. By analysing amino acid sequences of MAP1B we found that non-primed GSK-3beta sites are more highly conserved than primed sites throughout the vertebrates, suggesting that the latter evolved later. Finally, distinct distribution patterns of GSK-3beta primed and non-primed sites on MAP1B were preserved in cultured rat embryonic cortical neurons, opening up the possibility of studying the two sites in vitro.
Collapse
Affiliation(s)
- Stephen R Tymanskyj
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | | | | |
Collapse
|
41
|
Scales TME, Lin S, Kraus M, Goold RG, Gordon-Weeks PR. Nonprimed and DYRK1A-primed GSK3 beta-phosphorylation sites on MAP1B regulate microtubule dynamics in growing axons. J Cell Sci 2009; 122:2424-35. [PMID: 19549690 PMCID: PMC2704879 DOI: 10.1242/jcs.040162] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2009] [Indexed: 12/26/2022] Open
Abstract
MAP1B is a developmentally regulated microtubule-associated phosphoprotein that regulates microtubule dynamics in growing axons and growth cones. We used mass spectrometry to map 28 phosphorylation sites on MAP1B, and selected for further study a putative primed GSK3 beta site and compared it with two nonprimed GSK3 beta sites that we had previously characterised. We raised a panel of phosphospecific antibodies to these sites on MAP1B and used it to assess the distribution of phosphorylated MAP1B in the developing nervous system. This showed that the nonprimed sites are restricted to growing axons, whereas the primed sites are also expressed in the neuronal cell body. To identify kinases phosphorylating MAP1B, we added kinase inhibitors to cultured embryonic cortical neurons and monitored MAP1B phosphorylation with our panel of phosphospecific antibodies. These experiments identified dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK1A) as the kinase that primes sites of GSK3 beta phosphorylation in MAP1B, and we confirmed this by knocking down DYRK1A in cultured embryonic cortical neurons by using shRNA. DYRK1A knockdown compromised neuritogenesis and was associated with alterations in microtubule stability. These experiments demonstrate that MAP1B has DYRK1A-primed and nonprimed GSK3 beta sites that are involved in the regulation of microtubule stability in growing axons.
Collapse
Affiliation(s)
- Timothy M E Scales
- The MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
42
|
Crews L, Patrick C, Achim CL, Everall IP, Masliah E. Molecular pathology of neuro-AIDS (CNS-HIV). Int J Mol Sci 2009; 10:1045-1063. [PMID: 19399237 PMCID: PMC2672018 DOI: 10.3390/ijms10031045] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/05/2009] [Accepted: 03/09/2009] [Indexed: 11/17/2022] Open
Abstract
The cognitive deficits in patients with HIV profoundly affect the quality of life of people living with this disease and have often been linked to the neuro-inflammatory condition known as HIV encephalitis (HIVE). With the advent of more effective anti-retroviral therapies, HIVE has shifted from a sub-acute to a chronic condition. The neurodegenerative process in patients with HIVE is characterized by synaptic and dendritic damage to pyramidal neurons, loss of calbindin-immunoreactive interneurons and myelin loss. The mechanisms leading to neurodegeneration in HIVE might involve a variety of pathways, and several lines of investigation have found that interference with signaling factors mediating neuroprotection might play an important role. These signaling pathways include, among others, the GSK3beta, CDK5, ERK, Pyk2, p38 and JNK cascades. Of these, GSK3beta has been a primary focus of many previous studies showing that in infected patients, HIV proteins and neurotoxins secreted by immune-activated cells in the brain abnormally activate this pathway, which is otherwise regulated by growth factors such as FGF. Interestingly, modulation of the GSK3beta signaling pathway by FGF1 or GSK3beta inhibitors (lithium, valproic acid) is protective against HIV neurotoxicity, and several pilot clinical trials have demonstrated cognitive improvements in HIV patients treated with GSK3beta inhibitors. In addition to the GSK3beta pathway, the CDK5 pathway has recently been implicated as a mediator of neurotoxicity in HIV, and HIV proteins might activate this pathway and subsequently disrupt the diverse processes that CDK5 regulates, including synapse formation and plasticity and neurogenesis. Taken together, the GSK3beta and CDK5 signaling pathways are important regulators of neurotoxicity in HIV, and modulation of these factors might have therapeutic potential in the treatment of patients suffering from HIVE. In this context, the subsequent sections will focus on reviewing the involvement of the GSK3beta and CDK5 pathways in neurodegeneration in HIV.
Collapse
Affiliation(s)
- Leslie Crews
- Department of Pathology, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
| | - Christina Patrick
- Department of Neurosciences, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
| | - Cristian L. Achim
- Department of Psychiatry, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mails:
(C.A.);
(I.E.)
| | - Ian P. Everall
- Department of Psychiatry, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mails:
(C.A.);
(I.E.)
| | - Eliezer Masliah
- Department of Pathology, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
- Department of Neurosciences, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +1 (858) 534-8992; Fax: +1 (858) 534-6232
| |
Collapse
|
43
|
Stieler JT, Bullmann T, Kohl F, Barnes BM, Arendt T. PHF-like tau phosphorylation in mammalian hibernation is not associated with p25-formation. J Neural Transm (Vienna) 2009; 116:345-50. [PMID: 19184336 DOI: 10.1007/s00702-008-0181-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 12/19/2008] [Indexed: 01/03/2023]
Abstract
In Alzheimer's disease and related disorders, hyperphosphorylation of tau is associated with an increased activity of cyclin dependent kinase 5 (cdk5). Elevated cdk5 activity is thought to be due to the formation of p25 and thereby represents a critical element in the dysregulation of tau phosphorylation under pathological conditions. However, there is still a controversy regarding the correlation of p25 generation and tau pathology. Recently, we demonstrated physiological, paired helical filament-like tau phosphorylation that reversibly occurs in hibernating mammals. Here we used this model to test whether the tau phosphorylation in hibernation is associated with the formation of p25. Analysing brain material of arctic ground squirrels and Syrian hamsters we found no evidence for a hibernation dependent generation of p25. Hence, we suppose that phosphorylation of tau does not require the formation of p25. Instead we suggest that the truncation of p35 to p25 represents a characteristic of pathological alterations and may contribute to aggregation and deposition of hyperphosphorylated tau.
Collapse
Affiliation(s)
- Jens Thorsten Stieler
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute of Brain Research, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
44
|
Peng HY, Chen GD, Tung KC, Lai CY, Hsien MC, Chiu CH, Lu HT, Liao JM, Lee SD, Lin TB. Colon mustard oil instillation induced cross-organ reflex sensitization on the pelvic-urethra reflex activity in rats. Pain 2009; 142:75-88. [PMID: 19167822 DOI: 10.1016/j.pain.2008.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/10/2008] [Accepted: 11/26/2008] [Indexed: 12/30/2022]
Abstract
We investigated the participation of cyclin-dependent kinase-5 (Cdk5)-mediated N-methyl-D-aspartate receptor (NMDAR) NR2B subunit phosphorylation in cross-organ reflex sensitization caused by colon irritation. The external urethral sphincter electromyogram (EUSE) reflex activity evoked by the pelvic afferent nerve test stimulation (TS, 1 stimulation/30s) and protein expression in the spinal cord and dorsal root ganglion tissue (T13-L2 and L6-S2 ipsilateral to the stimulation) in response to colon mustard oil (MO) instillation were tested in anesthetized rats. When compared with a baseline reflex activity with a single action potential evoked by the TS before the administration of test agents, MO instillation into the descending colon sensitized the evoked activity characterized by elongated firing in the reflex activity in association with increased protein levels of Cdk5, PSD95, and phosphorylated NR2B (pNR2B) but not of total NR2B (tNR2B) in the spinal cord tissue. Both cross-organ reflex sensitization and increments in protein expression were reversed by intra-colonic pretreatments with ruthenium red (a non-selective transient receptor potential vanilloid, TRPV, antagonist), capsaizepine (a TRPV1-selective antagonist), lidocaine (a nerve conduction blocker) as well as by the intra-thecal pretreatment with APV (a NRMDR antagonist) Co-101244 (a NR2B-selective antagonist) and roscovitine (a Cdk5 antagonist). Moreover, compared with the control group, both the increase in pNR2B and the cross-organ reflex sensitization were attenuated in the si-RNA of NR2B rats. All these results suggested that Cdk-dependent NMDAR NR2B subunit phosphorylation mediates the development of cross-organ pelvic-urethra reflex sensitization caused by acute colon irritation which could possibly underlie the high concurrence of pelvic pain syndrome with irritable bowel syndrome.
Collapse
Affiliation(s)
- Hsien-Yu Peng
- Department of Physiology, College of Medicine, Chung-Shan Medical University, No. 110, Chang-Kuo North Rd. Section 1, Taichung 40201, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mlewski EC, Krapacher FA, Ferreras S, Paglini G. Transient enhanced expression of Cdk5 activator p25 after acute and chronic d-amphetamine administration. Ann N Y Acad Sci 2008; 1139:89-102. [PMID: 18991853 DOI: 10.1196/annals.1432.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cellular and molecular mechanisms of sensitization in the addictive process are still unclear. Recently, chronic treatment with cocaine has been shown to upregulate the expression of cyclin-dependent kinase 5 (cdk5) and its specific activator, p35, in the striatum, as a downstream target gene of DeltaFosB, and has been implicated in compensatory adaptive changes associated with psychostimulants. Cdk5 is a serine/threonine kinase and its activation is achieved through association with a regulatory subunit, either p35 or p39. P35 is cleaved by the protease calpain, which results in the generation of a truncated product termed p25, which contains all elements necessary for cdk5 activation. The cdk5/p35 complex plays an essential role in neuronal development and survival. It has also been involved in neuronal trafficking and transport and in dopaminergic transmission, indicating its role either in presynaptic and postsynaptic signaling. In this study we report that the cdk5/p35 complex participates in acute and chronic d-amphetamine (AMPH)-evoked behavioral events, and we show a surprisingly transient enhanced expression of p25 and a lasting increased expression of p35 in dorsal striatal synaptosomes after acute and chronic AMPH administration. Pak1, a substrate for cdk5, is also enriched in the synaptosomal fraction of acute AMPH-treated rats. Our data suggest that the transient upregulation of p25 may regulate the activity of cdk5 in phosphorylating particular substrates, such as Pak1, implicated in the compensatory adaptive morphophysiologic changes associated with the process of behavioral sensitization to psychostimulants.
Collapse
Affiliation(s)
- Estela Cecilia Mlewski
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Córdoba, Argentina
| | | | | | | |
Collapse
|
46
|
Donoso M, Cancino J, Lee J, van Kerkhof P, Retamal C, Bu G, Gonzalez A, Cáceres A, Marzolo MP. Polarized traffic of LRP1 involves AP1B and SNX17 operating on Y-dependent sorting motifs in different pathways. Mol Biol Cell 2008; 20:481-97. [PMID: 19005208 DOI: 10.1091/mbc.e08-08-0805] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic recycling receptor with two cytoplasmic tyrosine-based basolateral sorting signals. Here we show that during biosynthetic trafficking LRP1 uses AP1B adaptor complex to move from a post-TGN recycling endosome (RE) to the basolateral membrane. Then it recycles basolaterally from the basolateral sorting endosome (BSE) involving recognition by sorting nexin 17 (SNX17). In the biosynthetic pathway, Y(29) but not N(26) from a proximal NPXY directs LRP1 basolateral sorting from the TGN. A N(26)A mutant revealed that this NPXY motif recognized by SNX17 is required for the receptor's exit from BSE. An endocytic Y(63)ATL(66) motif also functions in basolateral recycling, in concert with an additional endocytic motif (LL(86,87)), by preventing LRP1 entry into the transcytotic apical pathway. All this sorting information operates similarly in hippocampal neurons to mediate LRP1 somatodendritic distribution regardless of the absence of AP1B in neurons. LRP1 basolateral distribution results then from spatially and temporally segregation steps mediated by recognition of distinct tyrosine-based motifs. We also demonstrate a novel function of SNX17 in basolateral/somatodendritic recycling from a different compartment than AP1B endosomes.
Collapse
Affiliation(s)
- Maribel Donoso
- Centro de Regulación Celular y Patología , Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and the Millenium Institute for Fundamental and Applied Biology, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nikolic M. Unravelling the complex role of Cdk5 in the developing cerebral cortex. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.6.729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The normal development of the mammalian CNS is entirely dependent on the coordinated behavior of its cellular components. Particular importance is attributed to the correct morphology, migration and communication of neurons. Recent years have seen the identification of many extracellular, cell surface and intracellular signaling molecules that are important for normal CNS development, consequently triggering huge progress in our understanding of the complex processes involved. A key molecule to emerge is Cdk5. To date, Cdk5 has been functionally linked with controlled neuronal morphology, migration, synaptic function, cognition, drug addiction, neuronal death and neurodegeneration. The complexity of its function has been confirmed by the ever increasing number of diverse upstream regulators, protein substrates and biological consequences of altered catalytic function. The aim of this review is to consolidate recent findings concerning the role of Cdk5 in the developing nervous system, particularly the cerebral cortex, where its importance is most clearly evidenced.
Collapse
Affiliation(s)
- Margareta Nikolic
- Department of Cellular & Molecular Neuroscience, Division of Neuroscience & Mental Health, School of Medicine, Imperial College London, Burlington Danes Building, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
48
|
Bignante EA, Rodriguez Manzanares PA, Mlewski EC, Bertotto ME, Bussolino DF, Paglini G, Molina VA. Involvement of septal Cdk5 in the emergence of excessive anxiety induced by stress. Eur Neuropsychopharmacol 2008; 18:578-88. [PMID: 18406108 DOI: 10.1016/j.euroneuro.2008.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/05/2008] [Accepted: 02/21/2008] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to evaluate whether the activation of Cdk5, a protein that has been suggested to participate in higher cognitive functions, is required for the onset of a sensitized anxiety-related behavior induced by stress. The exposure to restraint enhanced both Cdk5 expression in certain subareas of the septohippocampal system, principally in the lateral septum (LS) and septal Cdk5 kinase activity in rats. Behaviorally, restrained wild type mice showed a behavior indicative of enhanced anxiety in the elevated plus maze (EPM). In contrast, unstressed mice and stressed knockout mice, which lacked the p35 protein, the natural activator of Cdk5, displayed similar anxiety-like behavior in the EPM. Finally, the intra-LS infusion of olomoucine - a Cdk5 inhibitor - blocked the enhanced anxiety in the EPM induced by prior stress in rats. All these data provide evidence that septal Cdk5 is required in the emergence of a sensitized emotional process induced by stress.
Collapse
Affiliation(s)
- Elena Anahi Bignante
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Argentina
| | | | | | | | | | | | | |
Collapse
|
49
|
Kesavapany S, Lau KF, McLoughlin DM, Brownlees J, Ackerley S, Leigh PN, Shaw CE, Miller CCJ. p35/cdk5 binds and phosphorylates β-catenin and regulates β-catenin/presenilin-1 interaction. Eur J Neurosci 2008. [DOI: 10.1111/j.1460-9568.2001.01376.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Sun KH, de Pablo Y, Vincent F, Johnson EO, Chavers AK, Shah K. Novel genetic tools reveal Cdk5's major role in Golgi fragmentation in Alzheimer's disease. Mol Biol Cell 2008; 19:3052-69. [PMID: 18480410 PMCID: PMC2441653 DOI: 10.1091/mbc.e07-11-1106] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 04/15/2008] [Accepted: 05/05/2008] [Indexed: 12/17/2022] Open
Abstract
Golgi fragmentation is a common feature in multiple neurodegenerative diseases; however, the precise mechanism that causes fragmentation remains obscure. A potential link between Cdk5 and Golgi fragmentation in Alzheimer's disease (AD) was investigated in this study. Because Golgi is physiologically fragmented during mitosis by Cdc2 kinase and current Cdk5-specific chemical inhibitors target Cdc2 as well, development of novel tools to modulate Cdk5 activity was essential. These enzyme modulators, created by fusing TAT sequence to Cdk5 activators and an inhibitor peptide, enable specific activation and inhibition of Cdk5 activity with high temporal control. These genetic tools revealed a major role of Cdk5 in Golgi fragmentation upon beta-amyloid and glutamate stimulation in differentiated neuronal cells and primary neurons. A crucial role of Cdk5 was further confirmed when Cdk5 activation alone resulted in robust Golgi disassembly. The underlying mechanism was unraveled using a chemical genetic screen, which yielded cis-Golgi matrix protein GM130 as a novel substrate of Cdk5. Identification of the Cdk5 phosphorylation site on GM130 suggested a mechanism by which Cdk5 may cause Golgi fragmentation upon deregulation in AD. As Cdk5 is activated in several neurodegenerative diseases where Golgi disassembly also occurs, this may be a common mechanism among multiple disorders.
Collapse
Affiliation(s)
- Kai-Hui Sun
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Yolanda de Pablo
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Fabien Vincent
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Emmanuel O. Johnson
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Angela K. Chavers
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Kavita Shah
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|