1
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
2
|
Cheah M, Cheng Y, Petrova V, Cimpean A, Jendelova P, Swarup V, Woolf CJ, Geschwind DH, Fawcett JW. Integrin-Driven Axon Regeneration in the Spinal Cord Activates a Distinctive CNS Regeneration Program. J Neurosci 2023; 43:4775-4794. [PMID: 37277179 PMCID: PMC10312060 DOI: 10.1523/jneurosci.2076-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
The peripheral branch of sensory dorsal root ganglion (DRG) neurons regenerates readily after injury unlike their central branch in the spinal cord. However, extensive regeneration and reconnection of sensory axons in the spinal cord can be driven by the expression of α9 integrin and its activator kindlin-1 (α9k1), which enable axons to interact with tenascin-C. To elucidate the mechanisms and downstream pathways affected by activated integrin expression and central regeneration, we conducted transcriptomic analyses of adult male rat DRG sensory neurons transduced with α9k1, and controls, with and without axotomy of the central branch. Expression of α9k1 without the central axotomy led to upregulation of a known PNS regeneration program, including many genes associated with peripheral nerve regeneration. Coupling α9k1 treatment with dorsal root axotomy led to extensive central axonal regeneration. In addition to the program upregulated by α9k1 expression, regeneration in the spinal cord led to expression of a distinctive CNS regeneration program, including genes associated with ubiquitination, autophagy, endoplasmic reticulum (ER), trafficking, and signaling. Pharmacological inhibition of these processes blocked the regeneration of axons from DRGs and human iPSC-derived sensory neurons, validating their causal contributions to sensory regeneration. This CNS regeneration-associated program showed little correlation with either embryonic development or PNS regeneration programs. Potential transcriptional drivers of this CNS program coupled to regeneration include Mef2a, Runx3, E2f4, and Yy1. Signaling from integrins primes sensory neurons for regeneration, but their axon growth in the CNS is associated with an additional distinctive program that differs from that involved in PNS regeneration.SIGNIFICANCE STATEMENT Restoration of neurologic function after spinal cord injury has yet to be achieved in human patients. To accomplish this, severed nerve fibers must be made to regenerate. Reconstruction of nerve pathways has not been possible, but recently, a method for stimulating long-distance axon regeneration of sensory fibers in rodents has been developed. This research uses profiling of messenger RNAs in the regenerating sensory neurons to discover which mechanisms are activated. This study shows that the regenerating neurons initiate a novel CNS regeneration program which includes molecular transport, autophagy, ubiquitination, and modulation of the endoplasmic reticulum (ER). The study identifies mechanisms that neurons need to activate to regenerate their nerve fibers.
Collapse
Affiliation(s)
- Menghon Cheah
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Veselina Petrova
- Department of Neurobiology, Harvard Medical School; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Anda Cimpean
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic
| | - Pavla Jendelova
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic
| | - Vivek Swarup
- Program in Neurogenetics, Department of Neurology, and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
3
|
Acheta J, Stephens SBZ, Belin S, Poitelon Y. Therapeutic Low-Intensity Ultrasound for Peripheral Nerve Regeneration – A Schwann Cell Perspective. Front Cell Neurosci 2022; 15:812588. [PMID: 35069118 PMCID: PMC8766802 DOI: 10.3389/fncel.2021.812588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 01/22/2023] Open
Abstract
Peripheral nerve injuries are common conditions that can arise from trauma (e.g., compression, severance) and can lead to neuropathic pain as well as motor and sensory deficits. Although much knowledge exists on the mechanisms of injury and nerve regeneration, treatments that ensure functional recovery following peripheral nerve injury are limited. Schwann cells, the supporting glial cells in peripheral nerves, orchestrate the response to nerve injury, by converting to a “repair” phenotype. However, nerve regeneration is often suboptimal in humans as the repair Schwann cells do not sustain their repair phenotype long enough to support the prolonged regeneration times required for successful nerve regrowth. Thus, numerous strategies are currently focused on promoting and extending the Schwann cells repair phenotype. Low-intensity ultrasound (LIU) is a non-destructive therapeutic approach which has been shown to facilitate peripheral nerve regeneration following nerve injury in rodents. Still, clinical trials in humans are scarce and limited to small population sizes. The benefit of LIU on nerve regeneration could possibly be mediated through the repair Schwann cells. In this review, we discuss the known and possible molecular mechanisms activated in response to LIU in repair Schwann cells to draw support and attention to LIU as a compelling regenerative treatment for peripheral nerve injury.
Collapse
|
4
|
EFA6 in Axon Regeneration, as a Microtubule Regulator and as a Guanine Nucleotide Exchange Factor. Cells 2021; 10:cells10061325. [PMID: 34073530 PMCID: PMC8226579 DOI: 10.3390/cells10061325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Axon regeneration after injury is a conserved biological process that involves a large number of molecular pathways, including rapid calcium influx at injury sites, retrograde injury signaling, epigenetic transition, transcriptional reprogramming, polarized transport, and cytoskeleton reorganization. Despite the numerous efforts devoted to understanding the underlying cellular and molecular mechanisms of axon regeneration, the search continues for effective target molecules for improving axon regeneration. Although there have been significant historical efforts towards characterizing pro-regenerative factors involved in axon regeneration, the pursuit of intrinsic inhibitors is relatively recent. EFA6 (exchange factor for ARF6) has been demonstrated to inhibit axon regeneration in different organisms. EFA6 inhibition could be a promising therapeutic strategy to promote axon regeneration and functional recovery after axon injury. This review summarizes the inhibitory role on axon regeneration through regulating microtubule dynamics and through affecting ARF6 (ADP-ribosylation factor 6) GTPase-mediated integrin transport.
Collapse
|
5
|
One Raft to Guide Them All, and in Axon Regeneration Inhibit Them. Int J Mol Sci 2021; 22:ijms22095009. [PMID: 34066896 PMCID: PMC8125918 DOI: 10.3390/ijms22095009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Central nervous system damage caused by traumatic injuries, iatrogenicity due to surgical interventions, stroke and neurodegenerative diseases is one of the most prevalent reasons for physical disability worldwide. During development, axons must elongate from the neuronal cell body to contact their precise target cell and establish functional connections. However, the capacity of the adult nervous system to restore its functionality after injury is limited. Given the inefficacy of the nervous system to heal and regenerate after damage, new therapies are under investigation to enhance axonal regeneration. Axon guidance cues and receptors, as well as the molecular machinery activated after nervous system damage, are organized into lipid raft microdomains, a term typically used to describe nanoscale membrane domains enriched in cholesterol and glycosphingolipids that act as signaling platforms for certain transmembrane proteins. Here, we systematically review the most recent findings that link the stability of lipid rafts and their composition with the capacity of axons to regenerate and rebuild functional neural circuits after damage.
Collapse
|
6
|
Nieuwenhuis B, Eva R. ARF6 and Rab11 as intrinsic regulators of axon regeneration. Small GTPases 2020; 11:392-401. [PMID: 29772958 PMCID: PMC6124649 DOI: 10.1080/21541248.2018.1457914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 10/28/2022] Open
Abstract
Adult central nervous system (CNS) axons do not regenerate after injury because of extrinsic inhibitory factors, and a low intrinsic capacity for axon growth. Developing CNS neurons have a better regenerative ability, but lose this with maturity. This mini-review summarises recent findings which suggest one reason for regenerative failure is the selective distribution of growth machinery away from axons as CNS neurons mature. These studies demonstrate roles for the small GTPases ARF6 and Rab11 as intrinsic regulators of polarised transport and axon regeneration. ARF6 activation prevents the axonal transport of integrins in Rab11 endosomes in mature CNS axons. Decreasing ARF6 activation permits axonal transport, and increases regenerative ability. The findings suggest new targets for promoting axon regeneration after CNS injury.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Richard Eva
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| |
Collapse
|
7
|
Bergerhausen L, Grosche J, Meißner J, Hecker C, Caliandro MF, Westerhausen C, Kamenac A, Rezaei M, Mörgelin M, Poschmann G, Vestweber D, Hanschmann EM, Eble JA. Extracellular Redox Regulation of α7β Integrin-Mediated Cell Migration Is Signaled via a Dominant Thiol-Switch. Antioxidants (Basel) 2020; 9:antiox9030227. [PMID: 32164274 PMCID: PMC7139957 DOI: 10.3390/antiox9030227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022] Open
Abstract
While adhering to extracellular matrix (ECM) proteins, such as laminin-111, cells temporarily produce hydrogen peroxide at adhesion sites. To study the redox regulation of α7β1 integrin-mediated cell adhesion to laminin-111, a conserved cysteine pair within the α-subunit hinge region was replaced for alanines. The molecular and cellular effects were analyzed by electron and atomic force microscopy, impedance-based migration assays, flow cytometry and live cell imaging. This cysteine pair constitutes a thiol-switch, which redox-dependently governs the equilibrium between an extended and a bent integrin conformation with high and low ligand binding activity, respectively. Hydrogen peroxide oxidizes the cysteines to a disulfide bond, increases ligand binding and promotes cell migration toward laminin-111. Inversely, extracellular thioredoxin-1 reduces the disulfide, thereby decreasing laminin binding. Mutation of this cysteine pair into the non-oxidizable hinge-mutant shows molecular and cellular effects similar to the reduced wild-type integrin, but lacks redox regulation. This proves the existence of a dominant thiol-switch within the α subunit hinge of α7β1 integrin, which is sufficient to implement activity regulation by extracellular redox agents in a redox-regulatory circuit. Our data reveal a novel and physiologically relevant thiol-based regulatory mechanism of integrin-mediated cell-ECM interactions, which employs short-lived hydrogen peroxide and extracellular thioredoxin-1 as signaling mediators.
Collapse
Affiliation(s)
- Lukas Bergerhausen
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Julius Grosche
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Christina Hecker
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.H.); (E.-M.H.)
| | - Michele F. Caliandro
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Christoph Westerhausen
- Biophysics Group, Department of Experimental Physics, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany (A.K.)
- Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Andrej Kamenac
- Biophysics Group, Department of Experimental Physics, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany (A.K.)
| | - Maryam Rezaei
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | | | - Gereon Poschmann
- Institute of Molecular Medicine I, Functional Redox Proteomics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck-Institute of Molecular Biomedicine, 48149 Münster, Germany;
| | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.H.); (E.-M.H.)
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
- Correspondence: ; Tel.: +49-251-835-5591
| |
Collapse
|
8
|
Boppart MD, Mahmassani ZS. Integrin signaling: linking mechanical stimulation to skeletal muscle hypertrophy. Am J Physiol Cell Physiol 2019; 317:C629-C641. [PMID: 31314586 DOI: 10.1152/ajpcell.00009.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The α7β1-integrin is a transmembrane adhesion protein that connects laminin in the extracellular matrix (ECM) with actin in skeletal muscle fibers. The α7β1-integrin is highly expressed in skeletal muscle and is concentrated at costameres and myotendious junctions, providing the opportunity to transmit longitudinal and lateral forces across the membrane. Studies have demonstrated that α7-integrin subunit mRNA and protein are upregulated following eccentric contractions as a mechanism to reinforce load-bearing structures and resist injury with repeated bouts of exercise. It has been hypothesized for many years that the integrin can also promote protein turnover in a manner that can promote beneficial adaptations with resistance exercise training, including hypertrophy. This review provides basic information about integrin structure and activation and then explores its potential to serve as a critical mechanosensor and activator of muscle protein synthesis and growth. Overall, the hypothesis is proposed that the α7β1-integrin can contribute to mechanical-load induced skeletal muscle growth via an mammalian target of rapamycin complex 1-independent mechanism.
Collapse
Affiliation(s)
- Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| |
Collapse
|
9
|
Han GH, Peng J, Liu P, Ding X, Wei S, Lu S, Wang Y. Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation. Neural Regen Res 2019; 14:1343-1351. [PMID: 30964052 PMCID: PMC6524503 DOI: 10.4103/1673-5374.253511] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve scaffolds promotes the repair of injured peripheral nerves. Autologous Schwann cell transplantation in humans has been reported recently. This article reviews current methods for removing the extracellular matrix and analyzes its composition and function. The development and secretory products of Schwann cells are also reviewed. The methods for the repair of peripheral nerve injuries that use myelin and Schwann cell transplantation are assessed. This survey of the literature data shows that using a decellularized nerve conduit combined with Schwann cells represents an effective strategy for the treatment of peripheral nerve injury. This analysis provides a comprehensive basis on which to make clinical decisions for the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Gong-Hai Han
- Kunming Medical University, Kunming, Yunnan Province; Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ping Liu
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Xiao Ding
- Shihezi University Medical College, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Shuai Wei
- Shihezi University Medical College, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Sheng Lu
- 920th Hospital of Joint Service Support Force, Kunming, Yunnan Province, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Wang S, Su D, Li J, Li D, Wan H, Schumacher M, Liu S. Donor nerve axotomy and axonal regeneration after end-to-side neurorrhaphy in a rodent model. J Neurosurg 2019; 130:197-206. [PMID: 29451448 DOI: 10.3171/2017.8.jns17739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/08/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In this study, the authors used a surgical model of end-to-side neurorrhaphy between a nerve graft and a donor tibial nerve in adult rats to investigate the optimal conditions for axonal regeneration induced by the donor nerve. They also assessed the importance of a more favorable pathway using a predegenerated nerve graft to attract regenerating axons to regrow into the graft and then directing and improving their growth toward the target in comparison with results obtained with a fresh nerve graft. METHODS End-to-side neurorrhaphy was performed between a nerve graft and a donor tibial nerve. The nerve graft was obtained from the left tibial nerve, which was either freshly removed or predegenerated 1 week prior to neurorrhaphy. The donor right tibial nerve was injured by epineurium removal alone, injured by epineurium removal with cross section of 20% or 50% of the total axons at the coaptation site, or left intact. The animals were followed postoperatively for a 6-week period, and outcomes were evaluated by optical microscopy and retrograde labeling to detect the regenerated primary sensory neurons located in the lumbar dorsal root ganglia and spinal motor neurons located in the lumbar spinal ventral horn. RESULTS At the end of the follow-up period, no regenerating axons were observed in the nerve grafts when the donor nerve was left intact, and very few axons were detected when the donor nerve was injured by epineurium removal alone. However, numerous regenerating axons appeared in the grafts when the donor nerve was axotomized, and the greatest number was achieved with a 50% cross section axotomized nerve. In the rats with a 50% cross section of the donor nerve, better nerve-like morphology of the grafts was observed, without connective adhesions. When a predegenerated nerve graft was used, more regenerating axons were attracted and elongated with a more regular shape and improved myelination. CONCLUSIONS Axonal regrowth into a nerve graft depends on axotomy of the donor nerve after end-to-side neurorrhaphy. More efficient attraction and an improved structure of the regenerating axons were achieved when a predegenerated nerve graft was used. Furthermore, a nerve graft may require a certain number of regenerating axons to maintain a nerve-like morphology.
Collapse
Affiliation(s)
- Shiwei Wang
- 2U 1195, INSERM, Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France; and
| | - Diya Su
- 1Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jing Li
- 1Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Dezhi Li
- 3Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong Wan
- 1Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Michael Schumacher
- 2U 1195, INSERM, Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France; and
| | - Song Liu
- 1Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- 2U 1195, INSERM, Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France; and
| |
Collapse
|
11
|
Nieuwenhuis B, Haenzi B, Andrews MR, Verhaagen J, Fawcett JW. Integrins promote axonal regeneration after injury of the nervous system. Biol Rev Camb Philos Soc 2018; 93:1339-1362. [PMID: 29446228 PMCID: PMC6055631 DOI: 10.1111/brv.12398] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/23/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
| | | | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
- Centre for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit Amsterdam1081 HVAmsterdamThe Netherlands
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Centre of Reconstructive NeuroscienceInstitute of Experimental Medicine142 20Prague 4Czech Republic
| |
Collapse
|
12
|
Sekiya T, Holley MC. 'Surface Transplantation' for Nerve Injury and Repair: The Quest for Minimally Invasive Cell Delivery. Trends Neurosci 2018; 41:429-441. [PMID: 29625774 DOI: 10.1016/j.tins.2018.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 02/22/2018] [Accepted: 03/07/2018] [Indexed: 12/15/2022]
Abstract
Cell transplantation is an ambitious, but arguably realistic, therapy for repair of the nervous system. Cell delivery is a major challenge for clinical translation, especially given the apparently inhibitory astrogliotic environment in degenerated tissue. However, astrogliotic tissue also contains endogenous structural and biochemical cues that can be harnessed for functional repair. Minimizing damage to these cues during cell delivery could enhance cell integration. This theory is supported by studies with an auditory astrocyte scar model, in which cells delivered onto the surface of the damaged nerve were more successfully integrated in the host than those injected into the tissue. We consider the application of this less invasive approach for nerve injury and its potential application to some neurodegenerative disorders.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Sakyou-ku, Kyoto, 606-8507, Japan; Hikone Chuo Hospital, Department of Neurological Surgery, Hikone Chuo Hospital, 421 Nishiima-cho, Hikone, 522-0054, Japan.
| | - Matthew C Holley
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
13
|
Zheng M, Chen R, Chen H, Zhang Y, Chen J, Lin P, Lan Q, Yuan Q, Lai Y, Jiang X, Pan X, Liu N. Netrin-1 Promotes Synaptic Formation and Axonal Regeneration via JNK1/c-Jun Pathway after the Middle Cerebral Artery Occlusion. Front Cell Neurosci 2018; 12:13. [PMID: 29487502 PMCID: PMC5816818 DOI: 10.3389/fncel.2018.00013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
As a secreted axon guidance molecule, Netrin-1 has been documented to be a neuroprotective factor, which can reduce infarct volume, promote angiogenesis and anti-apoptosis after stroke in rodents. However, its role in axonal regeneration and synaptic formation after cerebral ischemic injury, and the related underlying mechanisms remain blurred. In this study, we used Adeno-associated vectors carrying Netrin-1 gene (AAV-NT-1) to up-regulate the expression level of Netrin-1 in rats’ brain after middle cerebral artery occlusion (MCAO). We found that the up-regulated level of Netrin-1 and its receptor DCC promoted axonal regeneration and synaptic formation; the overexpression of Netrin-1 activated the JNK1 signaling pathway; these effects were partially reduced when JNK1 signaling pathway was inhibited by SP600125 (JNK specific inhibitor). Taken together, these findings suggest that Netrin-1 can facilitate the synaptic formation and axonal regeneration via the JNK1 signaling pathway after cerebral ischemia, thus promoting the recovery of neural functions.
Collapse
Affiliation(s)
- Mouwei Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ronghua Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yixian Zhang
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.,Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianhao Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Peiqiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Quan Lan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Qilin Yuan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yongxing Lai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xinhong Jiang
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.,Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaodong Pan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.,Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
14
|
Chang IA, Kim KJ, Namgung U. α6 and β1 Integrin Heterodimer Mediates Schwann Cell Interactions with Axons and Facilitates Axonal Regeneration after Peripheral Nerve Injury. Neuroscience 2017; 371:49-59. [PMID: 29223350 DOI: 10.1016/j.neuroscience.2017.11.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 11/27/2022]
Abstract
Several isoforms of integrin subunits are expressed in Schwann cells and mediate Schwann cell interactions with axons. Here, we identify α6 and β1 integrins as heterodimeric proteins expressed in Schwann cells and define their functions in axonal regeneration. α6 and β1 integrins are induced in Schwann cells in the sciatic nerve after a crush injury, and the blocking of integrin activity by siRNA expression and by treatment with anti-integrin antibodies attenuates Schwann cell contact with cultured neurons and decreases neurite outgrowth. After nerve transection, the levels of α6 and β1 integrins in the distal nerve stump are lower than those in the corresponding nerve area after a crush injury. Schwann cells prepared from the distal nerves 7 days after transection are less supportive of neurite outgrowth in co-cultured neurons than those prepared from the nerves 7 days after a crush injury. When the transected nerves are reconnected after a delay of 1 to 2 weeks, the induced levels of α6 and β1 integrins in the reconnected distal nerves are significantly reduced compared to those in the nerves after a crush injury. These changes correlate with retarded axonal regeneration in animals that have experienced nerve transections and delayed coaptation, which implies an attenuated Schwann cell capacity to support axonal regeneration due to delayed Schwann cell contact with axons. The present data suggest that α6 and β1 integrins induced in Schwann cells after nerve injury may play a role in mediating Schwann cell interactions with axons and promote axonal regeneration.
Collapse
Affiliation(s)
- In Ae Chang
- Department of Oriental Medicine, Daejeon University, Daehak-ro 62, Dong-gu, Daejeon 34520, South Korea
| | - Ki-Joong Kim
- Department of Oriental Medicine, Daejeon University, Daehak-ro 62, Dong-gu, Daejeon 34520, South Korea
| | - Uk Namgung
- Department of Oriental Medicine, Daejeon University, Daehak-ro 62, Dong-gu, Daejeon 34520, South Korea.
| |
Collapse
|
15
|
Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components with Neurotrophic Factors. Int J Mol Sci 2016; 18:ijms18010065. [PMID: 28036084 PMCID: PMC5297700 DOI: 10.3390/ijms18010065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/28/2016] [Accepted: 12/24/2016] [Indexed: 11/29/2022] Open
Abstract
After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM) components and neurotrophic factors (NTFs) exert their effect on different neuronal populations creating a suitable environment to promote axonal growth. Here, we assessed in vitro and in vivo the selective effects of combining different ECM components with NTFs on motor and sensory axons regeneration and target reinnervation. Organotypic cultures with collagen, laminin and nerve growth factor (NGF)/neurotrophin-3 (NT3) or collagen, fibronectin and brain-derived neurotrophic factor (BDNF) selectively enhanced sensory neurite outgrowth of DRG neurons and motor neurite outgrowth from spinal cord slices respectively. For in vivo studies, the rat sciatic nerve was transected and repaired with a silicone tube filled with a collagen and laminin matrix with NGF/NT3 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres (MP) (LM + MP.NGF/NT3), or a collagen and fibronectin matrix with BDNF in PLGA MPs (FN + MP.BDNF). Retrograde labeling and functional tests showed that LM + MP.NGF/NT3 increased the number of regenerated sensory neurons and improved sensory functional recovery, whereas FN + MP.BDNF preferentially increased regenerated motoneurons and enhanced motor functional recovery. Therefore, combination of ECM molecules with NTFs may be a good approach to selectively enhance motor and sensory axons regeneration and promote appropriate target reinnervation.
Collapse
|
16
|
Olfactory Ensheathing Cells Express α7 Integrin to Mediate Their Migration on Laminin. PLoS One 2016; 11:e0153394. [PMID: 27078717 PMCID: PMC4831794 DOI: 10.1371/journal.pone.0153394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 03/29/2016] [Indexed: 11/24/2022] Open
Abstract
The unique glia located in the olfactory system, called olfactory ensheathing cells (OECs), are implicated as an attractive choice for transplantation therapy following spinal cord injury because of their pro-regenerative characteristics. Adult OECs are thought to improve functional recovery and regeneration after injury by secreting neurotrophic factors and making cell-to-cell contacts with regenerating processes, but the mechanisms are not well understood. We show first that α7 integrin, a laminin receptor, is highly expressed at the protein level by OECs throughout the olfactory system, i.e., in the olfactory mucosa, olfactory nerve, and olfactory nerve layer of the olfactory bulb. Then we asked if OECs use the α7 integrin receptor directly to promote neurite outgrowth on permissive and neutral substrates, in vitro. We co-cultured α7+/+ and α7lacZ/lacZ postnatal cerebral cortical neurons with α7+/+ or α7lacZ/lacZ OECs and found that genotype did not effect the ability of OECs to enhance neurite outgrowth by direct contact. Loss of α7 integrin did however significantly decrease the motility of adult OECs in transwell experiments. Twice as many α7+/+ OECs migrated through laminin-coated transwells compared to α7+/+ OECs on poly-L-lysine (PLL). This is in contrast to α7lacZ/lacZ OECs, which showed no migratory preference for laminin substrate over PLL. These results demonstrate that OECs express α7 integrin, and that laminin and its α7 integrin receptor contribute to adult OEC migration in vitro and perhaps also in vivo.
Collapse
|
17
|
van Niekerk EA, Tuszynski MH, Lu P, Dulin JN. Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury. Mol Cell Proteomics 2015; 15:394-408. [PMID: 26695766 DOI: 10.1074/mcp.r115.053751] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 12/28/2022] Open
Abstract
Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system.
Collapse
Affiliation(s)
- Erna A van Niekerk
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093;
| | - Mark H Tuszynski
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Paul Lu
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Jennifer N Dulin
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
18
|
Isaacman-Beck J, Schneider V, Franzini-Armstrong C, Granato M. The lh3 Glycosyltransferase Directs Target-Selective Peripheral Nerve Regeneration. Neuron 2015; 88:691-703. [PMID: 26549330 PMCID: PMC4655140 DOI: 10.1016/j.neuron.2015.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/16/2015] [Accepted: 09/28/2015] [Indexed: 12/26/2022]
Abstract
Functional PNS regeneration requires injured axons to return to their original synaptic targets, yet the mechanisms underlying target-selective regeneration have remained elusive. Using live-cell imaging in zebrafish we find that regenerating motor axons exhibit a strong preference for their original muscle territory and that axons probe both correct and incorrect trajectories extensively before selecting their original path. We show that this process requires the glycosyltransferase lh3 and that post-injury expression of lh3 in Schwann cells is sufficient to restore target-selective regeneration. Moreover, we demonstrate that Schwann cells neighboring the transection site express the lh3 substrate collagen4a5 and that during regeneration collagen4a5 destabilizes axons probing inappropriate trajectories to ensure target-selective regeneration, possibly through the axonal repellant slit1a. Our results demonstrate that selective ECM components match subpopulations of regenerating axons with their original targets and reveal a previously unappreciated mechanism that conveys synaptic target selection to regenerating axons in vivo. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jesse Isaacman-Beck
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6058, USA
| | - Valerie Schneider
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6058, USA
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6058, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
19
|
Gonzalez-Perez F, Alé A, Santos D, Barwig C, Freier T, Navarro X, Udina E. Substratum preferences of motor and sensory neurons in postnatal and adult rats. Eur J Neurosci 2015; 43:431-42. [PMID: 26332537 DOI: 10.1111/ejn.13057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/18/2022]
Abstract
After peripheral nerve injuries, damaged axons can regenerate but functional recovery is limited by the specific reinnervation of targets. In this study we evaluated if motor and sensory neurites have a substrate preference for laminin and fibronectin in postnatal and adult stages. In postnatal dorsal root ganglia (DRG) explants, sensory neurons extended longer neurites on collagen matrices enriched with laminin (~50%) or fibronectin (~35%), whereas motoneurons extended longer neurites (~100%) in organotypic spinal cord slices embedded in fibronectin-enriched matrix. An increased percentage of parvalbumin-positive neurites (presumptive proprioceptive) vs. neurofilament-positive neurites was also found in DRG in fibronectin-enriched matrix. To test if the different preference of neurons for extracellular matrix components was maintained in vivo, these matrices were used to fill a chitosan guide to repair a 6-mm gap in the sciatic nerve of adult rats. However, the number of regenerating motor and sensory neurons after 1 month was similar between groups. Moreover, none of the retrotraced sensory neurons in DRG was positive for parvalbumin, suggesting that presumptive proprioceptive neurons had poor regenerative capabilities compared with other peripheral neurons. Using real-time PCR we evaluated the expression of α5β1 (receptor for fibronectin) and α7β1 integrin (receptor for laminin) in spinal cord and DRG 2 days after injury. Postnatal animals showed a higher increase of α5β1 integrin, whereas both integrins were similarly expressed in adult neurons. Therefore, we conclude that motor and sensory axons have a different substrate preference at early postnatal stages but this difference is lost in the adult.
Collapse
Affiliation(s)
- Francisco Gonzalez-Perez
- Institute of Neurosciences, Department of Cell Biology, Physiology, Immunology, Universitat Autònoma de Barcelona, CIBERNED, E-08193, Bellaterra, Spain
| | - Albert Alé
- Institute of Neurosciences, Department of Cell Biology, Physiology, Immunology, Universitat Autònoma de Barcelona, CIBERNED, E-08193, Bellaterra, Spain
| | - Daniel Santos
- Institute of Neurosciences, Department of Cell Biology, Physiology, Immunology, Universitat Autònoma de Barcelona, CIBERNED, E-08193, Bellaterra, Spain
| | | | | | - Xavier Navarro
- Institute of Neurosciences, Department of Cell Biology, Physiology, Immunology, Universitat Autònoma de Barcelona, CIBERNED, E-08193, Bellaterra, Spain
| | - Esther Udina
- Institute of Neurosciences, Department of Cell Biology, Physiology, Immunology, Universitat Autònoma de Barcelona, CIBERNED, E-08193, Bellaterra, Spain
| |
Collapse
|
20
|
DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 2015; 302:174-203. [PMID: 25242643 PMCID: PMC4366367 DOI: 10.1016/j.neuroscience.2014.09.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/25/2022]
Abstract
Peripheral nerves regenerate following injury due to the effective activation of the intrinsic growth capacity of the neurons and the formation of a permissive pathway for outgrowth due to Wallerian degeneration (WD). WD and subsequent regeneration are significantly influenced by various immune cells and the cytokines they secrete. Although macrophages have long been known to play a vital role in the degenerative process, recent work has pointed to their importance in influencing the regenerative capacity of peripheral neurons. In this review, we focus on the various immune cells, cytokines, and chemokines that make regeneration possible in the peripheral nervous system, with specific attention placed on the role macrophages play in this process.
Collapse
Affiliation(s)
| | - J A Lindborg
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - J P Niemi
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - R E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| |
Collapse
|
21
|
Ma TC, Willis DE. What makes a RAG regeneration associated? Front Mol Neurosci 2015; 8:43. [PMID: 26300725 PMCID: PMC4528284 DOI: 10.3389/fnmol.2015.00043] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/24/2015] [Indexed: 12/31/2022] Open
Abstract
Regenerative failure remains a significant barrier for functional recovery after central nervous system (CNS) injury. As such, understanding the physiological processes that regulate axon regeneration is a central focus of regenerative medicine. Studying the gene transcription responses to axon injury of regeneration competent neurons, such as those of the peripheral nervous system (PNS), has provided insight into the genes associated with regeneration. Though several individual “regeneration-associated genes” (RAGs) have been identified from these studies, the response to injury likely regulates the expression of functionally coordinated and complementary gene groups. For instance, successful regeneration would require the induction of genes that drive the intrinsic growth capacity of neurons, while simultaneously downregulating the genes that convey environmental inhibitory cues. Thus, this view emphasizes the transcriptional regulation of gene “programs” that contribute to the overall goal of axonal regeneration. Here, we review the known RAGs, focusing on how their transcriptional regulation can reveal the underlying gene programs that drive a regenerative phenotype. Finally, we will discuss paradigms under which we can determine whether these genes are injury-associated, or indeed necessary for regeneration.
Collapse
Affiliation(s)
- Thong C Ma
- Department of Neurology, Columbia University New York, NY, USA
| | - Dianna E Willis
- Brain Mind Research Institute, Weill Cornell Medical College New York, NY, USA ; Burke-Cornell Medical Research Institute White Plains, NY, USA
| |
Collapse
|
22
|
Tan CL, Kwok JCF, Heller JPD, Zhao R, Eva R, Fawcett JW. Full length talin stimulates integrin activation and axon regeneration. Mol Cell Neurosci 2015; 68:1-8. [PMID: 25771432 PMCID: PMC4604251 DOI: 10.1016/j.mcn.2015.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/07/2015] [Accepted: 03/09/2015] [Indexed: 11/19/2022] Open
Abstract
Integrin function is regulated by activation involving conformational changes that modulate ligand-binding affinity and downstream signaling. Activation is regulated through inside-out signaling which is controlled by many signaling pathways via a final common pathway through kindlin and talin, which bind to the intracellular tail of beta integrins. Previous studies have shown that the axon growth inhibitory molecules NogoA and chondroitin sulfate proteoglycans (CSPGs) inactivate integrins. Overexpressing kindlin-1 in dorsal root ganglion (DRG) neurons activates integrins, enabling their axons to overcome inhibitory molecules in the environment, and promoting regeneration in vivo following dorsal root crush. Other studies have indicated that expression of the talin head alone or with kindlin can enhance integrin activation. Here, using adult rat DRG neurons, we investigate the effects of overexpressing various forms of talin on axon growth and integrin signaling. We found that overexpression of the talin head activated axonal integrins but inhibited downstream signaling via FAK, and did not promote axon growth. Similarly, co-expression of the talin head and kindlin-1 prevented the growth-promoting effect of kindlin-1, suggesting that the talin head acts as a form of dominant negative for integrin function. Using full-length talin constructs in PC12 cells we observed that neurite growth was enhanced by the expression of wild-type talin and more so by two ‘activated’ forms of talin produced by point mutation (on laminin and aggrecan–laminin substrates). Nevertheless, co-expression of full-length talin with kindlin did not promote neurite growth more than either molecule alone. In vivo, we find that talin is present in PNS axons (sciatic nerve), and also in CNS axons of the corticospinal tract. Full length talin can activate integrins and stimulate axon regeneration on inhibitory CSPGs. The talin head domain can activate integrins, but acts as a dominant negative for talin function. Talin and kindlins do not have additive effects on axon growth. Talin is transported into the axons of the sciatic nerve and the corticospinal tract.
Collapse
Affiliation(s)
- Chin Lik Tan
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Jessica C F Kwok
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Janosch P D Heller
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Rongrong Zhao
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Richard Eva
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK.
| |
Collapse
|
23
|
Ahmed TAE, Ringuette R, Wallace VA, Griffith M. Autologous fibrin glue as an encapsulating scaffold for delivery of retinal progenitor cells. Front Bioeng Biotechnol 2015; 2:85. [PMID: 25692127 PMCID: PMC4315092 DOI: 10.3389/fbioe.2014.00085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/20/2014] [Indexed: 11/13/2022] Open
Abstract
The retina is a highly sophisticated piece of the neural machinery that begins the translation of incoming light signals into meaningful visual information. Several degenerative diseases of the retina are characterized by photoreceptor loss and eventually lead to irreversible blindness. Regenerative medicine, using tissue engineering-based constructs to deliver progenitor cells or photoreceptors along with supporting carrier matrix is a promising approach for restoration of structure and function. Fresh fibrin glue (FG) produced by the CryoSeal(®)FS system in combination with mouse retinal progenitor cells (RPCs) were evaluated in this study. In vitro expanded RPCs isolated from postnatal mouse retina were encapsulated into FG and cultured in the presence of the protease inhibitor, tranexamic acid. Encapsulation of RPCs into FG did not show adverse effects on cell proliferation or cell survival. RPCs exhibited fibroblast-like morphology concomitantly with attachment to the encapsulating FG surface. They expressed α7 and β3 integrin subunits that could mediate attachment to fibrin matrix via an RGD-independent mechanism. The three-dimensional environment and the attachment surface provided by FG was associated with a rapid down-regulation of the progenitor marker SOX2 and enhanced the expression of the differentiation markers cone-rod homeobox and recoverin. However, the in vitro culture conditions did not promote full differentiation into mature photoreceptors. Nevertheless, we have shown that autologous fibrin, when fabricated into a scaffold for RPCs for delivery to the retina, provides the cells with external cues that could potentially improve the differentiation events. Hence, transient encapsulation of RPCs into FG could be a valid and potential treatment strategy to promote retinal regeneration following degenerative diseases. However, further optimization is necessary to maximize the outcomes in terms of mature photoreceptors.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Vision Program, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications (SRTA-City) , Alexandria , Egypt ; Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Randy Ringuette
- Vision Program, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Valerie A Wallace
- Vision Program, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada ; Vision Science Research Program, Toronto Western Research Institute , Toronto, ON , Canada
| | - May Griffith
- Vision Program, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, ON , Canada ; Department of Clinical and Experimental Medicine, Integrative Regenerative Medicine Centre, Linköping University , Linköping , Sweden
| |
Collapse
|
24
|
Fagoe ND, van Heest J, Verhaagen J. Spinal cord injury and the neuron-intrinsic regeneration-associated gene program. Neuromolecular Med 2014; 16:799-813. [PMID: 25269879 DOI: 10.1007/s12017-014-8329-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/20/2014] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) affects millions of people worldwide and causes a significant physical, emotional, social and economic burden. The main clinical hallmark of SCI is the permanent loss of motor, sensory and autonomic function below the level of injury. In general, neurons of the central nervous system (CNS) are incapable of regeneration, whereas injury to the peripheral nervous system is followed by axonal regeneration and usually results in some degree of functional recovery. The weak neuron-intrinsic regeneration-associated gene (RAG) response upon injury is an important reason for the failure of neurons in the CNS to regenerate an axon. This response consists of the expression of many RAGs, including regeneration-associated transcription factors (TFs). Regeneration-associated TFs are potential key regulators of the RAG program. The function of some regeneration-associated TFs has been studied in transgenic and knock-out mice and by adeno-associated viral vector-mediated overexpression in injured neurons. Here, we review these studies and propose that AAV-mediated gene delivery of combinations of regeneration-associated TFs is a potential strategy to activate the RAG program in injured CNS neurons and achieve long-distance axon regeneration.
Collapse
Affiliation(s)
- Nitish D Fagoe
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, an Institute of the Royal Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
25
|
Heintz TG, Heller JP, Zhao R, Caceres A, Eva R, Fawcett JW. Kinesin KIF4A transports integrin β1 in developing axons of cortical neurons. Mol Cell Neurosci 2014; 63:60-71. [PMID: 25260485 DOI: 10.1016/j.mcn.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
CNS axons have poor regenerative ability compared to PNS axons, and mature axons regenerate less well than immature embryonic axons. The loss of regenerative ability with maturity is accompanied by the setting up of a selective transport filter in axons, restricting the types of molecule that are present. We confirm that integrins (represented by subunits β1 and α5) are present in early cortical axons in vitro but are excluded from mature axons. Ribosomal protein and L1 show selective axonal transport through association with kinesin kif4A; we have therefore examined the hypothesis that integrin transport might also be in association with kif4A. Kif4A is present in all processes of immature cortical neurons cultured at E18, then downregulated by 14days in vitro, coinciding with the exclusion of integrin from axons. Kif4a co-localises with β1 integrin in vesicles in neurons and non-neuronal cells, and the two molecules co-immunoprecipitate. Knockdown of KIF4A expression with shRNA reduced the level of integrin β1 in axons of developing neurons and reduced neurite elongation on laminin, an integrin-dependent substrate. Overexpression of kif4A triggered apoptosis in neuronal and non-neuronal cells. In mature neurons expression of kif4A-GFP at a modest level did not kill the cells, and the kif4A was detectable in their axons. However this was not accompanied by an increase in integrin β1 axonal transport, suggesting that kif4A is not the only integrin transporter, and that integrin exclusion from axons is controlled by factors other than the kif4A level.
Collapse
Affiliation(s)
- Tristan G Heintz
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Janosch P Heller
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Rongrong Zhao
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Alfredo Caceres
- Laboratorio de Neurobiología Celular y Molecular, Instituto Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Friuli 2434, 5016 Córdoba, Argentina
| | - Richard Eva
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK.
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Dept. Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK.
| |
Collapse
|
26
|
Brosius Lutz A, Barres BA. Contrasting the Glial Response to Axon Injury in the Central and Peripheral Nervous Systems. Dev Cell 2014; 28:7-17. [DOI: 10.1016/j.devcel.2013.12.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Yuan Q, Su H, Chiu K, Lin ZX, Wu W. Assessment of the rate of spinal motor axon regeneration by choline acetyltransferase immunohistochemistry following sciatic nerve crush injury in mice. J Neurosurg 2013; 120:502-8. [PMID: 24032704 DOI: 10.3171/2013.8.jns121648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECT The purpose of this study was to examine whether choline acetyltransferase (ChAT) staining can be used for assessing the rate of motor neuron regeneration at an early phase of axon outgrowth. METHODS The authors developed a new sciatic nerve crush model in adult mice. In this model, in addition to performing a sciatic nerve crush injury, the authors excised the ipsilateral lumbar L3-6 dorsal root ganglion (DRG), which resulted in degeneration of the sensory fibers entering into the sciatic nerve. Crushed nerve sections obtained at Day 3 or Day 7 postinjury were analyzed by means of immunostaining. RESULTS The immunostaining showed that ChAT, a motor axon-specific antigen, was totally co-localized with growth-associated protein 43 (GAP-43), which is expressed in regenerating nerves and transported into growth cones. CONCLUSIONS Our results suggest that measuring the length of motor axon outgrowth by ChAT immunostaining is reliable. ChAT staining provides a more convenient method for evaluating the rate of motor axon outgrowth in a mixed nerve.
Collapse
Affiliation(s)
- Qiuju Yuan
- School of Chinese Medicine, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
28
|
Duperret EK, Ridky TW. Focal adhesion complex proteins in epidermis and squamous cell carcinoma. Cell Cycle 2013; 12:3272-85. [PMID: 24036537 DOI: 10.4161/cc.26385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Focal adhesions (FAs) are large, integrin-containing, multi-protein assemblies spanning the plasma membrane that link the cellular cytoskeleton to surrounding extracellular matrix. They play critical roles in adhesion and cell signaling and are major regulators of epithelial homeostasis, tissue response to injury, and tumorigenesis. Most integrin subunits and their associated FA proteins are expressed in skin, and murine genetic models have provided insight into the functional roles of FAs in normal and neoplastic epidermis. Here, we discuss the roles of these proteins in normal epidermal proliferation, adhesion, wound healing, and cancer. While many downstream signaling mechanisms remain unclear, the critically important roles of FAs are highlighted by the development of therapeutics targeting FAs for human cancer.
Collapse
|
29
|
Proregenerative properties of ECM molecules. BIOMED RESEARCH INTERNATIONAL 2013; 2013:981695. [PMID: 24195084 PMCID: PMC3782155 DOI: 10.1155/2013/981695] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/04/2013] [Accepted: 08/07/2013] [Indexed: 12/27/2022]
Abstract
After traumatic injuries to the nervous system, regrowing axons encounter a complex microenvironment where mechanisms that promote regeneration compete with inhibitory processes. Sprouting and axonal regrowth are key components of functional recovery but are often counteracted by inhibitory molecules. This review covers extracellular matrix molecules that support neuron axonal outgrowth.
Collapse
|
30
|
Abdullah M, O'Daly A, Vyas A, Rohde C, Brushart TM. Adult motor axons preferentially reinnervate predegenerated muscle nerve. Exp Neurol 2013; 249:1-7. [PMID: 23933577 DOI: 10.1016/j.expneurol.2013.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 12/17/2022]
Abstract
Preferential motor reinnervation (PMR) is the tendency for motor axons regenerating after repair of mixed nerve to reinnervate muscle nerve and/or muscle rather than cutaneous nerve or skin. PMR may occur in response to the peripheral nerve pathway alone in juvenile rats (Brushart, 1993; Redett et al., 2005), yet the ability to identify and respond to specific pathway markers is reportedly lost in adults (Uschold et al., 2007). The experiments reported here evaluate the relative roles of pathway and end organ in the genesis of PMR in adult rats. Fresh and 2-week predegenerated femoral nerve grafts were transferred in correct or reversed alignment to replace the femoral nerves of previously unoperated Lewis rats. After 8 weeks of regeneration the motoneurons projecting through the grafts to recipient femoral cutaneous and muscle branches and their adjacent end organs were identified by retrograde labeling. Motoneuron counts were subjected to Poisson regression analysis to determine the relative roles of pathway and end organ identity in generating PMR. Transfer of fresh grafts did not result in PMR, whereas substantial PMR was observed when predegenerated grafts were used. Similarly, the pathway through which motoneurons reached the muscle had a significant impact on PMR when grafts were predegenerated, but not when they were fresh. Comparison of the relative roles of pathway and end organ in generating PMR revealed that neither could be shown to be more important than the other. These experiments demonstrate unequivocally that adult muscle nerve and cutaneous nerve differ in qualities that can be detected by regenerating adult motoneurons and that can modify their subsequent behavior. They also reveal that two weeks of Wallerian degeneration modify the environment in the graft from one that provides no modality-specific cues for motor neurons to one that actively promotes PMR.
Collapse
Affiliation(s)
- M Abdullah
- Department of Orthopaedic Surgery, Johns Hopkins University, 601 N. Caroline Street, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
31
|
Saijilafu, Zhang BY, Zhou FQ. Signaling pathways that regulate axon regeneration. Neurosci Bull 2013; 29:411-20. [PMID: 23846598 DOI: 10.1007/s12264-013-1357-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/25/2013] [Indexed: 10/26/2022] Open
Abstract
Neurons in the mammalian central nervous system (CNS) cannot regenerate axons after injury. in contrast, neurons in the mammalian peripheral nervous system and in some non-mammalian models, such as C. elegans and Drosophila, are able to regrow axons. Understanding the molecular mechanisms by which these neurons support axon regeneration will help us find ways to enhance mammalian CNS axon regeneration. Here, recent studies in which signaling pathways regulating naturally-occurring axon regeneration that have been identified are reviewed, focusing on how these pathways control gene expression and growth-cone function during axon regeneration.
Collapse
Affiliation(s)
- Saijilafu
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
32
|
Tan LZ, Song Y, Nelson J, Yu YP, Luo JH. Integrin α7 binds tissue inhibitor of metalloproteinase 3 to suppress growth of prostate cancer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:831-40. [PMID: 23830872 DOI: 10.1016/j.ajpath.2013.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/30/2013] [Accepted: 05/13/2013] [Indexed: 12/21/2022]
Abstract
Integrin α7 (ITGA7) is a tumor-suppressor gene that is critical for suppressing the growth of malignant tumors; however, the mechanisms allowing ITGA7 to suppress the growth of cancer cells remain unclear. Herein, we show that ITGA7 binds to tissue inhibitor of metalloproteinase 3 (TIMP3) in prostate cancer cells. The ITGA7-TIMP3 binding led to a decreased protein level of tumor necrosis factor α, cytoplasmic translocation of NF-κB, and down-regulation of cyclin D1. These changes led to an accumulation of cells in G0/G1 and a dramatic suppression of cell growth. Knocking down TIMP3 or ITGA7/TIMP3 binding interference largely abrogated the signaling changes induced by ITGA7, whereas a mutant ITGA7 lacking TIMP3 binding activity had no tumor-suppressor activity. Interestingly, knocking down ITGA7 ligand laminin β1 enhanced ITGA7-TIMP3 signaling and the downstream tumor-suppressor activity, suggesting the existence of a counterbalancing role between extracellular matrix and integrin signaling. As a result, this report demonstrates a novel and critical signaling mechanism of ITGA7, through the TIMP3/NF-κB/cyclin D1 pathway.
Collapse
Affiliation(s)
- Lang-Zhu Tan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
33
|
Plantman S, Zelano J, Novikova LN, Novikov LN, Cullheim S. Neuronal myosin-X is upregulated after peripheral nerve injury and mediates laminin-induced growth of neurites. Mol Cell Neurosci 2013; 56:96-101. [PMID: 23603155 DOI: 10.1016/j.mcn.2013.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 03/06/2013] [Accepted: 04/01/2013] [Indexed: 01/07/2023] Open
Abstract
The successful outcome of peripheral neuronal regeneration is attributed both to the growth permissive milieu and the intrinsic ability of the neuron to initiate appropriate cellular responses such as changes in gene expression and cytoskeletal rearrangements. Even though numerous studies have shown the importance of interactions between the neuron and the extracellular matrix (ECM) in axonal outgrowth, the molecular mechanisms underlying the contact between ECM receptors and the cellular cytoskeleton remain largely unknown. Unconventional myosins constitute an important group of cytoskeletal-associated motor proteins. One member of this family is the recently described myosin-X. This protein interacts with several members of the axon growth-associated ECM receptor family of integrins and could therefore be important in neuronal outgrowth. In this study, using radioactive in situ hybridization, we found that expression of myosin-X mRNA is upregulated in adult rat sensory neurons and spinal motoneurons after peripheral nerve injury, but not after central injury. Thus, myosin-X was upregulated after injuries that can be followed by axonal regeneration. We also found that the protein is localized to neuronal growth cones and that silencing of myosin-X using RNA interference impairs the integrin-mediated growth of neurites on laminin, but has no effect on non-integrin mediated growth on N-cadherin.
Collapse
Affiliation(s)
- Stefan Plantman
- Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
34
|
FGF-2 Low Molecular Weight Selectively Promotes Neuritogenesis of Motor Neurons In Vitro. Mol Neurobiol 2012; 47:770-81. [DOI: 10.1007/s12035-012-8389-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/14/2012] [Indexed: 01/31/2023]
|
35
|
Fontana X, Hristova M, Da Costa C, Patodia S, Thei L, Makwana M, Spencer-Dene B, Latouche M, Mirsky R, Jessen KR, Klein R, Raivich G, Behrens A. c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J Cell Biol 2012; 198:127-41. [PMID: 22753894 PMCID: PMC3392945 DOI: 10.1083/jcb.201205025] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/04/2012] [Indexed: 11/22/2022] Open
Abstract
The AP-1 transcription factor c-Jun is a master regulator of the axonal response in neurons. c-Jun also functions as a negative regulator of myelination in Schwann cells (SCs) and is strongly reactivated in SCs upon axonal injury. We demonstrate here that, after injury, the absence of c-Jun specifically in SCs caused impaired axonal regeneration and severely increased neuronal cell death. c-Jun deficiency resulted in decreased expression of several neurotrophic factors, and GDNF and Artemin, both of which encode ligands for the Ret receptor tyrosine kinase, were identified as novel direct c-Jun target genes. Genetic inactivation of Ret specifically in neurons resulted in regeneration defects without affecting motoneuron survival and, conversely, administration of recombinant GDNF and Artemin protein substantially ameliorated impaired regeneration caused by c-Jun deficiency. These results reveal an unexpected function for c-Jun in SCs in response to axonal injury, and identify paracrine Ret signaling as an important mediator of c-Jun function in SCs during regeneration.
Collapse
Affiliation(s)
- Xavier Fontana
- Mammalian Genetics Laboratory and Experimental Pathology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, London WC1E 6HX, England, UK
| | - Clive Da Costa
- Mammalian Genetics Laboratory and Experimental Pathology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Smriti Patodia
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, London WC1E 6HX, England, UK
| | - Laura Thei
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, London WC1E 6HX, England, UK
| | - Milan Makwana
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, London WC1E 6HX, England, UK
| | - Bradley Spencer-Dene
- Mammalian Genetics Laboratory and Experimental Pathology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Morwena Latouche
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Rhona Mirsky
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Kristjan R. Jessen
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Rüdiger Klein
- Department of Molecular Neurobiology, Max Planck Institute of Neurobiology, 82152 Munich-Martinsried, Germany
| | - Gennadij Raivich
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, London WC1E 6HX, England, UK
| | - Axel Behrens
- Mammalian Genetics Laboratory and Experimental Pathology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| |
Collapse
|
36
|
Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol 2012; 98:16-37. [PMID: 22609046 DOI: 10.1016/j.pneurobio.2012.05.005] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/12/2012] [Accepted: 05/08/2012] [Indexed: 12/13/2022]
Abstract
Peripheral nerves injuries result in paralysis, anesthesia and lack of autonomic control of the affected body areas. After injury, axons distal to the lesion are disconnected from the neuronal body and degenerate, leading to denervation of the peripheral organs. Wallerian degeneration creates a microenvironment distal to the injury site that supports axonal regrowth, while the neuron body changes in phenotype to promote axonal regeneration. The significance of axonal regeneration is to replace the degenerated distal nerve segment, and achieve reinnervation of target organs and restitution of their functions. However, axonal regeneration does not always allows for adequate functional recovery, so that after a peripheral nerve injury, patients do not recover normal motor control and fine sensibility. The lack of specificity of nerve regeneration, in terms of motor and sensory axons regrowth, pathfinding and target reinnervation, is one the main shortcomings for recovery. Key factors for successful axonal regeneration include the intrinsic changes that neurons suffer to switch their transmitter state to a pro-regenerative state and the environment that the axons find distal to the lesion site. The molecular mechanisms implicated in axonal regeneration and pathfinding after injury are complex, and take into account the cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules and their receptors. The aim of this review is to look at those interactions, trying to understand if some of these molecular factors are specific for motor and sensory neuron growth, and provide the basic knowledge for potential strategies to enhance and guide axonal regeneration and reinnervation of adequate target organs.
Collapse
|
37
|
Patodia S, Raivich G. Downstream effector molecules in successful peripheral nerve regeneration. Cell Tissue Res 2012; 349:15-26. [PMID: 22580509 DOI: 10.1007/s00441-012-1416-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/19/2012] [Indexed: 12/16/2022]
Abstract
The robust axon regeneration that occurs following peripheral nerve injury is driven by transcriptional activation of the regeneration program and by the expression of a wide range of downstream effector molecules from neuropeptides and neurotrophic factors to adhesion molecules and cytoskeletal adaptor proteins. These regeneration-associated effector molecules regulate the actin-tubulin machinery of growth-cones, integrate intracellular signalling and stimulatory and inhibitory signals from the local environment and translate them into axon elongation. In addition to the neuronally derived molecules, an important transcriptional component is found in locally activated Schwann cells and macrophages, which release a number of cytokines, growth factors and neurotrophins that support neuronal survival and axonal regeneration and that might provide directional guidance cues towards appropriate peripheral targets. This review aims to provide a comprehensive up-to-date account of the transcriptional regulation and functional role of these effector molecules and of the information that they can give us with regard to the organisation of the regeneration program.
Collapse
Affiliation(s)
- Smriti Patodia
- Centre for Perinatal Brain Protection and Repair, University College London, Chenies Mews 86-96, London, WC1E 6HX, UK
| | | |
Collapse
|
38
|
Ruff CA, Staak N, Patodia S, Kaswich M, Rocha-Ferreira E, Da Costa C, Brecht S, Makwana M, Fontana X, Hristova M, Rumajogee P, Galiano M, Bohatschek M, Herdegen T, Behrens A, Raivich G. Neuronal c-Jun is required for successful axonal regeneration, but the effects of phosphorylation of its N-terminus are moderate. J Neurochem 2012; 121:607-18. [PMID: 22372722 PMCID: PMC4491308 DOI: 10.1111/j.1471-4159.2012.07706.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/05/2012] [Accepted: 02/21/2012] [Indexed: 12/18/2022]
Abstract
Although neural c-Jun is essential for successful peripheral nerve regeneration, the cellular basis of this effect and the impact of c-Jun activation are incompletely understood. In the current study, we explored the effects of neuron-selective c-Jun deletion, substitution of serine 63 and 73 phosphoacceptor sites with non-phosphorylatable alanine, and deletion of Jun N-terminal kinases 1, 2 and 3 in mouse facial nerve regeneration. Removal of the floxed c-jun gene in facial motoneurons using cre recombinase under control of a neuron-specific synapsin promoter (junΔS) abolished basal and injury-induced neuronal c-Jun immunoreactivity, as well as most of the molecular responses following facial axotomy. Absence of neuronal Jun reduced the speed of axonal regeneration following crush, and prevented most cut axons from reconnecting to their target, significantly reducing functional recovery. Despite blocking cell death, this was associated with a large number of shrunken neurons. Finally, junΔS mutants also had diminished astrocyte and microglial activation and T-cell influx, suggesting that these non-neuronal responses depend on the release of Jun-dependent signals from neighboring injured motoneurons. The effects of substituting serine 63 and 73 phosphoacceptor sites (junAA), or of global deletion of individual kinases responsible for N-terminal c-Jun phosphorylation were mild. junAA mutants showed decrease in neuronal cell size, a moderate reduction in post-axotomy CD44 levels and slightly increased astrogliosis. Deletion of Jun N-terminal kinase (JNK)1 or JNK3 showed delayed functional recovery; deletion of JNK3 also interfered with T-cell influx, and reduced CD44 levels. Deletion of JNK2 had no effect. Thus, neuronal c-Jun is needed in regeneration, but JNK phosphorylation of the N-terminus mostly appears to not be required for its function.
Collapse
Affiliation(s)
- Crystal A Ruff
- Perinatal Brain Repair Group, Inst Women's Health, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Extrinsic cellular and molecular mediators of peripheral axonal regeneration. Cell Tissue Res 2012; 349:5-14. [PMID: 22476657 DOI: 10.1007/s00441-012-1389-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/23/2012] [Indexed: 12/11/2022]
Abstract
The ability of injured peripheral nerves to regenerate and reinnervate their original targets is a characteristic feature of the peripheral nervous system (PNS). On the other hand, neurons of the central nervous system (CNS), including retinal ganglion cell (RGC) axons, are incapable of spontaneous regeneration. In the adult PNS, axonal regeneration after injury depends on well-orchestrated cellular and molecular processes that comprise a highly reproducible series of degenerative reactions distal to the site of injury. During this fine-tuned process, named Wallerian degeneration, a remodeling of the distal nerve fragment prepares a permissive microenvironment that permits successful axonal regrowth originating from the proximal nerve fragment. Therefore, a multitude of adjusted intrinsic and extrinsic factors are important for surviving neurons, Schwann cells, macrophages and fibroblasts as well as endothelial cells in order to achieve successful regeneration. The aim of this review is to summarize relevant extrinsic cellular and molecular determinants of successful axonal regeneration in rodents that contribute to the regenerative microenvironment of the PNS.
Collapse
|
40
|
Morton PD, Johnstone JT, Ramos AY, Liebl DJ, Bunge MB, Bethea JR. Nuclear factor-κB activation in Schwann cells regulates regeneration and remyelination. Glia 2012; 60:639-50. [PMID: 22275133 DOI: 10.1002/glia.22297] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/06/2012] [Indexed: 11/11/2022]
Abstract
Schwann cells (SCs) are crucial for peripheral nerve development and regeneration; however, the intrinsic regulatory mechanisms governing postinjury responses are poorly understood. Activation and deacetylation of nuclear factor-κB (NF- κB) in SCs have been implicated as prerequisites for peripheral nerve myelination. Using GFAP-IκBα-dn mice in which NF- κB transcriptional activation is inhibited in SCs, we found no discernable differences in the quantity or structure of myelinated axons in adult facial nerves. Following crush injury, axonal regeneration was impaired at 31 days and significantly enhanced at 65 days in transgenic animals. Compact remyelination and Remak bundle organization were significantly compromised at 31 days and restored by 65 days post injury. Together, these data indicate that inhibition of NF-κB activation in SCs transiently delays axonal regeneration and compact remyelination. Manipulating the temporal activation of nuclear factor-κB in Schwann cells may offer new therapeutic avenues for PNS and CNS regeneration.
Collapse
Affiliation(s)
- Paul D Morton
- The Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | | | |
Collapse
|
41
|
Lin CY, Lee YS, Lin VW, Silver J. Fibronectin inhibits chronic pain development after spinal cord injury. J Neurotrauma 2012; 29:589-99. [PMID: 22022865 DOI: 10.1089/neu.2011.2059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic pain following spinal cord injury (SCI) is a highly prevalent clinical condition that is difficult to treat. Using both von Frey filaments and radiant infrared heat to assess mechanical allodynia and thermal hyperalgesia, respectively, we have demonstrated that a one-time injection of fibronectin (50 μg/mL) into the spinal dorsal column (1 μL/min each injection for a total of 5 μL) immediately after SCI inhibits the development of mechanical allodynia (but not thermal hyperalgesia) over an 8-month observation period following spinal cord dorsal column crush (DCC). DCC will only induce mechanical Allodynia, but not thermal hyperalgesia or overt motor deficits. By applying various fibronectin fragments as well as competitive inhibitors, these effects were shown to be dependent on the connecting segment-1 (CS-1) motif of fibronectin. Furthermore, we found that acute fibronectin treatment diminished inflammation and blood-spinal cord barrier permeability, which in turn leads to enhanced fiber sparing and sprouting. In particular, the reduction of serotonin (5-HT) in the superficial dorsal horn, an important descending brainstem system in the modulation of pain, was blocked with fibronectin treatment. We conclude that treatment of SCI with fibronectin preserves sensory regulation and prevents the development of chronic allodynia, providing a potential therapeutic intervention to treat chronic pain following SCI.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Neuroscience, Lerner Research Institute, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
42
|
Eva R, Andrews MR, Franssen EHP, Fawcett JW. Intrinsic mechanisms regulating axon regeneration: an integrin perspective. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:75-104. [PMID: 23211460 DOI: 10.1016/b978-0-12-407178-0.00004-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult central nervous system (CNS) axons fail to regenerate after injury because of inhibitory factors in the surrounding environment and a low intrinsic regenerative capacity. Axons in the adult peripheral nervous system have a higher regenerative capacity, due in part to the presence of certain integrins-receptors for the extracellular matrix. Integrins are critical for axon growth during the development of the nervous system but are absent from some adult CNS axons. Here, we discuss the intrinsic mechanisms that regulate axon regeneration and examine the role of integrins. As correct localization is paramount to integrin function, we further discuss the mechanisms that regulate integrin traffic toward the axonal growth cone.
Collapse
Affiliation(s)
- Richard Eva
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
43
|
Development and maturation of the spinal cord: implications of molecular and genetic defects. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:3-30. [PMID: 23098703 DOI: 10.1016/b978-0-444-52137-8.00001-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The human central nervous system (CNS) may be the most complex structure in the universe. Its development and appropriate specification into phenotypically and spatially distinct neural subpopulations involves a precisely orchestrated response, with thousands of transcriptional regulators combining with epigenetic controls and specific temporal cues in perfect synchrony. Understandably, our insight into the sophisticated molecular mechanisms which underlie spinal cord development are as yet limited. Even less is known about abnormalities of this process - putative genetic and molecular causes of well-described defects have only begun to emerge in recent years. Nonetheless, modern scientific techniques are beginning to demonstrate common patterns and principles amid the tremendous complexity of spinal cord development and maldevelopment. These advances are important, given that developmental anomalies of the spinal cord are an important cause of mortality and morbidity (Sadler, 2000); it is hoped that research advances will lead to better methods to detect, treat, and prevent these lesions.
Collapse
|
44
|
Blackmore MG. Molecular control of axon growth: insights from comparative gene profiling and high-throughput screening. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [PMID: 23206595 DOI: 10.1016/b978-0-12-398309-1.00004-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Axon regeneration in the mammalian adult central nervous system (CNS) is limited by an intrinsically low capacity for axon growth in many CNS neurons. In contrast, embryonic, peripheral, and many nonmammalian neurons are capable of successful regeneration. Numerous studies have compared mammalian CNS neurons to their counterparts in regenerating systems in an effort to identify candidate genes that control regenerative ability. This review summarizes work using this comparative strategy and examines our current understanding of gene function in axon growth, highlighting the emergence of genome-wide expression profiling and high-throughput screening strategies to identify novel regulators of axon growth.
Collapse
Affiliation(s)
- Murray G Blackmore
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA.
| |
Collapse
|
45
|
Gardiner NJ. Integrins and the extracellular matrix: Key mediators of development and regeneration of the sensory nervous system. Dev Neurobiol 2011; 71:1054-72. [DOI: 10.1002/dneu.20950] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Mourlevat S, Galizzi JP, Guigal-Stéphan N, Courtade-Gaïani S, Rolland-Valognes G, Rodriguez M, Barbet F, Bourrier C, Catesson S, Chomel A, Danober L, Villain N, Caignard DH, Pirotte B, Lestage P, Lockhart BP. Molecular characterization of the AMPA-receptor potentiator S70340 in rat primary cortical culture: Whole-genome expression profiling. Neurosci Res 2011; 70:349-60. [DOI: 10.1016/j.neures.2011.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
|
47
|
Tominaga M, Tengara S, Kamo A, Ogawa H, Takamori K. Matrix metalloproteinase-8 is involved in dermal nerve growth: implications for possible application to pruritus from in vitro models. J Invest Dermatol 2011; 131:2105-12. [PMID: 21697883 DOI: 10.1038/jid.2011.173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cutaneous nerve density is related to abnormal itch perception in dermatoses, such as atopic dermatitis and xerosis. However, the mechanisms underlying the elongation of dermal nerve fibers within the interstitial collagen (CoL) matrix are poorly understood. In this study, a culture system of rat dorsal root ganglion neurons consisting of type I CoL and a Boyden chamber containing a nerve growth factor (NGF) concentration gradient was used. Nerve fibers penetrating into type I CoL gel were observed in the presence of the NGF concentration gradient. Levels of matrix metalloproteinase-8 (MMP-8) mRNA and protein were increased in the cultured neurons and the conditioned medium, respectively. The nerve fiber penetration was dose dependently inhibited by MMP-8 blockers. Moreover, MMP-8 immunoreactivity was partially localized at growth cones in NGF-responsive nerve fibers. Semaphorin 3A stimulation also showed the opposite effects on these NGF-dependent events. Intriguingly, MMP-8 expression was upregulated by type I and III CoLs, which are substrates for this enzyme. These results suggested that MMP-8 is involved in sensory nerve growth within the interstitial CoL matrix through modulation by the axonal guidance molecules and/or extracellular matrix components. These findings provide insight into the development of pruritus involving skin nerve density.
Collapse
Affiliation(s)
- Mitsutoshi Tominaga
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | | | | | | | | |
Collapse
|
48
|
Raivich G. Transcribing the path to neurological recovery-From early signals through transcription factors to downstream effectors of successful regeneration. Ann Anat 2011; 193:248-58. [PMID: 21501955 DOI: 10.1016/j.aanat.2011.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/16/2011] [Accepted: 01/19/2011] [Indexed: 11/29/2022]
Abstract
The peripheral nervous system is known to regenerate comparatively well and this ability is mirrored in the de novo expression or upregulation of a wide variety of molecules involved in axonal outgrowth starting with transcription factors, but also including growth-stimulating substances, guidance and cell adhesion molecules, intracellular signaling enzymes and proteins involved in regulating cell-surface cytoskeletal interactions. Recent studies using pharmacological agents, and global as well as neuron-selective gene inactivation techniques have shed light on those endogenous molecules that play a non-redundant role in mediating regenerative axonal outgrowth in vivo. The aim of the current review is to sketch the sequence of molecular events from early sensors of injury to transcription factors to downstream effectors that cooperate in successful regeneration and functional recovery.
Collapse
Affiliation(s)
- Gennadij Raivich
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London, UK.
| |
Collapse
|
49
|
Lamoureux PL, O'Toole MR, Heidemann SR, Miller KE. Slowing of axonal regeneration is correlated with increased axonal viscosity during aging. BMC Neurosci 2010; 11:140. [PMID: 20973997 PMCID: PMC2975647 DOI: 10.1186/1471-2202-11-140] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/25/2010] [Indexed: 12/13/2022] Open
Abstract
Background As we age, the speed of axonal regeneration declines. At the biophysical level, why this occurs is not well understood. Results To investigate we first measured the rate of axonal elongation of sensory neurons cultured from neonatal and adult rats. We found that neonatal axons grew 40% faster than adult axons (11.5 µm/hour vs. 8.2 µm/hour). To determine how the mechanical properties of axons change during maturation, we used force calibrated towing needles to measure the viscosity (stiffness) and strength of substrate adhesion of neonatal and adult sensory axons. We found no significant difference in the strength of adhesions, but did find that adult axons were 3 times intrinsically stiffer than neonatal axons. Conclusions Taken together, our results suggest decreasing axonal stiffness may be part of an effective strategy to accelerate the regeneration of axons in the adult peripheral nervous system.
Collapse
Affiliation(s)
- Phillip L Lamoureux
- Department of Zoology, Michigan State University, East Lansing, MI 48824-1115, USA
| | | | | | | |
Collapse
|
50
|
Zhu ZH, Yu YP, Zheng ZL, Song Y, Xiang GS, Nelson J, Michalopoulos G, Luo JH. Integrin alpha 7 interacts with high temperature requirement A2 (HtrA2) to induce prostate cancer cell death. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1176-86. [PMID: 20651226 DOI: 10.2353/ajpath.2010.091026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Integrins are a family of receptors for extracellular matrix proteins that have critical roles in human tissue development. Previous studies identified down-regulation and/or mutations of integrin alpha7 (ITGA7) in prostate cancer, liver cancer, soft tissue leiomyosarcoma, and glioblastoma multiforme. Here we report that expression of ITGA7 induced apoptosis in the human prostate cancer cell lines PC3 and DU145. Yeast two-hybrid analysis revealed that the C-terminus of ITGA7 interacts with high temperature requirement A2 (HtrA2), a serine protease with a critical role in apoptosis. Expression of ITGA7 increases the protease activity of HtrA2 both in vitro and in vivo. Deletion of the HtrA2 interaction domain abrogates the cell death activity of ITGA7, whereas down-regulation of HtrA2 dramatically reduced cell death mediated by ITGA7. In addition, site-directed protease-null mutant HtrA2S306A expression blocked apoptosis induced by ITGA7. Interestingly, interaction between ITGA7 and its ligand laminin 2 appears to protect against cell death, since depleting laminin beta2 with a small-interfering RNA significantly exacerbated apoptosis induced by ITGA7 expression. This report provides a novel insight into the mechanism by which ITGA7 acts as a tumor suppressor.
Collapse
Affiliation(s)
- Ze-Hua Zhu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|