1
|
Duan J, Kahms M, Steinhoff A, Klingauf J. Spontaneous and evoked synaptic vesicle release arises from a single releasable pool. Cell Rep 2024; 43:114461. [PMID: 38990719 DOI: 10.1016/j.celrep.2024.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/23/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
The quantal content of an evoked postsynaptic response is typically determined by dividing it by the average spontaneous miniature response. However, this approach is challenged by the notion that different synaptic vesicle pools might drive spontaneous and evoked release. Here, we "silence" synaptic vesicles through pharmacological alkalinization and subsequently rescue them by optogenetic acidification. We find that such silenced synaptic vesicles, retrieved during evoked or spontaneous activity, cross-deplete the complementary release mode in a fully reversible manner. A fluorescently tagged version of the endosomal SNARE protein Vti1a, which has been suggested to identify a separate pool of spontaneously recycling synaptic vesicles, is trafficked to synaptic vesicles significantly only upon overexpression but not when endogenously tagged by CRISPR-Cas9. Thus, both release modes draw synaptic vesicles from the same readily releasable pool.
Collapse
Affiliation(s)
- Junxiu Duan
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany; CiM Graduate School of the Cells in Motion Interfaculty Centre and the International Max Planck Research School, 48149 Münster, Germany
| | - Martin Kahms
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Ana Steinhoff
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany; CiM Graduate School of the Cells in Motion Interfaculty Centre and the International Max Planck Research School, 48149 Münster, Germany
| | - Jürgen Klingauf
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
2
|
Ralowicz AJ, Hokeness S, Hoppa MB. Frequency of Spontaneous Neurotransmission at Individual Boutons Corresponds to the Size of the Readily Releasable Pool of Vesicles. J Neurosci 2024; 44:e1253232024. [PMID: 38383495 PMCID: PMC11063817 DOI: 10.1523/jneurosci.1253-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
Synapses maintain two forms of neurotransmitter release to support communication in the brain. First, evoked neurotransmitter release is triggered by the invasion of an action potential (AP) across en passant boutons that form along axons. The probability of evoked release (Pr) varies substantially across boutons, even within a single axon. Such heterogeneity is the result of differences in the probability of a single synaptic vesicle (SV) fusing (Pv) and in the number of vesicles available for immediate release, known as the readily releasable pool (RRP). Spontaneous release (also known as a mini) is an important form of neurotransmission that occurs in the absence of APs. Because it cannot be triggered with electrical stimulation, much less is known about potential heterogeneity in the frequency of spontaneous release between boutons. We utilized a photostable and bright fluorescent indicator of glutamate release (iGluSnFR3) to quantify both spontaneous and evoked release at individual glutamatergic boutons. We found that the rate of spontaneous release is quite heterogenous at the level of individual boutons. Interestingly, when measuring both evoked and spontaneous release at single synapses, we found that boutons with the highest rates of spontaneous release also displayed the largest evoked responses. Using a new optical method to measure RRP at individual boutons, we found that this heterogeneity in spontaneous release was strongly correlated with the size of the RRP, but not related to Pv. We conclude that the RRP is a critical and dynamic aspect of synaptic strength that contributes to both evoked and spontaneous vesicle release.
Collapse
Affiliation(s)
- Amelia J Ralowicz
- Department of Biology, Dartmouth College, Hanover, New Hampshire 03755
| | - Sasipha Hokeness
- Department of Biology, Dartmouth College, Hanover, New Hampshire 03755
| | - Michael B Hoppa
- Department of Biology, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
3
|
Zheng Y, Kang S, O'Neill J, Bojak I. Spontaneous slow wave oscillations in extracellular field potential recordings reflect the alternating dominance of excitation and inhibition. J Physiol 2024; 602:713-736. [PMID: 38294945 DOI: 10.1113/jp284587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
In the resting state, cortical neurons can fire action potentials spontaneously but synchronously (Up state), followed by a quiescent period (Down state) before the cycle repeats. Extracellular recordings in the infragranular layer of cortex with a micro-electrode display a negative deflection (depth-negative) during Up states and a positive deflection (depth-positive) during Down states. The resulting slow wave oscillation (SWO) has been studied extensively during sleep and under anaesthesia. However, recent research on the balanced nature of synaptic excitation and inhibition has highlighted our limited understanding of its genesis. Specifically, are excitation and inhibition balanced during SWOs? We analyse spontaneous local field potentials (LFPs) during SWOs recorded from anaesthetised rats via a multi-channel laminar micro-electrode and show that the Down state consists of two distinct synaptic states: a Dynamic Down state associated with depth-positive LFPs and a prominent dipole in the extracellular field, and a Static Down state with negligible (≈ 0 mV $ \approx 0{\mathrm{\;mV}}$ ) LFPs and a lack of dipoles extracellularly. We demonstrate that depth-negative and -positive LFPs are generated by a shift in the balance of synaptic excitation and inhibition from excitation dominance (depth-negative) to inhibition dominance (depth-positive) in the infragranular layer neurons. Thus, although excitation and inhibition co-tune overall, differences in their timing lead to an alternation of dominance, manifesting as SWOs. We further show that Up state initiation is significantly faster if the preceding Down state is dynamic rather than static. Our findings provide a coherent picture of the dependence of SWOs on synaptic activity. KEY POINTS: Cortical neurons can exhibit repeated cycles of spontaneous activity interleaved with periods of relative silence, a phenomenon known as 'slow wave oscillation' (SWO). During SWOs, recordings of local field potentials (LFPs) in the neocortex show depth-negative deflection during the active period (Up state) and depth-positive deflection during the silent period (Down state). Here we further classified the Down state into a dynamic phase and a static phase based on a novel method of classification and revealed non-random, stereotypical sequences of the three states occurring with significantly different transitional kinetics. Our results suggest that the positive and negative deflections in the LFP reflect the shift of the instantaneous balance between excitatory and inhibitory synaptic activity of the local cortical neurons. The differences in transitional kinetics may imply distinct synaptic mechanisms for Up state initiation. The study may provide a new approach for investigating spontaneous brain rhythms.
Collapse
Affiliation(s)
- Ying Zheng
- School of Biological Sciences, Whiteknights, University of Reading, Reading, UK
- Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, UK
| | - Sungmin Kang
- School of Psychology, Cardiff University, Cardiff, UK
| | | | - Ingo Bojak
- Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, UK
- School of Psychology and Clinical Language Science, Whiteknights, University of Reading, Reading, UK
| |
Collapse
|
4
|
Letellier M, Goda Y. Astrocyte calcium signaling shifts the polarity of presynaptic plasticity. Neuroscience 2023:S0306-4522(23)00252-X. [PMID: 37295597 DOI: 10.1016/j.neuroscience.2023.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Astrocytes have been increasingly acknowledged to play active roles in regulating synaptic transmission and plasticity. Through a variety of metabotropic and ionotropic receptors expressed on their surface, astrocytes detect extracellular neurotransmitters, and in turn, release gliotransmitters to modify synaptic strength, while they can also alter neuronal membrane excitability by modulating extracellular ionic milieu. Given the seemingly large repertoire of synaptic modulation, when, where and how astrocytes interact with synapses remain to be fully understood. Previously, we have identified a role for astrocyte NMDA receptor and L-VGCC signaling in heterosynaptic presynaptic plasticity and promoting the heterogeneity of presynaptic strengths at hippocampal synapses. Here, we have sought to further clarify the mode by which astrocytes regulate presynaptic plasticity by exploiting a reduced culture system to globally evoke NMDA receptor-dependent presynaptic plasticity. Recording from a postsynaptic neuron intracellularly loaded with BAPTA, briefly bath applying NMDA and glycine induces a stable decrease in the rate of spontaneous glutamate release, which requires the presence of astrocytes and the activation of A1 adenosine receptors. Upon preventing astrocyte calcium signaling or blocking L-type VGCCs, NMDA+glycine application triggers an increase, rather than a decrease, in the rate of spontaneous glutamate release, thereby shifting the presynaptic plasticity to promote an increase in strength. Our findings point to a crucial and surprising role of astrocytes in controlling the polarity of NMDA receptor and adenosine-dependent presynaptic plasticity. Such a pivotal mechanism unveils the power of astrocytes in regulating computations performed by neural circuits and is expected to profoundly impact cognitive processes.
Collapse
Affiliation(s)
- Mathieu Letellier
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, Bordeaux, France.
| | - Yukiko Goda
- Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Okinawa, Japan.
| |
Collapse
|
5
|
Sakimoto Y, Shintani A, Yoshiura D, Goshima M, Kida H, Mitsushima D. A critical period for learning and plastic changes at hippocampal CA1 synapses. Sci Rep 2022; 12:7199. [PMID: 35504922 PMCID: PMC9065057 DOI: 10.1038/s41598-022-10453-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Postnatal development of hippocampal function has been reported in many mammalian species, including humans. To obtain synaptic evidence, we analyzed developmental changes in plasticity after an inhibitory avoidance task in rats. Learning performance was low in infants (postnatal 2 weeks) but clearly improved from the juvenile period (3-4 weeks) to adulthood (8 weeks). One hour after the training, we prepared brain slices and sequentially recorded miniature excitatory postsynaptic currents (mEPSCs) and inhibitory postsynaptic currents (mIPSCs) from the same hippocampal CA1 neuron. Although the training failed to affect the amplitude of either mEPSCs or mIPSCs at 2 weeks, it increased mEPSC, but not mIPSC, amplitude at 3 weeks. At 4 weeks, the training had increased the amplitude of both mEPSCs and mIPSCs, whereas mIPSC, but not mEPSC, amplitude was increased at 8 weeks. Because early-life physiological functions can affect performance, we also evaluated sensory-motor functions together with emotional state and found adequate sensory/motor functions from infancy to adulthood. Moreover, by analyzing performance of rats in multiple hippocampal-dependent tasks, we found that the developmental changes in the performance are task dependent. Taken together, these findings delineate a critical period for learning and plastic changes at hippocampal CA1 synapses.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan.
| | - Ako Shintani
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Daiki Yoshiura
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Makoto Goshima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Hiroyuki Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan.
- The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, 753-8511, Japan.
| |
Collapse
|
6
|
Resilience of network activity in preconditioned neurons exposed to 'stroke-in-a-dish' insults. Neurochem Int 2021; 146:105035. [PMID: 33798645 DOI: 10.1016/j.neuint.2021.105035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
Exposing cultured cortical neurons to stimulatory agents - the K+ channel blocker 4-aminopyridine (4-ap), and the GABAA receptor antagonist bicuculline (bic) - for 48 h induces down-regulated synaptic scaling, and preconditions neurons to withstand subsequent otherwise lethal 'stroke-in-a-dish' insults; however, the degree to which usual neuronal function remains is unknown. As a result, multi-electrode array and patch-clamp electrophysiological techniques were employed to characterize hallmarks of spontaneous synaptic activity over a 12-day preconditioning/insult experiment. Spiking frequency increased 8-fold immediately upon 4-ap/bic treatment but declined within the 48 h treatment window to sub-baseline levels that persisted long after washout. Preconditioning resulted in key markers of network activity - spiking frequency, bursting and avalanches - being impervious to an insult. Surprisingly, preconditioning resulted in higher peak NMDA mEPSC amplitudes, resulting in a decrease in the ratio of AMPA:NMDA mEPSC currents, suggesting a relative increase in synaptic NMDA receptors. An investigation of a broad mRNA panel of excitatory and inhibitory signaling mediators indicated preconditioning rapidly up-regulated GABA synthesis (GAD67) and BDNF, followed by up-regulation of neuronal activity-regulated pentraxin and down-regulation of presynaptic glutamate release (VGLUT1). Preconditioning also enhanced surface expression of GLT-1, which persisted following an insult. Overall, preconditioning resulted in a reduced spiking frequency which was impervious to subsequent exposure to 'stroke-in-a-dish' insults, a phenotype initiated predominantly by up-regulation of inhibitory neurotransmission, a lower neuronal postsynaptic AMPA: NMDA receptor ratio, and trafficking of GLT-1 to astrocyte plasma membranes.
Collapse
|
7
|
Farsi Z, Walde M, Klementowicz AE, Paraskevopoulou F, Woehler A. Single synapse glutamate imaging reveals multiple levels of release mode regulation in mammalian synapses. iScience 2020; 24:101909. [PMID: 33392479 PMCID: PMC7773578 DOI: 10.1016/j.isci.2020.101909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
Mammalian central synapses exhibit vast heterogeneity in signaling strength. To understand the extent of this diversity, how it is achieved, and its functional implications, characterization of a large number of individual synapses is required. Using glutamate imaging, we characterized the evoked release probability and spontaneous release frequency of over 24,000 individual synapses. We found striking variability and no correlation between action potential-evoked and spontaneous synaptic release strength, suggesting distinct regulatory mechanisms. Subpixel localization of individual evoked and spontaneous release events reveals tight spatial regulation of evoked release and enhanced spontaneous release outside of evoked release region. Using on-stage post hoc immune-labeling of vesicle-associated proteins, Ca2+-sensing proteins, and soluble presynaptic proteins we were able to show that distinct molecular ensembles are associated with evoked and spontaneous modes of synaptic release.
Collapse
Affiliation(s)
- Zohreh Farsi
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| | - Marie Walde
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| | - Agnieszka E Klementowicz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| | - Foteini Paraskevopoulou
- Institute of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, 10115, Germany
| | - Andrew Woehler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| |
Collapse
|
8
|
Delatour LC, Yeh PWL, Yeh HH. Prenatal Exposure to Ethanol Alters Synaptic Activity in Layer V/VI Pyramidal Neurons of the Somatosensory Cortex. Cereb Cortex 2020; 30:1735-1751. [PMID: 31647550 PMCID: PMC7132917 DOI: 10.1093/cercor/bhz199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/04/2019] [Accepted: 08/04/2019] [Indexed: 12/31/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) encompasses a range of cognitive and behavioral deficits, with aberrances in the function of cerebral cortical pyramidal neurons implicated in its pathology. However, the mechanisms underlying these aberrances, including whether they persist well beyond ethanol exposure in utero, remain to be explored. We addressed these issues by employing a mouse model of FASD in which pregnant mice were exposed to binge-type ethanol from embryonic day 13.5 through 16.5. In both male and female offspring (postnatal day 28-32), whole-cell patch clamp recording of layer V/VI somatosensory cortex pyramidal neurons revealed increases in the frequency of excitatory and inhibitory postsynaptic currents. Furthermore, expressing channelrhodopsin in either GABAergic interneurons (Nkx2.1Cre-Ai32) or glutamatergic pyramidal neurons (Emx1IRES Cre-Ai32) revealed a shift in optically evoked paired-pulse ratio. These findings are consistent with an excitatory-inhibitory imbalance with prenatal ethanol exposure due to diminished inhibitory but enhanced excitatory synaptic strength. Prenatal ethanol exposure also altered the density and morphology of spines along the apical dendrites of pyramidal neurons. Thus, while both presynaptic and postsynaptic mechanisms are affected following prenatal exposure to ethanol, there is a prominent presynaptic component that contributes to altered inhibitory and excitatory synaptic transmission in the somatosensory cortex.
Collapse
Affiliation(s)
- Laurie C Delatour
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Pamela W L Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Hermes H Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
9
|
Sakimoto Y, Kida H, Mitsushima D. Temporal dynamics of learning-promoted synaptic diversity in CA1 pyramidal neurons. FASEB J 2019; 33:14382-14393. [PMID: 31689120 PMCID: PMC6894079 DOI: 10.1096/fj.201801893rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although contextual learning requires plasticity at both excitatory and inhibitory (E/I) synapses in cornu ammonis 1 (CA1) neurons, the temporal dynamics across the neuronal population are poorly understood. Using an inhibitory avoidance task, we analyzed the dynamic changes in learning-induced E/I synaptic plasticity. The training strengthened GABAA receptor–mediated synapses within 1 min, peaked at 10 min, and lasted for over 60 min. The intracellular loop (Ser408−409) of GABAA receptor β3 subunit was also phosphorylated within 1 min of training. As the results of strengthening of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor–mediated synapses, CA1 pyramidal neurons exhibited broad diversity of E/I synaptic currents within 5 min. Moreover, presynaptic glutamate release probability at basal dendrites also increased within 5 min. To further quantify the diversified E/I synaptic currents, we calculated self-entropy (bit) for individual neurons. The neurons showed individual levels of the parameter, which rapidly increased within 1 min of training and maintained for over 60 min. These results suggest that learning-induced synaptic plasticity is critical immediately following encoding rather than during the retrieval phase of the learning. Understanding the temporal dynamics along with the quantification of synaptic diversity would be necessary to identify a failure point for learning-promoted plasticity in cognitive disorders.—Sakimoto, Y., Kida, H., Mitsushima, D. Temporal dynamics of learning-promoted synaptic diversity in CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Hiroyuki Kida
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Dai Mitsushima
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan.,The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
10
|
Shen Y, Park JB, Lee SY, Han SK, Ryu PD. Exercise training normalizes elevated firing rate of hypothalamic presympathetic neurons in heart failure rats. Am J Physiol Regul Integr Comp Physiol 2018; 316:R110-R120. [PMID: 30485115 DOI: 10.1152/ajpregu.00225.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exercise training (ExT) normalizes elevated sympathetic nerve activity in heart failure (HF), but the underlying mechanisms are not well understood. In this study, we examined the effects of 3 wk of ExT on the electrical activity of the hypothalamic presympathetic neurons in the brain slice of HF rats. HF rats were prepared by ligating the left descending coronary artery. The electrophysiological properties of paraventricular nucleus neurons projecting to the rostral ventrolateral medulla (PVN-RVLM) were examined using the slice patch-clamp technique. The neuronal firing rate was elevated in HF rats, and ExT induced a reduction in the firing rate ( P < 0.01). This ExT-induced decrease in the firing rate was associated with an increased frequency of spontaneous and miniature inhibitory postsynaptic current (IPSCs; P < 0.05). There was no significant change in excitatory postsynaptic current. Replacing Ca2+ with Mg2+ in the recording solution reduced the elevated IPSC frequency in HF rats with ExT ( P < 0.01) but not in those without ExT, indicating an increase in the probability of GABA release. In contrast, ExT did not restore the reduced GABAA receptor-mediated tonic inhibitory current in HF rats. A GABAA receptor blocker (bicuculline, 20 μM) increased the firing rate in HF rats with ExT ( P < 0.01) but not in those without ExT. Collectively, these results show that ExT normalized the elevated firing activity by increasing synaptic GABA release in PVN-RVLM neurons in HF rats. Our findings provide a brain mechanism underlying the beneficial effects of ExT in HF, which may shed light on the pathophysiology of other diseases accompanied by sympathetic hyperactivation.
Collapse
Affiliation(s)
- Yiming Shen
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul , Republic of Korea
| | - Jin Bong Park
- Department of Physiology, School of Medicine, Chungnam National University , Daejeon , Republic of Korea
| | - So Yeong Lee
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul , Republic of Korea
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Pan Dong Ryu
- Department of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
11
|
Kahms M, Klingauf J. Novel pH-Sensitive Lipid Based Exo-Endocytosis Tracers Reveal Fast Intermixing of Synaptic Vesicle Pools. Front Cell Neurosci 2018; 12:18. [PMID: 29456492 PMCID: PMC5801418 DOI: 10.3389/fncel.2018.00018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/11/2018] [Indexed: 11/13/2022] Open
Abstract
Styryl dyes and genetically encoded pH-sensitive fluorescent proteins like pHluorin are well-established tools for the optical analysis of synaptic vesicle (SV) recycling at presynaptic boutons. Here, we describe the development of a new class of fluorescent probes based on pH-sensitive organic dyes covalently bound to lipids, providing a promising complementary assay to genetically encoded fluorescent probes. These new optical tracers allow a pure read out of membrane turnover during synaptic activity and visualization of multiple rounds of stimulation-dependent SV recycling without genetic perturbation. Measuring the incorporation efficacy of different dye-labeled lipids into budding SVs, we did not observe an enrichment of lipids with affinity for liquid ordered membrane domains. But most importantly, we found no evidence for a static segregation of SVs into recycling and resting pools. A small but significant fraction of SVs that is reluctant to release during a first round of evoked activity can be exocytosed during a second bout of stimulation, showing fast intermixing of SV pools within seconds. Furthermore, we found that SVs recycling spontaneously have a higher chance to re-occupy release sites than SVs recycling during high-frequency evoked activity. In summary, our data provide strong evidence for a highly dynamic and use-dependent control of the fractions of releasable or resting SVs.
Collapse
Affiliation(s)
- Martin Kahms
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Jürgen Klingauf
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- IZKF Münster and Cluster of Excellence Cells in Motion, University of Münster, Münster, Germany
| |
Collapse
|
12
|
Babiec WE, O'Dell TJ. Novel Ca 2+-dependent mechanisms regulate spontaneous release at excitatory synapses onto CA1 pyramidal cells. J Neurophysiol 2017; 119:597-607. [PMID: 29142096 DOI: 10.1152/jn.00628.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although long thought to simply be a source of synaptic noise, spontaneous, action potential-independent release of neurotransmitter from presynaptic terminals has multiple roles in synaptic function. We explored whether and to what extent the two predominantly proposed mechanisms for explaining spontaneous release, stochastic activation of voltage-gated Ca2+ channels (VGCCs) or activation of Ca2+-sensing receptors (CaSRs) by extracellular Ca2+, played a role in the sensitivity of spontaneous release to the level of extracellular Ca2+ concentration at excitatory synapses at CA1 pyramidal cells of the adult male mouse hippocampus. Blocking VGCCs with Cd2+ had no effect on spontaneous release, ruling out stochastic activation of VGCCs. Although divalent cation agonists of CaSRs, Co2+ and Mg2+, dramatically enhanced miniature excitatory postsynaptic current (mEPSC) frequency, potent positive and negative allosteric modulators of CaSRs had no effect. Moreover, immunoblot analysis of hippocampal lysates failed to detect CaSR expression, ruling out the CaSR. Instead, the increase in mEPSC frequency induced by Co2+ and Mg2+ was mimicked by lowering postsynaptic Ca2+ levels with BAPTA. Together, our results suggest that a reduction in intracellular Ca2+ may trigger a homeostatic-like compensatory response that upregulates spontaneous transmission at excitatory synapses onto CA1 pyramidal cells in the adult hippocampus. NEW & NOTEWORTHY We show that the predominant theories for explaining the regulation of spontaneous, action potential-independent synaptic release do not explain the sensitivity of this type of synaptic transmission to external Ca2+ concentration at excitatory synapses onto hippocampal CA1 pyramidal cells. In addition, our data indicate that intracellular Ca2+ levels in CA1 pyramidal cells regulate spontaneous release, suggesting that excitatory synapses onto CA1 pyramidal cells may express a novel, rapid form of homeostatic plasticity.
Collapse
Affiliation(s)
- Walter E Babiec
- Department of Physiology, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Thomas J O'Dell
- Department of Physiology, David Geffen School of Medicine at UCLA , Los Angeles, California.,UCLA Integrative Center for Learning and Memory, Brain Research Institute, UCLA, Los Angeles, California
| |
Collapse
|
13
|
Neuronal hyperactivity due to loss of inhibitory tone in APOE4 mice lacking Alzheimer's disease-like pathology. Nat Commun 2017; 8:1464. [PMID: 29133888 PMCID: PMC5684208 DOI: 10.1038/s41467-017-01444-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 09/19/2017] [Indexed: 01/21/2023] Open
Abstract
The ε4 allele of apolipoprotein E (APOE) is the dominant genetic risk factor for late-onset Alzheimer’s disease (AD). However, the reason APOE4 is associated with increased AD risk remains a source of debate. Neuronal hyperactivity is an early phenotype in both AD mouse models and in human AD, which may play a direct role in the pathogenesis of the disease. Here, we have identified an APOE4-associated hyperactivity phenotype in the brains of aged APOE mice using four complimentary techniques—fMRI, in vitro electrophysiology, in vivo electrophysiology, and metabolomics—with the most prominent hyperactivity occurring in the entorhinal cortex. Further analysis revealed that this neuronal hyperactivity is driven by decreased background inhibition caused by reduced responsiveness of excitatory neurons to GABAergic inhibitory inputs. Given the observations of neuronal hyperactivity in prodromal AD, we propose that this APOE4-driven hyperactivity may be a causative factor driving increased risk of AD among APOE4 carriers. The APOE4 allele is the leading risk factor for late-onset Alzheimer’s disease, but how it might contribute to the disease is not clear. Here the authors show that a mouse expressing the human APOE4 allele displays hyperactivity in the entorhinal cortex due to a decreased inhibitory tone, which may in part explain accelerated Alzheimer’s pathology in APOE4 carriers.
Collapse
|
14
|
Yasmin F, Saxena K, McEwen BS, Chattarji S. The delayed strengthening of synaptic connectivity in the amygdala depends on NMDA receptor activation during acute stress. Physiol Rep 2017; 4:4/20/e13002. [PMID: 27798355 PMCID: PMC5099964 DOI: 10.14814/phy2.13002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/20/2016] [Indexed: 01/21/2023] Open
Abstract
There is growing evidence that stress leads to contrasting patterns of structural plasticity in the hippocampus and amygdala, two brain areas implicated in the cognitive and affective symptoms of stress‐related psychiatric disorders. Acute stress has been shown to trigger a delayed increase in the density of dendritic spines in the basolateral amygdala (BLA) of rodents. However, the physiological correlates of this delayed spinogenesis in the BLA remain unexplored. Furthermore, NMDA receptors (NMDARs) have been known to underlie chronic stress‐induced structural plasticity in the hippocampus, but nothing is known about the role of these receptors in the delayed spinogenesis, and its physiological consequences, in the BLA following acute stress. Here, using whole‐cell recordings in rat brain slices, we find that a single exposure to 2‐h immobilization stress enhances the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs) recorded from principal neurons in the BLA 10 days later. This was also accompanied by faster use‐dependent block of NMDA receptor currents during repeated stimulation of thalamic inputs to the BLA, which is indicative of higher presynaptic release probability at these inputs 10 days later. Furthermore, targeted in vivo infusion of the NMDAR‐antagonist APV into the BLA during the acute stress prevents the increase in mEPSC frequency and spine density 10 days later. Together, these results identify a role for NMDARs during acute stress in both the physiological and morphological strengthening of synaptic connectivity in the BLA in a delayed fashion. These findings also raise the possibility that activation of NMDA receptors during stress may serve as a common molecular mechanism despite the divergent patterns of plasticity that eventually emerge after stress in the amygdala and hippocampus.
Collapse
Affiliation(s)
- Farhana Yasmin
- National Centre for Biological Sciences, Bangalore, India
| | - Kapil Saxena
- National Centre for Biological Sciences, Bangalore, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, USA
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Bangalore, India .,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Centre for Integrative Physiology, Deanery of Biomedical Sciences, The University of Edinburgh, George Square, Edinburgh, UK
| |
Collapse
|
15
|
Zolnik TA, Connors BW. Electrical synapses and the development of inhibitory circuits in the thalamus. J Physiol 2016; 594:2579-92. [PMID: 26864476 PMCID: PMC4865577 DOI: 10.1113/jp271880] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/05/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The thalamus is a structure critical for information processing and transfer to the cortex. Thalamic reticular neurons are inhibitory cells interconnected by electrical synapses, most of which require the gap junction protein connexin36 (Cx36). We investigated whether electrical synapses play a role in the maturation of thalamic networks by studying neurons in mice with and without Cx36. When Cx36 was deleted, inhibitory synapses were more numerous, although both divergent inhibitory connectivity and dendritic complexity were reduced. Surprisingly, we observed non-Cx36-dependent electrical synapses with unusual biophysical properties interconnecting some reticular neurons in mice lacking Cx36. The results of the present study suggest an important role for Cx36-dependent electrical synapses in the development of thalamic circuits. ABSTRACT Neurons within the mature thalamic reticular nucleus (TRN) powerfully inhibit ventrobasal (VB) thalamic relay neurons via GABAergic synapses. TRN neurons are also coupled to one another by electrical synapses that depend strongly on the gap junction protein connexin36 (Cx36). Electrical synapses in the TRN precede the postnatal development of TRN-to-VB inhibition. We investigated how the deletion of Cx36 affects the maturation of TRN and VB neurons, electrical coupling and GABAergic synapses by studying wild-type (WT) and Cx36 knockout (KO) mice. The incidence and strength of electrical coupling in TRN was sharply reduced, but not abolished, in KO mice. Surprisingly, electrical synapses between Cx36-KO neurons had faster voltage-dependent decay kinetics and conductance asymmetry (rectification) than did electrical synapses between WT neurons. The properties of TRN-mediated inhibition in VB also depended on the Cx36 genotype. Deletion of Cx36 increased the frequency and shifted the amplitude distributions of miniature IPSCs, whereas the paired-pulse ratio of evoked IPSCs was unaffected, suggesting that the absence of Cx36 led to an increase in GABAergic synaptic contacts. VB neurons from Cx36-KO mice also tended to have simpler dendritic trees and fewer divergent inputs from the TRN compared to WT cells. The findings obtained in the present study suggest that proper development of thalamic inhibitory circuitry, neuronal morphology, TRN cell function and electrical coupling requires Cx36. In the absence of Cx36, some TRN neurons express asymmetric electrical coupling mediated by other unidentified connexin subtypes.
Collapse
Affiliation(s)
- Timothy A Zolnik
- Department of Neuroscience, Division of Biology & Medicine, Brown University, Providence, RI, USA
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Barry W Connors
- Department of Neuroscience, Division of Biology & Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
16
|
Myosin Va and Endoplasmic Reticulum Calcium Channel Complex Regulates Membrane Export during Axon Guidance. Cell Rep 2016; 15:1329-44. [DOI: 10.1016/j.celrep.2016.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 03/11/2016] [Accepted: 03/31/2016] [Indexed: 11/22/2022] Open
|
17
|
Pulizzi R, Musumeci G, Van den Haute C, Van De Vijver S, Baekelandt V, Giugliano M. Brief wide-field photostimuli evoke and modulate oscillatory reverberating activity in cortical networks. Sci Rep 2016; 6:24701. [PMID: 27099182 PMCID: PMC4838830 DOI: 10.1038/srep24701] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/04/2016] [Indexed: 01/18/2023] Open
Abstract
Cell assemblies manipulation by optogenetics is pivotal to advance neuroscience and neuroengineering. In in vivo applications, photostimulation often broadly addresses a population of cells simultaneously, leading to feed-forward and to reverberating responses in recurrent microcircuits. The former arise from direct activation of targets downstream, and are straightforward to interpret. The latter are consequence of feedback connectivity and may reflect a variety of time-scales and complex dynamical properties. We investigated wide-field photostimulation in cortical networks in vitro, employing substrate-integrated microelectrode arrays and long-term cultured neuronal networks. We characterized the effect of brief light pulses, while restricting the expression of channelrhodopsin to principal neurons. We evoked robust reverberating responses, oscillating in the physiological gamma frequency range, and found that such a frequency could be reliably manipulated varying the light pulse duration, not its intensity. By pharmacology, mathematical modelling, and intracellular recordings, we conclude that gamma oscillations likely emerge as in vivo from the excitatory-inhibitory interplay and that, unexpectedly, the light stimuli transiently facilitate excitatory synaptic transmission. Of relevance for in vitro models of (dys)functional cortical microcircuitry and in vivo manipulations of cell assemblies, we give for the first time evidence of network-level consequences of the alteration of synaptic physiology by optogenetics.
Collapse
Affiliation(s)
- Rocco Pulizzi
- Theoretical Neurobiology &Neuroengineering, University of Antwerp, Antwerp, Belgium
| | - Gabriele Musumeci
- Theoretical Neurobiology &Neuroengineering, University of Antwerp, Antwerp, Belgium
| | - Chris Van den Haute
- Laboratory of Neurobiology and Gene Therapy, Katholieke Universiteit Leuven, Leuven, Belgium.,Leuven Viral Vector Core, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Veerle Baekelandt
- Laboratory of Neurobiology and Gene Therapy, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Michele Giugliano
- Theoretical Neurobiology &Neuroengineering, University of Antwerp, Antwerp, Belgium.,Department of Computer Science, University of Sheffield, S1 4DP Sheffield, UK.,Laboratory of Neural Microcircuitry, Brain Mind Institute, EPFL, CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Creatine Enhances Transdifferentiation of Bone Marrow Stromal Cell-Derived Neural Stem Cell Into GABAergic Neuron-Like Cells Characterized With Differential Gene Expression. Mol Neurobiol 2016; 54:1978-1991. [PMID: 26910814 DOI: 10.1007/s12035-016-9782-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
Abstract
Creatine was reported to induce bone marrow stromal cells (BMSC) into GABAergic neuron-like cells (GNLC). In a previous study, creatine was used as a single inducer for BMSC into GNLC with low yield. In this study, BMSC-derived neurospheres (NS) have been used in generating GABAergic phenotype. The BMSC were isolated from adult rats and used in generating neurospheres and used for producing neural stem cells (NSC). A combination of all-trans-retinoic acid (RA), the ciliary neurotrophic factor (CNTF), and creatine was used in order to improve the yield of GNLC. We also used other protocols for the transdifferentiation including RA alone; RA and creatine; RA and CNTF; and RA, CNTF, and creatine. The BMSC, NSC, and GNLC were characterized by specific markers. The activity of the GNLC was evaluated using FM1-43. The isolated BMSC expressed Oct4, fibronectin, and CD44. The NS were immunoreactive to nestin and SOX2, the NSC were immunoreactive to nestin, NF68 and NF160, while the GNLC were immunoreactive to GAD1/2, VGAT, GABA, and synaptophysin. Oct4 and c-MYC, pluripotency genes, were expressed in the BMSC, while SOX2 and c-MYC were expressed in the NSC. The activity of GNLC indicates that the synaptic vesicles were released upon stimulation. The conclusion is that the combination of RA, CNTF, and creatine induced differentiation of neurosphere-derived NSC into GNLC within 1 week. This protocol gives higher yield than the other protocols used in this study. The mechanism of induction was clearly associated with several differential pluripotent genes.
Collapse
|
19
|
Suzuki E, Kamiya H. PSD-95 regulates synaptic kainate receptors at mouse hippocampal mossy fiber-CA3 synapses. Neurosci Res 2015; 107:14-9. [PMID: 26746114 DOI: 10.1016/j.neures.2015.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
Kainate-type glutamate receptors (KARs) are the third class of ionotropic glutamate receptors whose activation leads to the unique roles in regulating synaptic transmission and circuit functions. In contrast to AMPA receptors (AMPARs), little is known about the mechanism of synaptic localization of KARs. PSD-95, a major scaffold protein of the postsynaptic density, is a candidate molecule that regulates the synaptic KARs. Although PSD-95 was shown to bind directly to KARs subunits, it has not been tested whether PSD-95 regulates synaptic KARs in intact synapses. Using PSD-95 knockout mice, we directly investigated the role of PSD-95 in the KARs-mediated components of synaptic transmission at hippocampal mossy fiber-CA3 synapse, one of the synapses with the highest density of KARs. Mossy fiber EPSCs consist of AMPA receptor (AMPAR)-mediated fast component and KAR-mediated slower component, and the ratio was significantly reduced in PSD-95 knockout mice. The size of KARs-mediated field EPSP reduced in comparison with the size of the fiber volley. Analysis of KARs-mediated miniature EPSCs also suggested reduced synaptic KARs. All the evidence supports critical roles of PSD-95 in regulating synaptic KARs.
Collapse
Affiliation(s)
- Etsuko Suzuki
- Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Haruyuki Kamiya
- Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| |
Collapse
|
20
|
Chamberland S, Tóth K. Functionally heterogeneous synaptic vesicle pools support diverse synaptic signalling. J Physiol 2015; 594:825-35. [PMID: 26614712 DOI: 10.1113/jp270194] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022] Open
Abstract
Synaptic communication between neurons is a highly dynamic process involving specialized structures. At the level of the presynaptic terminal, neurotransmission is ensured by fusion of vesicles to the membrane, which releases neurotransmitter in the synaptic cleft. Depending on the level of activity experienced by the terminal, the spatiotemporal properties of calcium invasion will dictate the timing and the number of vesicles that need to be released. Diverse presynaptic firing patterns are translated to neurotransmitter release with a distinct temporal feature. Complex patterns of neurotransmitter release can be achieved when different vesicles respond to distinct calcium dynamics in the presynaptic terminal. Specific vesicles from different pools are recruited during various modes of release as the particular molecular composition of their membrane proteins define their functional properties. Such diversity endows the presynaptic terminal with the ability to respond to distinct physiological signals via the mobilization of specific subpopulation of vesicles. There are several mechanisms by which a diverse vesicle population could be generated in single presynaptic terminals, including distinct recycling pathways that utilize various adaptor proteins. Several additional factors could potentially contribute to the development of a heterogeneous vesicle pool such as specialized release sites, spatial segregation within the terminal and specialized delivery pathways. Among these factors molecular heterogeneity plays a central role in defining the functional properties of different subpopulations of vesicles.
Collapse
Affiliation(s)
- Simon Chamberland
- Quebec Mental Health Institute, Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada, G1J 2G3
| | - Katalin Tóth
- Quebec Mental Health Institute, Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada, G1J 2G3
| |
Collapse
|
21
|
Crawford DC, Kavalali ET. Molecular underpinnings of synaptic vesicle pool heterogeneity. Traffic 2015; 16:338-64. [PMID: 25620674 DOI: 10.1111/tra.12262] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Indexed: 12/31/2022]
Abstract
Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.
Collapse
Affiliation(s)
- Devon C Crawford
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | | |
Collapse
|
22
|
RBFOX3/NeuN is Required for Hippocampal Circuit Balance and Function. Sci Rep 2015; 5:17383. [PMID: 26619789 PMCID: PMC4664964 DOI: 10.1038/srep17383] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/14/2015] [Indexed: 11/08/2022] Open
Abstract
RBFOX3 mutations are linked to epilepsy and cognitive impairments, but the underlying pathophysiology of these disorders is poorly understood. Here we report replication of human symptoms in a mouse model with disrupted Rbfox3. Rbfox3 knockout mice displayed increased seizure susceptibility and decreased anxiety-related behaviors. Focusing on hippocampal phenotypes, we found Rbfox3 knockout mice showed increased expression of plasticity genes Egr4 and Arc, and the synaptic transmission and plasticity were defective in the mutant perforant pathway. The mutant dentate granules cells exhibited an increased frequency, but normal amplitude, of excitatory synaptic events, and this change was associated with an increase in the neurotransmitter release probability and dendritic spine density. Together, our results demonstrate anatomical and functional abnormality in Rbfox3 knockout mice, and may provide mechanistic insights for RBFOX3-related human brain disorders.
Collapse
|
23
|
Schneggenburger R, Rosenmund C. Molecular mechanisms governing Ca2+ regulation of evoked and spontaneous release. Nat Neurosci 2015; 18:935-41. [DOI: 10.1038/nn.4044] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/09/2015] [Indexed: 12/15/2022]
|
24
|
Xu C, Liu QY, Alkon DL. PKC activators enhance GABAergic neurotransmission and paired-pulse facilitation in hippocampal CA1 pyramidal neurons. Neuroscience 2014; 268:75-86. [PMID: 24637095 DOI: 10.1016/j.neuroscience.2014.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/18/2022]
Abstract
Bryostatin-1, a potent agonist of protein kinase C (PKC), has recently been found to enhance spatial learning and long-term memory in rats, mice, rabbits and the nudibranch Hermissenda, and to exert profound neuroprotective effects on Alzheimer's disease (AD) in transgenic mice. However, details of the mechanistic effects of bryostatin on learning and memory remain unclear. To address this issue, whole-cell recording, a dual-recording approach and extracellular recording techniques were performed on young (2-4months) Brown-Norway rats. We found that bath-applied bryostatin-1 significantly increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). The firing rate of GABAergic interneurons significantly was also increased as recorded with a loosely-attached extracellular recording configuration. Simultaneous recordings from communicating cell pairs of interneuron and pyramidal neuron revealed unique activity-dependent properties of GABAergic synapses. Furthermore, the bryostatin-induced increase of the frequency and amplitude of IPSCs was blocked by methionine enkephalin which selectively suppressed the excitability of interneurons. Pretreatment with RO-32-0432, a relatively specific PKCα antagonist, blocked the effect of bryostatin on sIPSCs. Finally, bryostatin increased paired-pulse ratio of GABAergic synapses that lasted for at least 20min while pretreatment with RO-32-0432 significantly reduced the ratio. In addition, 8-[2-(2-pentyl-cyclopropylmethl)-cyclopropyl]-octanoic acid (DCP-LA), a selective PKCε activator, also increased the frequency and amplitude of sIPSCs. Taken together, these results suggest that bryostatin enhances GABAergic neurotransmission in pyramidal neurons by activating the PKCα & ε-dependent pathway and by a presynaptic mechanism with excitation of GABAergic interneurons. These effects of bryostatin on GABAergic transmissions and modifiability may contribute to the improvement of learning and memory previously observed to be induced by bryostatin.
Collapse
Affiliation(s)
- C Xu
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV 26506, United States of America.
| | - Q-Y Liu
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV 26506, United States of America
| | - D L Alkon
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV 26506, United States of America
| |
Collapse
|
25
|
Mishima T, Fujiwara T, Sanada M, Kofuji T, Kanai-Azuma M, Akagawa K. Syntaxin 1B, but not syntaxin 1A, is necessary for the regulation of synaptic vesicle exocytosis and of the readily releasable pool at central synapses. PLoS One 2014; 9:e90004. [PMID: 24587181 PMCID: PMC3938564 DOI: 10.1371/journal.pone.0090004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/24/2014] [Indexed: 11/24/2022] Open
Abstract
Two syntaxin 1 (STX1) isoforms, HPC-1/STX1A and STX1B, are coexpressed in neurons and function as neuronal target membrane (t)-SNAREs. However, little is known about their functional differences in synaptic transmission. STX1A null mutant mice develop normally and do not show abnormalities in fast synaptic transmission, but monoaminergic transmissions are impaired. In the present study, we found that STX1B null mutant mice died within 2 weeks of birth. To examine functional differences between STX1A and 1B, we analyzed the presynaptic properties of glutamatergic and GABAergic synapses in STX1B null mutant and STX1A/1B double null mutant mice. We found that the frequency of spontaneous quantal release was lower and the paired-pulse ratio of evoked postsynaptic currents was significantly greater in glutamatergic and GABAergic synapses of STX1B null neurons. Deletion of STX1B also accelerated synaptic vesicle turnover in glutamatergic synapses and decreased the size of the readily releasable pool in glutamatergic and GABAergic synapses. Moreover, STX1A/1B double null neurons showed reduced and asynchronous evoked synaptic vesicle release in glutamatergic and GABAergic synapses. Our results suggest that although STX1A and 1B share a basic function as neuronal t-SNAREs, STX1B but not STX1A is necessary for the regulation of spontaneous and evoked synaptic vesicle exocytosis in fast transmission.
Collapse
Affiliation(s)
- Tatsuya Mishima
- Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
- * E-mail:
| | - Tomonori Fujiwara
- Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Masumi Sanada
- Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Takefumi Kofuji
- Radio Isotope Laboratory, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Masami Kanai-Azuma
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kimio Akagawa
- Department of Cell Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
26
|
Jung J, Loy K, Schilling EM, Röther M, Brauner JM, Huth T, Schlötzer-Schrehardt U, Alzheimer C, Kornhuber J, Welzel O, Groemer TW. The Antidepressant Fluoxetine Mobilizes Vesicles to the Recycling Pool of Rat Hippocampal Synapses During High Activity. Mol Neurobiol 2013; 49:916-30. [DOI: 10.1007/s12035-013-8569-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/03/2013] [Indexed: 11/29/2022]
|
27
|
Yamamoto K, Ebihara K, Koshikawa N, Kobayashi M. Reciprocal regulation of inhibitory synaptic transmission by nicotinic and muscarinic receptors in rat nucleus accumbens shell. J Physiol 2013; 591:5745-63. [PMID: 24018951 DOI: 10.1113/jphysiol.2013.258558] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Medium spiny neurones (MSNs) in the nucleus accumbens (NAc) are the principal neurones whose activities are regulated by GABAergic inputs from MSNs and fast-spiking interneurones (FSNs). Cholinergic interneurones play important roles in the regulation of activity in MSNs; however, how acetylcholine modulates inhibitory synaptic transmission from MSNs/FSNs to MSNs remains unknown. We performed paired whole-cell patch-clamp recordings from MSNs and FSNs in rat NAc shell slice preparations and examined cholinergic effects on unitary inhibitory postsynaptic currents (uIPSCs). Carbachol (1 μM) suppressed uIPSC amplitude by 58.3 ± 8.0% in MSN→MSN connections, accompanied by increases in paired-pulse ratio and failure rate, suggesting that acetylcholine reduces the probability of GABA release from the synaptic terminals of MSNs. Carbachol-induced uIPSC suppression was antagonised by 100 μM atropine, and was mimicked by pilocarpine (1 μM) and acetylcholine (1 μM) but not nicotine (1 μM). Application of AM251 slightly reduced carbachol-induced uIPSC suppression (30.8 ± 8.9%), suggesting an involvement of endocannabinoid signalling in muscarinic suppression of uIPSCs. In contrast, FSN→MSN connections showed that pilocarpine had little effect on the uIPSC amplitude, whereas both nicotine and acetylcholine facilitated uIPSC amplitude, with decreases in failure rate and paired-pulse ratio, suggesting that nicotine-induced uIPSC facilitation is mediated by presynaptic mechanisms. Miniature IPSC recordings support these hypotheses of presynaptic cholinergic mechanisms. These results suggest a differential role for muscarinic and nicotinic receptors in GABA release, which depends on presynaptic neuronal subtypes in the NAc shell.
Collapse
Affiliation(s)
- Kiyofumi Yamamoto
- M. Kobayashi: Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | | | | | | |
Collapse
|
28
|
Jung J, Weisenburger S, Albert S, Gilbert DF, Friedrich O, Eulenburg V, Kornhuber J, Groemer TW. Performance of scientific cameras with different sensor types in measuring dynamic processes in fluorescence microscopy. Microsc Res Tech 2013; 76:835-43. [DOI: 10.1002/jemt.22236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/19/2013] [Accepted: 04/26/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Jasmin Jung
- Department of Psychiatry and Psychotherapy; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen 91054 Germany
| | - Siegfried Weisenburger
- Nano-Optics Division, Max Planck Institute for the Science of Light; Erlangen 91058 Germany
| | - Sahradha Albert
- Department of Psychiatry and Psychotherapy; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen 91054 Germany
| | - Daniel F. Gilbert
- Institute of Medical Biotechnology; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen 91052 Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen 91052 Germany
| | - Volker Eulenburg
- Department of Biochemistry and Molecular Medicine; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen 91054 Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen 91054 Germany
| | - Teja W. Groemer
- Department of Psychiatry and Psychotherapy; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen 91054 Germany
| |
Collapse
|
29
|
Kakazu Y, Koh JY, Iwabuchi S, Gonzalez-Alegre P, Harata NC. Miniature release events of glutamate from hippocampal neurons are influenced by the dystonia-associated protein torsinA. Synapse 2012; 66:807-22. [PMID: 22588999 DOI: 10.1002/syn.21571] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/09/2012] [Indexed: 12/23/2022]
Abstract
TorsinA is an evolutionarily conserved AAA+ ATPase, and human patients with an in-frame deletion of a single glutamate (ΔE) codon from the encoding gene suffer from autosomal-dominant, early-onset generalized DYT1 dystonia. Although only 30-40% of carriers of the mutation show overt motor symptoms, most experience enhanced excitability of the central nervous system. The cellular mechanism responsible for this change in excitability is not well understood. Here we show the effects of the ΔE-torsinA mutation on miniature neurotransmitter release from neurons. Neurotransmitter release was characterized in cultured hippocampal neurons obtained from wild-type, heterozygous, and homozygous ΔE-torsinA knock-in mice using two approaches. In the first approach, patch-clamp electrophysiology was used to record glutamate-mediated miniature excitatory postsynaptic currents (mEPSCs) in the presence of the Na⁺ channel blocker tetrodotoxin (TTX) and absence of GABA(A) receptor antagonists. The intervals between mEPSC events were significantly shorter in neurons obtained from the mutant mice than in those obtained from wild-type mice. In the second approach, the miniature exocytosis of synaptic vesicles was detected by imaging the unstimulated release of FM dye from the nerve terminals in the presence of TTX. Cumulative FM dye release was higher in neurons obtained from the mutant mice than in those obtained from wild-type mice. The number of glutamatergic nerve terminals was also assessed, and we found that this number was unchanged in heterozygous relative to wild-type neurons, but slightly increased in homozygous neurons. Notably, in both heterozygous and homozygous neurons, the unitary synaptic charge during each mEPSC event was unchanged. Overall, our results suggest more frequent miniature glutamate release in neurons with ΔE-torsinA mutations. This change may be one of the underlying mechanisms by which the excitability of the central nervous system is enhanced in the context of DYT1 dystonia. Moreover, qualitative differences between heterozygous and homozygous neurons with respect to certain synaptic properties indicate that the abnormalities observed in homozygotes may reflect more than a simple gene dosage effect.
Collapse
Affiliation(s)
- Yasuhiro Kakazu
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
30
|
Ramirez DMO, Khvotchev M, Trauterman B, Kavalali ET. Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 2012; 73:121-34. [PMID: 22243751 DOI: 10.1016/j.neuron.2011.10.034] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2011] [Indexed: 01/18/2023]
Abstract
Recent studies suggest that synaptic vesicles (SVs) giving rise to spontaneous neurotransmission are distinct from those that carry out evoked release. However, the molecular basis of this dichotomy remains unclear. Here, we focused on two noncanonical SNARE molecules, Vps10p-tail-interactor-1a (vti1a) and VAMP7, previously shown to reside on SVs. Using simultaneous multicolor imaging at individual synapses, we could show that compared to the more abundant vesicular SNARE synaptobrevin2, both vti1a and VAMP7 were reluctantly mobilized during activity. Vti1a, but not VAMP7, showed robust trafficking under resting conditions that could be partly matched by synaptobrevin2. Furthermore, loss of vti1a function selectively reduced high-frequency spontaneous neurotransmitter release detected postsynaptically. Expression of a truncated version of vti1a augmented spontaneous release more than full-length vti1a, suggesting that an autoinhibitory process regulates vti1a function. Taken together, these results support the premise that in its native form vti1a selectively maintains spontaneous neurotransmitter release.
Collapse
Affiliation(s)
- Denise M O Ramirez
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | | | | | | |
Collapse
|
31
|
Malik R, Chattarji S. Enhanced intrinsic excitability and EPSP-spike coupling accompany enriched environment-induced facilitation of LTP in hippocampal CA1 pyramidal neurons. J Neurophysiol 2012; 107:1366-78. [DOI: 10.1152/jn.01009.2011] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Environmental enrichment (EE) is a well-established paradigm for studying naturally occurring changes in synaptic efficacy in the hippocampus that underlie experience-induced modulation of learning and memory in rodents. Earlier research on the effects of EE on hippocampal plasticity focused on long-term potentiation (LTP). Whereas many of these studies investigated changes in synaptic weight, little is known about potential contributions of neuronal excitability to EE-induced plasticity. Here, using whole-cell recordings in hippocampal slices, we address this gap by analyzing the impact of EE on both synaptic plasticity and intrinsic excitability of hippocampal CA1 pyramidal neurons. Consistent with earlier reports, EE increased contextual fear memory and dendritic spine density on CA1 cells. Furthermore, EE facilitated LTP at Schaffer collateral inputs to CA1 pyramidal neurons. Analysis of the underlying causes for enhanced LTP shows EE to increase the frequency but not amplitude of miniature excitatory postsynaptic currents. However, presynaptic release probability, assayed using paired-pulse ratios and use-dependent block of N-methyl-d-aspartate receptor currents, was not affected. Furthermore, CA1 neurons fired more action potentials (APs) in response to somatic depolarization, as well as during the induction of LTP. EE also reduced spiking threshold and after-hyperpolarization amplitude. Strikingly, this EE-induced increase in excitability caused the same-sized excitatory postsynaptic potential to fire more APs. Together, these findings suggest that EE may enhance the capacity for plasticity in CA1 neurons, not only by strengthening synapses but also by enhancing their efficacy to fire spikes—and the two combine to act as an effective substrate for amplifying LTP.
Collapse
Affiliation(s)
- Ruchi Malik
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
32
|
Vargas R, Thorsteinsson H, Karlsson KAE. Spontaneous neural activity of the anterodorsal lobe and entopeduncular nucleus in adult zebrafish: a putative homologue of hippocampal sharp waves. Behav Brain Res 2011; 229:10-20. [PMID: 22207154 DOI: 10.1016/j.bbr.2011.12.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
Spontaneous neural activity is instrumental in the formation and maintenance of neural circuits that govern behavior. In mammals, spontaneous activity is observed in the spinal cord, brainstem, diencephalon, and neocortex, and has been most extensively studied in the hippocampus. Using whole-brain in vitro recordings we establish the presence of spontaneous activity in two regions of the zebrafish telenchephalon: the entopeduncular nucleus (EN) and the anterodorsal lobe (ADL). The ADL is part of the lateral telencephalic pallium, an area hypothesized to be functionally equivalent to the mammalian hippocampus. In contrast, the EN has been hypothesized to be equivalent to the mammalian basal ganglia. The observed spontaneous activity is GABA modulated, sensitive to glutamate and chloride transporter antagonists, and is abolished by sodium pump blockers; moreover, the spontaneous activity in the ADL is a slow multiband event (∼100 ms) characterized by an embedded fast ripple wave (∼150-180 Hz). Thus, the spontaneous activity in the ADL shares physiological features of hippocampal sharp waves in rodents. We suggest that this spontaneous activity is important for the formation and maintenance of neural circuits in zebrafish and argue that applying techniques unique to the fish may open novel routes to understand the function of spontaneous activity in mammals.
Collapse
Affiliation(s)
- R Vargas
- Department of Biomedical Engineering, School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | | |
Collapse
|
33
|
Kavalali ET, Chung C, Khvotchev M, Leitz J, Nosyreva E, Raingo J, Ramirez DMO. Spontaneous neurotransmission: an independent pathway for neuronal signaling? Physiology (Bethesda) 2011; 26:45-53. [PMID: 21357902 DOI: 10.1152/physiol.00040.2010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent findings suggest that spontaneous neurotransmission is a bona fide pathway for interneuronal signaling that operates independent of evoked transmission via distinct presynaptic as well as postsynaptic substrates. This article will examine the role of spontaneous release events in neuronal signaling by focusing on aspects that distinguish this process from evoked neurotransmission, and evaluate the mechanisms that may underlie this segregation.
Collapse
Affiliation(s)
- Ege T Kavalali
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Ramirez DM, Kavalali ET. Differential regulation of spontaneous and evoked neurotransmitter release at central synapses. Curr Opin Neurobiol 2011; 21:275-82. [PMID: 21334193 PMCID: PMC3092808 DOI: 10.1016/j.conb.2011.01.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 01/25/2011] [Indexed: 12/20/2022]
Abstract
Recent studies have begun to scrutinize the presynaptic machinery and vesicle populations that give rise to action potential evoked and spontaneous forms of neurotransmitter release. In several cases this work produced unexpected results which lend support to the notion that regulation, mechanisms, postsynaptic targets and possibly presynaptic origins of evoked and spontaneous neurotransmitter release differ. Furthermore, the list of regulatory pathways that impact spontaneous and evoked release in a divergent manner is rapidly growing. These findings challenge our classical views on the relationship between evoked and spontaneous neurotransmission. In contrast to the well-characterized neuromodulatory pathways that equally suppress or augment all forms of neurotransmitter release, molecular substrates specifically controlling spontaneous release remain unclear. In this review, we outline possible mechanisms that may underlie the differential regulation of distinct forms of neurotransmission and help demultiplex complex neuronal signals and generate parallel signaling events at their postsynaptic targets.
Collapse
Affiliation(s)
- Denise M.O. Ramirez
- Department of Neuroscience UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T. Kavalali
- Department of Neuroscience UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| |
Collapse
|
35
|
Peled ES, Isacoff EY. Optical quantal analysis of synaptic transmission in wild-type and rab3-mutant Drosophila motor axons. Nat Neurosci 2011; 14:519-26. [PMID: 21378971 DOI: 10.1038/nn.2767] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/21/2011] [Indexed: 02/06/2023]
Abstract
Synaptic transmission from a neuron to its target cells occurs via neurotransmitter release from dozens to thousands of presynaptic release sites whose strength and plasticity can vary considerably. We report an in vivo imaging method that monitors real-time synaptic transmission simultaneously at many release sites with quantal resolution. We applied this method to the model glutamatergic system of the Drosophila melanogaster larval neuromuscular junction. We find that, under basal conditions, about half of release sites have a very low release probability, but these are interspersed with sites with as much as a 50-fold higher probability. Paired-pulse stimulation depresses high-probability sites, facilitates low-probability sites, and recruits previously silent sites. Mutation of the small GTPase Rab3 substantially increases release probability but still leaves about half of the sites silent. Our findings suggest that basal synaptic strength and short-term plasticity are regulated at the level of release probability at individual sites.
Collapse
Affiliation(s)
- Einat S Peled
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | | |
Collapse
|
36
|
Welzel O, Henkel AW, Stroebel AM, Jung J, Tischbirek CH, Ebert K, Kornhuber J, Rizzoli SO, Groemer TW. Systematic heterogeneity of fractional vesicle pool sizes and release rates of hippocampal synapses. Biophys J 2011; 100:593-601. [PMID: 21281573 PMCID: PMC3030169 DOI: 10.1016/j.bpj.2010.12.3706] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/03/2010] [Accepted: 12/14/2010] [Indexed: 11/22/2022] Open
Abstract
Hippocampal neurons in tissue culture develop functional synapses that exhibit considerable variation in synaptic vesicle content (20-350 vesicles). We examined absolute and fractional parameters of synaptic vesicle exocytosis of individual synapses. Their correlation to vesicle content was determined by activity-dependent discharge of FM-styryl dyes. At high frequency stimulation (30 Hz), synapses with large recycling pools released higher amounts of dye, but showed a lower fractional release compared to synapses that contained fewer vesicles. This effect gradually vanished at lower frequencies when stimulation was triggered at 20 Hz and 10 Hz, respectively. Live-cell antibody staining with anti-synaptotagmin-1-cypHer 5, and overexpression of synaptopHluorin as well as photoconversion of FM 1-43 followed by electron microscopy, consolidated the findings obtained with FM-styryl dyes. We found that the readily releasable pool grew with a power function with a coefficient of 2/3, possibly indicating a synaptic volume/surface dependency. This observation could be explained by assigning the rate-limiting factor for vesicle exocytosis at high frequency stimulation to the available active zone surface that is proportionally smaller in synapses with larger volumes.
Collapse
Affiliation(s)
- Oliver Welzel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas W Henkel
- Department of Physiology, Faculty of Medicine, Jabriya, Kuwait University, Safat, Kuwait
| | - Armin M Stroebel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jasmin Jung
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Carsten H Tischbirek
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katrin Ebert
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Silvio O Rizzoli
- European Neuroscience Institute Göttingen, Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology of the Brain/Excellence Cluster 171, Göttingen, Germany
| | - Teja W Groemer
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
37
|
Hua Y, Sinha R, Martineau M, Kahms M, Klingauf J. A common origin of synaptic vesicles undergoing evoked and spontaneous fusion. Nat Neurosci 2011; 13:1451-3. [PMID: 21102448 DOI: 10.1038/nn.2695] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/25/2010] [Indexed: 11/09/2022]
Abstract
There is a longstanding controversy on the identity of synaptic vesicles undergoing spontaneous versus evoked release. A recent study, introducing a new genetic probe, suggested that spontaneous release is driven by a resting pool of synaptic vesicles refractory to stimulation. We found that cross-depletion of spontaneously or actively recycling synaptic vesicle pools occurred on stimulation in rat hippocampal neurons and identified the recycling pool as a major source of spontaneous release.
Collapse
Affiliation(s)
- Yunfeng Hua
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | |
Collapse
|
38
|
Welzel O, Tischbirek CH, Jung J, Kohler EM, Svetlitchny A, Henkel AW, Kornhuber J, Groemer TW. Synapse clusters are preferentially formed by synapses with large recycling pool sizes. PLoS One 2010; 5:e13514. [PMID: 20976002 PMCID: PMC2958124 DOI: 10.1371/journal.pone.0013514] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/24/2010] [Indexed: 11/18/2022] Open
Abstract
Synapses are distributed heterogeneously in neural networks. The relationship between the spatial arrangement of synapses and an individual synapse's structural and functional features remains to be elucidated. Here, we examined the influence of the number of adjacent synapses on individual synaptic recycling pool sizes. When measuring the discharge of the styryl dye FM1-43 from electrically stimulated synapses in rat hippocampal tissue cultures, a strong positive correlation between the number of neighbouring synapses and recycling vesicle pool sizes was observed. Accordingly, vesicle-rich synapses were found to preferentially reside next to neighbours with large recycling pool sizes. Although these synapses with large recycling pool sizes were rare, they were densely arranged and thus exhibited a high amount of release per volume. To consolidate these findings, functional terminals were marked by live-cell antibody staining with anti-synaptotagmin-1-cypHer or overexpression of synaptopHluorin. Analysis of synapse distributions in these systems confirmed the results obtained with FM 1-43. Our findings support the idea that clustering of synapses with large recycling pool sizes is a distinct developmental feature of newly formed neural networks and may contribute to functional plasticity.
Collapse
Affiliation(s)
- Oliver Welzel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Carsten H. Tischbirek
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jasmin Jung
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Eva M. Kohler
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alexei Svetlitchny
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas W. Henkel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Teja W. Groemer
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
39
|
Nauen DW. Methods of measuring activity at individual synapses: a review of techniques and the findings they have made possible. J Neurosci Methods 2010; 194:195-205. [PMID: 20888362 DOI: 10.1016/j.jneumeth.2010.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Neurons in the brain are often linked by single synaptic contacts (Gulyás et al., 1993) and the probabilistic character of synaptic activity makes it desirable to increase the resolution of physiological experiments by observing the function of the smallest possible number of synaptic terminals, ideally, one. Because they are critically important and technically difficult to resolve, several of the core questions investigated in singe-site experiments have been under study for decades (Auger and Marty, 2000). Many approaches have been taken toward the goal of measuring activity at few synapses, and consideration of the capabilities and limitations of each of these methods permits a review of the contributions each has made possible to present understanding of synaptic function. A number of methodological advances in recent years have increased resolving power. New techniques often build on previous developments and many effective approaches combine components of existing specialized methods with new technology. One theme that emerges is that synaptic properties vary among regions, reducing the utility of general questions such as whether synaptic glutamate saturates receptors or how rapidly synaptic vesicle pools are depleted. For several core questions, multiple studies using different methods have reached similar conclusions, suggesting that consensus may be emerging for some anatomic synapses.
Collapse
Affiliation(s)
- David W Nauen
- Department of Neurobiology, University of Pittsburgh School of Medicine, W1401 BST, 200 Lothrop Street, Pittsburgh, PA 15261, United States.
| |
Collapse
|
40
|
Chauvette S, Volgushev M, Timofeev I. Origin of active states in local neocortical networks during slow sleep oscillation. ACTA ACUST UNITED AC 2010; 20:2660-74. [PMID: 20200108 PMCID: PMC2951844 DOI: 10.1093/cercor/bhq009] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Slow-wave sleep is characterized by spontaneous alternations of activity and silence in corticothalamic networks, but the causes of transition from silence to activity remain unknown. We investigated local mechanisms underlying initiation of activity, using simultaneous multisite field potential, multiunit recordings, and intracellular recordings from 2 to 4 nearby neurons in naturally sleeping or anesthetized cats. We demonstrate that activity may start in any neuron or recording location, with tens of milliseconds delay in other cells and sites. Typically, however, activity originated at deep locations, then involved some superficial cells, but appeared later in the middle of the cortex. Neuronal firing was also found to begin, after the onset of active states, at depths that correspond to cortical layer V. These results support the hypothesis that switch from silence to activity is mediated by spontaneous synaptic events, whereby any neuron may become active first. Due to probabilistic nature of activity onset, the large pyramidal cells from deep cortical layers, which are equipped with the most numerous synaptic inputs and large projection fields, are best suited for switching the whole network into active state.
Collapse
Affiliation(s)
- Sylvain Chauvette
- Department of Psychiatry and Neuroscience, The Centre de Recherche Université Laval Robert-Giffard (CRULRG), Laval University, Québec, PQ, Canada
| | | | | |
Collapse
|
41
|
Hablitz JJ, Mathew SS, Pozzo-Miller L. GABA vesicles at synapses: are there 2 distinct pools? Neuroscientist 2009; 15:218-24. [PMID: 19436074 DOI: 10.1177/1073858408326431] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fast synaptic inhibition in the neocortex is mediated by the neurotransmitter GABA, acting on GABA( A) receptors. Neurotransmitters, including GABA, are stored in synaptic vesicles at presynaptic nerve terminals. A long-held assumption has been that evoked and spontaneous neurotransmissions draw on the same pools of vesicles. We review the evidence from FM1-43 studies supporting the contention that at least 2 distinct pools of GABA vesicles are present at inhibitory synapses in the rat neocortex. FM1-43 uptake during spontaneous vesicle endocytosis labels a vesicle pool within neocortical inhibitory nerve terminals that is released much more slowly ("reluctant" pool) than those vesicles loaded by electrical stimulation of afferent fibers or hyperkalemic solutions. These multiple pools may play diverse roles in such processes as long-term depression and/or potentiating of inhibitory synaptic transmission, homeostatic plasticity of inhibitory activity, or developmental changes in inhibitory synaptic transmission.
Collapse
Affiliation(s)
- John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama.
| | | | | |
Collapse
|
42
|
Fredj NB, Burrone J. A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse. Nat Neurosci 2009; 12:751-8. [PMID: 19430474 PMCID: PMC2738656 DOI: 10.1038/nn.2317] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/20/2009] [Indexed: 11/15/2022]
Abstract
Synapses relay information through the release of neurotransmitters stored in presynaptic vesicles. The identity, kinetics and location of the vesicle pools that are mobilized by neuronal activity have been studied using a variety of techniques. We created a genetically encoded probe, biosyn, which consists of a biotinylated VAMP2 expressed at presynaptic terminals. We exploited the high-affinity interaction between streptavidin and biotin to label biosyn with fluorescent streptavidin during vesicle fusion. This approach allowed us to tag vesicles sequentially to visualize and establish the identity of presynaptic pools. Using this technique, we were able to distinguish between two different pools of vesicles in rat hippocampal neurons: one that was released in response to presynaptic activity and another, distinct vesicle pool that spontaneously fused with the plasma membrane. We found that the spontaneous vesicles belonged to a 'resting pool' that is normally not mobilized by neuronal activity and whose function was previously unknown.
Collapse
Affiliation(s)
- Naila Ben Fredj
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | | |
Collapse
|
43
|
|
44
|
Lopantsev V, Both M, Draguhn A. Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges. Eur J Neurosci 2009; 29:1153-64. [DOI: 10.1111/j.1460-9568.2009.06663.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Activity-dependent coordination of presynaptic release probability and postsynaptic GluR2 abundance at single synapses. Proc Natl Acad Sci U S A 2008; 105:14656-61. [PMID: 18794522 DOI: 10.1073/pnas.0805705105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The strength of an excitatory synapse depends on both the presynaptic release probability (p(r)) and the abundance of functional postsynaptic AMPA receptors. How these parameters are related or balanced at a single synapse remains unknown. By taking advantage of live fluorescence imaging in cultured hippocampal neurons where individual synapses are readily resolved, we estimate p(r) by labeling presynaptic vesicles with a styryl dye, FM1-43, while concurrently measuring postsynaptic AMPA receptor abundance at the same synapse by immunolabeling surface GluR2. We find no appreciable correlation between p(r) and the level of surface synaptic GluR2 under basal condition, and blocking basal neural activity has no effect on the observed lack of correlation. However, elevating network activity drives their correlation, which accompanies a decrease in mean GluR2 level. These findings provide the direct evidence that the coordination of pre- and postsynaptic parameters of synaptic strength is not intrinsically fixed but that the balance is tuned by synaptic use at individual synapses.
Collapse
|
46
|
MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proc Natl Acad Sci U S A 2008; 105:9391-6. [PMID: 18599438 DOI: 10.1073/pnas.0802679105] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Learning and memory depend on the activity-dependent structural plasticity of synapses and changes in neuronal gene expression. We show that deletion of the MEF2C transcription factor in the CNS of mice impairs hippocampal-dependent learning and memory. Unexpectedly, these behavioral changes were accompanied by a marked increase in the number of excitatory synapses and potentiation of basal and evoked synaptic transmission. Conversely, neuronal expression of a superactivating form of MEF2C results in a reduction of excitatory postsynaptic sites without affecting learning and memory performance. We conclude that MEF2C limits excessive synapse formation during activity-dependent refinement of synaptic connectivity and thus facilitates hippocampal-dependent learning and memory.
Collapse
|
47
|
Wasser CR, Kavalali ET. Leaky synapses: regulation of spontaneous neurotransmission in central synapses. Neuroscience 2008; 158:177-88. [PMID: 18434032 DOI: 10.1016/j.neuroscience.2008.03.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/14/2008] [Accepted: 03/08/2008] [Indexed: 01/25/2023]
Abstract
The mechanisms underlying spontaneous neurotransmitter release are not well understood. Under physiological as well as pathophysiological circumstances, spontaneous fusion events can set the concentration of ambient levels of neurotransmitter within the synaptic cleft and in the extracellular milieu. In the brain, unregulated release of excitatory neurotransmitters, exacerbated during pathological conditions such as stroke, can lead to neuronal damage and death. In addition, recent findings suggest that under physiological circumstances spontaneous release events can trigger postsynaptic signaling events independent of evoked neurotransmitter release. Therefore, elucidation of mechanisms underlying spontaneous neurotransmission may help us better understand the functional significance of this form of release and provide tools for its selective manipulation. For instance, our recent investigations indicate that the level of cholesterol in the synapse plays a critical role in limiting spontaneous synaptic vesicle fusion. Therefore, alterations in synaptic cholesterol metabolism can be a critical determinant of glutamatergic neurotransmission at rest. This article aims to provide a closer look into our current understanding of the mechanisms underlying spontaneous neurotransmission and the signaling triggered by these unitary release events.
Collapse
Affiliation(s)
- C R Wasser
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9111, USA
| | | |
Collapse
|
48
|
Brailoiu GC, Brailoiu E, Chang JK, Dun NJ. Excitatory effects of human immunodeficiency virus 1 Tat on cultured rat cerebral cortical neurons. Neuroscience 2007; 151:701-10. [PMID: 18164555 DOI: 10.1016/j.neuroscience.2007.11.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/20/2007] [Accepted: 11/29/2007] [Indexed: 01/26/2023]
Abstract
Human immunodeficiency virus 1 (HIV-1) Tat protein is one of the neurotoxins involved in the pathogenesis of HIV-1-associated neuronal disorders. Combined electrophysiological and optical imaging experiments were undertaken to investigate whether HIV-1 Tat30-86, herein referred to as Tat30-86, acted directly or indirectly via the release of glutamate or both and to test its effect on the properties of spontaneous quantal events in cultured cortical neurons. Whole-cell patch recordings were made from cultured rat cortical neurons in either current- or voltage-clamp mode. Tat30-86 (50-1000 nM) induced in a population of cortical neurons a long-lasting depolarization, which was accompanied by a decrease of membrane resistance and persisted in a Krebs solution containing tetrodotoxin (TTX, 0.5 microM). Depolarizations were slightly reduced by pretreatment with glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 microM) and d-2-amino-5-phosphonovaleric acid (AP-5) (50 microM), and were markedly reduced in a Ca(2+)-free Krebs solution; the differences were statistically significant. Tat30-86-induced inward currents had a reversal potential between -30 and 0 mV. While not causing a noticeable depolarization, lower concentrations of Tat30-86 (10 nM) increased membrane excitability, as indicated by increased numbers of neuronal discharge in response to a step depolarizing pulse. Tat30-86 (10 nM) increased the frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs), while not significantly affecting their amplitude. Tat30-86 (10 nM) moderately increased the frequency as well as the amplitude of spontaneous miniature inhibitory postsynaptic currents (mIPSCs). Ratiometric Ca(2+) imaging studies showed that Tat30-86 produced three types of Ca(2+) responses: 1) a fast and transitory increase, 2) Ca(2+) oscillations, and 3) a fast increase followed by a plateau; the glutamate receptor antagonists eliminated the late component of Ca(2+) response. The result suggests that Tat30-86 is an active fragment and that it excites cortical neurons directly and indirectly via releasing glutamate from adjacent neurons.
Collapse
Affiliation(s)
- G C Brailoiu
- Department of Pharmacology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
49
|
Warrier A, Wilson M. Endocannabinoid signaling regulates spontaneous transmitter release from embryonic retinal amacrine cells. Vis Neurosci 2007; 24:25-35. [PMID: 17430607 DOI: 10.1017/s0952523807230160] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 07/06/2006] [Indexed: 11/07/2022]
Abstract
GABAergic amacrine cells, cultured from embryonic chick retina, display spontaneous mini frequencies ranging from 0-4.6 Hz as a result of the release of quanta of transmitter from both synapses and autapses. We show here that at least part of this variation originates from differences in the degree to which endocannabinoids, endogenously generated within the culture, are present at terminals presynaptic to individual cells. Though all cells examined scored positive for cannabinoid receptor type I (CB1R), only those showing a low initial rate of spontaneous minis responded to CB1R agonists with an increase in mini frequency, caused by a Gi/o-mediated reduction in [cAMP]. Cells displaying a high initial rate of spontaneous minis, on the other hand, were unaffected by CB1R agonists, but they did show a rate decrease with CB1R antagonists. Such a regulation of spontaneous transmitter release by endocannabinoids might be important in network maintenance in amacrine cells and other inhibitory interneurons.
Collapse
Affiliation(s)
- Ajithkumar Warrier
- Section of Neurobiology, Physiology and Behavior, Division of Biological Sciences, Davis, California 95616, USA
| | | |
Collapse
|
50
|
Woodhall GL, Ayman G, Jones RSG. Differential control of two forms of glutamate release by group III metabotropic glutamate receptors at rat entorhinal synapses. Neuroscience 2007; 148:7-21. [PMID: 17630217 PMCID: PMC2504724 DOI: 10.1016/j.neuroscience.2007.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/09/2007] [Accepted: 06/04/2007] [Indexed: 11/21/2022]
Abstract
Neurotransmitter release at CNS synapses occurs via both action potential-dependent and independent mechanisms, and it has generally been accepted that these two forms of release are regulated in parallel. We examined the effects of activation of group III metabotropic glutamate receptors (mGluRs) on stimulus-evoked and spontaneous glutamate release onto entorhinal cortical neurones in rats, and found a differential regulation of action potential-dependent and independent forms of release. Activation of presynaptic mGluRs depressed the amplitude of stimulus-evoked excitatory postsynaptic currents, but concurrently enhanced the frequency of spontaneous excitatory currents. Moreover, these differential effects on glutamate release were mediated by pharmacologically separable mechanisms. Application of the specific activator of adenylyl cyclase, forskolin, mimicked the effect of mGluR activation on spontaneous, but not evoked release, and inhibition of adenylyl cyclase with 9-tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536) blocked mGluR-mediated enhancement of spontaneous release, but not depression of evoked release. Occlusion studies with calcium channel blockers suggested that the group III mGluRs might depress evoked release through inhibition of both N and P/Q, but not R-type calcium channels. We suggest that the concurrent depression of action potential-evoked, and enhancement of action potential-independent glutamate release operate through discrete second messenger/effector systems at excitatory entorhinal terminals in rat brain.
Collapse
Affiliation(s)
- G L Woodhall
- Physiology and Pharmacology, School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| | | | | |
Collapse
|