1
|
Cheng Q, Wu J, Xia Y, Cheng Q, Zhao Y, Zhu P, Zhang W, Zhang S, Zhang L, Yuan Y, Li C, Chen G, Xue B. Disruption of protein geranylgeranylation in the cerebellum causes cerebellar hypoplasia and ataxia via blocking granule cell progenitor proliferation. Mol Brain 2023; 16:24. [PMID: 36782228 PMCID: PMC9923931 DOI: 10.1186/s13041-023-01010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
The prenylation of proteins is involved in a variety of biological functions. However, it remains unknown whether it plays an important role in the morphogenesis of the cerebellum. To address this question, we generated a mouse model, in which the geranylgeranyl pyrophosphate synthase (Ggps1) gene is inactivated in neural progenitor cells in the developing cerebellum. We report that conditional knockout (cKO) of Ggps1 leads to severe ataxia and deficient locomotion. To identify the underlying mechanisms, we completed a series of cellular and molecular experiments. First, our morphological analysis revealed significantly decreased population of granule cell progenitors (GCPs) and impaired proliferation of GCPs in the developing cerebellum of Ggps1 cKO mice. Second, our molecular analysis showed increased expression of p21, an important cell cycle regulator in Ggps1 cKO mice. Together, this study highlights a critical role of Ggpps-dependent protein prenylation in the proliferation of cerebellar GCPs during cerebellar development.
Collapse
Affiliation(s)
- Qi Cheng
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Jing Wu
- grid.89957.3a0000 0000 9255 8984Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166 China
| | - Yingqian Xia
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Qing Cheng
- grid.89957.3a0000 0000 9255 8984Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004 Jiangsu China
| | - Yinjuan Zhao
- grid.410625.40000 0001 2293 4910Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Peixiang Zhu
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Wangling Zhang
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Shihu Zhang
- grid.410745.30000 0004 1765 1045Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Lei Zhang
- Medical Imaging Center of Fuyang People’s Hospital, Fuyang, Anhui Province China
| | - Yushan Yuan
- Medical Imaging Center of Fuyang People’s Hospital, Fuyang, Anhui Province China
| | - Chaojun Li
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center On Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Guiquan Chen
- Medical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Doumat G, Daher D, Zerdan MB, Nasra N, Bahmad HF, Recine M, Poppiti R. Drug Repurposing in Non-Small Cell Lung Carcinoma: Old Solutions for New Problems. Curr Oncol 2023; 30:704-719. [PMID: 36661704 PMCID: PMC9858415 DOI: 10.3390/curroncol30010055] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related deaths in 2022. The majority (80%) of lung cancer cases belong to the non-small cell lung carcinoma (NSCLC) subtype. Despite the increased screening efforts, the median five-year survival of metastatic NSCLC remains low at approximately 3%. Common treatment approaches for NSCLC include surgery, multimodal chemotherapy, and concurrent radio and chemotherapy. NSCLC exhibits high rates of resistance to treatment, driven by its heterogeneity and the plasticity of cancer stem cells (CSCs). Drug repurposing offers a faster and cheaper way to develop new antineoplastic purposes for existing drugs, to help overcome therapy resistance. The decrease in time and funds needed stems from the availability of the pharmacokinetic and pharmacodynamic profiles of the Food and Drug Administration (FDA)-approved drugs to be repurposed. This review provides a synopsis of the drug-repurposing approaches and mechanisms of action of potential candidate drugs used in treating NSCLC, including but not limited to antihypertensives, anti-hyperlipidemics, anti-inflammatory drugs, anti-diabetics, and anti-microbials.
Collapse
Affiliation(s)
- George Doumat
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Darine Daher
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Morgan Bou Zerdan
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nasri Nasra
- Faculty of Medicine, University of Aleppo, Aleppo 15310, Syria
| | - Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Monica Recine
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
3
|
In Vitro and In Vivo Efficacy of New Composite for Direct Pulp Capping. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8414577. [PMID: 34869772 PMCID: PMC8639243 DOI: 10.1155/2021/8414577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
Objectives To investigate physicochemical properties, dentin bonding, cytotoxicity, and in vivo pulp response of experimental self-adhesive composites tailored to direct pulp capping. Materials and Methods Experimental composites were prepared with beta-tricalcium phosphate and hydroxyapatite nanoparticles adsorbed with simvastatin and glutathione added at 0% (control resin), 1 wt% (Res 1%), and 10 wt% (Res 10%). A commercial light-curable calcium hydroxide (Ca(OH)2) (Ultra-Blend Plus) was used as control material. The physicochemical properties investigated were flexural strength and modulus, calcium release, and degree of conversion. Dentin bonding was assessed by the push-out test. Proliferation and cell counting assays were performed to evaluate in vitro cytotoxicity using fluorescence microscopy. In vivo pulp capping was performed on molars of Wistar rats, which were euthanized after 14 days and evaluated by histological analysis. Results No statistical difference was observed in flexural strength and cell viability (p > 0.05). Res 10% presented higher modulus than control resin and Ca(OH)2. Also, Res 10% attained statistically higher degree of conversion when compared to other experimental composites. Ca(OH)2 showed higher calcium release after 28 and 45 days of storage, with no statistical difference at 45 days to Res 10%. All experimental composites achieved significantly higher bond strength when compared to Ca(OH)2. While no significant difference was observed in the cell proliferation rates, resins at lower concentrations showed higher cell viability. In vivo evaluation of pulp response demonstrated no pulp damage with experimental composites. Conclusions The experimental composite investigated in this study achieved adequate physicochemical properties with minor in vivo pulpal inflammation and proved to be a valuable alternative for direct pulp capping.
Collapse
|
4
|
Saputra WD, Shono H, Ohsaki Y, Sultana H, Komai M, Shirakawa H. Geranylgeraniol Inhibits Lipopolysaccharide-Induced Inflammation in Mouse-Derived MG6 Microglial Cells via NF-κB Signaling Modulation. Int J Mol Sci 2021; 22:ijms221910543. [PMID: 34638882 PMCID: PMC8508820 DOI: 10.3390/ijms221910543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022] Open
Abstract
Persistent inflammatory reactions in microglial cells are strongly associated with neurodegenerative pathogenesis. Additionally, geranylgeraniol (GGOH), a plant-derived isoprenoid, has been found to improve inflammatory conditions in several animal models. It has also been observed that its chemical structure is similar to that of the side chain of menaquinone-4, which is a vitamin K2 sub-type that suppresses inflammation in mouse-derived microglial cells. In this study, we investigated whether GGOH has a similar anti-inflammatory effect in activated microglial cells. Particularly, mouse-derived MG6 cells pre-treated with GGOH were exposed to lipopolysaccharide (LPS). Thereafter, the mRNA levels of pro-inflammatory cytokines were determined via qRT-PCR, while protein expression levels, especially the expression of NF-κB signaling cascade-related proteins, were determined via Western blot analysis. The distribution of NF-κB p65 protein was also analyzed via fluorescence microscopy. Thus, it was observed that GGOH dose-dependently suppressed the LPS-induced increase in the mRNA levels of Il-1β, Tnf-α, Il-6, and Cox-2. Furthermore, GGOH inhibited the phosphorylation of TAK1, IKKα/β, and NF-κB p65 proteins as well as NF-κB nuclear translocation induced by LPS while maintaining IκBα expression. We showed that GGOH, similar to menaquinone-4, could alleviate LPS-induced microglial inflammation by targeting the NF-kB signaling pathway.
Collapse
Affiliation(s)
- Wahyu Dwi Saputra
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (W.D.S.); (H.S.); (Y.O.); (H.S.); (M.K.)
| | - Hiroki Shono
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (W.D.S.); (H.S.); (Y.O.); (H.S.); (M.K.)
| | - Yusuke Ohsaki
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (W.D.S.); (H.S.); (Y.O.); (H.S.); (M.K.)
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
| | - Halima Sultana
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (W.D.S.); (H.S.); (Y.O.); (H.S.); (M.K.)
| | - Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (W.D.S.); (H.S.); (Y.O.); (H.S.); (M.K.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (W.D.S.); (H.S.); (Y.O.); (H.S.); (M.K.)
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
- Correspondence: ; Tel.: +81-22-757-4402
| |
Collapse
|
5
|
Jeong SH, Lee HS, Chung SJ, Yoo HS, Jung JH, Baik K, Lee YH, Sohn YH, Lee PH. Effects of statins on dopamine loss and prognosis in Parkinson's disease. Brain 2021; 144:3191-3200. [PMID: 34347020 DOI: 10.1093/brain/awab292] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/13/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Statins are more widely used not only for the primary and secondary prevention of cardiovascular disease by blocking cholesterol biosynthesis but also for the potential neuroprotective agents during neurological disorders due to their pleiotropic effects. In this study, we investigate whether the prior use of statins affect baseline nigrostriatal dopamine loss at the time of diagnosis and longitudinal motor and cognitive outcomes in patients with Parkinson's disease. Five hundred drug-naïve patients with Parkinson's disease who underwent dopamine transporter imaging were classified into two groups according to the prior use of statins: patients with and without statin use. Multivariate linear regression was used to determine inter-group differences in dopamine transporter availability. We evaluated the longitudinal changes in levodopa-equivalent dose and dementia conversion between the groups using a linear mixed model and survival analysis, respectively. In addition, mediation analysis was applied to examine the effect of total cholesterol. Patients with Parkinson's disease treated with statin had a lower baseline dopamine transporter availability in the anterior (2.13 ± 0.55 vs. 2.37 ± 0.67; p = 0.002), posterior (1.31 ± 0.43 vs. 1.49 ± 0.54; p = 0.003), and ventral putamina (1.40 ± 0.39 vs. 1.56 ± 0.47; p = 0.002) than that in matched patients with Parkinson's disease without statin. After adjusting for age at symptom onset, sex, disease duration and vascular risk factors, linear regression models showed that a prior treatment of statin remained significantly and independently associated with more severely decreased dopamine transporter availability in the anterior putamen (Beta = -0.140, p = 0.004), posterior putamen (Beta = -0.162, p = 0.001), and ventral putamen (Beta = -0.140, p = 0.004). A linear mixed model revealed that patients with Parkinson's disease being treated with statin had a faster longitudinal increase in levodopa-equivalent dose than those without statin. A survival analysis showed that the rate of dementia conversion was significantly higher in patients with Parkinson's disease with statin (hazard ratio, 2.019; 95% CI, 1.108 - 3.678; P = 0.022) than those without statin. Mediation analyses revealed that the effect of statin treatment on baseline dopamine transporter availability and longitudinal outcome was not mediated by total cholesterol levels. This study suggests that statin use may have a detrimental effect on baseline nigrostriatal dopamine degeneration and long-term outcomes in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Davis AG, Donovan J, Bremer M, Van Toorn R, Schoeman J, Dadabhoy A, Lai RP, Cresswell FV, Boulware DR, Wilkinson RJ, Thuong NTT, Thwaites GE, Bahr NC. Host Directed Therapies for Tuberculous Meningitis. Wellcome Open Res 2021; 5:292. [PMID: 35118196 PMCID: PMC8792876 DOI: 10.12688/wellcomeopenres.16474.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
A dysregulated host immune response significantly contributes to morbidity and mortality in tuberculous meningitis (TBM). Effective host directed therapies (HDTs) are critical to improve survival and clinical outcomes. Currently only one HDT, dexamethasone, is proven to improve mortality. However, there is no evidence dexamethasone reduces morbidity, how it reduces mortality is uncertain, and it has no proven benefit in HIV co-infected individuals. Further research on these aspects of its use, as well as alternative HDTs such as aspirin, thalidomide and other immunomodulatory drugs is needed. Based on new knowledge from pathogenesis studies, repurposed therapeutics which act upon small molecule drug targets may also have a role in TBM. Here we review existing literature investigating HDTs in TBM, and propose new rationale for the use of novel and repurposed drugs. We also discuss host variable responses and evidence to support a personalised approach to HDTs in TBM.
Collapse
Affiliation(s)
- Angharad G. Davis
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,
| | - Joseph Donovan
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marise Bremer
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Ronald Van Toorn
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Johan Schoeman
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Ariba Dadabhoy
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | - Rachel P.J. Lai
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Fiona V Cresswell
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK,Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Wilkinson
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nathan C Bahr
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | | |
Collapse
|
7
|
Davis AG, Donovan J, Bremer M, Van Toorn R, Schoeman J, Dadabhoy A, Lai RP, Cresswell FV, Boulware DR, Wilkinson RJ, Thuong NTT, Thwaites GE, Bahr NC. Host Directed Therapies for Tuberculous Meningitis. Wellcome Open Res 2021; 5:292. [PMID: 35118196 PMCID: PMC8792876 DOI: 10.12688/wellcomeopenres.16474.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
A dysregulated host immune response significantly contributes to morbidity and mortality in tuberculous meningitis (TBM). Effective host directed therapies (HDTs) are critical to improve survival and clinical outcomes. Currently only one HDT, dexamethasone, is proven to improve mortality. However, there is no evidence dexamethasone reduces morbidity, how it reduces mortality is uncertain, and it has no proven benefit in HIV co-infected individuals. Further research on these aspects of its use, as well as alternative HDTs such as aspirin, thalidomide and other immunomodulatory drugs is needed. Based on new knowledge from pathogenesis studies, repurposed therapeutics which act upon small molecule drug targets may also have a role in TBM. Here we review existing literature investigating HDTs in TBM, and propose new rationale for the use of novel and repurposed drugs. We also discuss host variable responses and evidence to support a personalised approach to HDTs in TBM.
Collapse
Affiliation(s)
- Angharad G. Davis
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,
| | - Joseph Donovan
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marise Bremer
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Ronald Van Toorn
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Johan Schoeman
- Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, 7505, South Africa
| | - Ariba Dadabhoy
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | - Rachel P.J. Lai
- The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Fiona V Cresswell
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK,Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Wilkinson
- University College London, Gower Street, London, WC1E 6BT, UK,The Francis Crick Institute, Midland Road, London, NW1 1AT, UK,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nathan C Bahr
- Division of Infectious Diseases, Department of Medicine, University of Kansas, Kansas City, KS, USA
| | | |
Collapse
|
8
|
Drug Repurposing in Medulloblastoma: Challenges and Recommendations. Curr Treat Options Oncol 2020; 22:6. [PMID: 33245404 DOI: 10.1007/s11864-020-00805-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT Medulloblastoma is the most frequently diagnosed primary malignant brain tumor among children. Currently available therapeutic strategies are based on surgical resection, chemotherapy, and/or radiotherapy. However, majority of patients quickly develop therapeutic resistance and are often left with long-term therapy-related side effects and sequelae. Therefore, there remains a dire need to develop more effective therapeutics to overcome the acquired resistance to currently available therapies. Unfortunately, the process of developing novel anti-neoplastic drugs from bench to bedside is highly time-consuming and very expensive. A wide range of drugs that are already in clinical use for treating non-cancerous diseases might commonly target tumor-associated signaling pathways as well and hence be of interest in treating different cancers. This is referred to as drug repurposing or repositioning. In medulloblastoma, drug repurposing has recently gained a remarkable interest as an alternative therapy to overcome therapy resistance, wherein existing non-tumor drugs are being tested for their potential anti-neoplastic effects outside the scope of their original use.
Collapse
|
9
|
Meske V, Albert F, Gerstenberg S, Kallwellis K, Ohm TG. NPC1-deficient neurons are selectively vulnerable for statin treatment. Neuropharmacology 2019; 151:159-170. [DOI: 10.1016/j.neuropharm.2019.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/07/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
|
10
|
Pająk B, Kania E, Gołaszewska A, Orzechowski A. Preliminary Study on Clusterin Protein (sCLU) Expression in PC-12 Cells Overexpressing Wild-Type and Mutated (Swedish) AβPP genes Affected by Non-Steroid Isoprenoids and Water-Soluble Cholesterol. Int J Mol Sci 2019; 20:E1481. [PMID: 30909654 PMCID: PMC6470582 DOI: 10.3390/ijms20061481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
In this study we attempted to verify the hypothesis that the mevalonate pathway affects amyloid beta precursor protein (AβPP) processing and regulates clusterin protein levels. AβPP expression was monitored by green fluorescence (FL) and Western blot (WB). WB showed soluble amyloid protein precursor alpha (sAβPPα) presence in AβPP-wt cells and Aβ expression in AβPP-sw cells. Nerve growth factor (NGF)-differentiated rat neuronal pheochromocytoma PC-12 cells were untreated/treated with statins alone or together with non-sterol isoprenoids. Co-treatment with mevalonate, dolichol, ubiquinol, farnesol, geranylgeraniol, or water-soluble cholesterol demonstrated statin-dependent neurotoxicity resulted from the attenuated activity of mevalonate pathway rather than lower cholesterol level. Atorvastatin (50 μM) or simvastatin (50 μM) as well as cholesterol chelator methyl-β-cyclodextrin (0.2 mM) diminished cell viability (p < 0.05) and clusterin levels. Interestingly, co-treatment with mevalonate, dolichol, ubiquinol, farnesol, geranylgeraniol, or water-soluble cholesterol stimulated (p < 0.05) clusterin expression. Effects of non-sterol isoprenoids, but not water soluble cholesterol (Chol-PEG), were the most significant in mock-transfected cells. Geranylgeraniol (GGOH) overcame atorvastatin (ATR)-dependent cytotoxicity. This effect does not seem to be dependent on clusterin, as its level became lower after GGOH. The novelty of these findings is that they show that the mevalonate (MEV) pathway rather than cholesterol itself plays an important role in clusterin expression levels. In mock-transfected, rather than in AβPP-overexpressing cells, GGOH/farnesol (FOH) exerted a protective effect. Thus, protein prenylation with GGOH/FOH might play substantial role in neuronal cell survival.
Collapse
Affiliation(s)
- Beata Pająk
- Independent Laboratory of Genetics and Molecular Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
| | - Elżbieta Kania
- Tumor Cell Death Laboratory, Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| | - Anita Gołaszewska
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences ⁻ SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Arkadiusz Orzechowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences ⁻ SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
11
|
Statins affect human glioblastoma and other cancers through TGF-β inhibition. Oncotarget 2019; 10:1716-1728. [PMID: 30899443 PMCID: PMC6422202 DOI: 10.18632/oncotarget.26733] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/09/2019] [Indexed: 12/17/2022] Open
Abstract
The cholesterol-lowering statins have known anti-cancer effects, but the mechanisms and how to utilize statins in oncology have been unclear. We noted in the CellMiner database that statin activity against cancer lines correlated with higher expression of TGF-β target genes such as SERPINE1 and ZYX. This prompted us to assess whether statins affected TGF-β activity in glioblastoma (GBM), a cancer strongly influenced by TGF-β and in dire need of new therapeutic approaches. We noted that statins reduced TGF-β activity, cell viability and invasiveness, Rho/ROCK activity, phosphorylation and activity of the TGF-β mediator Smad3, and expression of TGF-β targets ZYX and SERPINE1 in GBM and GBM-initiating cell (GIC) lines. Statins were most potent against GBM, GIC, and other cancer cells with high TGF-β activity, and exogenous TGF-β further sensitized mesenchymal GICs to statins. Statin toxicity was rescued by addition of exogenous mevalonolactone or geranylgeranyl pyrophosphate, indicating that the observed effects reflected inhibition of HMG CoA-reductase by the statins. Simvastatin significantly inhibited the growth of subcutaneous GIC grafts and prolonged survival in GIC intracranially grafted mice. These results indicate where the statins might best be applied as adjunct therapies in oncology, against GBM and other cancers with high TGF-β activity, and have implications for other statin roles outside of oncology.
Collapse
|
12
|
Leite GAA, Sanabria M, Cavariani MM, Anselmo-Franci JA, Pinheiro PFF, Domeniconi RF, Kempinas WDG. Lower sperm quality and testicular and epididymal structural impairment in adult rats exposed to rosuvastatin during prepuberty. J Appl Toxicol 2018; 38:914-929. [DOI: 10.1002/jat.3599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/25/2017] [Accepted: 01/04/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Gabriel Adan Araújo Leite
- Department of Morphology; São Paulo State University (UNESP), Institute of Biosciences; Botucatu Brazil
| | - Marciana Sanabria
- Department of Morphology; São Paulo State University (UNESP), Institute of Biosciences; Botucatu Brazil
| | - Marilia Martins Cavariani
- Department of Morphology; São Paulo State University (UNESP), Institute of Biosciences; Botucatu Brazil
| | - Janete Aparecida Anselmo-Franci
- Department of Morphology, Stomatology and Physiology, School of Dentistry; USP - University of São Paulo; Ribeirão Preto São Paulo Brazil
| | | | - Raquel Fantin Domeniconi
- Department of Anatomy; São Paulo State University (UNESP), Institute of Biosciences; Botucatu Brazil
| | - Wilma De Grava Kempinas
- Department of Morphology; São Paulo State University (UNESP), Institute of Biosciences; Botucatu Brazil
| |
Collapse
|
13
|
Leite MLDAES, Soares DG, Basso FG, Hebling J, Costa CADS. Biostimulatory effects of simvastatin on MDPC-23 odontoblast-like cells. Braz Oral Res 2017; 31:e104. [DOI: 10.1590/1807-3107bor-2017.vol31.0104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/10/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | - Josimeri Hebling
- Universidade Estadual Paulista “Júlio de Mesquita Filho” – Unesp, Brazil
| | | |
Collapse
|
14
|
Leite GAA, Figueiredo TM, Sanabria M, Dias AFMG, Silva PVE, Martins Junior ADC, Barbosa Junior F, Kempinas WDG. Ascorbic acid supplementation partially prevents the delayed reproductive development in juvenile male rats exposed to rosuvastatin since prepuberty. Reprod Toxicol 2017; 73:328-338. [DOI: 10.1016/j.reprotox.2017.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/23/2017] [Accepted: 07/12/2017] [Indexed: 11/30/2022]
|
15
|
Sohn HM, Hwang JY, Ryu JH, Kim J, Park S, Park JW, Han SH. Simvastatin protects ischemic spinal cord injury from cell death and cytotoxicity through decreasing oxidative stress: in vitro primary cultured rat spinal cord model under oxygen and glucose deprivation-reoxygenation conditions. J Orthop Surg Res 2017; 12:36. [PMID: 28241838 PMCID: PMC5330028 DOI: 10.1186/s13018-017-0536-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/15/2017] [Indexed: 01/21/2023] Open
Abstract
Background Ischemia and the following reperfusion damage are critical mechanisms of spinal cord injury. Statins have been reported to decrease ischemia–reperfusion injury in many organs including the spinal cord. Anti-oxidative effect is one of the main protective mechanisms of statin against neuronal death and cytotoxicity. We hypothesized that statins’ anti-oxidative property would yield neuroprotective effects on spinal cord ischemia–reperfusion injury Methods Primary cultured spinal cord motor neurons were isolated from Sprague–Dawley rat fetuses. Ischemia–reperfusion injury model was induced by 60 min of oxygen and glucose deprivation (OGD) and 24 h of reoxygenation. Healthy and OGD cells were treated with simvastatin at concentrations of 0.1, 1, and 10 μM for 24 h. Cell viability was assessed using water-soluble tetrazolium salt (WST)-8, cytotoxicity with LDH, and production of free radicals with DCFDA (2′,7′-dichlorofluorescein diacetate). Results OGD reduced neuronal viability compared to normoxic control by 35.3%; however, 0.1–10 μM of simvastatin treatment following OGD improved cell survival. OGD increased LDH release up to 214%; however, simvastatin treatment attenuated its cytotoxicity at concentrations of 0.1–10 μM (p < 0.001 and p = 0.001). Simvastatin also reduced deteriorated morphological changes of motor neurons following OGD. Oxidative stress was reduced by simvastatin (0.1–10 μM) compared to untreated cells exposed to OGD (p < 0.001). Conclusions Simvastatin effectively reduced spinal cord neuronal death and cytotoxicity against ischemia–reperfusion injury, probably via modification of oxidative stress.
Collapse
Affiliation(s)
- Hye-Min Sohn
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Jin-Young Hwang
- Department of Anesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Jung-Hee Ryu
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Jinhee Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Seongjoo Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Jin-Woo Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Sung-Hee Han
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
16
|
Association of Long-Term Atorvastatin with Escalated Stroke-Induced Neuroinflammation in Rats. J Mol Neurosci 2016; 61:32-41. [DOI: 10.1007/s12031-016-0814-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
|
17
|
Kobayashi K, Sano H, Kato S, Kuroda K, Nakamuta S, Isa T, Nambu A, Kaibuchi K, Kobayashi K. Survival of corticostriatal neurons by Rho/Rho-kinase signaling pathway. Neurosci Lett 2016; 630:45-52. [PMID: 27424794 DOI: 10.1016/j.neulet.2016.07.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 01/10/2023]
Abstract
Developing cortical neurons undergo a number of sequential developmental events including neuronal survival/apoptosis, and the molecular mechanism underlying each characteristic process has been studied in detail. However, the survival pathway of cortical neurons at mature stages remains largely uninvestigated. We herein focused on mature corticostriatal neurons because of their important roles in various higher brain functions and the spectrum of neurological and neuropsychiatric disorders. The small GTPase Rho is known to control diverse and essential cellular functions through some effector molecules, including Rho-kinase, during neural development. In the present study, we investigated the role of Rho signaling through Rho-kinase in the survival of corticostriatal neurons. We performed the conditional expression of Clostridium botulinum C3 ADP-ribosyltransferase (C3 transferase) or dominant-negative form for Rho-kinase (Rho-K DN), a well-known inhibitor of Rho or Rho-kinase, respectively, in corticostriatal neurons using a dual viral vector approach combining a neuron-specific retrograde gene transfer lentiviral vector and an adeno-associated virus vector. C3 transferase markedly decreased the number of corticostriatal neurons, which was attributed to caspase-3-dependent enhanced apoptosis. In addition, Rho-K DN produced phenotypic defects similar to those caused by C3 transferase. These results indicate that the Rho/Rho-kinase signaling pathway plays a crucial role in the survival of corticostriatal neurons.
Collapse
Affiliation(s)
- Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan.
| | - Hiromi Sano
- SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan; Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Keisuke Kuroda
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shinichi Nakamuta
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tadashi Isa
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan; Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Atsushi Nambu
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan; Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
18
|
Alteration of protein prenylation promotes spermatogonial differentiation and exhausts spermatogonial stem cells in newborn mice. Sci Rep 2016; 6:28917. [PMID: 27374985 PMCID: PMC4931501 DOI: 10.1038/srep28917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis in adulthood depends on the successful neonatal establishment of the spermatogonial stem cell (SSC) pool and gradual differentiation during puberty. The stage-dependent changes in protein prenylation in the seminiferous epithelium might be important during the first round of spermatogenesis before sexual maturation, but the mechanisms are unclear. We have previous found that altered prenylation in Sertoli cells induced spermatogonial apoptosis in the neonatal testis, resulting in adult infertility. Now we further explored the role of protein prenylation in germ cells, using a conditional deletion of geranylgeranyl diphosphate synthase (Ggpps) in embryonic stage and postmeiotic stage respectively. We observed infertility of Ggpps(-/-) Ddx4-Cre mice that displayed a Sertoli-cell-only syndrome phenotype, which resulted from abnormal spermatogonial differentiation and SSC depletion during the prepubertal stage. Analysis of morphological characteristics and cell-specific markers revealed that spermatogonial differentiation was enhanced from as early as the 7(th) postnatal day in the first round of spermatogenesis. Studies of the molecular mechanisms indicated that Ggpps deletion enhanced Rheb farnesylation, which subsequently activated mTORC1 and facilitated spermatogonial differentiation. In conclusion, the prenylation balance in germ cells is crucial for spermatogonial differentiation fate decision during the prepubertal stage, and the disruption of this process results in primary infertility.
Collapse
|
19
|
Geranylgeraniol and Neurological Impairment: Involvement of Apoptosis and Mitochondrial Morphology. Int J Mol Sci 2016; 17:365. [PMID: 26978350 PMCID: PMC4813225 DOI: 10.3390/ijms17030365] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 02/05/2023] Open
Abstract
Deregulation of the cholesterol pathway is an anomaly observed in human diseases, many of which have in common neurological involvement and unknown pathogenesis. In this study we have used Mevalonate Kinase Deficiency (MKD) as a disease-model in order to investigate the link between the deregulation of the mevalonate pathway and the consequent neurodegeneration. The blocking of the mevalonate pathway in a neuronal cell line (Daoy), using statins or mevalonate, induced an increase in the expression of the inflammasome gene (NLRP3) and programmed cell death related to mitochondrial dysfunction. The morphology of the mitochondria changed, clearly showing the damage induced by oxidative stress and the decreased membrane potential associated with the alterations of the mitochondrial function. The co-administration of geranylgeraniol (GGOH) reduced the inflammatory marker and the damage of the mitochondria, maintaining its shape and components. Our data allow us to speculate about the mechanism by which isoprenoids are able to rescue the inflammatory marker in neuronal cells, independently from the block of the mevalonate pathway, and about the fact that cell death is mitochondria-related.
Collapse
|
20
|
Kuo KK, Wu BN, Liu CP, Yang TY, Kao LP, Wu JR, Lai WT, Chen IJ. Xanthine-based KMUP-1 improves HDL via PPARγ/SR-B1, LDL via LDLRs, and HSL via PKA/PKG for hepatic fat loss. J Lipid Res 2015; 56:2070-84. [PMID: 26351364 PMCID: PMC4617394 DOI: 10.1194/jlr.m057547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
The phosphodiesterase inhibitor (PDEI)/eNOS enhancer KMUP-1, targeting G-protein coupled receptors (GPCRs), improves dyslipidemia. We compared its lipid-lowering effects with simvastatin and explored hormone-sensitive lipase (HSL) translocation in hepatic fat loss. KMUP-1 HCl (1, 2.5, and 5 mg/kg/day) and simvastatin (5 mg/kg/day) were administered in C57BL/6J male mice fed a high-fat diet (HFD) by gavage for 8 weeks. KMUP-1 inhibited HFD-induced plasma/liver TG, total cholesterol, and LDL; increased HDL/3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)/Rho kinase II (ROCK II)/PPARγ/ABCA1; and decreased liver and body weight. KMUP-1 HCl in drinking water (2.5 mg/200 ml tap water) for 1–14 or 8–14 weeks decreased HFD-induced liver and body weight and scavenger receptor class B type I expression and increased protein kinase A (PKA)/PKG/LDLRs/HSL expression and immunoreactivity. In HepG2 cells incubated with serum or exogenous mevalonate, KMUP-1 (10−7∼10−5 M) reversed HMGR expression by feedback regulation, colocalized expression of ABCA1/apolipoprotein A-I/LXRα/PPARγ, and reduced exogenous geranylgeranyl pyrophosphate/farnesyl pyrophosphate (FPP)-induced RhoA/ROCK II expression. A guanosine 3′,5′-cyclic monophosphate (cGMP) antagonist reversed KMUP-1-induced ROCK II reduction, indicating cGMP/eNOS involvement. KMUP-1 inceased PKG and LDLRs surrounded by LDL and restored oxidized LDL-induced PKA expresion. Unlike simvastatin, KMUP-1 could not inhibit 14C mevalonate formation. KMUP-1 could, but simvastatin could not, decrease ROCK II expression by exogenous FPP/CGPP. KMUP-1 improves HDL via PPARγ/LXRα/ABCA1/Apo-I expression and increases LDLRs/PKA/PKG/HSL expression and immunoreactivity, leading to TG hydrolysis to lower hepatic fat and body weight.
Collapse
Affiliation(s)
- Kung-Kai Kuo
- Division of Hepatobiliopancreatic Surgery, Kaohsiung Medical University Hospital
| | - Bin-Nan Wu
- Department of Pharmacology, School of Medicine, College of Medicine
| | - Chung-Pin Liu
- Department of Cardiology, Yuan's General Hospital, Kaohsiung, Taiwan
| | - Tzu-Yang Yang
- Department of Pharmacology, School of Medicine, College of Medicine
| | - Li-Pin Kao
- Department of Pharmacology, School of Medicine, College of Medicine
| | - Jiunn-Ren Wu
- Department of Pedatrics, Kaohsiung Medical University Hospital
| | - Wen-Ter Lai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department of Pharmacology, School of Medicine, College of Medicine
| |
Collapse
|
21
|
Mendoza-Oliva A, Ferrera P, Fragoso-Medina J, Arias C. Lovastatin Differentially Affects Neuronal Cholesterol and Amyloid-β Production in vivo and in vitro. CNS Neurosci Ther 2015; 21:631-41. [PMID: 26096465 DOI: 10.1111/cns.12420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/08/2015] [Accepted: 05/22/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND AIMS Epidemiological and experimental studies indicate that high cholesterol may increase susceptibility to age-associated neurodegenerative disorders, such as Alzheimer's disease (AD). Thus, it has been suggested that statins, which are inhibitors of the enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), may be a useful therapeutic tool to diminish the risk of AD. However, several studies that analyzed the therapeutic benefits of statins have yielded conflicting results. Herein, we investigated the role of lovastatin on neuronal cholesterol homeostasis and its effects on amyloid β protein production in vivo and in vitro. METHODS AND RESULTS Lovastatin effects were analyzed in vitro using differentiated human neuroblastoma cells and in vivo in a lovastatin-fed rat model. We demonstrated that lovastatin can differentially affect the expression of APP and Aβ production in vivo and in vitro. Lovastatin-induced HMGCR inhibition was detrimental to neuronal survival in vitro via a mechanism unrelated to the reduction of cholesterol. We found that in vivo, dietary cholesterol was associated with increased Aβ production in the cerebral cortex, and lovastatin was not able to reduce cholesterol levels. However, lovastatin induced a remarkable increase in the mature form of the sterol regulatory element-binding protein-2 (SREBP-2) as well as its target gene HMGCR, in both neuronal cells and in the brain. CONCLUSIONS Lovastatin modifies the mevalonate pathway without affecting cholesterol levels in vivo and is able to reduce Aβ levels only in vitro.
Collapse
Affiliation(s)
- Aydé Mendoza-Oliva
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F, México
| | - Patricia Ferrera
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F, México
| | - Jorge Fragoso-Medina
- Departmento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F, México
| |
Collapse
|
22
|
Stankiewicz TR, Ramaswami SA, Bouchard RJ, Aktories K, Linseman DA. Neuronal apoptosis induced by selective inhibition of Rac GTPase versus global suppression of Rho family GTPases is mediated by alterations in distinct mitogen-activated protein kinase signaling cascades. J Biol Chem 2015; 290:9363-76. [PMID: 25666619 DOI: 10.1074/jbc.m114.575217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Indexed: 12/11/2022] Open
Abstract
Rho family GTPases play integral roles in neuronal differentiation and survival. We have shown previously that Clostridium difficile toxin B (ToxB), an inhibitor of RhoA, Rac1, and Cdc42, induces apoptosis of cerebellar granule neurons (CGNs). In this study, we compared the effects of ToxB to a selective inhibitor of the Rac-specific guanine nucleotide exchange factors Tiam1 and Trio (NSC23766). In a manner similar to ToxB, selective inhibition of Rac induces CGN apoptosis associated with enhanced caspase-3 activation and reduced phosphorylation of the Rac effector p21-activated kinase. In contrast to ToxB, caspase inhibitors do not protect CGNs from targeted inhibition of Rac. Also dissimilar to ToxB, selective inhibition of Rac does not inhibit MEK1/2/ERK1/2 or activate JNK/c-Jun. Instead, targeted inhibition of Rac suppresses distinct MEK5/ERK5, p90Rsk, and Akt-dependent signaling cascades known to regulate the localization and expression of the Bcl-2 homology 3 domain-only protein Bad. Adenoviral expression of a constitutively active mutant of MEK5 is sufficient to attenuate neuronal cell death induced by selective inhibition of Rac with NSC23766 but not apoptosis induced by global inhibition of Rho GTPases with ToxB. Collectively, these data demonstrate that global suppression of Rho family GTPases with ToxB causes a loss of MEK1/2/ERK1/2 signaling and activation of JNK/c-Jun, resulting in diminished degradation and enhanced transcription of the Bcl-2 homology 3 domain-only protein Bim. In contrast, selective inhibition of Rac induces CGN apoptosis by repressing unique MEK5/ERK5, p90Rsk, and Akt-dependent prosurvival pathways, ultimately leading to enhanced expression, dephosphorylation, and mitochondrial localization of proapoptotic Bad.
Collapse
Affiliation(s)
- Trisha R Stankiewicz
- From the Research Service, Veterans Affairs Medical Center, Denver, Colorado 80220, the Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado 80208
| | - Sai Anandi Ramaswami
- the Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado 80208
| | - Ron J Bouchard
- From the Research Service, Veterans Affairs Medical Center, Denver, Colorado 80220
| | - Klaus Aktories
- the Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany, and
| | - Daniel A Linseman
- From the Research Service, Veterans Affairs Medical Center, Denver, Colorado 80220, the Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado 80208, the Division of Clinical Pharmacology and Toxicology, Department of Medicine and Neuroscience Program, University of Colorado Denver, Aurora, Colorado 80045
| |
Collapse
|
23
|
Lee SH, Choi NY, Yu HJ, Park J, Choi H, Lee KY, Huh YM, Lee YJ, Koh SH. Atorvastatin Protects NSC-34 Motor Neurons Against Oxidative Stress by Activating PI3K, ERK and Free Radical Scavenging. Mol Neurobiol 2015; 53:695-705. [PMID: 25577170 DOI: 10.1007/s12035-014-9030-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/30/2014] [Indexed: 12/13/2022]
Abstract
Although statins, or hydroxymethylglutaryl coenzyme A (HMG-Co A) reductase inhibitors, are generally used to decrease levels of circulating cholesterol, they have also been reported to have neuroprotective effects through various mechanisms. However, recent results have indicated that they may be harmful in patients with amyotrophic lateral sclerosis (ALS). In this study, we investigate whether atorvastatin protects motor neuron-like cells (NSC-34D) from oxidative stress. To evaluate the effects of atorvastatin or hydrogen peroxide or both on NSC-34D cells, the cells were treated with various combinations of these agents. To evaluate the viability of the cells, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and trypan blue staining were performed. Levels of free radicals and intracellular signaling proteins were evaluated using the fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and Western blotting, respectively. Atorvastatin protected NSC-34D cells against oxidative stress in a concentration-dependent manner. This neuroprotective effect of atorvastatin was blocked by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor and by FR180204, a selective extracellular signal-related kinase (ERK) inhibitor. Atorvastatin treatment increased the expression levels of p85αPI3K, phosphorylated Akt, phosphorylated glycogen synthase kinase-3β, phosphorylated ERK, and Bcl-2, which are proteins related to survival. Furthermore, atorvastatin decreased the levels of cytosolic cytochrome C, Bax, cleaved caspase-9, and cleaved caspase-3, which are associated with death in oxidative stress-injured NSC-34D cells. We conclude that atorvastatin has a protective effect against oxidative stress in motor neurons by activating the PI3K and ERK pathways as well as by scavenging free radicals. These findings indicate that statins could help protect motor neurons from oxidative stress.
Collapse
Affiliation(s)
- Seok-Ho Lee
- Department of Neurology, Hanyang University College of Medicine, 249-1 Gyomun-dong, Guri-si, Gyeonggi-do, South Korea
| | - Na-Young Choi
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Hyun-Jeung Yu
- Department of Neurology, Bundang Jesaeng Hospital, Gwangju, Gyeonggi Province, South Korea
| | - Jinse Park
- Department of Neurology, Haeundae Paik Hospital, College of Medicine, Inje University, Busan, South Korea
| | - Hojin Choi
- Department of Neurology, Hanyang University College of Medicine, 249-1 Gyomun-dong, Guri-si, Gyeonggi-do, South Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University College of Medicine, 249-1 Gyomun-dong, Guri-si, Gyeonggi-do, South Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University College of Medicine, 249-1 Gyomun-dong, Guri-si, Gyeonggi-do, South Korea.
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, 249-1 Gyomun-dong, Guri-si, Gyeonggi-do, South Korea. .,Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|
24
|
Wang W, Macaulay RJB. Cell-Cycle Gene Expression in Lovastatin-Induced Medulloblastoma Apoptosis. Can J Neurol Sci 2014; 30:349-57. [PMID: 14672267 DOI: 10.1017/s0317167100003061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background:3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase is a key rate-limiting enzyme in the mevalonate pathway, which generates precursors both for cholesterol biosynthesis and for the production of nonsteroidal mevalonate derivatives that are involved in a number of growth-regulatory processes. We have reported that lovastatin, a competitive inhibitor of HMG-CoA reductase, not only inhibits medulloblastoma proliferation in vitro, but also induces near-complete cell death via apoptosis. The mechanism of this phenomenon is unclear. Possible involvement of changes in expression of certain cell-cycle related genes led us to study some of them in more detail.Methods:Medulloblastoma cell lines were exposed in vitro to lovastatin, and the effects of gene expression changes were studied using RT-PCR, antisense oligonucleotide, DNA electrophoresis and Western blotting analysis.Results:1) Levels of total Ras gene mRNA and individual Ras gene mRNA are stable in lovastatin treatment in all examined medulloblastoma cell lines. 2) Blocking c-myc gene over-expression does not enhance medulloblastoma cell sensitivity to lovastatin. 3) Following lovastatin treatment, p16 expression exhibits no change, but pronounced increases of p27KIP1 protein are observed in all examined cell lines. Lovastatin induces pronounced increases of p21WAF1 protein only in Daoy and UW228, but not in D283 Med and D341 Med. 4) Following lovastatin treatment, increased p53 protein is detected only in D341 Med, and bax protein is unchanged in all cell lines.Conclusion:Lovastatin-induced growth inhibition and apoptosis in medulloblastoma are not dependent on the regulation of Ras and c-myc gene expression, but may be mediated by p27KIP1 gene expression. Lovastatin-induced apoptosis in medulloblastoma is probably p53 independent, but p53 and p21WAF1 gene expression may also mediate anti-proliferative effects of lovastatin on specific medulloblastoma cell lines.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
25
|
Stankiewicz TR, Linseman DA. Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 2014; 8:314. [PMID: 25339865 PMCID: PMC4187614 DOI: 10.3389/fncel.2014.00314] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022] Open
Abstract
The Rho family of GTPases belongs to the Ras superfamily of low molecular weight (∼21 kDa) guanine nucleotide binding proteins. The most extensively studied members are RhoA, Rac1, and Cdc42. In the last few decades, studies have demonstrated that Rho family GTPases are important regulatory molecules that link surface receptors to the organization of the actin and microtubule cytoskeletons. Indeed, Rho GTPases mediate many diverse critical cellular processes, such as gene transcription, cell–cell adhesion, and cell cycle progression. However, Rho GTPases also play an essential role in regulating neuronal morphology. In particular, Rho GTPases regulate dendritic arborization, spine morphogenesis, growth cone development, and axon guidance. In addition, more recent efforts have underscored an important function for Rho GTPases in regulating neuronal survival and death. Interestingly, Rho GTPases can exert either a pro-survival or pro-death signal in neurons depending upon both the cell type and neurotoxic insult involved. This review summarizes key findings delineating the involvement of Rho GTPases and their effectors in the regulation of neuronal survival and death. Collectively, these results suggest that dysregulation of Rho family GTPases may potentially underscore the etiology of some forms of neurodegenerative disease such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Trisha R Stankiewicz
- Research Service, Veterans Affairs Medical Center Denver, CO, USA ; Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver Denver, CO, USA
| | - Daniel A Linseman
- Research Service, Veterans Affairs Medical Center Denver, CO, USA ; Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver Denver, CO, USA ; Division of Clinical Pharmacology and Toxicology, Department of Medicine and Neuroscience Program, University of Colorado Denver Aurora, CO, USA
| |
Collapse
|
26
|
Banach M, Czuczwar SJ, Borowicz KK. Statins – Are they anticonvulsant? Pharmacol Rep 2014; 66:521-8. [DOI: 10.1016/j.pharep.2014.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/11/2014] [Accepted: 02/25/2014] [Indexed: 12/01/2022]
|
27
|
Barszczyk A, Sun HS, Quan Y, Zheng W, Charlton MP, Feng ZP. Differential roles of the mevalonate pathway in the development and survival of mouse Purkinje cells in culture. Mol Neurobiol 2014; 51:1116-29. [PMID: 24973985 DOI: 10.1007/s12035-014-8778-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 06/01/2014] [Indexed: 11/29/2022]
Abstract
The cerebellum is an important locus for motor learning and higher cognitive functions, and Purkinje cells constitute a key component of its circuit. Biochemically, significant turnover of cholesterol occurs in Purkinje cells, causing the activation of the mevalonate pathway. The mevalonate pathway has important roles in cell survival and development. In this study, we investigated the outcomes of mevalonate inhibition in immature and mature mouse cerebellar Purkinje cells in culture. Specifically, we found that the inhibition of the mevalonate pathway by mevastatin resulted in cell death, and geranylgeranylpyrophosphate (GGPP) supplementation significantly enhanced neuronal survival. The surviving immature Purkinje cells, however, exhibited dendritic developmental deficits. The morphology of mature cells was not affected. The inhibition of squalene synthase by zaragozic acid caused impaired dendritic development, similar to that seen in the GGPP-rescued Purkinje cells. Our results indicate GGPP is required for cell survival and squalene synthase for the cell development of Purkinje cells. Abnormalities in Purkinje cells are linked to motor-behavioral learning disorders such as cerebellar ataxia. Thus, serious caution should be taken when using drugs that inhibit geranylgeranylation or the squalene-cholesterol branch of the pathway in the developing stage.
Collapse
Affiliation(s)
- Andrew Barszczyk
- Department of Physiology, University of Toronto, Medical Sciences Building, Rm. 3306, 1 King's College, Toronto, ON, M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Al-Haidari AA, Syk I, Thorlacius H. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation. Biochem Biophys Res Commun 2014; 446:68-72. [DOI: 10.1016/j.bbrc.2014.02.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 01/03/2023]
|
29
|
Neuropsychiatric adverse events associated with statins: epidemiology, pathophysiology, prevention and management. CNS Drugs 2014; 28:249-72. [PMID: 24435290 DOI: 10.1007/s40263-013-0135-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Statins, or 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitors, such as lovastatin, atorvastatin, simvastatin, pravastatin, fluvastatin, rosuvastatin and pitavastatin, are cholesterol-lowering drugs used in clinical practice to prevent coronary heart disease. These drugs are generally well tolerated and have been rarely associated with severe adverse effects (e.g. rhabdomyolysis). Over the years, case series and data from national registries of spontaneous adverse drug reaction reports have demonstrated the occurrence of neuropsychiatric reactions associated with statin treatment. They include behavioural alterations (severe irritability, homicidal impulses, threats to others, road rage, depression and violence, paranoia, alienation, antisocial behaviour); cognitive and memory impairments; sleep disturbance (frequent awakenings, shorter sleep duration, early morning awakenings, nightmares, sleepwalking, night terrors); and sexual dysfunction (impotence and decreased libido). Studies designed to investigate specific neuropsychiatric endpoints have yielded conflicting results. Several mechanisms, mainly related to inhibition of cholesterol biosynthesis, have been proposed to explain the detrimental effects of statins on the central nervous system. Approaches to prevent and manage such adverse effects may include drug discontinuation and introduction of dietary restrictions; maintenance of statin treatment for some weeks with close patient monitoring; switching to a different statin; dose reduction; use of ω-3 fatty acids or coenzyme Q10 supplements; and treatment with psychotropic drugs. The available information suggests that neuropsychiatric effects associated with statins are rare events that likely occur in sensitive patients. Additional data are required, and further clinical studies are needed.
Collapse
|
30
|
Delayed reproductive development in pubertal male rats exposed to the hypolipemiant agent rosuvastatin since prepuberty. Reprod Toxicol 2014; 44:93-103. [PMID: 24440231 DOI: 10.1016/j.reprotox.2014.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/25/2013] [Accepted: 01/06/2014] [Indexed: 01/24/2023]
Abstract
Dyslipidemias are frequently found in children due to obesity, bad eating habits and the lack of physical exercises. Rosuvastatin acts as an HMG-CoA reductase inhibitor, decreasing total cholesterol and triglycerides. This study aimed to investigate initial sexual development and morphological aspect of the testis and epididymis in juvenile rats exposed to rosuvastatin since pre-puberty. Three groups were formed with newly weaned rats: control, whose rats received saline solution 0.9%, rosuvastatin at doses of 3 or 10 mg/kg daily by gavage, since post-natal day 21 until puberty onset. In the rosuvastatin-treated groups, the results demonstrated a trend toward a decrease in testosterone concentration, but below the significance level, as well as delays in both the age of puberty onset and in epididymal development. There were also testicular alterations that might be related to delayed puberty and decrease of serum testosterone. In conclusion, rosuvastatin administration to juvenile rats not only delayed puberty onset and epididymal development, but also impaired testicular and epididymal morphology.
Collapse
|
31
|
Cafaro C, Bonomo M, Salzano G. Adaptive changes in geranylgeranyl pyrophosphate synthase gene expression level under ethanol stress conditions in Oenococcus oeni. J Appl Microbiol 2013; 116:71-80. [DOI: 10.1111/jam.12351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 11/30/2022]
Affiliation(s)
- C. Cafaro
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | - M.G. Bonomo
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | - G. Salzano
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| |
Collapse
|
32
|
Stankiewicz TR, Loucks FA, Schroeder EK, Nevalainen MT, Tyler KL, Aktories K, Bouchard RJ, Linseman DA. Signal transducer and activator of transcription-5 mediates neuronal apoptosis induced by inhibition of Rac GTPase activity. J Biol Chem 2012; 287:16835-48. [PMID: 22378792 DOI: 10.1074/jbc.m111.302166] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In several neuronal cell types, the small GTPase Rac is essential for survival. We have shown previously that the Rho family GTPase inhibitor Clostridium difficile toxin B (ToxB) induces apoptosis in primary rat cerebellar granule neurons (CGNs) principally via inhibition of Rac GTPase function. In the present study, incubation with ToxB activated a proapoptotic Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, and a pan-JAK inhibitor protected CGNs from Rac inhibition. STAT1 expression was induced by ToxB; however, CGNs from STAT1 knock-out mice succumbed to ToxB-induced apoptosis as readily as wild-type CGNs. STAT3 displayed enhanced tyrosine phosphorylation following treatment with ToxB, and a reputed inhibitor of STAT3, cucurbitacin (JSI-124), reduced CGN apoptosis. Unexpectedly, JSI-124 failed to block STAT3 phosphorylation, and CGNs were not protected from ToxB by other known STAT3 inhibitors. In contrast, STAT5A tyrosine phosphorylation induced by ToxB was suppressed by JSI-124. In addition, roscovitine similarly inhibited STAT5A phosphorylation and protected CGNs from ToxB-induced apoptosis. Consistent with these results, adenoviral infection with a dominant negative STAT5 mutant, but not wild-type STAT5, significantly decreased ToxB-induced apoptosis of CGNs. Finally, chromatin immunoprecipitation with a STAT5 antibody revealed increased STAT5 binding to the promoter region of prosurvival Bcl-xL. STAT5 was recruited to the Bcl-xL promoter region in a ToxB-dependent manner, and this DNA binding preceded Bcl-xL down-regulation, suggesting transcriptional repression. These data indicate that a novel JAK/STAT5 proapoptotic pathway significantly contributes to neuronal apoptosis induced by the inhibition of Rac GTPase.
Collapse
Affiliation(s)
- Trisha R Stankiewicz
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado 80208, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Pompa G, Bignozzi I, Cristalli M, Quaranta A, Di Carlo S, Annibali S. Bisphosphonate and Osteonecrosis of the Jaw: The Oral Surgeon's Perspective. EUR J INFLAMM 2012. [DOI: 10.1177/1721727x1201000102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bisphosphonates (BPs) are an important class of drugs, useful in the treatment of some metabolic and oncologic skeletal diseases. BPs have shown a sure effectiveness in the treatment and in the palliative care of such pathologies; on the other hand, an avascular osteonecrosis of the jaws (B-ONJ = Bisphosphonate OsteoNecrosis of the Jaw) has recently been reported as an adverse effect not only of BP intravenous infusions, but also of their prolonged oral administration. B-ONJ normally follows a dental extraction or other surgical procedure in the oral cavity, but it also can develop spontaneously. In the latter case, some systemic risk factors, such as comorbidities and co-therapies or jaw anatomical conditions, can play a leading role in the onset of this pathologic condition. B-ONJ is an uncommon but potentially serious complication of BP therapy that can gravely affect the patient's quality of life, producing significant morbidity. To date, no therapies are completely effective and predictable in the treatment of B-ONJ, therefore prevention should be strongly promoted by sharing knowledge in the involved medical community.
Collapse
Affiliation(s)
- G. Pompa
- Department of Oral and Maxillofacial Sciences, Prosthodontics Unit, “Sapienza” University of Rome, Rome
| | - I. Bignozzi
- Department of Oral and Maxillofacial Sciences, Oral Surgery Unit, “Sapienza” University of Rome, Rome
| | - M.P. Cristalli
- Department of Oral and Maxillofacial Sciences, Oral Surgery Unit, “Sapienza” University of Rome, Rome
| | - A. Quaranta
- Department of Clinical and Odontostomatological Sciences, Periodontics Unit, Polytechnic University of the Marche, Ancona, Italy
| | - S. Di Carlo
- Department of Oral and Maxillofacial Sciences, Prosthodontics Unit, “Sapienza” University of Rome, Rome
| | - S. Annibali
- Department of Oral and Maxillofacial Sciences, Oral Surgery Unit, “Sapienza” University of Rome, Rome
| |
Collapse
|
34
|
Ghavami S, Mutawe MM, Schaafsma D, Yeganeh B, Unruh H, Klonisch T, Halayko AJ. Geranylgeranyl transferase 1 modulates autophagy and apoptosis in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 302:L420-8. [PMID: 22160308 DOI: 10.1152/ajplung.00312.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Geranylgeranyl transferase 1 (GGT1) is involved in the posttranslational prenylation of signaling proteins, such as small GTPases. We have shown that blocking the formation of isoprenoids with statins regulates survival of human lung mesenchymal cells; thus, we tested the hypothesis that GGT1 may specifically modulate programmed cell death pathways in these cells. To this end, human airway smooth muscle (HASM) cells were treated with the selective GGT1 inhibitor GGTi-298. Apoptosis was seen using assays for cellular DNA content and caspase activation. Induction of autophagy was observed using transmission electron microscopy, immunoblotting for LC3 lipidation and Atg5-12 complex content, and confocal microscopy to detect formation of lysosome-localized LC3 punctae. Notably, GGT1 inhibition induced expression of p53-dependent proteins, p53 upregulated modulator of apoptosis (Noxa), and damage-regulated autophagy modulator (DRAM), this was inhibited by the p53 transcriptional activation inhibitor cyclic-pifithrin-α. Inhibition of autophagy with bafilomycin-A1 or short-hairpin RNA silencing of Atg7 substantially augmented GGTi-298-induced apoptosis. Overall, we demonstrate for the first time that pharmacological inhibition of GGT1 induces simultaneous p53-dependent apoptosis and autophagy in HASM. Moreover, autophagy regulates apoptosis induction. Thus, our findings identify GGT1 as a key regulator of HASM cell viability.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Choy MS, Chen MJ, Manikandan J, Peng ZF, Jenner AM, Melendez AJ, Cheung NS. Up-regulation of endoplasmic reticulum stress-related genes during the early phase of treatment of cultured cortical neurons by the proteasomal inhibitor lactacystin. J Cell Physiol 2011; 226:494-510. [PMID: 20683911 DOI: 10.1002/jcp.22359] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inhibition of proteasome degradation pathway has been implicated in neuronal cell death leading to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. We and others demonstrated that treatment of cortical neurons with the proteasomal inhibitor lactacystin leads to apoptosis. We discovered by microarray analysis that lactacystin treatment modulates the expression of both potentially neuroprotective as well as pro-apoptotic genes in neurons. However, the significance of the genes which upon transcriptional modulation contributed to proteasomal inhibition-induced apoptosis, remained unidentified. By employing microarray analysis to decipher the time-dependent changes in transcription of these genes in cultured cortical neurons, we discovered different groups of genes were transcriptionally regulated in the early and late phase of lactacystin-induced cell death. In the early phase, several neuroprotective genes such as those encoding the proteasome subunits and ubiquitin-associated enzymes, as well as the heat-shock proteins (HSP) were up-regulated. However, the pro-apoptotic endoplasmic reticulum (ER) stress-associated genes were also up-regulated at the early phase of lactacystin-induced neuronal cell death. In the late phase, genes encoding antioxidants and calcium-binding proteins were up-regulated while those associated with cholesterol biosynthesis were down-regulated. The data suggest that ER stress may participate in mediating the apoptotic responses induced by proteasomal inhibition. The up-regulation of the neuroprotective antioxidant genes and calcium-binding protein genes and down-regulation of the cholesterol biosynthesis genes in the later phase are likely consequences of stimulation of the pro-apoptotic signaling pathways in the early phase of lactacystin treatment.
Collapse
Affiliation(s)
- Meng Shyan Choy
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
36
|
Valdez CM, Smith MA, Perry G, Phelix CF, Santamaria F. Cholesterol homeostasis markers are localized to mouse hippocampal pyramidal and granule layers. Hippocampus 2010; 20:902-5. [PMID: 20054815 DOI: 10.1002/hipo.20743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Changes in brain cholesterol homeostasis are associated with multiple diseases, such as Alzheimer's and Huntington's; however, controversy persists as to whether adult neurons produce their own cholesterol, or if it is outsourced to astrocytes. To address this issue, we analyzed 25 genes most immediately involved in cholesterol homeostasis from in situ data provided by the Allen Brain Mouse Atlas. We compared the relative mRNA expression in the pyramidal and granule layers, populated with neurons, with the rest of the hippocampus which is populated with neuronal processes and glia. Comparing the expression of the individual genes to markers for neurons and astrocytes, we found that cholesterol homeostasis genes are preferentially targeted to neuronal layers. Therefore, changes in gene expression levels might affect neuronal populations directly.
Collapse
Affiliation(s)
- Chris M Valdez
- Department of Biology, The University of Texas at San Antonio, One UTSA circle, San Antonio, Texas 78249, USA
| | | | | | | | | |
Collapse
|
37
|
Tsuchiya M, Hosaka M, Moriguchi T, Zhang S, Suda M, Yokota-Hashimoto H, Shinozuka K, Takeuchi T. Cholesterol biosynthesis pathway intermediates and inhibitors regulate glucose-stimulated insulin secretion and secretory granule formation in pancreatic beta-cells. Endocrinology 2010; 151:4705-16. [PMID: 20685866 DOI: 10.1210/en.2010-0623] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cholesterol is reportedly abundant in the endocrine secretory granule (SG) membrane. In this study, we examined the involvement of cholesterol biosynthesis intermediates and inhibitors in insulin secretion and SG formation mechanisms. There are two routes for the supply of cholesterol to the cells: one via de novo biosynthesis and the other via low-density lipoprotein receptor-mediated endocytosis. We found that insulin secretion and content are diminished by β-hydroxy-β-methylglutaryl-coenzyme A inhibitor lovastatin but not by lipoprotein depletion from the culture medium in MIN6 β-cells. Cholesterol biosynthesis intermediates mevalonate, squalene, and geranylgeranyl pyrophosphate enhanced glucose-stimulated insulin secretion, and the former two increased insulin content. The glucose-stimulated insulin secretion-enhancing effect of geranylgeranyl pyrophosphate was also confirmed in perifusion with rat islets. Morphologically, mevalonate and squalene increased the population of SGs without affecting their size. In contrast, lovastatin increased the SG size with reduction of insulin-accumulating dense cores, leading to a decrease in insulin content. Furthermore, insulin was secreted in a constitutive manner, indicating disruption of regulated insulin secretion. Because secretogranin III, a cholesterol-binding SG-residential granin-family protein, coincides with SG localization based on the cholesterol composition, secretogranin III may be associated with insulin-accumulating mechanisms. Although the SG membrane exhibits a high cholesterol composition, we could not find detergent-resistant membrane regions using a lipid raft-residential protein flotillin and a fluorescent cholesterol-Si-pyrene probe as markers on a sucrose-density gradient fractionation. We suggest that the high cholesterol composition of SG membrane with 40-50 mol% is crucial for insulin secretion and SG formation functions.
Collapse
Affiliation(s)
- Miho Tsuchiya
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cytotoxic effects of statins and thiazolidinediones on meningioma cells. J Neurooncol 2010; 102:383-93. [DOI: 10.1007/s11060-010-0351-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
|
39
|
Chang CZ, Wu SC, Lin CL, Hwang SL, Howng SL, Kwan AL. Atorvastatin preconditioning attenuates the production of endothelin-1 and prevents experimental vasospasm in rats. Acta Neurochir (Wien) 2010; 152:1399-406; discussion 1405-6. [PMID: 20440630 DOI: 10.1007/s00701-010-0652-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 03/29/2010] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Induced endothelin-1 (ET-1) production and decreased nitric oxide synthase (NOS) bioavailability have been found in aneurysmal subarachnoid hemorrhage (SAH). Atorvastatin is recognized to have pleiotropic effects including increasing NOS bioavailability as well as reducing inflammation and oxidative damage other than reducing dyslipidemia. This study is of interest to examine the effect of atorvastatin on ET-1/endothelial nitric oxide synthase (eNOS) in experimental SAH. METHODS A rodent double-hemorrhage SAH model was employed. Animals were randomly assigned as sham-operated, SAH, vehicle plus SAH, 5 mg/day atorvastatin treatment plus SAH and 5 mg/day atorvastatin precondition plus SAH groups. Administration with atorvastatin (5 mg/day) was initiated 1 week before (precondition) and 24 hr later (treatment). Cerebrospinal fluid samples were collected at 72 hr after second SAH. ET-1 (ELISA) was measured. The basilar arteries (BAs) were harvested and sliced, and their cross-sectional areas were measured. Radiolabeled NOS assay kit was used to detect eNOS. RESULTS Morphologically, convoluted internal elastic lamina, distorted endothelial cells and myonecrosis of the smooth muscle were predominantly observed in the BA of SAH and vehicle-treated SAH groups, which was not detected in the atorvastatin-preconditioned SAH group or the healthy controls. Significant vasospasm was noted in the vehicle group (lumen potency 64.5%, compared with the sham group, p </= 0.01) and less prominent in the atorvastatin treatment group (lumen potency, 76.6%, p < 0.05). In addition, increased ET-1 levels were found in all the animals subject to SAH (SAH only, SAH plus vehicle and SAH plus atorvastatin reversal) except in the atorvastatin precognition group when compared with the healthy controls (no SAH). Likewise, the levels of expressed NOS in BAs is induced in the atorvastatin groups (both atorvastatin treatment and precondition) when compared with that in the SAH group (p < 0.01). CONCLUSION This study offers first evidence that atorvastatin in the preconditioning status reduces the level of ET-1, which corresponds to its antivasospastic effect in the condition of chronic vasospasm. Although there is increased expression of NOS in both atorvastatin precondition and reversal groups, BA's lumen potency is significantly increased in the atorvastatin precondition group when compared with the SAH group (p < 0.01).
Collapse
Affiliation(s)
- Chih-Zen Chang
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Wood WG, Eckert GP, Igbavboa U, Müller WE. Statins and neuroprotection: a prescription to move the field forward. Ann N Y Acad Sci 2010; 1199:69-76. [PMID: 20633110 DOI: 10.1111/j.1749-6632.2009.05359.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is growing interest in the use of statins, HMG-CoA reductase inhibitors, for treating specific neurodegenerative diseases (e.g., cerebrovascular disease, Parkinson's disease, Alzheimer's disease, multiple sclerosis) and possibly traumatic brain injury. Neither is there a consensus on the efficacy of statins in treating the aforementioned diseases nor are the mechanisms of the purported statin-induced neuroprotection well-understood. Part of the support for statin-induced neuroprotection comes from studies using animal models and cell culture. Important information has resulted from that work but there continues to be a lack of progress on basic issues pertaining to statins and brain that impedes advancement in understanding how statins alter brain function. For example, there are scant data on the pharmacokinetics of lipophilic and hydrophilic statins in brain, statin-induced neuroprotection versus cell death, and statins and brain isoprenoids. The purpose of this mini-review will be to examine those aforementioned issues and to identify directions of future research.
Collapse
Affiliation(s)
- W Gibson Wood
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
41
|
Cholesterol and statins in Alzheimer's disease: Current controversies. Exp Neurol 2010; 223:282-93. [DOI: 10.1016/j.expneurol.2009.09.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 02/07/2023]
|
42
|
Domoki F, Kis B, Gáspár T, Snipes JA, Bari F, Busija DW. Rosuvastatin induces delayed preconditioning against L-glutamate excitotoxicity in cultured cortical neurons. Neurochem Int 2009; 56:404-9. [PMID: 19931334 DOI: 10.1016/j.neuint.2009.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
Abstract
We tested whether rosuvastatin (RST) protected against excitotoxic neuronal cell death in rat primary cortical neuronal cultures. L-glutamate (200 microM, 1h) reduced neuronal viability (% of naive controls, mean+/-SEM, n=8-32, *p<0.05) from 100+/-2% to 60+/-1%*, but pretreatment with RST (0.5 microM, 3 days) increased survival to 88+/-2%*. RST-induced neuroprotection was not affected by co-application with mevalonate (10 microM), although the same dose of mevalonate fully prevented the neurotoxic effects of a high dose (20 microM) of RST. RST (0.5 microM) pretreatment did not affect mitochondrial membrane potential or superoxide anion levels in quiescent neurons. However, RST pretreatment blunted elevations in free intracellular Ca(2+) and reduced increases in superoxide anion levels following glutamate exposure. Manganese superoxide dismutase (SOD), copper-zinc SOD, catalase, and reduced glutathione levels were unaffected by RST pretreatment. In contrast, acute, one time RST application did not affect either baseline or L-glutamate-induced increases in superoxide levels. In summary, three-day RST pretreatment induces resistance to the excitotoxic effect of L-glutamate in cultured neurons apparently by a mechanism that is independent of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibition. The delayed neuroprotection by RST against excitotoxicity does not involve sustained mitochondrial depolarization or superoxide anion production as initiating events, although it is associated with reduced Ca(2+) influx and superoxide anion production upon L-glutamate challenge.
Collapse
Affiliation(s)
- Ferenc Domoki
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Iguchi Y, Katsuno M, Niwa JI, Yamada SI, Sone J, Waza M, Adachi H, Tanaka F, Nagata KI, Arimura N, Watanabe T, Kaibuchi K, Sobue G. TDP-43 depletion induces neuronal cell damage through dysregulation of Rho family GTPases. J Biol Chem 2009; 284:22059-22066. [PMID: 19535326 DOI: 10.1074/jbc.m109.012195] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The 43-kDa TAR DNA-binding protein (TDP-43) is known to be a major component of the ubiquitinated inclusions characteristic of amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Although TDP-43 is a nuclear protein, it disappears from the nucleus of affected neurons and glial cells, implicating TDP-43 loss of function in the pathogenesis of neurodegeneration. Here we show that the knockdown of TDP-43 in differentiated Neuro-2a cells inhibited neurite outgrowth and induced cell death. In knockdown cells, the Rho family members RhoA, Rac1, and Cdc42 GTPases were inactivated, and membrane localization of these molecules was reduced. In addition, TDP-43 depletion significantly suppressed protein geranylgeranylation, a key regulating factor of Rho family activity and intracellular localization. In contrast, overexpression of TDP-43 mitigated the cellular damage caused by pharmacological inhibition of geranylgeranylation. Furthermore administration of geranylgeranyl pyrophosphate partially restored cell viability and neurite outgrowth in TDP-43 knockdown cells. In summary, our data suggest that TDP-43 plays a key role in the maintenance of neuronal cell morphology and survival possibly through protein geranylgeranylation of Rho family GTPases.
Collapse
Affiliation(s)
- Yohei Iguchi
- Departments of Neurology, Showa-ku, Nagoya 466-8550
| | - Masahisa Katsuno
- Departments of Neurology, Showa-ku, Nagoya 466-8550; Institute for Advanced Research, Nagoya University, Nagoya 464-8601
| | - Jun-Ichi Niwa
- Stroke Center, Aichi Medical University, Aichi 480-1195
| | | | - Jun Sone
- Departments of Neurology, Showa-ku, Nagoya 466-8550
| | | | | | | | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Aichi 480-0838
| | - Nariko Arimura
- Tamagawa University Brain Science Institute, Tokyo 194-8610, Japan
| | - Takashi Watanabe
- Institute for Advanced Research, Nagoya University, Nagoya 464-8601; Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550
| | - Kozo Kaibuchi
- Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550
| | - Gen Sobue
- Departments of Neurology, Showa-ku, Nagoya 466-8550
| |
Collapse
|
44
|
Okamoto Y, Sonoyama W, Ono M, Akiyama K, Fujisawa T, Oshima M, Tsuchimoto Y, Matsuka Y, Yasuda T, Shi S, Kuboki T. Simvastatin Induces the Odontogenic Differentiation of Human Dental Pulp Stem Cells In Vitro and In Vivo. J Endod 2009; 35:367-72. [DOI: 10.1016/j.joen.2008.11.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/17/2008] [Accepted: 11/28/2008] [Indexed: 01/09/2023]
|
45
|
Statins: mechanisms of neuroprotection. Prog Neurobiol 2009; 88:64-75. [PMID: 19428962 DOI: 10.1016/j.pneurobio.2009.02.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 01/09/2009] [Accepted: 02/10/2009] [Indexed: 12/17/2022]
Abstract
Clinical trials report that the class of drugs known as statins may be neuroprotective in Alzheimer's and Parkinson's disease, and further trials are currently underway to test whether these drugs are also beneficial in multiple sclerosis and acute stroke treatment. Since statins are well tolerated and have relatively few side effects, they may be considered as viable drugs to ameliorate neurodegenerative diseases. However, the mechanism of their neuroprotective effects is only partly understood. In this article, we review the current data on the neuroprotective effects of statins and their underlying mechanisms. In the first section, we detail the mechanisms by which statins affect cellular signalling. The primary action of statins is to inhibit cellular cholesterol synthesis. However, the cholesterol synthesis pathway also has several by-products, the non-sterol isoprenoids that are also important in cellular functioning. Furthermore, reduced cholesterol levels may deplete the cholesterol-rich membrane domains known as lipid rafts, which in turn could affect cellular signalling. In the second section, we summarize how the effects on signalling translate into general neuroprotective effects through peripheral systems. Statins improve blood-flow, reduce coagulation, modulate the immune system and reduce oxidative damage. The final section deals with the effects of statins on the central nervous system, particularly during Alzheimer's and Parkinson's disease, stroke and multiple sclerosis.
Collapse
|
46
|
Domoki F, Kis B, Gáspár T, Snipes JA, Parks JS, Bari F, Busija DW. Rosuvastatin induces delayed preconditioning against oxygen-glucose deprivation in cultured cortical neurons. Am J Physiol Cell Physiol 2008; 296:C97-105. [PMID: 18971391 DOI: 10.1152/ajpcell.00366.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested whether rosuvastatin (RST) protected against oxygen-glucose deprivation (OGD)-induced cell death in primary rat cortical neuronal cultures. OGD reduced neuronal viability (%naive controls, mean +/- SE, n = 24-96, P < 0.05) to 44 +/- 1%, but 3-day pretreatment with RST (5 microM) increased survival to 82 +/- 2% (P < 0.05). One-day RST treatment was not protective. RST-induced neuroprotection was abolished by mevalonate or geranylgeranyl pyrophosphate (GGPP), but not by cholesterol coapplication. Furthermore, RST-induced decreases in neuronal cholesterol levels were abolished by mevalonate but not by GGPP. Reactive oxygen species (ROS) levels were reduced in RST-preconditioned neurons after OGD, and this effect was also reversed by both mevalonate and GGPP. These data suggested that GGPP, but not cholesterol depletion, were responsible for the induction of neuroprotection. Therefore, we tested whether 3-day treatments with perillic acid, a nonspecific inhibitor of both geranylgeranyl transferase (GGT) GGT 1 and Rab GGT, and the GGT 1-specific inhibitor GGTI-286 would reproduce the effects of RST. Perillic acid, but not GGTI-286, elicited robust neuronal preconditioning against OGD. RST, GGTI-286, and perillic acid all decreased mitochondrial membrane potential and lactate dehydrogenase activity in the cultured neurons, but only RST and perillic acid reduced neuronal ATP and membrane Rab3a protein levels. In conclusion, RST preconditions cultured neurons against OGD via depletion of GGPP, leading to decreased geranylgeranylation of proteins that are probably not isoprenylated by GGT 1. Reduced neuronal ATP levels and ROS production after OGD may be directly involved in the mechanism of neuroprotection.
Collapse
Affiliation(s)
- Ferenc Domoki
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Madsen L, Petersen RK, Steffensen KR, Pedersen LM, Hallenborg P, Ma T, Frøyland L, Døskeland SO, Gustafsson JÅ, Kristiansen K. Activation of Liver X Receptors Prevents Statin-induced Death of 3T3-L1 Preadipocytes. J Biol Chem 2008; 283:22723-36. [DOI: 10.1074/jbc.m800720200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
48
|
Bucelli RC, Gonsiorek EA, Kim WY, Bruun D, Rabin RA, Higgins D, Lein PJ. Statins decrease expression of the proinflammatory neuropeptides calcitonin gene-related peptide and substance P in sensory neurons. J Pharmacol Exp Ther 2007; 324:1172-80. [PMID: 18079356 DOI: 10.1124/jpet.107.132795] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Clinical and experimental observations suggest that statins may be useful for treating diseases presenting with predominant neurogenic inflammation, but the mechanism(s) mediating this potential therapeutic effect are poorly understood. In this study, we tested the hypothesis that statins act directly on sensory neurons to decrease expression of proinflammatory neuropeptides that trigger neurogenic inflammation, specifically calcitonin gene-related peptide (CGRP) and substance P. Reverse transcriptase-polymerase chain reaction, radioimmunoassay, and immunocytochemistry were used to quantify CGRP and substance P expression in dorsal root ganglia (DRG) harvested from adult male rats and in primary cultures of sensory neurons derived from embryonic rat DRG. Systemic administration of statins at pharmacologically relevant doses significantly reduced CGRP and substance P levels in DRG in vivo. In cultured sensory neurons, statins blocked bone morphogenetic protein (BMP)-induced CGRP and substance P expression and decreased expression of these neuropeptides in sensory neurons pretreated with BMPs. These effects were concentration-dependent and occurred independent of effects on cell survival or axon growth. Statin inhibition of neuropeptide expression was reversed by supplementation with mevalonate and cholesterol, but not isoprenoid precursors. BMPs signal via Smad activation, and cholesterol depletion by statins inhibited Smad1 phosphorylation and nuclear translocation. These findings identify a novel action of statins involving down-regulation of proinflammatory neuropeptide expression in sensory ganglia via cholesterol depletion and decreased Smad1 activation and suggest that statins may be effective in attenuating neurogenic inflammation.
Collapse
Affiliation(s)
- Robert C Bucelli
- Oregon Health Science University, CROET/L606, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Zipp F, Waiczies S, Aktas O, Neuhaus O, Hemmer B, Schraven B, Nitsch R, Hartung HP. Impact of HMG-CoA reductase inhibition on brain pathology. Trends Pharmacol Sci 2007; 28:342-9. [PMID: 17573124 DOI: 10.1016/j.tips.2007.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 04/03/2007] [Accepted: 05/25/2007] [Indexed: 11/16/2022]
Abstract
Over the past two decades, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (HMGCRIs), originally designed to lower cholesterol blood levels, have been found to affect GTPase signaling during normal intracellular tasks. This finding has prompted use of these drugs in pathological situations, where such signaling processes need to be manipulated. Here, we review recent progress on the outcome of modulating GTPase signaling after inhibition of protein prenylation by HMGCRIs. We also discuss current controversies over the direct implications of these cholesterol-lowering agents on cholesterol-rich membrane lipid rafts and associated signaling. By reviewing these two different cellular events and the evidence from clinical studies, an overall assessment can be made of the concept of interfering with the HMG-CoA reductase pathway in different brain pathologies. We thereby provide a rational link between the benefit of applying HMGCRIs in brain pathologies, such as multiple sclerosis, Alzheimer's disease and stroke, and the impact on signaling in specific cell types crucial to disease pathogenesis.
Collapse
Affiliation(s)
- Frauke Zipp
- Cecilie-Vogt-Clinic for Molecular Neurology, Charité - Universitaetsmedizin Berlin, and Max-Delbrueck-Center for Molecular Medicine, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cerezo-Guisado MI, Alvarez-Barrientos A, Argent R, García-Marín LJ, Bragado MJ, Lorenzo MJ. c-Jun N-terminal protein kinase signalling pathway mediates lovastatin-induced rat brain neuroblast apoptosis. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:164-76. [PMID: 17251057 DOI: 10.1016/j.bbalip.2006.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 12/05/2006] [Accepted: 12/07/2006] [Indexed: 11/18/2022]
Abstract
We have previously shown that lovastatin, an HMG-CoA reductase inhibitor, induces apoptosis in rat brain neuroblasts. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) are implicated in regulation of neuronal apoptosis. In this work, we investigated the role of JNK and p38 MAPK in neuroblast apoptosis induced by lovastatin. We found that lovastatin induced the activation of JNK, but not p38 MAPK. It also induced c-Jun phosphorylation with a subsequent increase in activator protein-1 (AP-1) binding, AP-1-mediated gene expression and BimEL protein levels. The effects of lovastatin were prevented by mevalonate. Pre-treatment with iJNK-I (a selective JNK inhibitor) prevented the effect of lovastatin on both neuroblast apoptosis and the activation of the JNK cascade. Furthermore, we found that the activation of the JNK signalling pathway triggered by lovastatin is accompanied by caspase-3 activation which is also inhibited by iJNK-I pre-treatment. Finally, a specific inhibitor of p38 MAPK, SB203580, had no effect on lovastatin-induced neuroblast apoptosis. Taken together, our data suggest that the activation of the JNK/c-Jun/BimEL signalling pathway plays a crucial role in lovastatin-induced neuroblast apoptosis. Our findings may also contribute to elucidate the intracellular mechanisms involved in the central nervous system side effects associated with statin therapy.
Collapse
Affiliation(s)
- Maria Isabel Cerezo-Guisado
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Veterinaria, Avda de la Universidad s/n, Apdo. Correos 643, 10071 Cáceres, Spain
| | | | | | | | | | | |
Collapse
|