1
|
The role of genetic background in susceptibility to chemical warfare nerve agents across rodent and non-human primate models. Toxicology 2017; 393:51-61. [PMID: 29113833 DOI: 10.1016/j.tox.2017.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/13/2017] [Accepted: 11/02/2017] [Indexed: 11/22/2022]
Abstract
Genetics likely play a role in various responses to nerve agent exposure, as genetic background plays an important role in behavioral, neurological, and physiological responses to environmental stimuli. Mouse strains or selected lines can be used to identify susceptibility based on background genetic features to nerve agent exposure. Additional genetic techniques can then be used to identify mechanisms underlying resistance and sensitivity, with the ultimate goal of developing more effective and targeted therapies. Here, we discuss the available literature on strain and selected line differences in cholinesterase activity levels and response to nerve agent-induced toxicity and seizures. We also discuss the available cholinesterase and toxicity literature across different non-human primate species. The available data suggest that robust genetic differences exist in cholinesterase activity, nerve agent-induced toxicity, and chemical-induced seizures. Available cholinesterase data suggest that acetylcholinesterase activity differs across strains, but are limited by the paucity of carboxylesterase data in strains and selected lines. Toxicity and seizures, two outcomes of nerve agent exposure, have not been fully evaluated for genetic differences, and thus further studies are required to understand baseline strain and selected line differences.
Collapse
|
2
|
Winawer MR, Klassen TL, Teed S, Shipman M, Leung EH, Palmer AA. A locus on mouse Ch10 influences susceptibility to limbic seizure severity: fine mapping and in silico candidate gene analysis. GENES BRAIN AND BEHAVIOR 2014; 13:341-9. [PMID: 24373497 DOI: 10.1111/gbb.12116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/19/2013] [Accepted: 12/16/2013] [Indexed: 11/29/2022]
Abstract
Identification of genes contributing to mouse seizure susceptibility can reveal novel genes or pathways that provide insight into human epilepsy. Using mouse chromosome substitution strains and interval-specific congenic strains (ISCS), we previously identified an interval conferring pilocarpine-induced limbic seizure susceptibility on distal mouse chromosome 10 (Ch10). We narrowed the region by generating subcongenics with smaller A/J Ch10 segments on a C57BL/6J (B6) background and tested them with pilocarpine. We also tested pilocarpine-susceptible congenics for 6-Hz ECT (electroconvulsive threshold), another model of limbic seizure susceptibility, to determine whether the susceptibility locus might have a broad effect on neuronal hyperexcitability across more than one mode of limbic seizure induction. The ISCS Line 1, which contained the distal 2.7 Mb segment from A/J (starting at rs29382217), was more susceptible to both pilocarpine and ECT. Line 2, which was a subcongenic of Line 1 (starting at rs13480828), was not susceptible, thus defining a 1.0 Mb critical region that was unique to Line 1. Bioinformatic approaches identified 45 human orthologs within the unique Line 1 susceptibility region, the majority syntenic to human Ch12. Applying an epilepsy network analysis of known and suspected excitability genes and examination of interstrain genomic and brain expression differences revealed novel candidates within the region. These include Stat2, which plays a role in hippocampal GABA receptor expression after status epilepticus, and novel candidates Pan2, Cdk2, Gls2 and Cs, which are involved in neural cell differentiation, cellular remodeling and embryonic development. Our strategy may facilitate discovery of novel human epilepsy genes.
Collapse
Affiliation(s)
- M R Winawer
- Department of Neurology; G.H. Sergievsky Center, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
3
|
Miller AR, Hawkins NA, McCollom CE, Kearney JA. Mapping genetic modifiers of survival in a mouse model of Dravet syndrome. GENES BRAIN AND BEHAVIOR 2013; 13:163-72. [PMID: 24152123 DOI: 10.1111/gbb.12099] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/06/2013] [Accepted: 10/21/2013] [Indexed: 12/26/2022]
Abstract
Epilepsy is a common neurological disorder affecting approximately 1% of the population. Mutations in voltage-gated sodium channels are responsible for several monogenic epilepsy syndromes. More than 800 mutations in the voltage-gated sodium channel SCN1A have been reported in patients with generalized epilepsy with febrile seizures plus and Dravet syndrome. Heterozygous loss-of-function mutations in SCN1A result in Dravet syndrome, a severe infant-onset epileptic encephalopathy characterized by intractable seizures, developmental delays and increased mortality. A common feature of monogenic epilepsies is variable expressivity among individuals with the same mutation, suggesting that genetic modifiers may influence clinical severity. Mice with heterozygous deletion of Scn1a (Scn1a(+/-) ) model a number of Dravet syndrome features, including spontaneous seizures and premature lethality. Phenotype severity in Scn1a(+/-) mice is strongly dependent on strain background. On the 129S6/SvEvTac strain Scn1a(+/-) mice exhibit no overt phenotype, whereas on the (C57BL/6J × 129S6/SvEvTac)F1 strain Scn1a(+/-) mice exhibit spontaneous seizures and early lethality. To systematically identify loci that influence premature lethality in Scn1a(+/-) mice, we performed genome scans on reciprocal backcrosses. Quantitative trait locus mapping revealed modifier loci on mouse chromosomes 5, 7, 8 and 11. RNA-seq analysis of strain-dependent gene expression, regulation and coding sequence variation provided a list of potential functional candidate genes at each locus. Identification of modifier genes that influence survival in Scn1a(+/-) mice will improve our understanding of the pathophysiology of Dravet syndrome and may suggest novel therapeutic strategies for improved treatment of human patients.
Collapse
Affiliation(s)
- A R Miller
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|
4
|
Parker CC, Sokoloff G, Leung E, Kirkpatrick SL, Palmer AA. A large QTL for fear and anxiety mapped using an F2 cross can be dissected into multiple smaller QTLs. GENES BRAIN AND BEHAVIOR 2013; 12:714-22. [PMID: 23876074 DOI: 10.1111/gbb.12064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/24/2013] [Accepted: 07/18/2013] [Indexed: 11/26/2022]
Abstract
Using chromosome substitution strains (CSS), we previously identified a large quantitative trait locus (QTL) for conditioned fear (CF) on mouse chromosome 10. Here, we used an F2 cross between CSS-10 and C57BL/6J (B6) to localize that QTL to distal chromosome 10. That QTL accounted for all the difference between CSS-10 and B6. We then produced congenic strains to fine-map that interval. We identified two congenic strains that captured some or all the QTL. The larger congenic strain (Line 1: 122.387121-129.068 Mb; build 37) appeared to account for all the difference between CSS-10 and B6. The smaller congenic strain (Line 2: 127.277-129.068 Mb) was intermediate between CSS-10 and B6. We used haplotype mapping followed by quantitative polymerase chain reaction to identify one gene that was differentially expressed in both lines relative to B6 (Rnf41) and one that was differentially expressed between only Line 1 and B6 (Shmt2). These cis-eQTLs may cause the behavioral QTLs; however, further studies are required to validate these candidate genes. More generally, our observation that a large QTL mapped using CSS and F2 crosses can be dissected into multiple smaller QTLs shows a weaknesses of two-stage approaches that seek to use coarse mapping to identify large regions followed by fine-mapping. Indeed, additional dissection of these congenic strains might result in further subdivision of these QTL regions. Despite these limitations, we have successfully fine-mapped two QTLs to small regions and identified putative candidate genes, showing that the congenic approach can be effective for fine-mapping QTLs.
Collapse
|
5
|
Hawkins NA, Kearney JA. Confirmation of an epilepsy modifier locus on mouse chromosome 11 and candidate gene analysis by RNA-Seq. GENES BRAIN AND BEHAVIOR 2012; 11:452-60. [PMID: 22471526 DOI: 10.1111/j.1601-183x.2012.00790.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epilepsy is a neurological disorder affecting approximately 1% of the worldwide population. Mutations in voltage-gated sodium channels have been identified in several monogenic epilepsy syndromes. Over 800 mutations have been identified in the voltage-gated sodium channel genes SCN1A and SCN2A in human epilepsies, including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. In GEFS+ families, affected members with the same mutation often display variability in clinical severity of the disease. This suggests that additional genes modify the effect of the primary mutation, resulting in the variable clinical presentation. The Scn2a(Q54) transgenic mouse model has an epilepsy phenotype that varies depending on the genetic strain background. Scn2a(Q54) mice congenic on the C57BL/6J strain exhibit delayed seizure onset and improved survival compared to (C57BL/6J × SJL/J)F1.Q54 mice. Two modifier loci of Scn2a(Q54) seizure susceptibility were mapped and designated Moe1 (modifier of epilepsy) on chromosome (chr) 11 and Moe2 on chr 19. To confirm Moe1 and refine its position, we generated interval-specific congenic lines carrying C57BL/6J-derived chr 11 alleles on the SJL/J strain and refined the map position to 89-104 Mb. We then used RNA-Seq for candidate analysis in the modifier region. C57BL/6J and SJL/J male and female brain RNAs were sequenced, revealing numerous significant transcriptome differences and coding single-nucleotide polymorphisms. Additional consideration of gene function and expression suggested several strong candidate modifier genes, including two voltage-gated calcium channel subunits, Cacna1g and Cacnb1, and the proline and acidic amino acid-rich basic leucine zipper transcription factor, Hlf.
Collapse
Affiliation(s)
- N A Hawkins
- Neuroscience Program Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
6
|
Winawer MR, Gildersleeve SS, Phillips AG, Rabinowitz D, Palmer AA. Mapping a mouse limbic seizure susceptibility locus on chromosome 10. Epilepsia 2011; 52:2076-83. [PMID: 21906048 DOI: 10.1111/j.1528-1167.2011.03256.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Mapping seizure susceptibility loci in mice provides a framework for identifying potentially novel candidate genes for human epilepsy. Using C57BL/6J × A/J chromosome substitution strains (CSS), we previously identified a locus on mouse chromosome 10 (Ch10) conferring susceptibility to pilocarpine, a muscarinic cholinergic agonist that models human temporal lobe epilepsy by inducing initial limbic seizures and status epilepticus (status), followed by hippocampal cell loss and delayed-onset chronic spontaneous limbic seizures. Herein we report further genetic mapping of pilocarpine quantitative trait loci (QTLs) on Ch10. METHODS Seventy-nine Ch10 F(2) mice were used to map QTLs for duration of partial status epilepticus and the highest stage reached in response to pilocarpine. Based on those results we created interval-specific congenic lines to confirm and extend the results, using sequential rounds of breeding selectively by genotype to isolate segments of A/J Ch10 genome on a B6 background. KEY FINDINGS Analysis of Ch10 F(2) genotypes and seizure susceptibility phenotypes identified significant, overlapping QTLs for duration of partial status and severity of pilocarpine-induced seizures on distal Ch10. Interval-specific Ch10 congenics containing the susceptibility locus on distal Ch10 also demonstrated susceptibility to pilocarpine-induced seizures, confirming results from the F(2) mapping population and strongly supporting the presence of a QTL between rs13480781 (117.6 Mb) and rs13480832 (127.7 Mb). SIGNIFICANCE QTL mapping can identify loci that make a quantitative contribution to a trait, and eventually identify the causative DNA-sequence polymorphisms. We have mapped a locus on mouse Ch10 for pilocarpine-induced limbic seizures. Novel candidate genes identified in mice can be investigated in functional studies and tested for their role in human epilepsy.
Collapse
Affiliation(s)
- Melodie R Winawer
- Department of Neurology, Columbia University, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
7
|
The genetic basis of adrenal gland weight and structure in BXD recombinant inbred mice. Mamm Genome 2011; 22:209-34. [DOI: 10.1007/s00335-011-9315-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/21/2022]
|
8
|
Umemori J, Nishi A, Lionikas A, Sakaguchi T, Kuriki S, Blizard DA, Koide T. QTL analyses of temporal and intensity components of home-cage activity in KJR and C57BL/6J strains. BMC Genet 2009; 10:40. [PMID: 19638241 PMCID: PMC2723135 DOI: 10.1186/1471-2156-10-40] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 07/29/2009] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND A variety of mouse strains exhibit diversity in spontaneous activity consistent with an important genetic contribution. To date, many studies have defined spontaneous home-cage activity as total distance or total counts of activity within a test period. However, spontaneous activity is, in fact, a composite of elements of 'temporal' and 'intensity' that is similar to 'velocity'. Here, we report on quantitative trait loci for different components of spontaneous activity, an important step towards dissection of the underlying genetic mechanisms. RESULTS In the analysis of total home-cage activity (THA) after habituation in female mice, KJR strain exhibit higher activity than C57BL/6J (B6). In this study, THA was partitioned into two components: active time (AT) was an index of the 'temporal element' of THA, average activity during active time (AA) was an index of 'intensity'. Correlation analysis using B6xKJR F2 female mice indicated that AA is a major component of THA, whereas AA and AT were associated to a lesser degree. To explore the genetic basis of the activity differences, we conducted quantitative trait loci (QTL) analysis on data of THA and its components, AT and AA. Three significant QTL affecting variation of different components of home cage activity were identified, two linked QTL Hylaq1 and Hylaq2 on Chr 2, and Hylaq3 on Chr 10. Chromosomal positions of these QTL were previously implicated in locomotor activity (Chr 2) or open-field ambulation (Chr 10). The results indicated that Hylaq1 influences AT, Hylaq2, AA, while Hylaq3 is associated with both AA and AT. CONCLUSION Through this study, we found that variation in total home cage activity over a 3 day period is affected by variation in active time and intensity of activity. The latter two variables are distinct components of home cage activity with only partially overlapping genetic architecture.
Collapse
Affiliation(s)
- Juzoh Umemori
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Akinori Nishi
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Arimantas Lionikas
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, UK
- Center for Developmental and Health Genetics, Pennsylvania State University, PA, USA
| | - Takayuki Sakaguchi
- Department of Mathematical Analysis and Statistical Inference; Statistical Genome Diversity Research Group, Prediction and Knowledge Discovery Research Center, The Institute of Statistical Mathematics, Tokyo, Japan
| | - Satoshi Kuriki
- Department of Mathematical Analysis and Statistical Inference; Statistical Genome Diversity Research Group, Prediction and Knowledge Discovery Research Center, The Institute of Statistical Mathematics, Tokyo, Japan
| | - David A Blizard
- Center for Developmental and Health Genetics, Pennsylvania State University, PA, USA
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| |
Collapse
|
9
|
Kim S, Zhang S, Choi KH, Reister R, Do C, Baykiz A, Gershenfeld H. An E3 ubiquitin ligase, Really Interesting New Gene (RING) Finger 41, is a candidate gene for anxiety-like behavior and beta-carboline-induced seizures. Biol Psychiatry 2009; 65:425-31. [PMID: 18986647 PMCID: PMC2667267 DOI: 10.1016/j.biopsych.2008.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Revised: 09/05/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Identification of the genes underlying psychiatric illness remains a thorny problem. Previously, Quantitative Trait Loci (QTL) for anxiety-like behaviors and beta-carboline-induced seizure vulnerability have been mapped to the distal portion of mouse chromosome 10, with crosses of A/J and C57BL6 mice. METHODS An interval specific congenic strain for this chromosomal 10 region facilitated the genetic dissection of novelty-induced exploratory behaviors. RESULTS By microarray studies, an unsuspected E3 ubiquitin ligase, Really Interesting New Gene (RING) Finger 41 (Rnf41) was differentially expressed in the region of interest, being upregulated in the hippocampi of B6 compared with A/J as well as congenic A.B6(chr10) versus A/J. By quantitative real-time polymerase chain reaction (qRT-PCR), Rnf41 expression levels were significantly increased 1.5- and 1.3-fold in the hippocampi of C57BL6/J and A.B6(chr10) mice compared with A/J mice, respectively. Protein levels of Rnf41 were increased in hippocampi of B6 mice compared with A/J mice across postnatal development with a 5.5-fold difference at P56. Yeast two-hybrid studies searching for Rnf41 binding partners in fetal hippocampus identified several potential targets. An interaction between Rnf41 and NogoA was validated by glutathionine-S-transferase-Rnf41 pulldown experiments. Re-analysis of a microarray database of human postmortem prefrontal cortex (Brodmann's Area 46/10) found that RNF41 messenger RNA expression levels were reduced significantly in patients with major depression and bipolar disorder compared with unaffected control subjects and confirmed by qRT-PCR. CONCLUSIONS Overall, Rnf41 is nominated as a candidate gene for anxiety-like behaviors, depression, and vulnerability to seizures. The RNF41 and its binding partners suggest molecular pathways underlying behavior, highlighting a potential role for the ubiquitin proteasome system in psychiatric illness.
Collapse
Affiliation(s)
- S. Kim
- Dept. of Psychiatry, Univ. of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, Stanley Laboratory of Brain Research, Rockville, MD 20850
| | - S. Zhang
- Dept. of Psychiatry, Univ. of Texas Southwestern Medical Center, Dallas, Texas 75390-9070
| | - KH Choi
- Stanley Laboratory of Brain Research, Rockville, MD 20850
| | - R. Reister
- Dept. of Psychiatry, Univ. of Texas Southwestern Medical Center, Dallas, Texas 75390-9070
| | - Chi Do
- Dept. of Psychiatry, Univ. of Texas Southwestern Medical Center, Dallas, Texas 75390-9070
| | - A.F. Baykiz
- Dept. of Psychiatry, Univ. of Texas Southwestern Medical Center, Dallas, Texas 75390-9070
| | - H.K. Gershenfeld
- Dept. of Psychiatry, Univ. of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, Dept. Integrative Biology, Univ. of Texas Southwestern Medical Center, Dallas, Texas 75390,Corresponding author: Howard K. Gershenfeld, M.D., Ph.D., Department of Psychiatry, Univ. of Texas Southwestern Medical Center, Dallas, Tx. 75390-9070, Phone: 214-732-3804, E-mail:
| |
Collapse
|
10
|
Hessel EVS, Van Gassen KLI, Wolterink-Donselaar IG, Stienen PJ, Fernandes C, Brakkee JH, Kas MJH, De Graan PNE. Phenotyping mouse chromosome substitution strains reveal multiple QTLs for febrile seizure susceptibility. GENES BRAIN AND BEHAVIOR 2009; 8:248-55. [DOI: 10.1111/j.1601-183x.2008.00466.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Chaix Y, Ferraro TN, Lapouble E, Martin B. Chemoconvulsant-induced seizure susceptibility: toward a common genetic basis? Epilepsia 2007; 48 Suppl 5:48-52. [PMID: 17910581 DOI: 10.1111/j.1528-1167.2007.01289.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the efforts employed, understanding the genetic architecture underlying epilepsy remains difficult. To reach this aim, convulsive epilepsies are classically modeled in mice, where genetic studies are less constricting than in humans. Pharmacogenetic approaches are one major source of investigation where kainic acid, pentylenetetrazol, and the ss-carboline family represent compounds that are used extensively. Several quantitative trait loci (QTLs) influencing the convulsant effects of these drugs have been mapped using either recombinant inbred strains (RIS) or segregating F2 populations (or both). In our laboratory, we have recently mapped two QTLs for methyl 6, 7-dimethoxy-4-ethyl-ss-carboline-3-carboxylate (DMCM), and seizure response using an F2 method. One is located on the distal part of Chromosome 1, a region implicated in a number of other studies. Here, we address the general importance of this chromosomal fragment for influencing seizure susceptibility.
Collapse
Affiliation(s)
- Yohan Chaix
- Laboratoire de Neurobiologie, Equipe Génétique des Epilepsies, Université d'Orléans, France
| | | | | | | |
Collapse
|
12
|
WINAWER MR, MAKARENKO N, McCLOSKEY DP, HINTZ TM, NAIR N, PALMER AA, SCHARFMAN HE. Acute and chronic responses to the convulsant pilocarpine in DBA/2J and A/J mice. Neuroscience 2007; 149:465-75. [PMID: 17904758 PMCID: PMC2640947 DOI: 10.1016/j.neuroscience.2007.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/01/2007] [Accepted: 06/10/2007] [Indexed: 11/23/2022]
Abstract
Characterizing the responses of different mouse strains to experimentally-induced seizures can provide clues to the genes that are responsible for seizure susceptibility, and factors that contribute to epilepsy. This approach is optimal when sequenced mouse strains are available. Therefore, we compared two sequenced strains, DBA/2J (DBA) and A/J. These strains were compared using the chemoconvulsant pilocarpine, because pilocarpine induces status epilepticus, a state of severe, prolonged seizures. In addition, pilocarpine-induced status is followed by changes in the brain that are associated with the pathophysiology of temporal lobe epilepsy (TLE). Therefore, pilocarpine can be used to address susceptibility to severe seizures, as well as genes that could be relevant to TLE. A/J mice had a higher incidence of status, but a longer latency to status than DBA mice. DBA mice exhibited more hippocampal pyramidal cell damage. DBA mice developed more ectopic granule cells in the hilus, a result of aberrant migration of granule cells born after status. DBA mice experienced sudden death in the weeks following status, while A/J mice exhibited the most sudden death in the initial hour after pilocarpine administration. The results support previous studies of strain differences based on responses to convulsants. They suggest caution in studies of seizure susceptibility that are based only on incidence or latency. In addition, the results provide new insight into the strain-specific characteristics of DBA and A/J mice. A/J mice provide a potential resource to examine the progression to status. The DBA mouse may be valuable to clarify genes regulating other seizure-associated phenomena, such as seizure-induced neurogenesis and sudden death.
Collapse
Affiliation(s)
- M. R. WINAWER
- Department of Neurology and G.H. Sergievsky Center, Columbia University, New York, NY 10032, USA
| | - N. MAKARENKO
- CNRRR, Helen Hayes Hospital, Route 9W, West Haverstraw, NY 10993-1195, USA
| | - D. P. McCLOSKEY
- CNRRR, Helen Hayes Hospital, Route 9W, West Haverstraw, NY 10993-1195, USA
| | - T. M. HINTZ
- CNRRR, Helen Hayes Hospital, Route 9W, West Haverstraw, NY 10993-1195, USA
| | - N. NAIR
- CNRRR, Helen Hayes Hospital, Route 9W, West Haverstraw, NY 10993-1195, USA
| | - A. A. PALMER
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - H. E. SCHARFMAN
- CNRRR, Helen Hayes Hospital, Route 9W, West Haverstraw, NY 10993-1195, USA
- Departments of Pharmacology and Neurology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
13
|
Winawer MR, Kuperman R, Niethammer M, Sherman S, Rabinowitz D, Guell IP, Ponder CA, Palmer AA. Use of chromosome substitution strains to identify seizure susceptibility loci in mice. Mamm Genome 2007; 18:23-31. [PMID: 17242861 PMCID: PMC2640942 DOI: 10.1007/s00335-006-0087-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 09/27/2006] [Indexed: 10/23/2022]
Abstract
Seizure susceptibility varies among inbred mouse strains. Chromosome substitution strains (CSS), in which a single chromosome from one inbred strain (donor) has been transferred onto a second strain (host) by repeated backcrossing, may be used to identify quantitative trait loci (QTLs) that contribute to seizure susceptibility. QTLs for susceptibility to pilocarpine-induced seizures, a model of temporal lobe epilepsy, have not been reported, and CSS have not previously been used to localize seizure susceptibility genes. We report QTLs identified using a B6 (host) x A/J (donor) CSS panel to localize genes involved in susceptibility to pilocarpine-induced seizures. Three hundred fifty-five adult male CSS mice, 58 B6, and 39 A/J were tested for susceptibility to pilocarpine-induced seizures. Highest stage reached and latency to each stage were recorded for all mice. B6 mice were resistant to seizures and slower to reach stages compared to A/J mice. The CSS for Chromosomes 10 and 18 progressed to the most severe stages, diverging dramatically from the B6 phenotype. Latencies to stages were also significantly shorter for CSS10 and CSS18 mice. CSS mapping suggests seizure susceptibility loci on mouse Chromosomes 10 and 18. This approach provides a framework for identifying potentially novel homologous candidate genes for human temporal lobe epilepsy.
Collapse
Affiliation(s)
- Melodie R Winawer
- Department of Neurology, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ijichi S, Ijichi N. Computerized lifelong mentoring support using robot for autistic individuals. Med Hypotheses 2006; 68:493-8. [PMID: 17023117 DOI: 10.1016/j.mehy.2006.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
Developmental diversity in childhood is transformed into personality variation in adulthood. This view is now revalued through an ongoing paradigm shift in the field of developmental conditions, the transition from the qualitative dichotomy perspective to the quantitative concept. In the quantitative concept, autism is not a disease nor a developmental qualitative disorder, but a behavioral extreme in individual variation. Although the traditional qualitative view cannot interpret the recent worldwide prevalence of autism, the increase in the reported number of cases with autism and border cases can be easily explained by a dimensional exploration in which the primary autistic phenotype is regarded as an evolutional superiority. Therefore, the only suitable intervention is mentoring which provides a powerful lifelong support for higher social achievement in individuals with autism. Here, we hypothesize the coming mentoring circumstances for autistic individuals in the near future. Ongoing progress in robot and computer technology might allow the guardians to leave the major part of mentoring support to an individualized robot, and the 'folk physics' tendency in individuals with autism could facilitate the spread of the mentoring support system. The development of the robot mentor software may be simple because of the uniformity and stereotypy of the behavior patterns in individuals with autism. With the help of the robot mentor and under its guidance, autistic people might enjoy their social life and contribute to the prosperity of the human society to the maximum degree. Because the future population ratio of autistics/non-autistics might be reversed according to the current trend of the prevalence, mentoring robot programs for autistic individuals should be developed without delay as a novel preliminary activity in the Jiminy Cricket movement, which is a campaign to reverse the estrangement of the present majority from autism and to increase the number of mentors for autistic individuals. In this article, prerequisites for the mentoring program of the robot mentor are expected and discussed.
Collapse
Affiliation(s)
- Shinji Ijichi
- Institute for Externalization of Gifts and Talents, Kagoshima 891-0144, Japan.
| | | |
Collapse
|
15
|
Zhang S, Lou Y, Amstein TM, Anyango M, Mohibullah N, Osoti A, Stancliffe D, King R, Iraqi F, Gershenfeld HK. Fine mapping of a major locus on chromosome 10 for exploratory and fear-like behavior in mice. Mamm Genome 2005; 16:306-18. [PMID: 16104379 DOI: 10.1007/s00335-004-2427-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Advanced intercross lines (AIL) and interval-specific congenic strains (ISCS) were used to fine map previously coarsely defined quantitative trait loci (QTL) on Chromosomes 1, 10, and 19, influencing behaviors in the open Field (OF) and light-dark (LD) paradigms in mice. F12(A x B) AIL mice (N = 1130) were phenotyped, genotyped, and mapped. The ISCS were studied only in the telomeric Chromosome 10 region of interest, containing the exploratory and excitability QTL1 (Exq1). The Chromosome 10 Exq1 and Chromosome 19 Exq4 loci mapped robustly in the AIL. The most significant QTL findings (2.0 LOD score intervals; peak; LOD score) came from the TD15 and LD transitions traits, yielding estimated intervals of 2.2 cM for Exq1 (71.3-73.5 cM; peak 72.3 cM; LOD 11.9) and 9.0 cM for Exq4 (29.0-38.2 cM; peak 34 cM; LOD 4.2). The replicated QTLs on Chromosome 1 failed to map in this AIL population. The ISCS data confirmed Exq1 loci in general. However, the ISCS data were complex and less definitive for localizing the Exq1 loci. These exploratory and fear-like behaviors result from inheriting "many small things," namely, QTL explaining 2%-7% of the phenotypic variance. These results highlight the challenges of positionally cloning loci of small effect for complex traits. In particular, fine-mapping success may depend on the genetic architecture underlying complex traits.
Collapse
Affiliation(s)
- Shumin Zhang
- Department of Psychiatry and Integrative Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hood HM, Metten P, Crabbe JC, Buck KJ. Fine mapping of a sedative-hypnotic drug withdrawal locus on mouse chromosome 11. GENES BRAIN AND BEHAVIOR 2005; 5:1-10. [PMID: 16436183 DOI: 10.1111/j.1601-183x.2005.00122.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have established that there is a considerable amount of common genetic influence on physiological dependence and associated withdrawal from sedative-hypnotic drugs including alcohol, benzodiazepines, barbiturates and inhalants. We previously mapped two loci responsible for 12 and 9% of the genetic variance in acute alcohol and pentobarbital withdrawal convulsion liability in mice, respectively, to an approximately 28-cM interval of proximal chromosome 11. Here, we narrow the position of these two loci to a 3-cM interval (8.8 Mb, containing 34 known and predicted genes) using haplotype analysis. These include genes encoding four subunits of the GABA(A) receptor, which is implicated as a pivotal component in sedative-hypnotic dependence and withdrawal. We report that the DBA/2J mouse strain, which exhibits severe withdrawal from sedative-hypnotic drugs, encodes a unique GABA(A) receptor gamma2 subunit variant compared with other standard inbred strains including the genetically similar DBA/1J strain. We also demonstrate that withdrawal from zolpidem, a benzodiazepine receptor agonist selective for alpha1 subunit containing GABA(A) receptors, is influenced by a chromosome 11 locus, suggesting that the same locus (gene) influences risk of alcohol, benzodiazepine and barbiturate withdrawal. Our results, together with recent knockout studies, point to the GABA(A) receptor gamma2 subunit gene (Gabrg2) as a promising candidate gene to underlie phenotypic differences in sedative-hypnotic physiological dependence and associated withdrawal episodes.
Collapse
Affiliation(s)
- H M Hood
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97006-8921, USA.
| | | | | | | |
Collapse
|
17
|
Eagleson KL, Bonnin A, Levitt P. Region- and age-specific deficits in γ-aminobutyric acidergic neuron development in the telencephalon of theuPAR-/- mouse. J Comp Neurol 2005; 489:449-66. [PMID: 16025458 DOI: 10.1002/cne.20647] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have previously shown that in adult mice with a null mutation in the urokinase-type plasminogen activator receptor (uPAR) gene, maintained on a C57BL/6J/129Sv background, there is a selective loss of GABAergic interneurons in anterior cingulate and parietal cortex, with the parvalbumin-expressing subpopulation preferentially affected. Here, we performed a more detailed anatomical analysis of uPAR(-/-) mutation on the congenic C57BL/6J background. With glutamic acid decarboxylase-67 and gamma-aminobutyric acid (GABA) immunostaining, there is a similar region-selective loss of cortical interneurons in the congenic uPAR(-/-) mice from the earliest age examined (P21). In contrast, the loss of parvalbumin-immunoreactive cells is observed only in adult cortex, and the extent of this loss is less than in the mixed background. Moreover, earlier in development, although there are normal numbers of parvalbumin cells in the uPAR(-/-) cortex, fewer cells coexpress GABA, suggesting that the parvalbumin subpopulation migrates appropriately to the cortex, but does not differentiate normally. Among the other forebrain regions examined, only the adult hippocampus shows a loss of GABAergic interneurons, although the somatostatin, rather than the parvalbumin, subpopulation contributes to this loss. The data suggest that uPAR function is necessary for the normal development of a subpopulation of GABAergic neurons in the telencephalon. It is likely that the late-onset parvalbumin phenotype is due to the effects of an altered local environment on selectively vulnerable neurons and that the extent of this loss is strain dependent. Thus, an interplay between complex genetic factors and the environment may influence the phenotypic impact of the uPAR mutation both pre- and postnatally.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Vanderbilt Kennedy Center for Research on Human Development; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | |
Collapse
|
18
|
Fehr C, Shirley RL, Metten P, Kosobud AEK, Belknap JK, Crabbe JC, Buck KJ. Potential pleiotropic effects of Mpdz on vulnerability to seizures. GENES BRAIN AND BEHAVIOR 2004; 3:8-19. [PMID: 14960011 DOI: 10.1111/j.1601-183x.2004.00035.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We previously mapped quantitative trait loci (QTL) responsible for approximately 26% of the genetic variance in acute alcohol and barbiturate (i.e., pentobarbital) withdrawal convulsion liability to a < 1 cM (1.8 Mb) interval of mouse chromosome 4. To date, Mpdz, which encodes the multiple PSD95/DLG/ZO-1 (PDZ) domain protein (MPDZ), is the only gene within the interval shown to have allelic variants that differ in coding sequence and/or expression, making it a strong candidate gene for the QTL. Previous work indicates that Mpdz haplotypes in standard mouse strains encode distinct protein variants (MPDZ1-3), and that MPDZ status is genetically correlated with severity of withdrawal from alcohol and pentobarbital. Here, we report that MPDZ status cosegregates with withdrawal convulsion severity in lines of mice selectively bred for phenotypic differences in severity of acute withdrawal from alcohol [i.e., High Alcohol Withdrawal (HAW) and Low Alcohol Withdrawal (LAW) lines] or pentobarbital [High Pentobarbital Withdrawal (HPW) and Low Pentobarbital Withdrawal (LPW) lines]. These analyses confirm that MPDZ status is associated with severity of alcohol and pentobarbital withdrawal convulsions. Using a panel of standard inbred strains of mice, we assessed the association between MPDZ status with seizures induced by nine chemiconvulsants. Our results show that MPDZ status is genetically correlated with seizure sensitivity to pentylenetetrazol, kainate and other chemiconvulsants. Our results provide evidence that Mpdz may have pleiotropic effects on multiple seizure phenotypes, including seizures associated with withdrawal from two classes of central nervous system (CNS) depressants and sensitivity to specific chemiconvulsants that affect glutaminergic and GABAergic neurotransmission.
Collapse
Affiliation(s)
- C Fehr
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Mice have become the mammalian model of choice for the application of genetics in biomedical research due to the evolutionary conservation of physiological systems and their attendant pathologies among all mammals as well as the exceptional power of genetic research technologies in the species. Beginning from aberrant phenotypes, a large number of mouse mutants and natural polymorphisms have been cloned, providing much information about the molecular basis of physiological processes. Additionally, the variable expression of these mutations in different inbred strain backgrounds has demonstrated the importance of modifier genes, which are also susceptible to cloning. Research efforts are keeping pace with these developments. In the area of gene discovery, large, government-funded mutagenesis programs now exist, and as a matter of great practical importance, recent evidence suggests that the same genes may be involved in the natural polymorphisms affecting disease in mice and humans. In parallel, dramatic advances are also being made in our ability to measure physiological processes in mice, and the advent of expression profiling promises revolutionary advances in understanding phenotype at the molecular level. Gene-driven approaches have relied on engineering the mouse genome, including adding, subtracting, and replacing genes and, most recently, the ability to control gene activity reversibly. Together, these multiple advances in our technical abilities have created extraordinary opportunities for future discovery.
Collapse
|
20
|
Zhang S, Gershenfeld HK. Genetic contributions to body weight in mice: relationship of exploratory behavior to weight. OBESITY RESEARCH 2003; 11:828-38. [PMID: 12855751 DOI: 10.1038/oby.2003.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The A/J and C57BL/6J mouse strains differ markedly in their exploratory behavior and their weight gain on a high-fat diet. We examined the genetic contributions of exploratory behavior to body weight and tested for shared, pleiotropic loci influencing energy homeostasis. RESEARCH METHODS AND PROCEDURES Segregating (AxB6)F2 intercross (n = 514) and (B6AF1xA/J)N2 backcross (N = 223) populations were studied, phenotyping for weight and exploratory behaviors. Relationships among traits were analyzed by correlations. Weight traits were dissected with a genome-wide scan. RESULTS Modest correlations were found between exploratory behaviors and weight, explaining 2% to 14% of the variance. Quantitative trait loci (QTL) for body weight at 8 weeks (wgt8), 10 weeks (wgt10), and 2-week weight gain (difference between weeks 8 and 10) on a 6% fat diet were mapped. Two QTL on chromosome 1 (peaks at 66 cM and 100 cM; Bw8q1) affected wgt8 [likelihood of the odds ratio (Lod), 3.0 and 4.4] and wgt10 (Lod, 2.2 and 3.4), respectively. In the backcross, a significant QTL on chromosome 4 (peak at 66 cM; Bw8q2) affected wgt 8 (Lod, 3.3) and wgt10 (Lod, 3.1). For 2-week weight gain, suggestive QTL were mapped on chromosomes 4 and 6. The chromosome 6 QTL region overlaps a human 7q locus for obesity. A search for between-strain sequence polymorphisms in the leptin and NPY genes was unrevealing. DISCUSSION In mice, loci influencing exploratory activity play a modest role in body-weight regulation. Some forms of obesity may emerge from loci regulating normal body weight.
Collapse
Affiliation(s)
- Shumin Zhang
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75235-8898, USA
| | | |
Collapse
|
21
|
Flint J. Analysis of quantitative trait loci that influence animal behavior. JOURNAL OF NEUROBIOLOGY 2003; 54:46-77. [PMID: 12486698 DOI: 10.1002/neu.10161] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Behavioral differences between inbred strains of mice and rats have a genetic basis that can now be dissected using quantitative trait locus (QTL) analysis. Over the last 10 years, a large number of genetic loci that influence behavior have been mapped. In this article I review what that information has revealed about the genetic architecture of behavior. I show that most behaviors are influenced by QTL of small effect, each contributing to less than 10% of the variance of a behavioral trait. The small effect of each QTL on behavioral variation suggests that the mutational spectrum is different from that which results in Mendelian disorders. Regions of DNA should be appropriately prioritized to find the molecular variants, for instance by looking at sequences that control the level of gene expression rather than variants in coding regions. While the number of allelic loci that can contribute to a trait is large, this is not necessarily the case: the analysis of selected strains shows that a remarkably small number of QTL can explain the bulk of the genetic variation in behavior. I conclude by arguing that genetic mapping has more to offer than a starting point for positional cloning projects. With advances in multivariate analyses, mapping can also test hypotheses about the psychological processes that give rise to behavioral variation.
Collapse
Affiliation(s)
- Jonathan Flint
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom.
| |
Collapse
|
22
|
Misawa H, Sherr EH, Lee DJ, Chetkovich DM, Tan A, Schreiner CE, Bredt DS. Identification of a monogenic locus (jams1) causing juvenile audiogenic seizures in mice. J Neurosci 2002; 22:10088-93. [PMID: 12451109 PMCID: PMC6758732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
Epilepsy is a debilitating disease with a strong genetic component. Positional cloning has identified a few genes for rare monogenic epilepsy syndromes; however, the genetics of common human epilepsies are too complex to be analyzed easily by current techniques. Mouse models of epilepsy can further this analysis by eliminating genetic background heterogeneity and enabling the production of sufficient numbers of offspring. Here, we report that Black Swiss mice have a heretofore unrecognized specific susceptibility to audiogenic seizures. These seizures are characterized by wild running, loss of righting reflex, and tonic flexion and extension, and are followed by a postictal period. The susceptibility to these seizures is developmentally regulated, peaking at 21 d of age and nearly disappearing by adulthood. Interestingly, both the susceptibility to seizures and their developmental regulation appear unrelated to hearing thresholds in the Black Swiss strain and backcrossed progeny. Genetic mapping and linkage analysis of hybrid mice localize the seizure gene, jams1 (juvenile audiogenic monogenic seizures), to a 1.6 +/- 0.5 centimorgan (cM) region on mouse chromosome 10, delimited by the gene basigin (Bsg) and marker D10Mit140. Interestingly, the majority of the critical region is syntenic to a region on human chromosome 19p13.3 implicated in a familial form of juvenile febrile convulsions. Cloning the gene for audiogenic seizures in these mice may provide important insight into the fundamental mechanisms for developmentally regulated human epilepsy syndromes.
Collapse
MESH Headings
- Acoustic Stimulation
- Age Factors
- Animals
- Antigens, CD
- Antigens, Neoplasm
- Antigens, Surface
- Auditory Threshold
- Avian Proteins
- Basigin
- Blood Proteins
- Carrier Proteins/genetics
- Disease Models, Animal
- Epilepsy, Reflex/chemically induced
- Epilepsy, Reflex/genetics
- Evoked Potentials, Auditory, Brain Stem/genetics
- Gene Expression Regulation, Developmental
- Genes, Recessive
- Genetic Linkage
- Genetic Predisposition to Disease
- Genotype
- Hearing Tests
- Membrane Glycoproteins/genetics
- Membrane Proteins
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Microsatellite Repeats/genetics
- N-Methylaspartate
- Physical Chromosome Mapping
- Picrotoxin
- Vesicular Transport Proteins
Collapse
Affiliation(s)
- Hidemi Misawa
- Department of Physiology, University of California at San Francisco, School of Medicine, San Francisco, California 94143-0444, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Bachmanov AA, Reed DR, Li X, Li S, Beauchamp GK, Tordoff MG. Voluntary ethanol consumption by mice: genome-wide analysis of quantitative trait loci and their interactions in a C57BL/6ByJ x 129P3/J F2 intercross. Genome Res 2002; 12:1257-68. [PMID: 12176933 PMCID: PMC186641 DOI: 10.1101/gr.129702] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Consumption of ethanol solutions by rodents in two-bottle choice tests is a model to study human alcohol intake. Mice of the C57BL/6ByJ strain have higher ethanol preferences and intakes than do mice of the 129P3/J strain. F2 hybrids between these two strains were phenotyped using two-bottle tests involving a choice between water and either 3% or 10% ethanol. High ethanol preferences and intakes of the B6 mice were inherited as additive or dominant traits in the F2 generation. A genome screen using these F2 mice identified three significant linkages. Two loci, on distal chromosome 4 (Ap3q) and proximal chromosome 7 (Ap7q), strongly affected 10% ethanol intake and weakly affected 3% ethanol intake. A male-specific locus on proximal chromosome 8 (Ap8q) affected 3% ethanol preference, but not indexes of 10% ethanol consumption. In addition, six suggestive linkages (on chromosomes 2, 9, 12, 13, 17, and 18) affecting indexes of 3% and/or 10% ethanol consumption were detected. The loci with significant and suggestive linkages accounted for 35-44% of the genetic variation in ethanol consumption phenotypes. No additive-by-additive epistatic interactions were detected for the primary loci with significant and suggestive linkages. However, there were a few modifiers of the primary linkages and a number of interactions among unlinked loci. This demonstrates a significant role of the genetic background in the variation of ethanol consumption.
Collapse
|
24
|
Taske NL, Williamson MP, Makoff A, Bate L, Curtis D, Kerr M, Kjeldsen MJ, Pang KA, Sundqvist A, Friis ML, Chadwick D, Richens A, Covanis A, Santos M, Arzimanoglou A, Panayiotopoulos CP, Whitehouse WP, Rees M, Gardiner RM. Evaluation of the positional candidate gene CHRNA7 at the juvenile myoclonic epilepsy locus (EJM2) on chromosome 15q13-14. Epilepsy Res 2002; 49:157-72. [PMID: 12049804 DOI: 10.1016/s0920-1211(02)00027-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A previous study of 34 nuclear pedigrees segregating juvenile myoclonic epilepsy (JME) gave significant evidence of linkage with heterogeneity to marker loci on chromosome 15q13-14 close to the candidate gene CHRNA7 (Hum. Mol. Genet. 6 (1997) 1329). The aim of this work was to further evaluate the putative aetiological role of CHRNA7 in JME within the 34 families originally described, and to assess the contribution of this locus to a broader phenotype of idiopathic generalised epilepsy (IGE). Multipoint linkage analysis and intrafamilial association studies were performed with microsatellite markers that encompass both CHRNA7 and its partial duplication (CHRFAM7A). A maximum HLOD of 3.45 [alpha=0.58; (Zall=2.88, P=0.0008)] was observed 8 cM distal to D15S1360, a CHRNA7 intragenic marker. Significant exclusion lod scores were obtained across the region in 12 mixed phenotype JME/IGE families. Mutation screening of the CHRNA7 gene (and consequently exons 5-10 of CHRFAM7A) and its putative promoter sequence identified a total of 13 sequence variants across 23 of 34 JME-affected families. Two variants (c.1354G>A and c.1466C>T) are predicted to result in amino acid changes and one (IVS9+5G>A) is predicted to result in aberrant transcript splicing. However, none of the variants alone appeared either necessary or sufficient to cause JME in the families in which they occurred. In conclusion, linkage analyses continue to support the existence of a locus on chromosome 15q13-14 that confers susceptibility to JME but not to a broader IGE phenotype. Causal sequence variants in the positional candidate CHRNA7 have not been identified but the presence of multiple segmental duplications in this region raises the possibility of undetected disease-causing genomic rearrangements.
Collapse
Affiliation(s)
- Nichole L Taske
- Department of Paediatrics and Child Health, Royal Free and University College Medical School, University College London, Gower Street Campus, 5 University Street, London WC1E 6JJ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rinaldi D, Larrigaldie V, Chapouthier G, Martin B. Unexpected absence of correlation between the genetic mechanisms regulating beta-carboline-induced seizures and anxiety manifested in an elevated plus-maze test. Behav Brain Res 2001; 125:159-65. [PMID: 11682107 DOI: 10.1016/s0166-4328(01)00293-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Among the ligands of the benzodiazepine site, one can mention the benzodiazepines as agonists and some beta-carbolines (e.g. methyl-beta-carboline-3-carboxylate, abbreviated hereafter beta-CCM) as inverse agonists. Most benzodiazepines and beta-carbolines act on processes involved in memory, anxiety, and convulsions with opposite physiological effects. Since these molecules have influences on both anxiety and convulsions, we predicted that there would exist a genetic correlation between anxiety evaluated in an elevated plus-maze and susceptibility to beta-CCM-induced seizures. Using inbred strains of mice, the genetic correlation was estimated with the Hegmann and Possidente model. An absence of genetic correlation was found, showing that the mechanisms responsible for basal anxiety measured with the elevated plus-maze test and those leading to susceptibility to beta-CCM-induced seizures do not share the same genetic pathways.
Collapse
Affiliation(s)
- D Rinaldi
- CHR Orléans, 1 rue de la porte Madeleine, 45000 Orléans, France.
| | | | | | | |
Collapse
|
26
|
Abstract
Quantitative differences are observed for most complex behavioral and pharmacological traits within any population. Both environmental and genetic influences regulate such individual differences. The mouse has proven to be a superb model in which to investigate the genetic basis for quantitative differences in complex behaviors. Genetically defined populations of mice, including inbred strains, heterogeneous stocks, and selected lines, have been used effectively to document these genetic differences. Recently, quantitative trait loci methods have been applied to map the chromosomal regions that regulate variation with the goal of eventually identifying the gene polymorphisms that reside in these regions.
Collapse
Affiliation(s)
- J M Wehner
- Institute for Behavioral Genetics and Department of Psychology, University of Colorado, Boulder, Colorado 80309, USA.
| | | | | |
Collapse
|
27
|
Abstract
Molecular genetic analysis of mendelian epilepsies in humans and mice has revealed a diversity of underlying genes in symptomatic epilepsies associated with disordered brain development and neuronal survival. In contrast, the idiopathic mendelian epilepsies have emerged as a new category of channelopathies. New epilepsy loci have been mapped and one new epilepsy gene isolated. Functional analysis of epilepsy genes is providing new insights into the pathways that lead from mutant gene to hyperexcitable neurones. The major challenge for the future is the analysis of genetic epilepsies with complex inheritance.
Collapse
Affiliation(s)
- M Gardiner
- Department of Paediatrics and Child Health, Royal Free and University College Medical School, University College London, The Rayne Institute, UK.
| | | |
Collapse
|