1
|
Tian LY, Warren TL, Mehaffey WH, Brainard MS. Dynamic top-down biasing implements rapid adaptive changes to individual movements. eLife 2023; 12:e83223. [PMID: 37733005 PMCID: PMC10513479 DOI: 10.7554/elife.83223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Complex behaviors depend on the coordinated activity of neural ensembles in interconnected brain areas. The behavioral function of such coordination, often measured as co-fluctuations in neural activity across areas, is poorly understood. One hypothesis is that rapidly varying co-fluctuations may be a signature of moment-by-moment task-relevant influences of one area on another. We tested this possibility for error-corrective adaptation of birdsong, a form of motor learning which has been hypothesized to depend on the top-down influence of a higher-order area, LMAN (lateral magnocellular nucleus of the anterior nidopallium), in shaping moment-by-moment output from a primary motor area, RA (robust nucleus of the arcopallium). In paired recordings of LMAN and RA in singing birds, we discovered a neural signature of a top-down influence of LMAN on RA, quantified as an LMAN-leading co-fluctuation in activity between these areas. During learning, this co-fluctuation strengthened in a premotor temporal window linked to the specific movement, sequential context, and acoustic modification associated with learning. Moreover, transient perturbation of LMAN activity specifically within this premotor window caused rapid occlusion of pitch modifications, consistent with LMAN conveying a temporally localized motor-biasing signal. Combined, our results reveal a dynamic top-down influence of LMAN on RA that varies on the rapid timescale of individual movements and is flexibly linked to contexts associated with learning. This finding indicates that inter-area co-fluctuations can be a signature of dynamic top-down influences that support complex behavior and its adaptation.
Collapse
Affiliation(s)
- Lucas Y Tian
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Timothy L Warren
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - William H Mehaffey
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Michael S Brainard
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
2
|
Alvarado JS, Hatfield J, Mooney R. Divergent projections from locus coeruleus to the corticobasal ganglia system and ventral tegmental area of the adult male zebra finch. J Comp Neurol 2023; 531:921-934. [PMID: 36976533 PMCID: PMC10249436 DOI: 10.1002/cne.25474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
The locus coeruleus (LC) is a small noradrenergic brainstem nucleus that plays a central role in regulating arousal, attention, and performance. In the mammalian brain, individual LC neurons make divergent axonal projections to different brain regions, which are distinguished in part by which noradrenaline (NA) receptor subtypes they express. Here, we sought to determine whether similar organizational features characterize LC projections to corticobasal ganglia (CBG) circuitry in the zebra finch song system, with a focus on the basal ganglia nucleus Area X, the thalamic nucleus DLM, as well as the cortical nuclei HVC, LMAN, and RA. Single and dual retrograde tracer injections reveal that single LC-NA neurons make divergent projections to LMAN and Area X, as well as to the dopaminergic VTA/SNc complex that innervates this CBG circuit. Moreover, in situ hybridization revealed that differential expression of mRNA encoding α2A and α2C adrenoreceptors distinguishes LC-recipient CBG song nuclei. Therefore, LC-NA signaling in the zebra finch CBG circuit employs a similar strategy as in mammals, which could allow a relatively small number of LC neurons to exert widespread yet distinct effects across multiple brain regions.
Collapse
Affiliation(s)
- Jonnathan Singh Alvarado
- Department of Neurobiology, Duke University, Durham, NC, USA
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jordan Hatfield
- Department of Neurobiology, Duke University, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Zhang Y, Zhou L, Zuo J, Wang S, Meng W. Analogies of human speech and bird song: From vocal learning behavior to its neural basis. Front Psychol 2023; 14:1100969. [PMID: 36910811 PMCID: PMC9992734 DOI: 10.3389/fpsyg.2023.1100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Vocal learning is a complex acquired social behavior that has been found only in very few animals. The process of animal vocal learning requires the participation of sensorimotor function. By accepting external auditory input and cooperating with repeated vocal imitation practice, a stable pattern of vocal information output is eventually formed. In parallel evolutionary branches, humans and songbirds share striking similarities in vocal learning behavior. For example, their vocal learning processes involve auditory feedback, complex syntactic structures, and sensitive periods. At the same time, they have evolved the hierarchical structure of special forebrain regions related to vocal motor control and vocal learning, which are organized and closely associated to the auditory cortex. By comparing the location, function, genome, and transcriptome of vocal learning-related brain regions, it was confirmed that songbird singing and human language-related neural control pathways have certain analogy. These common characteristics make songbirds an ideal animal model for studying the neural mechanisms of vocal learning behavior. The neural process of human language learning may be explained through similar neural mechanisms, and it can provide important insights for the treatment of language disorders.
Collapse
Affiliation(s)
- Yutao Zhang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lifang Zhou
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jiachun Zuo
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Songhua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wei Meng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
4
|
Giret N, Rolland M, Del Negro C. Multisensory processes in birds: from single neurons to the influence of social interactions and sensory loss. Neurosci Biobehav Rev 2022; 143:104942. [DOI: 10.1016/j.neubiorev.2022.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
|
5
|
Forebrain nuclei linked to woodpecker territorial drum displays mirror those that enable vocal learning in songbirds. PLoS Biol 2022; 20:e3001751. [PMID: 36125990 PMCID: PMC9488818 DOI: 10.1371/journal.pbio.3001751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022] Open
Abstract
Vocal learning is thought to have evolved in 3 orders of birds (songbirds, parrots, and hummingbirds), with each showing similar brain regions that have comparable gene expression specializations relative to the surrounding forebrain motor circuitry. Here, we searched for signatures of these same gene expression specializations in previously uncharacterized brains of 7 assumed vocal non-learning bird lineages across the early branches of the avian family tree. Our findings using a conserved marker for the song system found little evidence of specializations in these taxa, except for woodpeckers. Instead, woodpeckers possessed forebrain regions that were anatomically similar to the pallial song nuclei of vocal learning birds. Field studies of free-living downy woodpeckers revealed that these brain nuclei showed increased expression of immediate early genes (IEGs) when males produce their iconic drum displays, the elaborate bill-hammering behavior that individuals use to compete for territories, much like birdsong. However, these specialized areas did not show increased IEG expression with vocalization or flight. We further confirmed that other woodpecker species contain these brain nuclei, suggesting that these brain regions are a common feature of the woodpecker brain. We therefore hypothesize that ancient forebrain nuclei for refined motor control may have given rise to not only the song control systems of vocal learning birds, but also the drumming system of woodpeckers. Vocal learning is thought to have evolved in three orders of birds (songbirds, parrots, and hummingbirds). This study shows that woodpeckers have evolved a set of brain nuclei to mediate their drum displays, and these regions closely mirror those that underlie song learning in songbirds.
Collapse
|
6
|
Neural correlates of vocal initiation in the VTA/SNc of juvenile male zebra finches. Sci Rep 2021; 11:22388. [PMID: 34789831 PMCID: PMC8599707 DOI: 10.1038/s41598-021-01955-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
Initiation and execution of complex learned vocalizations such as human speech and birdsong depend on multiple brain circuits. In songbirds, neurons in the motor cortices and basal ganglia circuitry exhibit preparatory activity before initiation of song, and that activity is thought to play an important role in successful song performance. However, it remains unknown where a start signal for song is represented in the brain and how such a signal would lead to appropriate vocal initiation. To test whether neurons in the midbrain ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) show activity related to song initiation, we carried out extracellular recordings of VTA/SNc single units in singing juvenile male zebra finches. We found that a subset of VTA/SNc units exhibit phasic activity precisely time-locked to the onset of the song bout, and that the activity occurred specifically at the beginning of song. These findings suggest that phasic activity in the VTA/SNc represents a start signal that triggers song vocalization.
Collapse
|
7
|
Xiao L, Roberts TF. What Is the Role of Thalamostriatal Circuits in Learning Vocal Sequences? Front Neural Circuits 2021; 15:724858. [PMID: 34630047 PMCID: PMC8493212 DOI: 10.3389/fncir.2021.724858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Basal ganglia (BG) circuits integrate sensory and motor-related information from the cortex, thalamus, and midbrain to guide learning and production of motor sequences. Birdsong, like speech, is comprised of precisely sequenced vocal elements. Learning song sequences during development relies on Area X, a vocalization related region in the medial striatum of the songbird BG. Area X receives inputs from cortical-like pallial song circuits and midbrain dopaminergic circuits and sends projections to the thalamus. It has recently been shown that thalamic circuits also send substantial projections back to Area X. Here, we outline a gated-reinforcement learning model for how Area X may use signals conveyed by thalamostriatal inputs to direct song learning. Integrating conceptual advances from recent mammalian and songbird literature, we hypothesize that thalamostriatal pathways convey signals linked to song syllable onsets and offsets and influence striatal circuit plasticity via regulation of cholinergic interneurons (ChIs). We suggest that syllable sequence associated vocal-motor information from the thalamus drive precisely timed pauses in ChIs activity in Area X. When integrated with concurrent corticostriatal and dopaminergic input, this circuit helps regulate plasticity on medium spiny neurons (MSNs) and the learning of syllable sequences. We discuss new approaches that can be applied to test core ideas of this model and how associated insights may provide a framework for understanding the function of BG circuits in learning motor sequences.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
8
|
Moorman S, Ahn JR, Kao MH. Plasticity of stereotyped birdsong driven by chronic manipulation of cortical-basal ganglia activity. Curr Biol 2021; 31:2619-2632.e4. [PMID: 33974850 PMCID: PMC8222193 DOI: 10.1016/j.cub.2021.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/05/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Cortical-basal ganglia (CBG) circuits are critical for motor learning and performance, and are a major site of pathology. In songbirds, a CBG circuit regulates moment-by-moment variability in song and also enables song plasticity. Studies have shown that variable burst firing in LMAN, the output nucleus of this CBG circuit, actively drives acute song variability, but whether and how LMAN drives long-lasting changes in song remains unclear. Here, we ask whether chronic pharmacological augmentation of LMAN bursting is sufficient to drive plasticity in birds singing stereotyped songs. We show that altered LMAN activity drives cumulative changes in acoustic structure, timing, and sequencing over multiple days, and induces repetitions and silent pauses reminiscent of human stuttering. Changes persisted when LMAN was subsequently inactivated, indicating plasticity in song motor regions. Following cessation of pharmacological treatment, acoustic features and song sequence gradually recovered to their baseline values over a period of days to weeks. Together, our findings show that augmented bursting in CBG circuitry drives plasticity in well-learned motor skills, and may inform treatments for basal ganglia movement disorders.
Collapse
Affiliation(s)
- Sanne Moorman
- Psychology Department, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands; Biology Department, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA.
| | - Jae-Rong Ahn
- Biology Department, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Mimi H Kao
- Biology Department, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA; Neuroscience Graduate Program, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
9
|
Kearney MG, Warren TL, Hisey E, Qi J, Mooney R. Discrete Evaluative and Premotor Circuits Enable Vocal Learning in Songbirds. Neuron 2019; 104:559-575.e6. [PMID: 31447169 DOI: 10.1016/j.neuron.2019.07.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/24/2019] [Accepted: 07/18/2019] [Indexed: 11/28/2022]
Abstract
Virtuosic motor performance requires the ability to evaluate and modify individual gestures within a complex motor sequence. Where and how the evaluative and premotor circuits operate within the brain to enable such temporally precise learning is poorly understood. Songbirds can learn to modify individual syllables within their complex vocal sequences, providing a system for elucidating the underlying evaluative and premotor circuits. We combined behavioral and optogenetic methods to identify 2 afferents to the ventral tegmental area (VTA) that serve evaluative roles in syllable-specific learning and to establish that downstream cortico-basal ganglia circuits serve a learning role that is only premotor. Furthermore, song performance-contingent optogenetic stimulation of either VTA afferent was sufficient to drive syllable-specific learning, and these learning effects were of opposite valence. Finally, functional, anatomical, and molecular studies support the idea that these evaluative afferents bidirectionally modulate VTA dopamine neurons to enable temporally precise vocal learning.
Collapse
Affiliation(s)
- Matthew Gene Kearney
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy L Warren
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Erin Hisey
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiaxuan Qi
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Friedrich SR, Lovell PV, Kaser TM, Mello CV. Exploring the molecular basis of neuronal excitability in a vocal learner. BMC Genomics 2019; 20:629. [PMID: 31375088 PMCID: PMC6679542 DOI: 10.1186/s12864-019-5871-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/31/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Vocal learning, the ability to learn to produce vocalizations through imitation, relies on specialized brain circuitry known in songbirds as the song system. While the connectivity and various physiological properties of this system have been characterized, the molecular genetic basis of neuronal excitability in song nuclei remains understudied. We have focused our efforts on examining voltage-gated ion channels to gain insight into electrophysiological and functional features of vocal nuclei. A previous investigation of potassium channel genes in zebra finches (Taeniopygia guttata) revealed evolutionary modifications unique to songbirds, as well as transcriptional specializations in the song system [Lovell PV, Carleton JB, Mello CV. BMC Genomics 14:470 2013]. Here, we expand this approach to sodium, calcium, and chloride channels along with their modulatory subunits using comparative genomics and gene expression analysis encompassing microarrays and in situ hybridization. RESULTS We found 23 sodium, 38 calcium, and 33 chloride channel genes (HGNC-based classification) in the zebra finch genome, several of which were previously unannotated. We determined 15 genes are missing relative to mammals, including several genes (CLCAs, BEST2) linked to olfactory transduction. The majority of sodium and calcium but few chloride channels showed differential expression in the song system, among them SCN8A and CACNA1E in the direct motor pathway, and CACNG4 and RYR2 in the anterior forebrain pathway. In several cases, we noted a seemingly coordinated pattern across multiple nuclei (SCN1B, SCN3B, SCN4B, CACNB4) or sparse expression (SCN1A, CACNG5, CACNA1B). CONCLUSION The gene families examined are highly conserved between avian and mammalian lineages. Several cases of differential expression likely support high-frequency and burst firing in specific song nuclei, whereas cases of sparse patterns of expression may contribute to the unique electrophysiological signatures of distinct cell populations. These observations lay the groundwork for manipulations to determine how ion channels contribute to the neuronal excitability properties of vocal learning systems.
Collapse
Affiliation(s)
- Samantha R. Friedrich
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Sam Jackson Park Rd L470, Portland, OR USA
| | - Peter V. Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Sam Jackson Park Rd L470, Portland, OR USA
| | - Taylor M. Kaser
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Sam Jackson Park Rd L470, Portland, OR USA
| | - Claudio V. Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Sam Jackson Park Rd L470, Portland, OR USA
| |
Collapse
|
11
|
Tramacere A, Wada K, Okanoya K, Iriki A, Ferrari PF. Auditory-Motor Matching in Vocal Recognition and Imitative Learning. Neuroscience 2019; 409:222-234. [PMID: 30742962 DOI: 10.1016/j.neuroscience.2019.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
Songbirds possess mirror neurons (MNs) activating during the perception and execution of specific features of songs. These neurons are located in high vocal center (HVC), a premotor nucleus implicated in song perception, production and learning, making worth to inquire their properties and functions in vocal recognition and imitative learning. By integrating a body of brain and behavioral data, we discuss neurophysiology, anatomical, computational properties and possible functions of songbird MNs. We state that the neurophysiological properties of songbird MNs depends on sensorimotor regions that are outside the auditory neural system. Interestingly, songbirds MNs can be the result of the specific type of song representation possessed by some songbird species. At the functional level, we discuss whether songbird MNs are involved in others' song recognition, by dissecting the function of recognition in various different but possible overlapping processes: action-oriented perception, discriminative-oriented perception and identification of the signaler. We conclude that songbird MNs may be involved in recognizing other singer's vocalizations, while their role in imitative learning still require to solve how auditory feedback are used to correct own vocal performance to match the tutor song. Finally, we compare songbird and human mirror responses, hypothesizing a case of convergent evolution, and proposing new experimental directions.
Collapse
Affiliation(s)
- Antonella Tramacere
- Max Planck for the Science of Human History, DLCE Department, Jena, Kahlaische Str 10, 07745, Germany.
| | - Kazuhiro Wada
- Faculty of Science, Department of Biological Sciences, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo 060-0810, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 153-8902 Tokyo, Japan
| | - Atsushi Iriki
- RIKEN Center for Brain Science, 351-0106 Saitama Prefecture, Wako, Hirosawa, Japan
| | - Pier F Ferrari
- Department of Medicine and Surgery, University of Parma, via Volturno, 43125, Italy; Institut des Sciences Cognitives Marc Jannerod, CNRS/Universite' Claude Bernard Lyon, 67 Pd Pinel 69675, Bron Cedex, France
| |
Collapse
|
12
|
Rao D, Kojima S, Rajan R. Sensory feedback independent pre-song vocalizations correlate with time to song initiation. J Exp Biol 2019; 222:jeb199042. [PMID: 30877225 PMCID: PMC6467462 DOI: 10.1242/jeb.199042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/11/2019] [Indexed: 01/01/2023]
Abstract
The song of the adult male zebra finch is a well-studied example of a learned motor sequence. Song bouts begin with a variable number of introductory notes (INs) before actual song production. Previous studies have shown that INs progress from a variable initial state to a stereotyped final state before each song. This progression is thought to represent motor preparation, but the underlying mechanisms remain poorly understood. Here, we assessed the role of sensory feedback in the progression of INs to song. We found that the mean number of INs before song and the progression of INs to song were not affected by removal of two sensory feedback pathways (auditory or proprioceptive). In both feedback-intact and feedback-deprived birds, the presence of calls (other non-song vocalizations), just before the first IN, was correlated with fewer INs before song and an initial state closer to song. Finally, the initial IN state correlated with the time to song initiation. Overall, these results show that INs do not require real-time sensory feedback for progression to song. Rather, our results suggest that changes in IN features and their transition to song are controlled by internal neural processes, possibly involved in getting the brain ready to initiate a learned movement sequence.
Collapse
Affiliation(s)
- Divya Rao
- Division of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra 411008, India
| | - Satoshi Kojima
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Dong-gu, Daegu 701-300, Republic of Korea
| | - Raghav Rajan
- Division of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra 411008, India
| |
Collapse
|
13
|
Dopaminergic regulation of vocal-motor plasticity and performance. Curr Opin Neurobiol 2019; 54:127-133. [DOI: 10.1016/j.conb.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022]
|
14
|
Abstract
Deafness causes speech to deteriorate, but whether this deterioration reflects an active or passive process is unclear. Birdsong - a learned vocal behavior that resembles speech in its dependence on auditory feedback - also deteriorates following deafening. In their 2000 paper, Brainard and Doupe showed that, following deafening, birdsong deteriorates through an active process mediated by a cortex-basal ganglia (BG) circuit.
Collapse
Affiliation(s)
- Richard Mooney
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Vocal practice regulates singing activity-dependent genes underlying age-independent vocal learning in songbirds. PLoS Biol 2018; 16:e2006537. [PMID: 30208028 PMCID: PMC6152990 DOI: 10.1371/journal.pbio.2006537] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/24/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
The development of highly complex vocal skill, like human language and bird songs, is underlain by learning. Vocal learning, even when occurring in adulthood, is thought to largely depend on a sensitive/critical period during postnatal development, and learned vocal patterns emerge gradually as the long-term consequence of vocal practice during this critical period. In this scenario, it is presumed that the effect of vocal practice is thus mainly limited by the intrinsic timing of age-dependent maturation factors that close the critical period and reduce neural plasticity. However, an alternative, as-yet untested hypothesis is that vocal practice itself, independently of age, regulates vocal learning plasticity. Here, we explicitly discriminate between the influences of age and vocal practice using a songbird model system. We prevented zebra finches from singing during the critical period of sensorimotor learning by reversible postural manipulation. This enabled to us to separate lifelong vocal experience from the effects of age. The singing-prevented birds produced juvenile-like immature song and retained sufficient ability to acquire a tutored song even at adulthood when allowed to sing freely. Genome-wide gene expression network analysis revealed that this adult vocal plasticity was accompanied by an intense induction of singing activity-dependent genes, similar to that observed in juvenile birds, rather than of age-dependent genes. The transcriptional changes of activity-dependent genes occurred in the vocal motor robust nucleus of the arcopallium (RA) projection neurons that play a critical role in the production of song phonology. These gene expression changes were accompanied by neuroanatomical changes: dendritic spine pruning in RA projection neurons. These results show that self-motivated practice itself changes the expression dynamics of activity-dependent genes associated with vocal learning plasticity and that this process is not tightly linked to age-dependent maturational factors. How is plasticity associated with vocal learning regulated during a critical period? Although there are abundant studies on the critical period in sensory systems, which are passively regulated by the external environment, few studies have manipulated the sensorimotor experience through the entire critical period. Thus, it is a commonly held belief that age or intrinsic maturation is a crucial factor for the closure of the critical period of vocal learning. Contrary to this idea, our study using songbirds provides a new insight that self-motivated vocal practice, not age, regulates vocal learning plasticity during the critical period. To examine the effects of vocal practice on vocal learning, we prevented juvenile zebra finches from singing during the critical period by postural manipulation, which separated the contribution of lifelong vocal experience from that of age. When these birds were allowed to freely sing as adults, they generated highly plastic songs and maintained the ability to mimic tutored songs, as normal juveniles did. Genome-wide transcriptome analysis revealed that both juveniles and singing-prevented adults, but not normally reared adults, expressed a similar set of singing-dependent genes in a song nucleus in the brain that regulates syllable acoustics. However, age-dependent genes were still similarly expressed in both singing-prevented and normally reared adult birds. These results exhibit that vocal learning plasticity is actively controlled by self-motivated vocal practice.
Collapse
|
16
|
Physiological identification of cortico-striatal projection neurons for song control in Bengalese finches. Behav Brain Res 2018; 349:37-41. [PMID: 29709609 DOI: 10.1016/j.bbr.2018.04.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/08/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
Abstract
The avian song system is a group of brain areas specialized for vocal learning and production of song. A major cortical control area, HVC, projects both to a motor output circuit and to a striatal area in the anterior forebrain pathway. These projections are made by two groups of neurons, with mainly distinct roles in either programming vocal production or regulating vocal plasticity. In order to distinguish these two types of projection neurons in singing birds, we recorded unit activity in HVC of anesthetized birds, while stimulating in the anterior forebrain nucleus Area X. HVC units identified in this way had a distinct spike waveform, with a much longer duration positive peak than an initial negative one. We further found that units with a very similar spike waveform were phasically active during singing, firing at specific points of a limited number of song syllables. These units were also less active when birds only heard their own song, during the same syllables. While similar results from anesthetized and awake recordings have been reported in previous studies, the combination of both types of experiments here may be useful as a basis for identifying HVC neurons projecting to Area X based on their spike waveforms, and aid further study of their role in song learning and control.
Collapse
|
17
|
Kosubek-Langer J, Schulze L, Scharff C. Maturation, Behavioral Activation, and Connectivity of Adult-Born Medium Spiny Neurons in a Striatal Song Nucleus. Front Neurosci 2017. [PMID: 28638318 PMCID: PMC5461290 DOI: 10.3389/fnins.2017.00323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neurogenesis continues in the adult songbird brain. Many telencephalic song control regions incorporate new neurons into their existing circuits in adulthood. One song nucleus that receives many new neurons is Area X. Because this striatal region is crucial for song learning and song maintenance the recruitment of new neurons into Area X could influence these processes. As an entry point into addressing this possibility, we investigated the maturation and connectivity within the song circuit and behavioral activation of newly generated Area X neurons. Using BrdU birth dating and virally mediated GFP expression we followed adult-generated neurons from their place of birth in the ventricle to their place of incorporation into Area X. We show that newborn neurons receive glutamatergic input from pallial/cortical song nuclei. Additionally, backfills revealed that the new neurons connect to pallidal-like projection neurons that innervate the thalamus. Using in situ hybridization, we found that new neurons express the mRNA for D1- and D2-type dopamine receptors. Employing DARPP-32 (dopamine and cAMP-regulated phosphoprotein of 32 kDa) and EGR-1 (early growth response protein 1) as markers for neural maturation and activation, we established that at 42 days after labeling approximately 80% of new neurons were mature medium spiny neurons (MSNs) and could be activated by singing behavior. Finally, we compared the MSN density in Area X of birds up to seven years of age and found a significant increase with age, indicating that new neurons are constantly added to the nucleus. In summary, we provide evidence that newborn MSNs in Area X constantly functionally integrate into the circuit and are thus likely to play a role in the maintenance and regulation of adult song.
Collapse
Affiliation(s)
| | - Lydia Schulze
- Animal Behavior, Freie Universität BerlinBerlin, Germany
| | | |
Collapse
|
18
|
Chakraborty M, Chen LF, Fridel EE, Klein ME, Senft RA, Sarkar A, Jarvis ED. Overexpression of human NR2B receptor subunit in LMAN causes stuttering and song sequence changes in adult zebra finches. Sci Rep 2017; 7:942. [PMID: 28432288 PMCID: PMC5430713 DOI: 10.1038/s41598-017-00519-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Zebra finches (Taeniopygia guttata) learn to produce songs in a manner reminiscent of spoken language development in humans. One candidate gene implicated in influencing learning is the N-methyl-D-aspartate (NMDA) subtype 2B glutamate receptor (NR2B). Consistent with this idea, NR2B levels are high in the song learning nucleus LMAN (lateral magnocellular nucleus of the anterior nidopallium) during juvenile vocal learning, and decreases to low levels in adults after learning is complete and the song becomes more stereotyped. To test for the role of NR2B in generating song plasticity, we manipulated NR2B expression in LMAN of adult male zebra finches by increasing its protein levels to those found in juvenile birds, using a lentivirus containing the full-length coding sequence of the human NR2B subunit. We found that increased NR2B expression in adult LMAN induced increases in song sequence diversity and slower song tempo more similar to juvenile songs, but also increased syllable repetitions similar to stuttering. We did not observe these effects in control birds with overexpression of NR2B outside of LMAN or with the green fluorescent protein (GFP) in LMAN. Our results suggest that low NR2B subunit expression in adult LMAN is important in conserving features of stereotyped adult courtship song.
Collapse
Affiliation(s)
- Mukta Chakraborty
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Liang-Fu Chen
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Emma E Fridel
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Marguerita E Klein
- Neurotransgenic Laboratory, Department of Neurobiology, Duke University, Durham, NC, 27710, USA
| | - Rebecca A Senft
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Neurobiology, Harvard University, Cambridge, MA, 02138, USA
| | - Abhra Sarkar
- Department of Statistical Science, Duke University, Durham, NC, 27710, USA
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
19
|
Giret N, Edeline JM, Del Negro C. Neural mechanisms of vocal imitation: The role of sleep replay in shaping mirror neurons. Neurosci Biobehav Rev 2017; 77:58-73. [PMID: 28288397 DOI: 10.1016/j.neubiorev.2017.01.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 01/19/2023]
Abstract
Learning by imitation involves not only perceiving another individual's action to copy it, but also the formation of a memory trace in order to gradually establish a correspondence between the sensory and motor codes, which represent this action through sensorimotor experience. Memory and sensorimotor processes are closely intertwined. Mirror neurons, which fire both when the same action is performed or perceived, have received considerable attention in the context of imitation. An influential view of memory processes considers that the consolidation of newly acquired information or skills involves an active offline reprocessing of memories during sleep within the neuronal networks that were initially used for encoding. Here, we review the recent advances in the field of mirror neurons and offline processes in the songbird. We further propose a theoretical framework that could establish the neurobiological foundations of sensorimotor learning by imitation. We propose that the reactivation of neuronal assemblies during offline periods contributes to the integration of sensory feedback information and the establishment of sensorimotor mirroring activity at the neuronal level.
Collapse
Affiliation(s)
- Nicolas Giret
- Neuroscience Paris-Saclay Institute, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France.
| | - Jean-Marc Edeline
- Neuroscience Paris-Saclay Institute, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France.
| | - Catherine Del Negro
- Neuroscience Paris-Saclay Institute, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France.
| |
Collapse
|
20
|
Zengin-Toktas Y, Woolley SC. Singing modulates parvalbumin interneurons throughout songbird forebrain vocal control circuitry. PLoS One 2017; 12:e0172944. [PMID: 28235074 PMCID: PMC5325550 DOI: 10.1371/journal.pone.0172944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 02/13/2017] [Indexed: 11/19/2022] Open
Abstract
Across species, the performance of vocal signals can be modulated by the social environment. Zebra finches, for example, adjust their song performance when singing to females ('female-directed' or FD song) compared to when singing in isolation ('undirected' or UD song). These changes are salient, as females prefer the FD song over the UD song. Despite the importance of these performance changes, the neural mechanisms underlying this social modulation remain poorly understood. Previous work in finches has established that expression of the immediate early gene EGR1 is increased during singing and modulated by social context within the vocal control circuitry. Here, we examined whether particular neural subpopulations within those vocal control regions exhibit similar modulations of EGR1 expression. We compared EGR1 expression in neurons expressing parvalbumin (PV), a calcium buffer that modulates network plasticity and homeostasis, among males that performed FD song, males that produced UD song, or males that did not sing. We found that, overall, singing but not social context significantly affected EGR1 expression in PV neurons throughout the vocal control nuclei. We observed differences in EGR1 expression between two classes of PV interneurons in the basal ganglia nucleus Area X. Additionally, we found that singing altered the amount of PV expression in neurons in HVC and Area X and that distinct PV interneuron types in Area X exhibited different patterns of modulation by singing. These data indicate that throughout the vocal control circuitry the singing-related regulation of EGR1 expression in PV neurons may be less influenced by social context than in other neuron types and raise the possibility of cell-type specific differences in plasticity and calcium buffering.
Collapse
|
21
|
Lukacova K, Pavukova E, Kostal L, Bilcik B, Kubikova L. Dopamine D3 receptors modulate the rate of neuronal recovery, cell recruitment in Area X, and song tempo after neurotoxic damage in songbirds. Neuroscience 2016; 331:158-68. [DOI: 10.1016/j.neuroscience.2016.06.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
|
22
|
Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences. Proc Natl Acad Sci U S A 2016; 113:E1720-7. [PMID: 26951661 DOI: 10.1073/pnas.1523754113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The basal ganglia (BG) promote complex sequential movements by helping to select elementary motor gestures appropriate to a given behavioral context. Indeed, Huntington's disease (HD), which causes striatal atrophy in the BG, is characterized by hyperkinesia and chorea. How striatal cell loss alters activity in the BG and downstream motor cortical regions to cause these disorganized movements remains unknown. Here, we show that expressing the genetic mutation that causes HD in a song-related region of the songbird BG destabilizes syllable sequences and increases overall vocal activity, but leave the structure of individual syllables intact. These behavioral changes are paralleled by the selective loss of striatal neurons and reduction of inhibitory synapses on pallidal neurons that serve as the BG output. Chronic recordings in singing birds revealed disrupted temporal patterns of activity in pallidal neurons and downstream cortical neurons. Moreover, reversible inactivation of the cortical neurons rescued the disorganized vocal sequences in transfected birds. These findings shed light on a key role of temporal patterns of cortico-BG activity in the regulation of complex motor sequences and show how a genetic mutation alters cortico-BG networks to cause disorganized movements.
Collapse
|
23
|
Chabout J, Sarkar A, Dunson DB, Jarvis ED. Male mice song syntax depends on social contexts and influences female preferences. Front Behav Neurosci 2015; 9:76. [PMID: 25883559 PMCID: PMC4383150 DOI: 10.3389/fnbeh.2015.00076] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/10/2015] [Indexed: 11/25/2022] Open
Abstract
In 2005, Holy and Guo advanced the idea that male mice produce ultrasonic vocalizations (USV) with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other) and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.
Collapse
Affiliation(s)
- Jonathan Chabout
- Department of Neurobiology, Duke University Medical Center Durham, NC, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA
| | - Abhra Sarkar
- Department of Statistical Science, Duke University Durham, NC, USA
| | - David B Dunson
- Department of Statistical Science, Duke University Durham, NC, USA
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center Durham, NC, USA ; Howard Hughes Medical Institute Chevy Chase, MD, USA
| |
Collapse
|
24
|
Olson CR, Hodges LK, Mello CV. Dynamic gene expression in the song system of zebra finches during the song learning period. Dev Neurobiol 2015; 75:1315-38. [PMID: 25787707 DOI: 10.1002/dneu.22286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
The brain circuitry that controls song learning and production undergoes marked changes in morphology and connectivity during the song learning period in juvenile zebra finches, in parallel to the acquisition, practice and refinement of song. Yet, the genetic programs and timing of regulatory change that establish the neuronal connectivity and plasticity during this critical learning period remain largely undetermined. To address this question, we used in situ hybridization to compare the expression patterns of a set of 30 known robust molecular markers of HVC and/or area X, major telencephalic song nuclei, between adult and juvenile male zebra finches at different ages during development (20, 35, 50 days post-hatch, dph). We found that several of the genes examined undergo substantial changes in expression within HVC or its surrounds, and/or in other song nuclei. They fit into broad patterns of regulation, including those whose expression within HVC during this period increases (COL12A1, COL 21A1, MPZL1, PVALB, and CXCR7) or decreases (e.g., KCNT2, SAP30L), as well as some that show decreased expression in the surrounding tissue with little change within song nuclei (e.g. SV2B, TAC1). These results reveal a broad range of molecular changes that occur in the song system in concert with the song learning period. Some of the genes and pathways identified are potential modulators of the developmental changes associated with the emergence of the adult properties of the song control system, and/or the acquisition of learned vocalizations in songbirds.
Collapse
Affiliation(s)
- Christopher R Olson
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, Oregon, 97239-3098
| | - Lisa K Hodges
- Biology Department, Lewis and Clark College, 0615 S.W. Palatine Hill Road, Portland, Oregon 97219
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, Oregon, 97239-3098
| |
Collapse
|
25
|
Pidoux M, Bollu T, Riccelli T, Goldberg JH. Origins of basal ganglia output signals in singing juvenile birds. J Neurophysiol 2015; 113:843-55. [PMID: 25392171 DOI: 10.1152/jn.00635.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Across species, complex circuits inside the basal ganglia (BG) converge on pallidal output neurons that exhibit movement-locked firing patterns. Yet the origins of these firing patterns remain poorly understood. In songbirds during vocal babbling, BG output neurons homologous to those found in the primate internal pallidal segment are uniformly activated in the tens of milliseconds prior to syllable onsets. To test the origins of this remarkably homogenous BG output signal, we recorded from diverse upstream BG cell types during babbling. Prior to syllable onsets, at the same time that internal pallidal segment-like neurons were activated, putative medium spiny neurons, fast spiking and tonically active interneurons also exhibited transient rate increases. In contrast, pallidal neurons homologous to those found in primate external pallidal segment exhibited transient rate decreases. To test origins of these signals, we performed recordings following lesion of corticostriatal inputs from premotor nucleus HVC. HVC lesions largely abolished these syllable-locked signals. Altogether, these findings indicate a striking homogeneity of syllable timing signals in the songbird BG during babbling and are consistent with a role for the indirect and hyperdirect pathways in transforming cortical inputs into BG outputs during an exploratory behavior.
Collapse
Affiliation(s)
- Morgane Pidoux
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Tejapratap Bollu
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Tori Riccelli
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| |
Collapse
|
26
|
Keifer OP, Gutman DA, Hecht EE, Keilholz SD, Ressler KJ. A comparative analysis of mouse and human medial geniculate nucleus connectivity: a DTI and anterograde tracing study. Neuroimage 2014; 105:53-66. [PMID: 25450110 DOI: 10.1016/j.neuroimage.2014.10.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 01/16/2023] Open
Abstract
Understanding the function and connectivity of thalamic nuclei is critical for understanding normal and pathological brain function. The medial geniculate nucleus (MGN) has been studied mostly in the context of auditory processing and its connection to the auditory cortex. However, there is a growing body of evidence that the MGN and surrounding associated areas ('MGN/S') have a diversity of projections including those to the globus pallidus, caudate/putamen, amygdala, hypothalamus, and thalamus. Concomitantly, pathways projecting to the medial geniculate include not only the inferior colliculus but also the auditory cortex, insula, cerebellum, and globus pallidus. Here we expand our understanding of the connectivity of the MGN/S by using comparative diffusion weighted imaging with probabilistic tractography in both human and mouse brains (most previous work was in rats). In doing so, we provide the first report that attempts to match probabilistic tractography results between human and mice. Additionally, we provide anterograde tracing results for the mouse brain, which corroborate the probabilistic tractography findings. Overall, the study provides evidence for the homology of MGN/S patterns of connectivity across species for understanding translational approaches to thalamic connectivity and function. Further, it points to the utility of DTI in both human studies and small animal modeling, and it suggests potential roles of these connections in human cognition, behavior, and disease.
Collapse
Affiliation(s)
- Orion P Keifer
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Yerkes National Primate Research Center, Atlanta, GA, USA
| | - David A Gutman
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Erin E Hecht
- Department of Anthropology, Emory University, Atlanta, GA, USA
| | - Shella D Keilholz
- Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Yerkes National Primate Research Center, Atlanta, GA, USA.
| |
Collapse
|
27
|
The opportunities and challenges of large-scale molecular approaches to songbird neurobiology. Neurosci Biobehav Rev 2014; 50:70-6. [PMID: 25280907 DOI: 10.1016/j.neubiorev.2014.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 09/08/2014] [Accepted: 09/22/2014] [Indexed: 01/31/2023]
Abstract
High-throughput methods for analyzing genome structure and function are having a large impact in songbird neurobiology. Methods include genome sequencing and annotation, comparative genomics, DNA microarrays and transcriptomics, and the development of a brain atlas of gene expression. Key emerging findings include the identification of complex transcriptional programs active during singing, the robust brain expression of non-coding RNAs, evidence of profound variations in gene expression across brain regions, and the identification of molecular specializations within song production and learning circuits. Current challenges include the statistical analysis of large datasets, effective genome curations, the efficient localization of gene expression changes to specific neuronal circuits and cells, and the dissection of behavioral and environmental factors that influence brain gene expression. The field requires efficient methods for comparisons with organisms like chicken, which offer important anatomical, functional and behavioral contrasts. As sequencing costs plummet, opportunities emerge for comparative approaches that may help reveal evolutionary transitions contributing to vocal learning, social behavior and other properties that make songbirds such compelling research subjects.
Collapse
|
28
|
Wohlgemuth S, Adam I, Scharff C. FoxP2 in songbirds. Curr Opin Neurobiol 2014; 28:86-93. [PMID: 25048597 DOI: 10.1016/j.conb.2014.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 12/12/2022]
Abstract
Humans with mutations in the transcription factor FOXP2 display a severe speech disorder. Songbirds are a powerful model system to study FoxP2. Like humans, songbirds communicate via vocalizations that are imitatively learned during critical periods and this learning is influenced by social factors and relies on functionally lateralized neural circuits. During the past five years significant progress has been made moving from a descriptive to a more mechanistic understanding of how FoxP2 functions in songbirds. Current evidence from molecular and electrophysiological studies indicates that FoxP2 is important for shaping synaptic plasticity of specific neuron populations. One future goal will be to identify the transcriptional regulation orchestrated by FoxP2 and its associated molecular network that brings about these physiological effects. This will be key to further unravel how FoxP2 influences synaptic function and thereby contributes to auditory guided vocal motor behavior in the songbird model.
Collapse
Affiliation(s)
- Sandra Wohlgemuth
- Department Animal Behavior, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Iris Adam
- Department Animal Behavior, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Constance Scharff
- Department Animal Behavior, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany.
| |
Collapse
|
29
|
Mandelblat-Cerf Y, Las L, Denisenko N, Fee MS. A role for descending auditory cortical projections in songbird vocal learning. eLife 2014; 3. [PMID: 24935934 PMCID: PMC4113997 DOI: 10.7554/elife.02152] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 06/12/2014] [Indexed: 11/13/2022] Open
Abstract
Many learned motor behaviors are acquired by comparing ongoing behavior with an internal representation of correct performance, rather than using an explicit external reward. For example, juvenile songbirds learn to sing by comparing their song with the memory of a tutor song. At present, the brain regions subserving song evaluation are not known. In this study, we report several findings suggesting that song evaluation involves an avian 'cortical' area previously shown to project to the dopaminergic midbrain and other downstream targets. We find that this ventral portion of the intermediate arcopallium (AIV) receives inputs from auditory cortical areas, and that lesions of AIV result in significant deficits in vocal learning. Additionally, AIV neurons exhibit fast responses to disruptive auditory feedback presented during singing, but not during nonsinging periods. Our findings suggest that auditory cortical areas may guide learning by transmitting song evaluation signals to the dopaminergic midbrain and/or other subcortical targets.
Collapse
Affiliation(s)
- Yael Mandelblat-Cerf
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Liora Las
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Natalia Denisenko
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Michale S Fee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
30
|
Abstract
Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory-vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory-vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory-vocal mirroring in the songbird's brain.
Collapse
Affiliation(s)
- Richard Mooney
- Department of Neurobiology, Duke University Medical Center, , PO Box 3209, Durham, NC 27710, USA
| |
Collapse
|
31
|
Evidence for a causal inverse model in an avian cortico-basal ganglia circuit. Proc Natl Acad Sci U S A 2014; 111:6063-8. [PMID: 24711417 DOI: 10.1073/pnas.1317087111] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Learning by imitation is fundamental to both communication and social behavior and requires the conversion of complex, nonlinear sensory codes for perception into similarly complex motor codes for generating action. To understand the neural substrates underlying this conversion, we study sensorimotor transformations in songbird cortical output neurons of a basal-ganglia pathway involved in song learning. Despite the complexity of sensory and motor codes, we find a simple, temporally specific, causal correspondence between them. Sensory neural responses to song playback mirror motor-related activity recorded during singing, with a temporal offset of roughly 40 ms, in agreement with short feedback loop delays estimated using electrical and auditory stimulation. Such matching of mirroring offsets and loop delays is consistent with a recent Hebbian theory of motor learning and suggests that cortico-basal ganglia pathways could support motor control via causal inverse models that can invert the rich correspondence between motor exploration and sensory feedback.
Collapse
|
32
|
Hamaguchi K, Tschida KA, Yoon I, Donald BR, Mooney R. Auditory synapses to song premotor neurons are gated off during vocalization in zebra finches. eLife 2014; 3:e01833. [PMID: 24550254 PMCID: PMC3927426 DOI: 10.7554/elife.01833] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Songbirds use auditory feedback to learn and maintain their songs, but how feedback interacts with vocal motor circuitry remains unclear. A potential site for this interaction is the song premotor nucleus HVC, which receives auditory input and contains neurons (HVCX cells) that innervate an anterior forebrain pathway (AFP) important to feedback-dependent vocal plasticity. Although the singing-related output of HVCX cells is unaltered by distorted auditory feedback (DAF), deafening gradually weakens synapses on HVCX cells, raising the possibility that they integrate feedback only at subthreshold levels during singing. Using intracellular recordings in singing zebra finches, we found that DAF failed to perturb singing-related synaptic activity of HVCX cells, although many of these cells responded to auditory stimuli in non-singing states. Moreover, in vivo multiphoton imaging revealed that deafening-induced changes to HVCX synapses require intact AFP output. These findings support a model in which the AFP accesses feedback independent of HVC. DOI: http://dx.doi.org/10.7554/eLife.01833.001.
Collapse
Affiliation(s)
- Kosuke Hamaguchi
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | | | | | | | | |
Collapse
|
33
|
Seki Y, Hessler NA, Xie K, Okanoya K. Food rewards modulate the activity of song neurons in Bengalese finches. Eur J Neurosci 2013; 39:975-983. [PMID: 24341509 DOI: 10.1111/ejn.12457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/11/2013] [Accepted: 11/18/2013] [Indexed: 01/04/2023]
Abstract
Vocal learning, a critical component of speech acquisition, is a rare trait in animals. Songbirds are a well-established animal model in vocal learning research; male birds acquire novel vocal patterns and have a well-developed 'song system' in the brain. Although this system is unique to songbirds, anatomical and physiological studies have reported similarities between the song system and the thalamo-cortico-basal ganglia circuit that is conserved among reptiles, birds, and mammals. Here, we focused on the similarity of the neural response between these two systems while animals were engaging in operant tasks. Neurons in the basal ganglia of vertebrates are activated in response to food rewards and reward predictions in behavioral tasks. A striatal nucleus in the avian song system, Area X, is necessary for vocal learning and is considered specialized for singing. We found that the spiking activity of singing-related Area X neurons was modulated by food rewards and reward signals in an operant task. As previous studies showed that Area X is not critical for general cognitive tasks, the role of Area X in general learning might be limited and vestigial. However, our results provide a new viewpoint to investigate the independence of the vocal learning system from neural systems involved in other cognitive tasks.
Collapse
Affiliation(s)
- Yoshimasa Seki
- Japan Science and Technology Agency, ERATO, Okanoya Emotional Information Project, Wako, 3510198, Japan; Laboratory for Biolinguistics, RIKEN Brain Science Institute, Wako, 3510198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 1538902, Japan
| | | | | | | |
Collapse
|
34
|
Iwasaki M, Poulsen TM, Oka K, Hessler NA. Singing-related activity in anterior forebrain of male zebra finches reflects courtship motivation for target females. PLoS One 2013; 8:e81725. [PMID: 24312344 PMCID: PMC3843691 DOI: 10.1371/journal.pone.0081725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 10/18/2013] [Indexed: 01/21/2023] Open
Abstract
A critical function of singing by male songbirds is to attract a female mate. Previous studies have suggested that the anterior forebrain system is involved in this courtship behavior. Neural activity in this system, including the striatal Area X, is strikingly dependent on the function of male singing. When males sing to attract a female bird rather than while alone, less variable neural activity results in less variable song spectral features, which may be attractive to the female. These characteristics of neural activity and singing thus may reflect a male's motivation for courtship. Here, we compared the variability of neural activity and song features between courtship singing directed to a female with whom a male had previously formed a pair-bond or to other females. Surprisingly, across all units, there was no clear tendency for a difference in variability of neural activity or song features between courtship of paired females, nonpaired females, or dummy females. However, across the population of recordings, there was a significant relationship between the relative variability of syllable frequency and neural activity: when syllable frequency was less variable to paired than nonpaired females, neural activity was also less variable (and vice-versa). These results show that the lower variability of neural activity and syllable frequency during directed singing is not a binary distinction from undirected singing, but can vary in intensity, possibly related to the relative preference of a male for his singing target.
Collapse
Affiliation(s)
- Mai Iwasaki
- Brain Science Institute, RIKEN, Wako-shi, Japan
- Biosciences and Informatics, Keio University, Yokohama, Japan
| | | | - Kotaro Oka
- Biosciences and Informatics, Keio University, Yokohama, Japan
| | | |
Collapse
|
35
|
Chen JR, Stepanek L, Doupe AJ. Differential contributions of basal ganglia and thalamus to song initiation, tempo, and structure. J Neurophysiol 2013; 111:248-57. [PMID: 24174647 DOI: 10.1152/jn.00584.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Basal ganglia-thalamocortical circuits are multistage loops critical to motor behavior, but the contributions of individual components to overall circuit function remain unclear. We addressed these issues in a songbird basal ganglia-thalamocortical circuit (the anterior forebrain pathway, AFP) specialized for singing and critical for vocal plasticity. The major known afferent to the AFP is the premotor cortical nucleus, HVC. Surprisingly, previous studies found that lesions of HVC alter song but do not eliminate the ability of the AFP to drive song production. We therefore used this AFP-driven song to investigate the role of basal ganglia and thalamus in vocal structure, tempo, and initiation. We found that lesions of the striatopallidal component (Area X) slowed song and simplified its acoustic structure. Elimination of the thalamic component (DLM) further simplified the acoustic structure of song and regularized its rhythm but also dramatically reduced song production. The acoustic structure changes imply that sequential stages of the AFP each add complexity to song, but the effects of DLM lesions on song initiation suggest that thalamus is a locus of additional inputs important to initiation. Together, our results highlight the cumulative contribution of stages of a basal ganglia-thalamocortical circuit to motor output along with distinct involvement of thalamus in song initiation or "gating."
Collapse
Affiliation(s)
- J R Chen
- Center for Integrative Neuroscience, University of California, San Francisco, California
| | | | | |
Collapse
|
36
|
Brainard MS, Doupe AJ. Translating birdsong: songbirds as a model for basic and applied medical research. Annu Rev Neurosci 2013; 36:489-517. [PMID: 23750515 DOI: 10.1146/annurev-neuro-060909-152826] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Songbirds, long of interest to basic neuroscience, have great potential as a model system for translational neuroscience. Songbirds learn their complex vocal behavior in a manner that exemplifies general processes of perceptual and motor skill learning and, more specifically, resembles human speech learning. Song is subserved by circuitry that is specialized for vocal learning and production but that has strong similarities to mammalian brain pathways. The combination of highly quantifiable behavior and discrete neural substrates facilitates understanding links between brain and behavior, both in normal states and in disease. Here we highlight (a) behavioral and mechanistic parallels between birdsong and aspects of speech and social communication, including insights into mirror neurons, the function of auditory feedback, and genes underlying social communication disorders, and (b) contributions of songbirds to understanding cortical-basal ganglia circuit function and dysfunction, including the possibility of harnessing adult neurogenesis for brain repair.
Collapse
Affiliation(s)
- Michael S Brainard
- Center for Integrative Neuroscience and Departments of Physiology and Psychiatry, University of California-San Francisco, CA 94143-0444, USA.
| | | |
Collapse
|
37
|
Peng Z, Zhang X, Liu Y, Xi C, Zeng S, Zhang X, Zuo M, xu J, Ji Y, Han Z. Ultrastructural and electrophysiological analysis of Area X in the untutored and deafened Bengalese finch in relation to normally reared birds. Brain Res 2013; 1527:87-98. [PMID: 23820426 DOI: 10.1016/j.brainres.2013.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/28/2013] [Accepted: 06/24/2013] [Indexed: 11/15/2022]
Abstract
Birdsong learning bears many similarities to human speech acquisition. Although the anterior forebrain pathway (AFP) is believed to be involved in birdsong learning, the underlying neural mechanisms are unclear. We produced two types of abnormal song learning: young birds untutored from adult "song tutors", or birds deafened by bilateral cochlear removal before the onset of sensory learning. We then studied how ultrastructure and electrophysiological activity changed in an AFP nucleus, Area X, among these birds at adulthood. Our results showed that, although the size of Area X did not change significantly, the numbers of synapses per unit area and compound synapses and the percent of concave synapses increased significantly in the untutored or deafened birds. The percent of perforated synapses or axo-spinous synapses decreased compared to the normally reared birds, suggesting a decreased efficiency of synaptic transmission in the untutored or deafened birds. We then identified several types of spontaneously firing cells in Area X. Cells with fast and slow firing rates did not show significant electrophysiological differences among the groups, but cells with moderate firing rates, most likely DLM-projecting neurons, fired at significantly lower rates in the untutored and deafened birds. In addition, cells firing irregularly were only found in the deafened birds. Thus, the decreased or irregular electrophysiological activity in the untutored or deafened birds, together with the corresponding ultrastructural findings, could be implicated in the abnormal song production in these two types of birds.
Collapse
Affiliation(s)
- Zhe Peng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Prather JF. Auditory signal processing in communication: perception and performance of vocal sounds. Hear Res 2013; 305:144-55. [PMID: 23827717 DOI: 10.1016/j.heares.2013.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 06/13/2013] [Accepted: 06/20/2013] [Indexed: 01/21/2023]
Abstract
Learning and maintaining the sounds we use in vocal communication require accurate perception of the sounds we hear performed by others and feedback-dependent imitation of those sounds to produce our own vocalizations. Understanding how the central nervous system integrates auditory and vocal-motor information to enable communication is a fundamental goal of systems neuroscience, and insights into the mechanisms of those processes will profoundly enhance clinical therapies for communication disorders. Gaining the high-resolution insight necessary to define the circuits and cellular mechanisms underlying human vocal communication is presently impractical. Songbirds are the best animal model of human speech, and this review highlights recent insights into the neural basis of auditory perception and feedback-dependent imitation in those animals. Neural correlates of song perception are present in auditory areas, and those correlates are preserved in the auditory responses of downstream neurons that are also active when the bird sings. Initial tests indicate that singing-related activity in those downstream neurons is associated with vocal-motor performance as opposed to the bird simply hearing itself sing. Therefore, action potentials related to auditory perception and action potentials related to vocal performance are co-localized in individual neurons. Conceptual models of song learning involve comparison of vocal commands and the associated auditory feedback to compute an error signal that is used to guide refinement of subsequent song performances, yet the sites of that comparison remain unknown. Convergence of sensory and motor activity onto individual neurons points to a possible mechanism through which auditory and vocal-motor signals may be linked to enable learning and maintenance of the sounds used in vocal communication. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
Affiliation(s)
- Jonathan F Prather
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, 1000 E. University Avenue - Dept. 3166, Laramie, WY 82071, USA.
| |
Collapse
|
39
|
Task-related "cortical" bursting depends critically on basal ganglia input and is linked to vocal plasticity. Proc Natl Acad Sci U S A 2013; 110:4756-61. [PMID: 23449880 DOI: 10.1073/pnas.1216308110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Basal ganglia-thalamocortical circuits are critical for motor control and motor learning. Classically, basal ganglia nuclei are thought to regulate motor behavior by increasing or decreasing cortical firing rates, and basal ganglia diseases are assumed to reflect abnormal overall activity levels. More recent studies suggest instead that motor disorders derive from abnormal firing patterns, and have led to the hypothesis that surgical treatments, such as pallidotomy, act primarily by eliminating pathological firing patterns. Surprisingly little is known, however, about how the basal ganglia normally influence task-related cortical activity to regulate motor behavior, and how lesions of the basal ganglia influence cortical firing properties. Here, we investigated these questions in a songbird circuit that has striking homologies to mammalian basal ganglia-thalamocortical circuits but is specialized for singing. The "cortical" outflow nucleus of this circuit is required for song plasticity and normally exhibits increased firing during singing and song-locked burst firing. We found that lesions of the striato-pallidal nucleus in this circuit prevented hearing-dependent song changes. These basal ganglia lesions also stripped the cortical outflow neurons of their patterned burst firing during singing, without changing their spontaneous or singing-related firing rates. Taken together, these results suggest that the basal ganglia are essential not for normal cortical firing rates but for driving task-specific cortical firing patterns, including bursts. Moreover, such patterned bursting appears critical for motor plasticity. Our findings thus provide support for therapies that aim to treat basal ganglia movement disorders by normalizing firing patterns.
Collapse
|
40
|
Peng Z, Zhang X, Xi C, Zeng S, Liu N, Zuo M, Zhang X. Changes in ultra-structures and electrophysiological properties in HVC of untutored and deafened Bengalese finches relation to normally reared birds: implications for song learning. Brain Res Bull 2012; 89:211-22. [PMID: 22982255 DOI: 10.1016/j.brainresbull.2012.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/06/2012] [Accepted: 09/04/2012] [Indexed: 11/28/2022]
Abstract
Songbirds are increasingly used as an experimentally tractable system to study the neurobiological underpinnings of vocal learning. To gain additional insights into how birdsongs are learned, we compared the size of HVC, the high vocal center for song production, and its ultrastructural or electrophysiological properties between the normally reared Bengalese finches, and the untutored or deafened ones before the onset of sensory learning (around post-hatching day 20). Our results showed that HVC had more synapses and concave synaptic curvature, but fewer perforated synapse, in the untutored or deafened birds in comparison with those in the normally reared birds. Although there was no significant difference of the ratio of straight or compound synapses, there was an increasing tendency for the untutored and deafened birds to possess more straight and compound synapses. These data revealed that synapses in the isolated or deafened birds had lower synapse activity in relation to those with normal hearing. This was confirmed by our electrophysiological results to show significant decreases in the firing rates of spike or burst in the isolated or deafened birds in the three types of HVC neurons i.e., putative X-projecting neurons, RA-projecting neurons and interneurons. In addition, low firing frequency (<10Hz) occurred much more in the above three types of HVC neurons in the tutored or deafened birds than in the normally reared birds. These data suggest that all the three putative types of neurons in HVC might be involved in the activity of the production of adult normal songs.
Collapse
Affiliation(s)
- Zhe Peng
- Beijing Key Lab of Gene Engineering Drugs & Biological Technology, Beijing Normal University, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Goldberg JH, Farries MA, Fee MS. Integration of cortical and pallidal inputs in the basal ganglia-recipient thalamus of singing birds. J Neurophysiol 2012; 108:1403-29. [PMID: 22673333 PMCID: PMC3544964 DOI: 10.1152/jn.00056.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/05/2012] [Indexed: 11/22/2022] Open
Abstract
The basal ganglia-recipient thalamus receives inhibitory inputs from the pallidum and excitatory inputs from cortex, but it is unclear how these inputs interact during behavior. We recorded simultaneously from thalamic neurons and their putative synaptically connected pallidal inputs in singing zebra finches. We find, first, that each pallidal spike produces an extremely brief (∼5 ms) pulse of inhibition that completely suppresses thalamic spiking. As a result, thalamic spikes are entrained to pallidal spikes with submillisecond precision. Second, we find that the number of thalamic spikes that discharge within a single pallidal interspike interval (ISI) depends linearly on the duration of that interval but does not depend on pallidal activity prior to the interval. In a detailed biophysical model, our results were not easily explained by the postinhibitory "rebound" mechanism previously observed in anesthetized birds and in brain slices, nor could most of our data be characterized as "gating" of excitatory transmission by inhibitory pallidal input. Instead, we propose a novel "entrainment" mechanism of pallidothalamic transmission that highlights the importance of an excitatory conductance that drives spiking, interacting with brief pulses of pallidal inhibition. Building on our recent finding that cortical inputs can drive syllable-locked rate modulations in thalamic neurons during singing, we report here that excitatory inputs affect thalamic spiking in two ways: by shortening the latency of a thalamic spike after a pallidal spike and by increasing thalamic firing rates within individual pallidal ISIs. We present a unifying biophysical model that can reproduce all known modes of pallidothalamic transmission--rebound, gating, and entrainment--depending on the amount of excitation the thalamic neuron receives.
Collapse
Affiliation(s)
- Jesse H Goldberg
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
42
|
Hilliard AT, Miller JE, Fraley ER, Horvath S, White SA. Molecular microcircuitry underlies functional specification in a basal ganglia circuit dedicated to vocal learning. Neuron 2012; 73:537-52. [PMID: 22325205 DOI: 10.1016/j.neuron.2012.01.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2012] [Indexed: 12/30/2022]
Abstract
Similarities between speech and birdsong make songbirds advantageous for investigating the neurogenetics of learned vocal communication--a complex phenotype probably supported by ensembles of interacting genes in cortico-basal ganglia pathways of both species. To date, only FoxP2 has been identified as critical to both speech and birdsong. We performed weighted gene coexpression network analysis on microarray data from singing zebra finches to discover gene ensembles regulated during vocal behavior. We found ∼2,000 singing-regulated genes comprising three coexpression groups unique to area X, the basal ganglia subregion dedicated to learned vocalizations. These contained known targets of human FOXP2 and potential avian targets. We validated biological pathways not previously implicated in vocalization. Higher-order gene coexpression patterns, rather than expression levels, molecularly distinguish area X from the ventral striato-pallidum during singing. The previously unknown structure of singing-driven networks enables prioritization of molecular interactors that probably bear on human motor disorders, especially those affecting speech.
Collapse
Affiliation(s)
- Austin T Hilliard
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
43
|
O'Connell LA, Hofmann HA. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 2012; 519:3599-639. [PMID: 21800319 DOI: 10.1002/cne.22735] [Citation(s) in RCA: 697] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All animals evaluate the salience of external stimuli and integrate them with internal physiological information into adaptive behavior. Natural and sexual selection impinge on these processes, yet our understanding of behavioral decision-making mechanisms and their evolution is still very limited. Insights from mammals indicate that two neural circuits are of crucial importance in this context: the social behavior network and the mesolimbic reward system. Here we review evidence from neurochemical, tract-tracing, developmental, and functional lesion/stimulation studies that delineates homology relationships for most of the nodes of these two circuits across the five major vertebrate lineages: mammals, birds, reptiles, amphibians, and teleost fish. We provide for the first time a comprehensive comparative analysis of the two neural circuits and conclude that they were already present in early vertebrates. We also propose that these circuits form a larger social decision-making (SDM) network that regulates adaptive behavior. Our synthesis thus provides an important foundation for understanding the evolution of the neural mechanisms underlying reward processing and behavioral regulation.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
44
|
Yanagihara S, Hessler NA. Phasic basal ganglia activity associated with high-gamma oscillation during sleep in a songbird. J Neurophysiol 2011; 107:424-32. [PMID: 22031768 DOI: 10.1152/jn.00790.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The basal ganglia is thought to be critical for motor control and learning in mammals. In specific basal ganglia regions, gamma frequency oscillations occur during various behavioral states, including sleeping periods. Given the critical role of sleep in regulating vocal plasticity of songbirds, we examined the presence of such oscillations in the basal ganglia. In the song system nucleus Area X, epochs of high-gamma frequency (80-160 Hz) oscillation of local field potential during sleep were associated with phasic increases of neural activity. While birds were awake, activity of the same neurons increased specifically when birds were singing. Furthermore, during sleep there was a clear tendency for phase locking of spikes to these oscillations. Such patterned activity in the sleeping songbird basal ganglia could play a role in off-line processing of song system motor networks.
Collapse
|
45
|
Fee MS, Goldberg JH. A hypothesis for basal ganglia-dependent reinforcement learning in the songbird. Neuroscience 2011; 198:152-70. [PMID: 22015923 DOI: 10.1016/j.neuroscience.2011.09.069] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 01/08/2023]
Abstract
Most of our motor skills are not innately programmed, but are learned by a combination of motor exploration and performance evaluation, suggesting that they proceed through a reinforcement learning (RL) mechanism. Songbirds have emerged as a model system to study how a complex behavioral sequence can be learned through an RL-like strategy. Interestingly, like motor sequence learning in mammals, song learning in birds requires a basal ganglia (BG)-thalamocortical loop, suggesting common neural mechanisms. Here, we outline a specific working hypothesis for how BG-forebrain circuits could utilize an internally computed reinforcement signal to direct song learning. Our model includes a number of general concepts borrowed from the mammalian BG literature, including a dopaminergic reward prediction error and dopamine-mediated plasticity at corticostriatal synapses. We also invoke a number of conceptual advances arising from recent observations in the songbird. Specifically, there is evidence for a specialized cortical circuit that adds trial-to-trial variability to stereotyped cortical motor programs, and a role for the BG in "biasing" this variability to improve behavioral performance. This BG-dependent "premotor bias" may in turn guide plasticity in downstream cortical synapses to consolidate recently learned song changes. Given the similarity between mammalian and songbird BG-thalamocortical circuits, our model for the role of the BG in this process may have broader relevance to mammalian BG function.
Collapse
Affiliation(s)
- M S Fee
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| | | |
Collapse
|
46
|
Ölveczky BP, Otchy TM, Goldberg JH, Aronov D, Fee MS. Changes in the neural control of a complex motor sequence during learning. J Neurophysiol 2011; 106:386-97. [PMID: 21543758 DOI: 10.1152/jn.00018.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The acquisition of complex motor sequences often proceeds through trial-and-error learning, requiring the deliberate exploration of motor actions and the concomitant evaluation of the resulting performance. Songbirds learn their song in this manner, producing highly variable vocalizations as juveniles. As the song improves, vocal variability is gradually reduced until it is all but eliminated in adult birds. In the present study we examine how the motor program underlying such a complex motor behavior evolves during learning by recording from the robust nucleus of the arcopallium (RA), a motor cortex analog brain region. In young birds, neurons in RA exhibited highly variable firing patterns that throughout development became more precise, sparse, and bursty. We further explored how the developing motor program in RA is shaped by its two main inputs: LMAN, the output nucleus of a basal ganglia-forebrain circuit, and HVC, a premotor nucleus. Pharmacological inactivation of LMAN during singing made the song-aligned firing patterns of RA neurons adultlike in their stereotypy without dramatically affecting the spike statistics or the overall firing patterns. Removing the input from HVC, on the other hand, resulted in a complete loss of stereotypy of both the song and the underlying motor program. Thus our results show that a basal ganglia-forebrain circuit drives motor exploration required for trial-and-error learning by adding variability to the developing motor program. As learning proceeds and the motor circuits mature, the relative contribution of LMAN is reduced, allowing the premotor input from HVC to drive an increasingly stereotyped song.
Collapse
Affiliation(s)
- Bence P Ölveczky
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
47
|
Goldberg JH, Fee MS. Vocal babbling in songbirds requires the basal ganglia-recipient motor thalamus but not the basal ganglia. J Neurophysiol 2011; 105:2729-39. [PMID: 21430276 DOI: 10.1152/jn.00823.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Young songbirds produce vocal "babbling," and the variability of their songs is thought to underlie a process of trial-and-error vocal learning. It is known that this exploratory variability requires the "cortical" component of a basal ganglia (BG) thalamocortical loop, but less understood is the role of the BG and thalamic components in this behavior. We found that large bilateral lesions to the songbird BG homolog Area X had little or no effect on song variability during vocal babbling. In contrast, lesions to the BG-recipient thalamic nucleus DLM (medial portion of the dorsolateral thalamus) largely abolished normal vocal babbling in young birds and caused a dramatic increase in song stereotypy. These findings support the idea that the motor thalamus plays a key role in the expression of exploratory juvenile behaviors during learning.
Collapse
Affiliation(s)
- Jesse H Goldberg
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
48
|
Bolhuis JJ, Okanoya K, Scharff C. Twitter evolution: converging mechanisms in birdsong and human speech. Nat Rev Neurosci 2010; 11:747-59. [PMID: 20959859 DOI: 10.1038/nrn2931] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vocal imitation in human infants and in some orders of birds relies on auditory-guided motor learning during a sensitive period of development. It proceeds from 'babbling' (in humans) and 'subsong' (in birds) through distinct phases towards the full-fledged communication system. Language development and birdsong learning have parallels at the behavioural, neural and genetic levels. Different orders of birds have evolved networks of brain regions for song learning and production that have a surprisingly similar gross anatomy, with analogies to human cortical regions and basal ganglia. Comparisons between different songbird species and humans point towards both general and species-specific principles of vocal learning and have identified common neural and molecular substrates, including the forkhead box P2 (FOXP2) gene.
Collapse
Affiliation(s)
- Johan J Bolhuis
- Behavioural Biology, Department of Biology and Helmholtz Institute, Utrecht University, Padualaan 8, Utrecht, the Netherlands.
| | | | | |
Collapse
|
49
|
Kirn JR. The relationship of neurogenesis and growth of brain regions to song learning. BRAIN AND LANGUAGE 2010; 115:29-44. [PMID: 19853905 PMCID: PMC2888937 DOI: 10.1016/j.bandl.2009.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 05/28/2023]
Abstract
Song learning, maintenance and production require coordinated activity across multiple auditory, sensory-motor, and neuromuscular structures. Telencephalic components of the sensory-motor circuitry are unique to avian species that engage in song learning. The song system shows protracted development that begins prior to hatching but continues well into adulthood. The staggered developmental timetable for construction of the song system provides clues of subsystems involved in specific stages of song learning and maintenance. Progressive events, including neurogenesis and song system growth, as well as regressive events such as apoptosis and synapse elimination, occur during periods of song learning and the transitions between variable and stereotyped song during both development and adulthood. There is clear evidence that gonadal steroids influence the development of song attributes and shape the underlying neural circuitry. Some aspects of song system development are influenced by sensory, motor and social experience, while other aspects of neural development appear to be experience-independent. Although there are species differences in the extent to which song learning continues into adulthood, growing evidence suggests that despite differences in learning trajectories, adult refinement of song motor control and song maintenance can require remarkable behavioral and neural flexibility reminiscent of sensory-motor learning.
Collapse
Affiliation(s)
- John R Kirn
- Biology Department, Wesleyan University, Middletown, CT 06459, United States.
| |
Collapse
|
50
|
Akutagawa E, Konishi M. New brain pathways found in the vocal control system of a songbird. J Comp Neurol 2010; 518:3086-100. [PMID: 20533361 DOI: 10.1002/cne.22383] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Songbirds use a complex network of discrete brain areas and connecting fiber tracts to sing their song, but our knowledge of this circuitry may be incomplete. The forebrain area, "caudal mesopallium" (CM), has received much attention recently for its song-related activities. HVC, a prominent song system nucleus, projects to a restricted area of the CM known as the avalanche nucleus (Av). However, the other connections of Av remain unknown. Here we used tract-tracing methods to examine the connections of Av to other song system nuclei. Injections of biotinylated dextran amine (BDA) into Av labeled both afferent terminals and neurons in HVC and the interfacial nucleus of the nidopallium (NIf), suggesting that there is complex feedforward and feedback communication between these nuclei (HVC<-->Av<-->NIf). Labeled neurons were also found in the uvaeform nucleus (Uva), which was substantiated by BDA injections into Uva that labeled terminals in Av. Double fluorescent tracing experiments confirm that both HVC and Uva project to Av. The present study adds complex new connections that expand the traditional song system circuitry into the caudal mesopallium. These new pathways are likely to have broad implications for deciphering how this intricate system works.
Collapse
Affiliation(s)
- Eugene Akutagawa
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|