1
|
Suzuki C, Yamaguchi J, Mitsui S, Sanada T, Trejo JAO, Kakuta S, Tanaka K, Suda Y, Hatano T, Hattori N, Tanida I, Uchiyama Y. Direct evidence for ultrastructures of the α-synuclein-associated synaptic vesicle pool in presynaptic terminals. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167494. [PMID: 39233262 DOI: 10.1016/j.bbadis.2024.167494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
SNCA/PARK1 encodes α-synuclein, which is associated with familial Parkinson's disease. Despite its abundance in presynaptic terminals, the aggregation mechanism of α-synuclein and its relationship with Parkinson's disease have not yet been elucidated. Moreover, the ultrastructures of α-synuclein localization sites in neuronal presynaptic terminals remain unclear. Therefore, we herein generated transgenic mice expressing human α-synuclein tagged with mKate2 (hSNCA-mKate2 mice). These mice exhibited normal growth and fertility and had no motor dysfunction relative to their wild-type littermates, even at one year old. α-Synuclein-mKate2 accumulated in presynaptic terminals, particularly between Purkinje cells in the cerebellum and neurons in cerebellar nuclei. α-Synuclein-mKate2 was associated with the presynaptic marker, synaptophysin. In-resin CLEM and immunoelectron or electron microscopy revealed that α-synuclein-mKate2 localized on the surface of synaptic vesicles that were tightly arranged and assembled to form large synaptic pools in the cerebellum with negligible effects on the active zone. These results suggest that α-synuclein-associated ultrastructures in the presynaptic terminals of hSNCA-mKate2 mice reflect the structures of α-synuclein-assembled synaptic vesicle pools, and the size of vesicle pools increased. This transgenic mouse model will be a valuable tool for studying α-synuclein-associated synaptic vesicle pools.
Collapse
Affiliation(s)
- Chigure Suzuki
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Juntendo University Center for Diversity and Inclusion, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Junji Yamaguchi
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shun Mitsui
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takahito Sanada
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Juan Alejandro Oliva Trejo
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Soichirou Kakuta
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenichi Tanaka
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Isei Tanida
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Drug Discovery Research for Synucleopathies, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan.
| |
Collapse
|
2
|
Schneider J, Mitschke J, Bhat M, Vogele D, Schilling O, Reinheckel T, Heß L. Cathepsin D inhibition during neuronal differentiation selectively affects individual proteins instead of overall protein turnover. Biochimie 2024; 226:35-48. [PMID: 38552867 DOI: 10.1016/j.biochi.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Cathepsin D (CTSD) is a lysosomal aspartic protease and its inherited deficiency causes a severe pediatric neurodegenerative disease called neuronal ceroid lipofuscinosis (NCL) type 10. The lysosomal dysfunction in the affected patients leads to accumulation of undigested lysosomal cargo especially in none-dividing cells, such as neurons, resulting in death shortly after birth. To explore which proteins are mainly affected by the lysosomal dysfunction due to CTSD deficiency, Lund human mesencephalic (LUHMES) cells, capable of inducible dopaminergic neuronal differentiation, were treated with Pepstatin A. This inhibitor of "acidic" aspartic proteases caused accumulation of acidic intracellular vesicles in differentiating LUHMES cells. Pulse-chase experiments involving stable isotope labelling with amino acids in cell culture (SILAC) with subsequent mass-spectrometric protein identification and quantification were performed. By this approach, we studied the degradation and synthesis rates of 695 and 680 proteins during early and late neuronal LUHMES differentiation, respectively. Interestingly, lysosomal bulk proteolysis was not altered upon Pepstatin A treatment. Instead, the protease inhibitor selectively changed the turnover of individual proteins. Especially proteins belonging to the mitochondrial energy supply system were differentially degraded during early and late neuronal differentiation indicating a high energy demand as well as stress level in LUHMES cells treated with Pepstatin A.
Collapse
Affiliation(s)
- Johannes Schneider
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Julia Mitschke
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany; German Cancer Consortium (DKTK), partner site Freiburg, 79104, Freiburg, Germany; German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Mahima Bhat
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Daniel Vogele
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany; Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Oliver Schilling
- German Cancer Consortium (DKTK), partner site Freiburg, 79104, Freiburg, Germany; German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Institute for Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany; Centre for Biological Signalling Studies BIOSS, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany; German Cancer Consortium (DKTK), partner site Freiburg, 79104, Freiburg, Germany; German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Centre for Biological Signalling Studies BIOSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Lisa Heß
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
3
|
Pečar Fonović U, Kos J, Mitrović A. Compensational role between cathepsins. Biochimie 2024; 226:62-76. [PMID: 38663456 DOI: 10.1016/j.biochi.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Cathepsins, a family of lysosomal peptidases, play a crucial role in maintaining cellular homeostasis by regulating protein turnover and degradation as well as many specific regulatory actions that are important for proper cell function and human health. Alterations in the activity and expression of cathepsins have been observed in many diseases such as cancer, inflammation, neurodegenerative disorders, bone remodelling-related conditions and others. These changes are not exclusively harmful, but rather appear to be a compensatory response on the lack of one cathepsin in order to maintain tissue integrity. The upregulation of specific cathepsins in response to the inhibition or dysfunction of other cathepsins suggests a fine-tuned system of proteolytic balance and understanding the compensatory role of cathepsins may improve therapeutic potential of cathepsin's inhibitors. Selectively targeting one cathepsin or modulating their activity could offer new treatment strategies for a number of diseases. This review emphasises the need for comprehensive research into cathepsin biology in the context of disease. The identification of the specific cathepsins involved in compensatory responses, the elucidation of the underlying molecular mechanisms and the development of targeted interventions could lead to innovative therapeutic approaches.
Collapse
Affiliation(s)
- Urša Pečar Fonović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| | - Ana Mitrović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Shiro Y, Katayama S, Tsukamoto H, Yamazaki T. Pro-cathepsin D prevents aberrant protein aggregation dependent on endoplasmic reticulum protein CLN6. Mol Genet Metab 2024; 143:108539. [PMID: 39032464 DOI: 10.1016/j.ymgme.2024.108539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
We previously expressed a chimeric protein in which the small heat-shock protein αB-crystallin (αBC) is fused at its N-terminus to the C-terminus of the first transmembrane segment of the endoplasmic reticulum (ER) protein mitsugumin 23 and confirmed its localization to the ER. Moreover, overexpression of this N-terminally modified αBC was shown to prevent the aggregation of the coexpressed R120G αBC variant, which is highly aggregation-prone and associated with the hereditary myopathy αB-crystallinopathy. To uncover a molecular mechanism by which the ER-anchored αBC negatively regulates the protein aggregation, we isolated proteins that bind to the ER-anchored αBC and identified the lysosomal protease cathepsin D (CTSD) as one such interacting protein. Proteolytically active CTSD is produced by multi-step processing of pro-cathepsin D (proCTSD), which is initially synthesized in the ER and delivered to lysosomes. When overexpressed, CTSD itself prevented the coexpressed R120G αBC variant from aggregating. This anti-aggregate activity was also elicited upon overexpression of the W383C CTSD variant, which is predominantly sequestered in the ER and consequently remains unprocessed, suggesting that proCTSD, rather than mature CTSD, serves to suppress the aggregation of the R120G αBC variant. Meanwhile, overexpression of the A58V CTSD variant, which is identical to wild-type CTSD except for the Ala58Val substitution within the pro-peptide, did not suppress the protein aggregation, indicating that the integrity of the pro-peptide is required for proCTSD to exert its anti-aggregate activity. Based on our previous finding that overexpression of the ER transmembrane protein CLN6 (ceroid-lipofuscinosis, neuronal 6), identified as an interacting protein of the ER-anchored αBC, prevents the R120G αBC variant from aggregating, the CLN6-proCTSD coupling was hypothesized to underpin the functionality of proCTSD within the ER. Indeed, CTSD, when overexpressed in CLN6-depleted cells, was unable to exert its anti-aggregate activity, supporting our view. Collectively, we show here that proCTSD prevents the protein aggregation through the functional association with CLN6 in the microenvironment surrounding the ER membrane, shedding light on a novel aspect of proCTSD and its potential involvement in CTSD-related disorders characterized by the accumulation of aberrant protein aggregates.
Collapse
Affiliation(s)
- Yuki Shiro
- Department of Molecular Cell Biology and Medicine, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Syouichi Katayama
- Department of Molecular Cell Biology and Medicine, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Haruka Tsukamoto
- Department of Molecular Cell Biology and Medicine, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tetsuo Yamazaki
- Department of Molecular Cell Biology and Medicine, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
5
|
Lee HE, Jung M, Choi K, Jang JH, Hwang SK, Chae S, Lee JH, Mun JY. L-serine restored lysosomal failure in cells derived from patients with BPAN reducing iron accumulation with eliminating lipofuscin. Free Radic Biol Med 2024; 221:273-282. [PMID: 38740102 DOI: 10.1016/j.freeradbiomed.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Defective mitochondria and autophagy, as well as accumulation of lipid and iron in WDR45 mutant fibroblasts, is related to beta-propeller protein-associated neurodegeneration (BPAN). In this study, we found that enlarged lysosomes in cells derived from patients with BPAN had low enzyme activity, and most of the enlarged lysosomes had an accumulation of iron and oxidized lipid. Cryo-electron tomography revealed elongated lipid accumulation, and spectrometry-based elemental analysis showed that lysosomal iron and oxygen accumulation superimposed with lipid aggregates. Lysosomal lipid aggregates superimposed with autofluorescence as free radical generator, lipofuscin. To eliminate free radical stress by iron accumulation in cells derived from patients with BPAN, we investigated the effects of the iron chelator, 2,2'-bipyridine (bipyridyl, BIP). To study whether the defects in patient-derived cells can be rescued by an iron chelator BIP, we tested whether the level of iron and reactive oxygen species (ROS) in the cells and genes related to oxidative stress were rescued BIP treatment. Although BIP treatment decreased some iron accumulation in the cytoplasm and mitochondria, the accumulation of iron in the lysosomes and levels of cellular ROS were unaffected. In addition, the change of specific RNA levels related to free radical stress in patient fibroblasts was not rescued by BIP. To alleviate free radical stress, we investigated whether l-serine can regulate abnormal structures in cells derived from patients with BPAN through the regulation of free radical stress. l-serine treatment alleviated increase of enlarged lysosomes and iron accumulation and rescued impaired lysosomal activity by reducing oxidized lipid accumulation in the lysosomes of the cells. Lamellated lipids in the lysosomes of the cells were identified as lipofuscin through correlative light and electron microscopy, and l-serine treatment reduced the increase of lipofuscin. These data suggest that l-serine reduces oxidative stress-mediated lysosomal lipid oxidation and iron accumulation by rescuing lysosomal activity.
Collapse
Affiliation(s)
- Hye Eun Lee
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, South Korea; School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Kiju Choi
- Division of Structural Biology, Baobab AiBIO, Incheon, South Korea
| | - Jae Hyuck Jang
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea; Electron Microscopy Group for Materials Science, Korea Basic Science Institute, Daejeon, South Korea
| | - Su-Kyeong Hwang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, South Korea; Astrogen Inc., Techno-Building 313, Kyungpook National University, Daegu, 41566, South Korea
| | - Sehyun Chae
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jae-Hyeok Lee
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 50612, South Korea; Medical Research Institute, Pusan National University School of Medicine, Yangsan, 50612, South Korea.
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, South Korea.
| |
Collapse
|
6
|
Mishra S, Morshed N, Kinoshita C, Stevens B, Jayadev S, Young JE. The Alzheimer's disease gene SORL1 regulates lysosome function in human microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600648. [PMID: 38979155 PMCID: PMC11230436 DOI: 10.1101/2024.06.25.600648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The SORL1 gene encodes the sortilin related receptor protein SORLA, a sorting receptor that regulates endo-lysosomal trafficking of various substrates. Loss of function variants in SORL1 are causative for Alzheimer's disease (AD) and decreased expression of SORLA has been repeatedly observed in human AD brains. SORL1 is highly expressed by microglia, the tissue resident immune cells of the brain. Loss of SORLA leads to enlarged lysosomes in hiPSC-derived microglia like cells (hMGLs). However, whether SORLA deficiency contributes to microglia dysfunction and how this is relevant to AD is not known. In this study, we show that loss of SORLA results in decreased lysosomal degradation and lysosomal enzyme activity due to altered trafficking of lysosomal enzymes in hMGLs. Furthermore, lysosomal exocytosis, an important process involved in immune responses and cellular signaling, is also impaired in SORL1 deficient microglia. Phagocytic uptake of fibrillar amyloid beta 1-42 and synaptosomes is increased in SORLA deficient hMGLs, but due to reduced lysosomal degradation, these substrates aberrantly accumulate in lysosomes. Overall, these data highlight the microglial endo-lysosomal network as a potential novel pathway through which SORL1 may increase AD risk and contribute to development of AD. Additionally, our findings may inform development of novel lysosome and microglia associated drug targets for AD.
Collapse
|
7
|
Gallwitz L, Bleibaum F, Voss M, Schweizer M, Spengler K, Winter D, Zöphel F, Müller S, Lichtenthaler S, Damme M, Saftig P. Cellular depletion of major cathepsin proteases reveals their concerted activities for lysosomal proteolysis. Cell Mol Life Sci 2024; 81:227. [PMID: 38775843 PMCID: PMC11111660 DOI: 10.1007/s00018-024-05274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.
Collapse
Affiliation(s)
- Lisa Gallwitz
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Florian Bleibaum
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Matthias Voss
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology (ZMNH), UKE, Falkenried 94, 20251, Hamburg, Germany
| | - Katharina Spengler
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Frederic Zöphel
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Stephan Müller
- German Center for Neurodegenerative Diseases (DZNE), München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Stefan Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
| |
Collapse
|
8
|
Mitsui S, Yamaguchi J, Suzuki C, Uchiyama Y, Tanida I. TUNEL-positive structures in activated microglia and SQSTM1/p62-positive structures in activated astrocytes in the neurodegenerative brain of a CLN10 mouse model. Glia 2023; 71:2753-2769. [PMID: 37571859 DOI: 10.1002/glia.24449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/28/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Neuronal ceroid lipofuscinosis is a group of pediatric neurodegenerative diseases. One of their causative genes, CLN10/CtsD, encodes cathepsin D, a major lysosomal protease. Central nervous system (CNS)-specific CtsD-deficient mice exhibit a neurodegenerative disease phenotype with accumulation of ceroid lipofuscins, granular osmiophilic deposits, and SQSTM1/p62. We focused on activated astrocytes and microglia in this neurodegenerative mouse brain, since there are few studies on the relationship between these accumulators and lysosomes in these glial cells. Activated microglia and astrocytes in this mouse thalamus at p24 were increased by approximately 2.5- and 4.6-fold compared with the control, while neurons were decreased by approximately half. Granular osmiophilic deposits were detected in microglial cell bodies and extended their processes in the thalamus. LAMP1-positive lysosomes, but not SQSTM1/p62 aggregates, accumulated in microglia of this mouse thalamus, whereas both lysosomes and SQSTM1/p62 aggregates accumulated in its astrocytes. TUNEL-positive signals were observed mainly in microglia, but few were observed in neurons and astrocytes. These signals were fragmented DNA from degenerated neurons engulfed by microglia or in the lysosomes of microglia. Abnormal autophagic vacuoles also accumulated in the lysosomes of microglia. Granular osmiophilic deposit-like structures localized to LAMP1-positive lysosomes in CtsD-deficient astrocytes. SQSTM1/p62-positive but LAMP1-negative membranous structures also accumulated in the astrocytes and were less condensed than typical granular osmiophilic deposits. These results suggest that CtsD deficiency leads to intracellular abnormalities in activated microglia and astrocytes in addition to neuronal degeneration.
Collapse
Affiliation(s)
- Shun Mitsui
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Junji Yamaguchi
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chigure Suzuki
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Isei Tanida
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Ouyang X, Wani WY, Benavides GA, Redmann MJ, Vo H, van Groen T, Darley-Usmar VM, Zhang J. Cathepsin D overexpression in the nervous system rescues lethality and A β42 accumulation of cathepsin D systemic knockout in vivo. Acta Pharm Sin B 2023; 13:4172-4184. [PMID: 37799377 PMCID: PMC10547960 DOI: 10.1016/j.apsb.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
The lysosome is responsible for protein and organelle degradation and homeostasis and the cathepsins play a key role in maintaining protein quality control. Cathepsin D (CTSD), is one such lysosomal protease, which when deficient in humans lead to neurolipofuscinosis (NCL) and is important in removing toxic protein aggregates. Prior studies demonstrated that CTSD germ-line knockout-CtsdKO (CDKO) resulted in accumulation of protein aggregates, decreased proteasomal activities, and postnatal lethality on Day 26 ± 1. Overexpression of wildtype CTSD, but not cathepsin B, L or mutant CTSD, decreased α-synuclein toxicity in worms and mammalian cells. In this study we generated a mouse line expressing human CTSD with a floxed STOP cassette between the ubiquitous CAG promoter and the cDNA. After crossing with Nestin-cre, the STOP cassette is deleted in NESTIN + cells to allow CTSD overexpression-CTSDtg (CDtg). The CDtg mice exhibited normal behavior and similar sensitivity to sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced neurodegeneration. By breeding CDtg mice with CDKO mice, we found that over-expression of CTSD extended the lifespan of the CDKO mice, partially rescued proteasomal deficits and the accumulation of Aβ42 in the CDKO. This new transgenic mouse provides supports for the key role of CTSD in protecting against proteotoxicity and offers a new model to study the role of CTSD enhancement in vivo.
Collapse
Affiliation(s)
- Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Willayat Y. Wani
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew J. Redmann
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hai Vo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
10
|
Bernardi S, Gemignani F, Marchese M. The involvement of Purkinje cells in progressive myoclonic epilepsy: Focus on neuronal ceroid lipofuscinosis. Neurobiol Dis 2023; 185:106258. [PMID: 37573956 PMCID: PMC10480493 DOI: 10.1016/j.nbd.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
The progressive myoclonic epilepsies (PMEs) are a group of rare neurodegenerative diseases characterized by myoclonus, epileptic seizures, and progressive neurological deterioration with cerebellar involvement. They include storage diseases like Gaucher disease, Lafora disease, and forms of neuronal ceroid lipofuscinosis (NCL). To date, 13 NCLs have been reported (CLN1-CLN8, CLN10-CLN14), associated with mutations in different genes. These forms, which affect both children and adults, are characterized by seizures, cognitive and motor impairments, and in most cases visual loss. In NCLs, as in other PMEs, central nervous system (CNS) neurodegeneration is widespread and involves different subpopulations of neurons. One of the most affected regions is the cerebellar cortex, where motor and non-motor information is processed and transmitted to deep cerebellar nuclei through the axons of Purkinje cells (PCs). PCs, being GABAergic, have an inhibitory effect on their target neurons, and provide the only inhibitory output of the cerebellum. Degeneration of PCs has been linked to motor impairments and epileptic seizures. Seizures occur when some insult upsets the normal balance in the CNS between excitatory and inhibitory impulses, causing hyperexcitability. Here we review the role of PCs in epilepsy onset and progression following their PME-related loss. In particular, we focus on the involvement of PCs in seizure phenotype in NCLs, highlighting findings from case reports and studies of animal models in which epilepsy can be linked to PC loss.
Collapse
Affiliation(s)
- Sara Bernardi
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | | | - Maria Marchese
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
| |
Collapse
|
11
|
Bullock G, Johnson GS, Pattridge SG, Mhlanga-Mutangadura T, Guo J, Cook J, Campbell RS, Vite CH, Katz ML. A Homozygous MAN2B1 Missense Mutation in a Doberman Pinscher Dog with Neurodegeneration, Cytoplasmic Vacuoles, Autofluorescent Storage Granules, and an α-Mannosidase Deficiency. Genes (Basel) 2023; 14:1746. [PMID: 37761886 PMCID: PMC10531151 DOI: 10.3390/genes14091746] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
A 7-month-old Doberman Pinscher dog presented with progressive neurological signs and brain atrophy suggestive of a hereditary neurodegenerative disorder. The dog was euthanized due to the progression of disease signs. Microscopic examination of tissues collected at the time of euthanasia revealed massive accumulations of vacuolar inclusions in cells throughout the central nervous system, suggestive of a lysosomal storage disorder. A whole genome sequence generated with DNA from the affected dog contained a likely causal, homozygous missense variant in MAN2B1 that predicted an Asp104Gly amino acid substitution that was unique among whole genome sequences from over 4000 dogs. A lack of detectable α-mannosidase enzyme activity confirmed a diagnosis of a-mannosidosis. In addition to the vacuolar inclusions characteristic of α-mannosidosis, the dog exhibited accumulations of autofluorescent intracellular inclusions in some of the same tissues. The autofluorescence was similar to that which occurs in a group of lysosomal storage disorders called neuronal ceroid lipofuscinoses (NCLs). As in many of the NCLs, some of the storage bodies immunostained strongly for mitochondrial ATP synthase subunit c protein. This protein is not a substrate for α-mannosidase, so its accumulation and the development of storage body autofluorescence were likely due to a generalized impairment of lysosomal function secondary to the accumulation of α-mannosidase substrates. Thus, it appears that storage body autofluorescence and subunit c accumulation are not unique to the NCLs. Consistent with generalized lysosomal impairment, the affected dog exhibited accumulations of intracellular inclusions with varied and complex ultrastructural features characteristic of autophagolysosomes. Impaired autophagic flux may be a general feature of this class of disorders that contributes to disease pathology and could be a target for therapeutic intervention. In addition to storage body accumulation, glial activation indicative of neuroinflammation was observed in the brain and spinal cord of the proband.
Collapse
Affiliation(s)
- Garrett Bullock
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Gary S. Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Savannah G. Pattridge
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Juyuan Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - James Cook
- Specialists in Companion Animal Neurology, Clearwater, FL 33765, USA;
| | - Rebecca S. Campbell
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.S.C.); (C.H.V.)
| | - Charles H. Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.S.C.); (C.H.V.)
| | - Martin L. Katz
- Neurodegenerative Diseases Research Laboratory, Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
12
|
Lin C, Li L, Xu Q, Xu S, Tang C. Yap1-Usp14 Axis Inhibits Neuronal Mitophagy During Neonatal Hypoxia-Ischemia Encephalopathy by Regulation of Beclin-1 Ubiquitination in Mouse. Mol Neurobiol 2023:10.1007/s12035-023-03344-5. [PMID: 37062801 DOI: 10.1007/s12035-023-03344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) that results from perinatal cerebral hypoxia-ischemia has become one of the leading causes of acute mortality and chronic disability in infants and children. Despite that neuronal mitophagy and subsequent clearance of damaged neurons exert protective effect, the pathogenesis of HIE and effective treatment strategies for intervention of HIE remain poorly understood. Here, we report that ubiquitin-specific protease 14 (Usp14, a deubiquitinating enzyme) is closely associated with HIE progression by its negative regulation in neuronal mitophagy in mouse. The expression of Usp14 is elevated in both an oxygen-glucose deprivation (OGD) mouse neuronal cell line culture model in vitro and a HIE mouse model in vivo. Mechanistically, OGD treatment activates Hippo signaling that enhances Yap1 phosphorylation levels at Ser-127 but inhibits Yap1 protein level, which potentiates Usp14 transcription and leads to the downregulated ubiquitination at Lys-63 of Beclin-1, a key molecule in autophagy, resulting in the suppressed neuronal mitophagy, subsequent failure in the clearance of damaged neurons, and finally possible dysregulation in brain functions. Thus, our results provide with Usp14 as a novel target and treatment strategy for intervention of HIE, which may help diagnose and treat HIE in clinic.
Collapse
Affiliation(s)
- Chao Lin
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- Department of Neurosurgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Lin Li
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
13
|
Ikari N, Arakawa H. Identification of a mitochondrial targeting sequence in cathepsin D and its localization in mitochondria. Biochem Biophys Res Commun 2023; 655:25-34. [PMID: 36921448 DOI: 10.1016/j.bbrc.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023]
Abstract
Cathepsin D (CTSD) is a major lysosomal protease harboring an N-terminal signal peptide (amino acids 1-20) to enable vesicular transport from endoplasmic reticulum to lysosomes. Here, we report the possibility of a mitochondrial targeting sequence and mitochondrial localization of CTSD in cells. Live-cell imaging analysis with C-terminal enhanced green fluorescent protein-tagged CTSD (EGFP-CTSD) indicated that CTSD localizes to mitochondria. CTSD amino acids 21-35 are responsible for its mitochondrial localization, which exhibit typical features of mitochondrial targeting sequences, and are evolutionarily conserved. A proteinase K protection assay and sucrose gradient analysis showed that a small population of endogenous CTSD molecules exists in mitochondria. These results suggest that CTSD is a dual-targeted protein that may localize in both lysosomes and mitochondria.
Collapse
Affiliation(s)
- Naoki Ikari
- Division of Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Hirofumi Arakawa
- Division of Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan.
| |
Collapse
|
14
|
Chen YH, Chen WY, Yu CL, Tsai CY, Hsieh SC. Gouty arthritis involves impairment of autophagic degradation via cathepsin D inactivation-mediated lysosomal dysfunction that promotes apoptosis in macrophages. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166703. [PMID: 37001704 DOI: 10.1016/j.bbadis.2023.166703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
This study examined autophagy-lysosome pathway (ALP) perturbations in synovial monocytes/macrophages from patients with gouty arthritis (GA) and the associations of ALP perturbations with cell death. Synovial fluid mononuclear cells (SFMCs) and synovial tissues (STs) from patients with GA, as well as monosodium urate (MSU) crystal-exposed macrophages, underwent immunoblotting, quantitative polymerase chain reaction, and immunofluorescence analyses of markers linked to the ALP (microtubule-associated protein 1 light chain 3B [LC3B], p62, cathepsin D [CTSD], and lysosome-associated membrane protein 2 [LAMP2]) and cell death (caspase-3). GA STs underwent immunohistochemistry and immunofluorescence analyses to determine the distributions of LC3B-positive autophagosomes and macrophages. GA SFMCs and STs exhibited impaired autophagic degradation, indicated by elevated levels of LC3B and p62, along with CTSD upregulation and caspase-3 activation. Macrophages from GA STs exhibited significant accumulation of LC3B-positive autophagosomes. The temporal effects of MSU crystals on the ALP and the associations of these effects with cell death were investigated using a macrophage model of GA. MSU crystal-exposed macrophages exhibited early (2 h) autophagosome formation but later (6-24 h) autophagic flux impairment, demonstrated by p62 accumulation, lysosomal inhibitor failure to increase LC3B accumulation, and LC3B colocalization with p62. These macrophages exhibited autophagic flux impairment because of CTSD inactivation-mediated lysosomal dysfunction, which caused immature CTSD to accumulate within damaged LAMP2-positive lysosomes. This accumulation coincided with caspase-3-dependent cell death (24 h) that was unaffected by CTSD inhibition. These findings indicate that GA involves MSU crystal-induced impairment of autophagic degradation via CTSD inactivation-mediated lysosomal dysfunction, which promotes apoptosis in macrophages.
Collapse
|
15
|
Mächtel R, Boros FA, Dobert JP, Arnold P, Zunke F. From Lysosomal Storage Disorders to Parkinson's Disease - Challenges and Opportunities. J Mol Biol 2022:167932. [PMID: 36572237 DOI: 10.1016/j.jmb.2022.167932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lysosomes are specialized organelles with an acidic pH that act as recycling hubs for intracellular and extracellular components. They harbour numerous different hydrolytic enzymes to degrade substrates like proteins, peptides, and glycolipids. Reduced catalytic activity of lysosomal enzymes can cause the accumulation of these substrates and loss of lysosomal integrity, resulting in lysosomal dysfunction and lysosomal storage disorders (LSDs). Post-mitotic cells, such as neurons, seem to be highly sensitive to damages induced by lysosomal dysfunction, thus LSDs often manifest with neurological symptoms. Interestingly, some LSDs and Parkinson's disease (PD) share common cellular pathomechanisms, suggesting convergence of aetiology of the two disease types. This is further underlined by genetic associations of several lysosomal genes involved in LSDs with PD. The increasing number of lysosome-associated genetic risk factors for PD makes it necessary to understand functions and interactions of lysosomal proteins/enzymes both in health and disease, thereby holding the potential to identify new therapeutic targets. In this review, we highlight genetic and mechanistic interactions between the complex lysosomal network, LSDs and PD, and elaborate on methodical challenges in lysosomal research.
Collapse
Affiliation(s)
- Rebecca Mächtel
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany
| | | | - Jan Philipp Dobert
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friederike Zunke
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany.
| |
Collapse
|
16
|
Gallwitz L, Schmidt L, Marques AR, Tholey A, Cassidy L, Ulku I, Multhaup G, Di Spiezio A, Saftig P. Cathepsin D: Analysis of its potential role as an amyloid beta degrading protease. Neurobiol Dis 2022; 175:105919. [DOI: 10.1016/j.nbd.2022.105919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
|
17
|
Moran AL, Fehilly JD, Floss Jones D, Collery R, Kennedy BN. Regulation of the rhythmic diversity of daily photoreceptor outer segment phagocytosis in vivo. FASEB J 2022; 36:e22556. [PMID: 36165194 PMCID: PMC9828801 DOI: 10.1096/fj.202200990rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
Outer segment phagocytosis (OSP) is a highly-regulated, biological process wherein photoreceptor outer segment (OS) tips are cyclically phagocytosed by the adjacent retinal pigment epithelium (RPE) cells. Often an overlooked retinal process, rhythmic OSP ensures the maintenance of healthy photoreceptors and vision. Daily, the photoreceptors renew OS at their base and the most distal, and likely oldest, OS tips, are phagocytosed by the RPE, preventing the accumulation of photo-oxidative compounds by breaking down phagocytosed OS tips and recycling useful components to the photoreceptors. Light changes often coincide with an escalation of OSP and within hours the phagosomes formed in each RPE cell are resolved. In the last two decades, individual molecular regulators were elucidated. Some of the molecular machinery used by RPE cells for OSP is highly similar to mechanisms used by other phagocytic cells for the clearance of apoptotic cells. Consequently, in the RPE, many molecular regulators of retinal phagocytosis have been elucidated. However, there is still a knowledge gap regarding the key regulators of physiological OSP in vivo between endogenous photoreceptors and the RPE. Understanding the regulation of OSP is of significant clinical interest as age-related macular degeneration (AMD) and inherited retinal diseases (IRD) are linked with altered OSP. Here, we review the in vivo timing of OSP peaks in selected species and focus on the reported in vivo environmental and molecular regulators of OSP.
Collapse
Affiliation(s)
- Ailis L. Moran
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| | - John D. Fehilly
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| | - Daniel Floss Jones
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| | - Ross Collery
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWisconsinUSA,Department of Ophthalmology and Visual SciencesMedical College of Wisconsin Eye InstituteMilwaukeeWisconsinUSA
| | - Breandán N. Kennedy
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| |
Collapse
|
18
|
Plasma Small Extracellular Vesicle Cathepsin D Dysregulation in GRN/C9orf72 and Sporadic Frontotemporal Lobar Degeneration. Int J Mol Sci 2022; 23:ijms231810693. [PMID: 36142612 PMCID: PMC9504770 DOI: 10.3390/ijms231810693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/22/2022] Open
Abstract
Emerging data suggest the roles of endo-lysosomal dysfunctions in frontotemporal lobar degeneration (FTLD) and in other dementias. Cathepsin D is one of the major lysosomal proteases, mediating the degradation of unfolded protein aggregates. In this retrospective study, we investigated cathepsin D levels in human plasma and in the plasma small extracellular vesicles (sEVs) of 161 subjects (40 sporadic FTLD, 33 intermediate/pathological C9orf72 expansion carriers, 45 heterozygous/homozygous GRN mutation carriers, and 43 controls). Cathepsin D was quantified by ELISA, and nanoparticle tracking analysis data (sEV concentration for the cathepsin D level normalization) were extracted from our previously published dataset or were newly generated. First, we revealed a positive correlation of the cathepsin D levels with the age of the patients and controls. Even if no significant differences were found in the cathepsin D plasma levels, we observed a progressive reduction in plasma cathepsin D moving from the intermediate to C9orf72 pathological expansion carriers. Observing the sEVs nano-compartment, we observed increased cathepsin D sEV cargo (ng/sEV) levels in genetic/sporadic FTLD. The diagnostic performance of this biomarker was fairly high (AUC = 0.85). Moreover, sEV and plasma cathepsin D levels were positively correlated with age at onset. In conclusion, our study further emphasizes the common occurrence of endo-lysosomal dysregulation in GRN/C9orf72 and sporadic FTLD.
Collapse
|
19
|
Jeon H, Kim YJ, Hwang SK, Seo J, Mun JY. Restoration of Cathepsin D Level via L-Serine Attenuates PPA-Induced Lysosomal Dysfunction in Neuronal Cells. Int J Mol Sci 2022; 23:ijms231810613. [PMID: 36142514 PMCID: PMC9504002 DOI: 10.3390/ijms231810613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
L-serine is a non-essential amino acid endogenously produced by astrocytes and is abundant in human diets. Beneficial roles of the metabolic products from L-serine in various conditions in the brain including neuronal development have been reported. Through several preclinical studies, L-serine treatment was also shown to offer beneficial therapeutic effects for brain damage such as ischemic stroke, amyotrophic lateral sclerosis, and Parkinson’s disease. Despite evidence for the value of L-serine in the clinic, however, its beneficial effects on the propionic acid (PPA)-induced neuronal toxicity and underlying mechanisms of L-serine-mediated neuroprotection are unknown. In this study, we observed that PPA-induced acidic stress induces abnormal lipid accumulation and functional defects in lysosomes of hippocampal neurons. L-serine treatment was able to rescue the structure and function of lysosomes in PPA-treated hippocampal neuronal cells. We further identified that L-serine suppressed the formation of lipid droplets and abnormal lipid membrane accumulations inside the lysosomes in PPA-treated hippocampal neuronal cells. Taken together, these findings indicate that L-serine can be utilized as a neuroprotective agent for the functionality of lysosomes through restoration of cathepsin D in disease conditions.
Collapse
Affiliation(s)
- Hyunbum Jeon
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yeo Jin Kim
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Su-Kyeong Hwang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Korea
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Korea
- Correspondence:
| |
Collapse
|
20
|
Quinolinic Acid Induces Alterations in Neuronal Subcellular Compartments, Blocks Autophagy Flux and Activates Necroptosis and Apoptosis in Rat Striatum. Mol Neurobiol 2022; 59:6632-6651. [PMID: 35980566 DOI: 10.1007/s12035-022-02986-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Quinolinic acid (QUIN) is an agonist of N-methyl-D-aspartate receptor (NMDAr) used to study the underlying mechanism of excitotoxicity in animal models. There is evidence indicating that impairment in autophagy at early times contributes to cellular damage in excitotoxicity; however, the status of autophagy in QUIN model on day 7 remains unexplored. In this study, the ultrastructural analysis of subcellular compartments and the status of autophagy, necroptosis, and apoptosis in the striatum of rats administered with QUIN (120 nmol and 240 nmol) was performed on day 7. QUIN induced circling behavior, neurodegeneration, and cellular damage; also, it promoted swollen mitochondrial crests, spherical-like morphology, and mitochondrial fragmentation; decreased ribosomal density in the rough endoplasmic reticulum; and altered the continuity of myelin sheaths in axons with separation of the compact lamellae. Furthermore, QUIN induced an increase and a decrease in ULK1 and p-70-S6K phosphorylation, respectively, suggesting autophagy activation; however, the increased microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and sequestosome-1/p62 (SQSTM1/p62), the coexistence of p62 and LC3 in the same structures, and the decrease in Beclin 1 and mature cathepsin D also indicates a blockage in autophagy flux. Additionally, QUIN administration increased tumor necrosis factor alpha (TNFα) and receptor-interacting protein kinase 3 (RIPK3) levels and its phosphorylation (p-RIPK3), as well as decreased B-cell lymphoma 2 (Bcl-2) and increased Bcl-2-associated X protein (Bax) levels and c-Jun N-terminal kinase (JNK) phosphorylation, suggesting an activation of necroptosis and apoptosis, respectively. These results suggest that QUIN activates the autophagy, but on day 7, it is blocked and organelle and cellular damage, neurodegeneration, and behavior alterations could be caused by necroptosis and apoptosis activation.
Collapse
|
21
|
Suzuki C, Yamaguchi J, Sanada T, Oliva Trejo JA, Kakuta S, Shibata M, Tanida I, Uchiyama Y. Lack of Cathepsin D in the central nervous system results in microglia and astrocyte activation and the accumulation of proteinopathy-related proteins. Sci Rep 2022; 12:11662. [PMID: 35804072 PMCID: PMC9270453 DOI: 10.1038/s41598-022-15805-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Neuronal ceroid lipofuscinosis is one of many neurodegenerative storage diseases characterized by excessive accumulation of lipofuscins. CLN10 disease, an early infantile neuronal ceroid lipofuscinosis, is associated with a gene that encodes cathepsin D (CtsD), one of the major lysosomal proteases. Whole body CtsD-knockout mice show neurodegenerative phenotypes with the accumulation of lipofuscins in the brain and also show defects in other tissues including intestinal necrosis. To clarify the precise role of CtsD in the central nervous system (CNS), we generated a CNS-specific CtsD-knockout mouse (CtsD-CKO). CtsD-CKO mice were born normally but developed seizures and their growth stunted at around postnatal day 23 ± 1. CtsD-CKO did not exhibit apparent intestinal symptoms as those observed in whole body knockout. Histologically, autofluorescent materials were detected in several areas of the CtsD-CKO mouse's brain, including: thalamus, cerebral cortex, hippocampus, and cerebellum. Expression of ubiquitin and autophagy-associated proteins was also increased, suggesting that the autophagy-lysosome system was impaired. Microglia and astrocytes were activated in the CtsD-CKO thalamus, and inducible nitric oxide synthase (iNOS), an inflammation marker, was increased in the microglia. Interestingly, deposits of proteinopathy-related proteins, phosphorylated α-synuclein, and Tau protein were also increased in the thalamus of CtsD-CKO infant mice. Considering these results, we propose thatt the CtsD-CKO mouse is a useful mouse model to investigate the contribution of cathepsin D to the early phases of neurodegenerative diseases in relation to lipofuscins, proteinopathy-related proteins and activation of microglia and astrocytes.
Collapse
Affiliation(s)
- Chigure Suzuki
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Junji Yamaguchi
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.,Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takahito Sanada
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Juan Alejandro Oliva Trejo
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Souichirou Kakuta
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.,Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masahiro Shibata
- Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima-shi, Kagoshima, 890-8544, Japan
| | - Isei Tanida
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
22
|
Drobny A, Prieto Huarcaya S, Dobert J, Kluge A, Bunk J, Schlothauer T, Zunke F. The role of lysosomal cathepsins in neurodegeneration: Mechanistic insights, diagnostic potential and therapeutic approaches. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119243. [PMID: 35217144 DOI: 10.1016/j.bbamcr.2022.119243] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
Lysosomes are ubiquitous organelles with a fundamental role in maintaining cellular homeostasis by mediating degradation and recycling processes. Cathepsins are the most abundant lysosomal hydrolyses and are responsible for the bulk degradation of various substrates. A correct autophagic function is essential for neuronal survival, as most neurons are post-mitotic and thus susceptible to accumulate cellular components. Increasing evidence suggests a crucial role of the lysosome in neurodegeneration as a key regulator of aggregation-prone and disease-associated proteins, such as α-synuclein, β-amyloid and huntingtin. Particularly, alterations in lysosomal cathepsins CTSD, CTSB and CTSL can contribute to the pathogenesis of neurodegenerative diseases as seen for neuronal ceroid lipofuscinosis, synucleinopathies (Parkinson's disease, Dementia with Lewy Body and Multiple System Atrophy) as well as Alzheimer's and Huntington's disease. In this review, we provide an overview of recent evidence implicating CTSD, CTSB and CTSL in neurodegeneration, with a special focus on the role of these enzymes in α-synuclein metabolism. In addition, we summarize the potential role of lysosomal cathepsins as clinical biomarkers in neurodegenerative diseases and discuss potential therapeutic approaches by targeting lysosomal function.
Collapse
Affiliation(s)
- Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Jan Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Annika Kluge
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Josina Bunk
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
23
|
Recent Insight into the Genetic Basis, Clinical Features, and Diagnostic Methods for Neuronal Ceroid Lipofuscinosis. Int J Mol Sci 2022; 23:ijms23105729. [PMID: 35628533 PMCID: PMC9145894 DOI: 10.3390/ijms23105729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of rare, inherited, neurodegenerative lysosomal storage disorders that affect children and adults. They are traditionally grouped together, based on shared clinical symptoms and pathological ground. To date, 13 autosomal recessive gene variants, as well as one autosomal dominant gene variant, of NCL have been described. These genes encode a variety of proteins, whose functions have not been fully defined; most are lysosomal enzymes, transmembrane proteins of the lysosome, or other organelles. Common symptoms of NCLs include the progressive loss of vision, mental and motor deterioration, epileptic seizures, premature death, and, in rare adult-onset cases, dementia. Depending on the mutation, these symptoms can vary, with respect to the severity and onset of symptoms by age. Currently, all forms of NCL are fatal, and no curative treatments are available. Herein, we provide an overview to summarize the current knowledge regarding the pathophysiology, genetics, and clinical manifestation of these conditions, as well as the approach to diagnosis.
Collapse
|
24
|
Kolter J, Henneke P, Groß O, Kierdorf K, Prinz M, Graf L, Schwemmle M. Paradoxical immunodeficiencies-When failures of innate immunity cause immunopathology. Eur J Immunol 2022; 52:1419-1430. [PMID: 35551651 DOI: 10.1002/eji.202149531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/06/2022]
Abstract
Innate immunity facilitates immediate defense against invading pathogens throughout all organs and tissues but also mediates tissue homeostasis and repair, thereby playing a key role in health and development. Recognition of pathogens is mediated by germline-encoded PRRs. Depending on the specific PRRs triggered, ligand binding leads to phagocytosis and pathogen killing and the controlled release of immune-modulatory factors such as IFNs, cytokines, or chemokines. PRR-mediated and other innate immune responses do not only prevent uncontrolled replication of intruding pathogens but also contribute to the tailoring of an effective adaptive immune response. Therefore, hereditary or acquired immunodeficiencies impairing innate responses may paradoxically cause severe immunopathology in patients. This can occur in the context of, but also independently of an increased microbial burden. It can include pathogen-dependent organ damage, autoinflammatory syndromes, and neurodevelopmental or neurodegenerative diseases. Here, we discuss the current state of research of several different such immune paradoxes. Understanding the underlying mechanisms causing immunopathology as a consequence of failures of innate immunity may help to prevent life-threatening disease.
Collapse
Affiliation(s)
- Julia Kolter
- Faculty of Medicine, Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Faculty of Medicine, Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Olaf Groß
- Faculty of Medicine, Institute of Neuropathology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Faculty of Medicine, Institute of Neuropathology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Faculty of Medicine, Institute of Neuropathology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Laura Graf
- Faculty of Medicine, Institute of Virology, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Faculty of Medicine, Institute of Virology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Prieto Huarcaya S, Drobny A, Marques ARA, Di Spiezio A, Dobert JP, Balta D, Werner C, Rizo T, Gallwitz L, Bub S, Stojkovska I, Belur NR, Fogh J, Mazzulli JR, Xiang W, Fulzele A, Dejung M, Sauer M, Winner B, Rose-John S, Arnold P, Saftig P, Zunke F. Recombinant pro-CTSD (cathepsin D) enhances SNCA/α-Synuclein degradation in α-Synucleinopathy models. Autophagy 2022; 18:1127-1151. [PMID: 35287553 PMCID: PMC9196656 DOI: 10.1080/15548627.2022.2045534] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by the abnormal intracellular accumulation of SNCA/α-synuclein. While the exact mechanisms underlying SNCA pathology are not fully understood, increasing evidence suggests the involvement of autophagy as well as lysosomal deficiencies. Because CTSD (cathepsin D) has been proposed to be the major lysosomal protease involved in SNCA degradation, its deficiency has been linked to the presence of insoluble SNCA conformers in the brain of mice and humans as well as to the transcellular transmission of SNCA aggregates. We here postulate that SNCA degradation can be enhanced by the application of the recombinant human proform of CTSD (rHsCTSD). Our results reveal that rHsCTSD is efficiently endocytosed by neuronal cells, correctly targeted to lysosomes and matured to an enzymatically active protease. In dopaminergic neurons derived from induced pluripotent stem cells (iPSC) of PD patients harboring the A53T mutation within the SNCA gene, we confirm the reduction of insoluble SNCA after treatment with rHsCTSD. Moreover, we demonstrate a decrease of pathological SNCA conformers in the brain and within primary neurons of a ctsd-deficient mouse model after dosing with rHsCTSD. Boosting lysosomal CTSD activity not only enhanced SNCA clearance in human and murine neurons as well as tissue, but also restored endo-lysosome and autophagy function. Our findings indicate that CTSD is critical for SNCA clearance and function. Thus, enzyme replacement strategies utilizing CTSD may also be of therapeutic interest for the treatment of PD and other synucleinopathies aiming to decrease the SNCA burden.Abbreviations: aa: amino acid; SNCA/α-synuclein: synuclein alpha; APP: amyloid beta precursor protein; BBB: blood brain barrier; BF: basal forebrain; CBB: Coomassie Brilliant Blue; CLN: neuronal ceroid lipofuscinosis; CNL10: neuronal ceroid lipofuscinosis type 10; Corr.: corrected; CTSD: cathepsin D; CTSB: cathepsin B; DA: dopaminergic; DA-iPSn: induced pluripotent stem cell-derived dopaminergic neurons; dox: doxycycline; ERT: enzyme replacement therapy; Fx: fornix, GBA/β-glucocerebrosidase: glucosylceramidase beta; h: hour; HC: hippocampus; HT: hypothalamus; i.c.: intracranially; IF: immunofluorescence; iPSC: induced pluripotent stem cell; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LSDs: lysosomal storage disorders; MAPT: microtubule associated protein tau; M6P: mannose-6-phosphate; M6PR: mannose-6-phosphate receptor; MB: midbrain; mCTSD: mature form of CTSD; neurofil.: neurofilament; PD: Parkinson disease; proCTSD: proform of CTSD; PRNP: prion protein; RFU: relative fluorescence units; rHsCTSD: recombinant human proCTSD; SAPC: Saposin C; SIM: structured illumination microscopy; T-insol: Triton-insoluble; T-sol: Triton-soluble; TEM: transmission electron microscopy, TH: tyrosine hydroxylase; Thal: thalamus.
Collapse
Affiliation(s)
| | - Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - André R A Marques
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), Nova Medical School, Nms, Nova University Lisbon, Lisboa, Portugal
| | | | - Jan Philipp Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Tania Rizo
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Gallwitz
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Simon Bub
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Iva Stojkovska
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | - Nandkishore R Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | | | - Joseph R Mazzulli
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Amitkumar Fulzele
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| |
Collapse
|
26
|
Laurent A, Madigou T, Bizot M, Turpin M, Palierne G, Mahé E, Guimard S, Métivier R, Avner S, Le Péron C, Salbert G. TET2-mediated epigenetic reprogramming of breast cancer cells impairs lysosome biogenesis. Life Sci Alliance 2022; 5:5/7/e202101283. [PMID: 35351824 PMCID: PMC8963717 DOI: 10.26508/lsa.202101283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
TET2-mediated oxidation of 5-methylcytosine establishes an antiviral state and contributes to MYC-dependent down-regulation of genes involved in lysosome biogenesis and function in breast cancer cells. Methylation and demethylation of cytosines in DNA are believed to act as keystones of cell-specific gene expression by controlling the chromatin structure and accessibility to transcription factors. Cancer cells have their own transcriptional programs, and we sought to alter such a cancer-specific program by enforcing expression of the catalytic domain (CD) of the methylcytosine dioxygenase TET2 in breast cancer cells. The TET2 CD decreased the tumorigenic potential of cancer cells through both activation and repression of a repertoire of genes that, interestingly, differed in part from the one observed upon treatment with the hypomethylating agent decitabine. In addition to promoting the establishment of an antiviral state, TET2 activated 5mC turnover at thousands of MYC-binding motifs and down-regulated a panel of known MYC-repressed genes involved in lysosome biogenesis and function. Thus, an extensive cross-talk between TET2 and the oncogenic transcription factor MYC establishes a lysosomal storage disease–like state that contributes to an exacerbated sensitivity to autophagy inducers.
Collapse
Affiliation(s)
- Audrey Laurent
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Thierry Madigou
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Maud Bizot
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Marion Turpin
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Gaëlle Palierne
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Elise Mahé
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Sarah Guimard
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Raphaël Métivier
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Stéphane Avner
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Christine Le Péron
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Gilles Salbert
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| |
Collapse
|
27
|
Lysosomal ATP Transporter SLC17A9 Controls Cell Viability via Regulating Cathepsin D. Cells 2022; 11:cells11050887. [PMID: 35269509 PMCID: PMC8909234 DOI: 10.3390/cells11050887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
SLC17A9 (solute carrier family 17 member 9) functions as an ATP transporter in lysosomes as well as other secretory vesicles. SLC17A9 inhibition or silence leads to cell death. However, the molecular mechanisms causing cell death are unclear. In this study, we report that cell death induced by SLC17A9 deficiency is rescued by the transcription factor EB (TFEB), a master gene for lysosomal protein expression, suggesting that SLC17A9 deficiency may be the main cause of lysosome dysfunction, subsequently leading to cell death. Interestingly, Cathepsin D, a lysosomal aspartic protease, is inhibited by SLC17A9 deficiency. Heterologous expression of Cathepsin D successfully rescues lysosomal dysfunction and cell death induced by SLC17A9 deficiency. On the other hand, the activity of Cathepsin B, a lysosomal cysteine protease, is not altered by SLC17A9 deficiency, and Cathepsin B overexpression does not rescue lysosomal dysfunction and cell death induced by SLC17A9 deficiency. Our data suggest that lysosomal ATP and SLC17A9 play critical roles in lysosomal function and cell viability by regulating Cathepsin D activity.
Collapse
|
28
|
Characterization of Cysteine Cathepsin Expression in the Central Nervous System of Aged Wild-Type and Cathepsin-Deficient Mice. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The association of cathepsin proteases in neurobiology is increasingly recognized. Our previous studies indicated that cathepsin-K-deficient (Ctsk−/−) mice have learning and memory impairments. Alterations in cathepsin expression are known to result in compensatory changes in levels of related cathepsins. To gain insight into the therapeutic usefulness of cathepsin inhibitors in aging individuals with osteoporosis or neurodegenerative diseases, we studied for variations in cathepsin expression and activity in aged (18–20 months) versus young (5–7 months) wild-type (WT) and cathepsin-deficient mice brains. There were age-dependent increases in cathepsin B, D, and L and cystatin C protein levels in various brain regions, mainly of WT and Ctsk−/− mice. This corresponded with changes in activity levels of cathepsins B and L, but not cathepsin D. In contrast, very little age-dependent variation was observed in cathepsin-B- and cathepsin-L-deficient mouse brain, especially at the protein level. The observed alterations in cathepsin protein amounts and activity are likely contributing to changes in important aging-related processes such as autophagy. In addition, the results provide insight into the potential impact of cathepsin inhibitor therapy in aged individuals, as well as in long-term use of cathepsin inhibitor therapy.
Collapse
|
29
|
Kos J, Mitrović A, Perišić Nanut M, Pišlar A. Lysosomal peptidases – Intriguing roles in cancer progression and neurodegeneration. FEBS Open Bio 2022; 12:708-738. [PMID: 35067006 PMCID: PMC8972049 DOI: 10.1002/2211-5463.13372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lysosomal peptidases are hydrolytic enzymes capable of digesting waste proteins that are targeted to lysosomes via endocytosis and autophagy. Besides intracellular protein catabolism, they play more specific roles in several other cellular processes and pathologies, either within lysosomes, upon secretion into the cell cytoplasm or extracellular space, or bound to the plasma membrane. In cancer, lysosomal peptidases are generally associated with disease progression, as they participate in crucial processes leading to changes in cell morphology, signaling, migration, and invasion, and finally metastasis. However, they can also enhance the mechanisms resulting in cancer regression, such as apoptosis of tumor cells or antitumor immune responses. Lysosomal peptidases have also been identified as hallmarks of aging and neurodegeneration, playing roles in oxidative stress, mitochondrial dysfunction, abnormal intercellular communication, dysregulated trafficking, and the deposition of protein aggregates in neuronal cells. Furthermore, deficiencies in lysosomal peptidases may result in other pathological states, such as lysosomal storage disease. The aim of this review was to highlight the role of lysosomal peptidases in particular pathological processes of cancer and neurodegeneration and to address the potential of lysosomal peptidases in diagnosing and treating patients.
Collapse
Affiliation(s)
- Janko Kos
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Ana Mitrović
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Milica Perišić Nanut
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Anja Pišlar
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
| |
Collapse
|
30
|
Liu J, Bassal M, Schlichting S, Braren I, Di Spiezio A, Saftig P, Bartsch U. Intravitreal gene therapy restores the autophagy-lysosomal pathway and attenuates retinal degeneration in cathepsin D-deficient mice. Neurobiol Dis 2022; 164:105628. [PMID: 35033660 DOI: 10.1016/j.nbd.2022.105628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Loss of vision due to progressive retinal degeneration is a hallmark of neuronal ceroid lipofuscinoses (NCL), a group of fatal neurodegenerative lysosomal storage diseases. Enzyme substitution therapies represent promising treatment options for NCLs caused by dysfunctions of soluble lysosomal enzymes. Here, we compared the efficacy of a cell-based enzyme substitution strategy and a gene therapy approach to attenuate the retinal pathology in cathepsin D- (CTSD) deficient mice, an animal model of CLN10 disease. Levels of enzymatically active CTSD in mutant retinas were significantly higher after an adeno-associated virus vector-mediated CTSD transfer to retinal glial cells and retinal pigment epithelial cells than after intravitreal transplantations of a CTSD overexpressing clonal neural stem cell line. In line with this finding, the gene therapy treatment restored the disrupted autophagy-lysosomal pathway more effectively than the cell-based approach, as indicated by a complete clearance of storage, significant attenuation of lysosomal hypertrophy, and normalized levels of the autophagy marker sequestosome 1/p62 and microtubule-associated protein 1 light chain 3-II. While the cell-based treatment did not prevent the rapidly progressing loss of various retinal cell types, the gene therapy approach markedly attenuated retinal degeneration as demonstrated by a pronounced rescue of photoreceptor cells and rod bipolar cells.
Collapse
Affiliation(s)
- Junling Liu
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mahmoud Bassal
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefanie Schlichting
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ingke Braren
- Vector Facility, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
31
|
Tuermer A, Mausbach S, Kaade E, Damme M, Sylvester M, Gieselmann V, Thelen M. CLN6 deficiency causes selective changes in the lysosomal protein composition. Proteomics 2021; 21:e2100043. [PMID: 34432360 DOI: 10.1002/pmic.202100043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/31/2021] [Accepted: 08/17/2021] [Indexed: 11/06/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) collectively account for the highest prevalence of inherited neurodegenerative diseases in childhood. This disease group is classified by the deposition of similar autofluorescence storage material in lysosomes that is accompanied by seizures, blindness and premature mortality in later disease stages. Defects in several genes affecting various proteins lead to NCL, one of them being CLN6, a transmembrane protein resident in the endoplasmic reticulum. Dysfunctionality of CLN6 causes variant late infantile NCL (vLINCL). The function of CLN6 and how its deficiency affects lysosomal integrity remains unknown. In this work, we performed a comparative proteomic analysis of isolated lysosomal fractions from liver tissue of nclf mice, a natural mouse model displaying a similar disease course than its human counterpart. We could identify a drastic reduction in the protein amounts of selected lysosomal proteins, amongst them several members of the NCL protein family. Most of these proteins were N-glycosylated, soluble hydrolases and their reduction in protein levels was verified by western blotting and enzymatic assays. Hereby we could directly link Cln6 dysfunction to changes in the lysosomal compartment and to other NCL forms.
Collapse
Affiliation(s)
- Andreas Tuermer
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| | - Simone Mausbach
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| | - Edgar Kaade
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| | - Markus Damme
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| | - Melanie Thelen
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
32
|
Born JR, Chenniappan VK, Davis DP, Dahlin JL, Marugan JJ, Patnaik S. The Impact of Assay Design on Medicinal Chemistry: Case Studies. SLAS DISCOVERY 2021; 26:1243-1255. [PMID: 34225522 DOI: 10.1177/24725552211026238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Joshua R Born
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Vinoth Kumar Chenniappan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Danielle P Davis
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jayme L Dahlin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Juan J Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
33
|
Di Spiezio A, Marques ARA, Schmidt L, Thießen N, Gallwitz L, Fogh J, Bartsch U, Saftig P. Analysis of cathepsin B and cathepsin L treatment to clear toxic lysosomal protein aggregates in neuronal ceroid lipofuscinosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166205. [PMID: 34214607 DOI: 10.1016/j.bbadis.2021.166205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
Proteolysis mediated by lysosomal cathepsin proteases maintains a physiological flow in autophagy, phagocytosis and endocytosis. Neuronal Ceroid Lipofuscinosis (NCL) is a childhood neurodegenerative disorder characterized by disturbed autophagic flow and pathological accumulation of proteins. We demonstrated a therapeutic clearance of protein aggregates after dosing NCL10 mice with recombinant human pro-cathepsin-D. Prompted by these results and speculating that cathepsins may act in a redundant and in an hierarchical manner we envisaged that a treatment with human recombinant cysteine proteases pro-cathepsin-L (proCTSL) and pro-cathepsin-B (proCTSB) could similarly be used to induce protein degradation. Both enzymes were taken up by mannose 6-phosphate receptor- and LRP-receptor-mediated endocytosis and processed to the lysosomal mature cathepsins. In murine NCL10 astrocytes an abnormal increase in LAMP1 and saposin expression was revealed. Although proCTSB application did not improve this phenotype, proCTSL treatment led to reduced saposin-C levels in this model as well as in an acute brain slice model. Intracerebral dosing in a NCL10 mouse model revealed cellular and lysosomal uptake of both enzymes. Only proCTSL mildly reduced saposin-C levels and attenuated reactive astrogliosis. Application of both proteases did not improve weight loss and mortality of mutant mice. Our data reveal that although recombinant lysosomal proteases can be efficiently delivered to neuronal lysosomes cysteine proteases are less efficient in protein aggregates clearance as compared to the cathepsin-D treatment. Our data including in vitro degradation assays support the idea that bulk proteolysis requires a hierarchical process in which both aspartyl and cysteine hydrolases play a role.
Collapse
Affiliation(s)
| | - André R A Marques
- Chronic Diseases Research Centre (CEDOC), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
| | - Lina Schmidt
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Niklas Thießen
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Lisa Gallwitz
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | | | - Udo Bartsch
- Department of Ophthalmology, Experimental Opthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany.
| |
Collapse
|
34
|
McKinzie DL, Winneroski LL, Green SJ, Hembre EJ, Erickson JA, Willis BA, Monk SA, Aluise CD, Baker TK, Lopez JE, Hendle J, Beck JP, Brier RA, Boggs LN, Borders AR, Cocke PJ, Garcia-Losada P, Lowe SL, Mathes BM, May PC, Porter WJ, Stout SL, Timm DE, Watson BM, Yang Z, Mergott DJ. Discovery and Early Clinical Development of LY3202626, a Low-Dose, CNS-Penetrant BACE Inhibitor. J Med Chem 2021; 64:8076-8100. [PMID: 34081466 DOI: 10.1021/acs.jmedchem.1c00489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The beta-site APP cleaving enzyme 1, known as BACE1, has been a widely pursued Alzheimer's disease drug target owing to its critical role in the production of amyloid-beta. We have previously reported the clinical development of LY2811376 and LY2886721. LY2811376 advanced to Phase I before development was terminated due to nonclinical retinal toxicity. LY2886721 advanced to Phase II, but development was halted due to abnormally elevated liver enzymes. Herein, we report the discovery and clinical development of LY3202626, a highly potent, CNS-penetrant, and low-dose BACE inhibitor, which successfully addressed these key development challenges.
Collapse
Affiliation(s)
- David L McKinzie
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Leonard L Winneroski
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Steven J Green
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Erik J Hembre
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Jon A Erickson
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Brian A Willis
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Scott A Monk
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Christopher D Aluise
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Thomas K Baker
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Jose E Lopez
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Jörg Hendle
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Biotechnology Center, San Diego, California 92121, United States
| | - James P Beck
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Biotechnology Center, San Diego, California 92121, United States
| | - Richard A Brier
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | | | - Anthony R Borders
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | | | - Pablo Garcia-Losada
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Stephen L Lowe
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Brian M Mathes
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | | | | | - Stephanie L Stout
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - David E Timm
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Brian M Watson
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Zhixiang Yang
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Dustin J Mergott
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| |
Collapse
|
35
|
Bassal M, Liu J, Jankowiak W, Saftig P, Bartsch U. Rapid and Progressive Loss of Multiple Retinal Cell Types in Cathepsin D-Deficient Mice-An Animal Model of CLN10 Disease. Cells 2021; 10:696. [PMID: 33800998 PMCID: PMC8003850 DOI: 10.3390/cells10030696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Vision loss is among the characteristic symptoms of neuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative lysosomal storage disorder. Here, we performed an in-depth analysis of retinal degeneration at the molecular and cellular levels in mice lacking the lysosomal aspartyl protease cathepsin D, an animal model of congenital CLN10 disease. We observed an early-onset accumulation of storage material as indicated by elevated levels of saposin D and subunit C of the mitochondrial ATP synthase. The accumulation of storage material was accompanied by reactive astrogliosis and microgliosis, elevated expression of the autophagy marker sequestosome 1/p62 and a dysregulated expression of several lysosomal proteins. The number of cone photoreceptor cells was reduced as early as at postnatal day 5. At the end stage of the disease, the outer nuclear layer was almost atrophied, and all cones were lost. A significant loss of rod and cone bipolar cells, amacrine cells and ganglion cells was found at advanced stages of the disease. Results demonstrate that cathepsin D deficiency results in an early-onset and rapidly progressing retinal dystrophy that involves all retinal cell types. Data of the present study will serve as a reference for studies aimed at developing treatments for retinal degeneration in CLN10 disease.
Collapse
Affiliation(s)
- Mahmoud Bassal
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| | - Junling Liu
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| | - Wanda Jankowiak
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany;
| | - Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.B.); (J.L.); (W.J.)
| |
Collapse
|
36
|
Bunk J, Prieto Huarcaya S, Drobny A, Dobert JP, Walther L, Rose-John S, Arnold P, Zunke F. Cathepsin D Variants Associated With Neurodegenerative Diseases Show Dysregulated Functionality and Modified α-Synuclein Degradation Properties. Front Cell Dev Biol 2021; 9:581805. [PMID: 33681191 PMCID: PMC7928348 DOI: 10.3389/fcell.2021.581805] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Cathepsin D (CTSD) is a lysosomal protease important for the degradation of various substrates, including disease-associated proteins like α-synuclein (a-syn), amyloid precursor protein (APP) and tau, all of which tend to aggregate if not efficiently degraded. Hence, it is not surprising that genetic variants within the CTSD gene have been linked to neurodegenerative diseases, like Parkinson’s and Alzheimer’s disease (PD, AD), as well as the lysosomal storage disorder neuronal ceroid lipofuscinosis type-10 (NCL10). Although recent studies have shown the molecular dependence of substrate degradation via CTSD within autophagic pathways, only little is known about the precise role of lysosomal CTSD function in disease development. We here performed biochemical, cellular and structural analyses of eleven disease-causing CTSD point mutations found in genomic sequencing data of patients to understand their role in neurodegeneration. These CTSD variants were analyzed for cellular localization, maturation and enzymatic activity in overexpression analyses. Moreover, for PD-associated mutants, intracellular degradation of a-syn was monitored. In summary, our results suggest that NCL10-associated CTSD variants are significantly impaired in lysosomal maturation and enzymatic activity, whereas the AD- and PD-associated variants seemed rather unaffected, indicating normal maturation, and lysosomal presence. Interestingly, a PD-associated CTSD variant (A239V) exhibited increased enzymatic activity accompanied by enhanced a-syn degradation. By structural analyses of this mutant utilizing molecular dynamics simulation (MDS), we identified a structural change within a loop adjacent to the catalytic center leading to a higher flexibility and potentially accelerated substrate exchange rates. Our data sheds light onto the role of CTSD in disease development and helps to understand the structural regulation of enzymatic function, which could be utilized for targeted CTSD activation. Because of the degradative function of CTSD, this enzyme is especially interesting for therapeutic strategies tackling protein aggregates in neurodegenerative disorders.
Collapse
Affiliation(s)
- Josina Bunk
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Susy Prieto Huarcaya
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alice Drobny
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Philipp Dobert
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lina Walther
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Philipp Arnold
- Institute of Anatomy, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Zunke
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
37
|
Kim WD, Yap SQ, Huber RJ. A Proteomics Analysis of Calmodulin-Binding Proteins in Dictyostelium discoideum during the Transition from Unicellular Growth to Multicellular Development. Int J Mol Sci 2021; 22:ijms22041722. [PMID: 33572113 PMCID: PMC7915506 DOI: 10.3390/ijms22041722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Calmodulin (CaM) is an essential calcium-binding protein within eukaryotes. CaM binds to calmodulin-binding proteins (CaMBPs) and influences a variety of cellular and developmental processes. In this study, we used immunoprecipitation coupled with mass spectrometry (LC-MS/MS) to reveal over 500 putative CaM interactors in the model organism Dictyostelium discoideum. Our analysis revealed several known CaMBPs in Dictyostelium and mammalian cells (e.g., myosin, calcineurin), as well as many novel interactors (e.g., cathepsin D). Gene ontology (GO) term enrichment and Search Tool for the Retrieval of Interacting proteins (STRING) analyses linked the CaM interactors to several cellular and developmental processes in Dictyostelium including cytokinesis, gene expression, endocytosis, and metabolism. The primary localizations of the CaM interactors include the nucleus, ribosomes, vesicles, mitochondria, cytoskeleton, and extracellular space. These findings are not only consistent with previous work on CaM and CaMBPs in Dictyostelium, but they also provide new insight on their diverse cellular and developmental roles in this model organism. In total, this study provides the first in vivo catalogue of putative CaM interactors in Dictyostelium and sheds additional light on the essential roles of CaM and CaMBPs in eukaryotes.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; (W.D.K.); (S.Q.Y.)
| | - Shyong Q. Yap
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; (W.D.K.); (S.Q.Y.)
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
- Correspondence: ; Tel.: +1-705-748-1011 (ext. 7316)
| |
Collapse
|
38
|
Best HL, Clare AJ, McDonald KO, Wicky HE, Hughes SM. An altered secretome is an early marker of the pathogenesis of CLN6 Batten disease. J Neurochem 2021; 157:764-780. [PMID: 33368303 DOI: 10.1111/jnc.15285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/20/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of inherited childhood neurodegenerative disorders. In addition to the accumulation of auto-fluorescent storage material in lysosomes, NCLs are largely characterised by region-specific neuroinflammation that can predict neuron loss. These phenotypes suggest alterations in the extracellular environment-making the secretome an area of significant interest. This study investigated the secretome in the CLN6 (ceroid-lipofuscinosis neuronal protein 6) variant of NCL. To investigate the CLN6 secretome, we co-cultured neurons and glia isolated from Cln6nclf or Cln6± mice, and utilised mass spectrometry to compare protein constituents of conditioned media. The significant changes noted in cathepsin enzymes, were investigated further via western blotting and enzyme activity assays. Viral-mediated gene therapy was used to try and rescue the wild-type phenotype and restore the secretome-both in vitro in co-cultures and in vivo in mouse plasma. In Cln6nclf cells, proteomics revealed a marked increase in catabolic and cytoskeletal-associated proteins-revealing new similarities between the pathogenic signatures of NCLs with other neurodegenerative disorders. These changes were, in part, corrected by gene therapy intervention, suggesting these proteins as candidate in vitro biomarkers. Importantly, these in vitro changes show promise for in vivo translation, with Cathepsin L (CTSL) activity reduced in both co-cultures and Cln6nclf plasma samples post gene-therapy. This work suggests the secretome plays a role in CLN6 pathogenesis and highlights its potential use as an in vitro model. Proteomic changes present a list of candidate biomarkers for monitoring disease and assessing potential therapeutics in future studies.
Collapse
Affiliation(s)
- Hannah L Best
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Alison J Clare
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Kirstin O McDonald
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Hollie E Wicky
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
39
|
Hrabinova M, Pejchal J, Kucera T, Jun D, Schmidt M, Soukup O. Is It the Twilight of BACE1 Inhibitors? Curr Neuropharmacol 2021; 19:61-77. [PMID: 32359337 PMCID: PMC7903497 DOI: 10.2174/1570159x18666200503023323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
β-secretase (BACE1) has been regarded as a prime target for the development of amyloid beta (Aβ) lowering drugs in the therapy of Alzheimer´s disease (AD). Although the enzyme was discovered in 1991 and helped to formulate the Aβ hypothesis as one of the very important features of AD etiopathogenesis, progress in AD treatment utilizing BACE1 inhibitors has remained limited. Moreover, in the last years, major pharmaceutical companies have discontinued clinical trials of five BACE1 inhibitors that had been strongly perceived as prospective. In our review, the Aβ hypothesis, the enzyme, its functions, and selected substrates are described. BACE1 inhibitors are classified into four generations. Those that underwent clinical trials displayed adverse effects, including weight loss, skin rashes, worsening of neuropsychiatric symptoms, etc. Some inhibitors could not establish a statistically significant risk-benefit ratio, or even scored worse than placebo. We still believe that drugs targeting BACE1 may still hide some potential, but a different approach to BACE1 inhibition or a shift of focus to modulation of its trafficking and/or post-translational modification should now be followed.
Collapse
Affiliation(s)
| | - Jaroslav Pejchal
- Address correspondence to this author at the Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno, Hradec Kralove, Czech Republic;E-mail:
| | | | | | | | | |
Collapse
|
40
|
Nagai N, Kawashima H, Toda E, Homma K, Osada H, Guzman NA, Shibata S, Uchiyama Y, Okano H, Tsubota K, Ozawa Y. Renin-angiotensin system impairs macrophage lipid metabolism to promote age-related macular degeneration in mouse models. Commun Biol 2020; 3:767. [PMID: 33299105 PMCID: PMC7725839 DOI: 10.1038/s42003-020-01483-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome, a condition involving obesity and hypertension, increases the risk of aging-associated diseases such as age-related macular degeneration (AMD). Here, we demonstrated that high-fat diet (HFD)-fed mice accumulated oxidized low-density lipoprotein (ox-LDL) in macrophages through the renin–angiotensin system (RAS). The ox-LDL-loaded macrophages were responsible for visual impairment in HFD mice along with a disorder of the retinal pigment epithelium (RPE), which is required for photoreceptor outer segment renewal. RAS repressed ELAVL1, which reduced PPARγ, impeding ABCA1 induction to levels that are sufficient to excrete overloaded cholesterol within the macrophages. The ox-LDL-loaded macrophages expressed inflammatory cytokines and attacked the RPE. An antihypertensive drug, angiotensin II type 1 receptor (AT1R) blocker, resolved the decompensation of lipid metabolism in the macrophages and reversed the RPE condition and visual function in HFD mice. AT1R signaling could be a future therapeutic target for macrophage-associated aging diseases, such as AMD. Nagai et al. show that mice fed high-fat diet (HFD) accumulate oxidized low-density lipoprotein in macrophages through the renin–angiotensin system, which impairs visual function. They find that angiotensin II type 1 receptor (AT1R) improves the visual function of HFD mice, suggesting AT1R signaling as a potential therapeutic target for age-related macular degeneration.
Collapse
Affiliation(s)
- Norihiro Nagai
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hirohiko Kawashima
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Kohei Homma
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hideto Osada
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Naymel A Guzman
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan. .,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan. .,Department of Ophthalmology, St. Luke's International Hospital, 9-1 Akashi-Cho, Chuo-Ku, Tokyo, 104-8560, Japan. .,St. Luke's International University, 9-1 Akashi-Cho, Tokyo, 104-8560, Japan.
| |
Collapse
|
41
|
Cathepsin D deficiency in mammary epithelium transiently stalls breast cancer by interference with mTORC1 signaling. Nat Commun 2020; 11:5133. [PMID: 33046706 PMCID: PMC7552405 DOI: 10.1038/s41467-020-18935-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Cathepsin D (CTSD) is a lysosomal protease and a marker of poor prognosis in breast cancer. However, the cells responsible for this association and the function of CTSD in cancer are still incompletely understood. By using a conditional CTSD knockout mouse crossed to the transgenic MMTV-PyMT breast cancer model we demonstrate that CTSD deficiency in the mammary epithelium, but not in myeloid cells, blocked tumor development in a cell-autonomous manner. We show that lack of CTSD impaired mechanistic Target of Rapamycin Complex 1 (mTORC1) signaling and induced reversible cellular quiescence. In line, CTSD-deficient tumors started to grow with a two-month delay and quiescent Ctsd-/- tumor cells re-started proliferation upon long-term culture. This was accompanied by rewiring of oncogenic gene expression and signaling pathways, while mTORC1 signaling remained permanently disabled in CTSD-deficient cells. Together, these studies reveal a tumor cell-autonomous effect of CTSD deficiency, and establish a pivotal role of this protease in the cellular response to oncogenic stimuli. The lysosomal aspartic protease Cathepsin D (CTSD) is associated with breast cancer progression. Here the authors show that selective inactivation of CTSD in mammary epithelium delays tumor onset due to impaired mTORC1 signaling, but resumes malignant growth due to compensatory oncogenic pathways
Collapse
|
42
|
Argentati C, Tortorella I, Bazzucchi M, Emiliani C, Morena F, Martino S. The Other Side of Alzheimer's Disease: Influence of Metabolic Disorder Features for Novel Diagnostic Biomarkers. J Pers Med 2020; 10:E115. [PMID: 32899957 PMCID: PMC7563360 DOI: 10.3390/jpm10030115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Nowadays, the amyloid cascade hypothesis is the dominant model to explain Alzheimer's disease (AD) pathogenesis. By this hypothesis, the inherited genetic form of AD is discriminated from the sporadic form of AD (SAD) that accounts for 85-90% of total patients. The cause of SAD is still unclear, but several studies have shed light on the involvement of environmental factors and multiple susceptibility genes, such as Apolipoprotein E and other genetic risk factors, which are key mediators in different metabolic pathways (e.g., glucose metabolism, lipid metabolism, energetic metabolism, and inflammation). Furthermore, growing clinical evidence in AD patients highlighted the presence of affected systemic organs and blood similarly to the brain. Collectively, these findings revise the canonical understating of AD pathogenesis and suggest that AD has metabolic disorder features. This review will focus on AD as a metabolic disorder and highlight the contribution of this novel understanding on the identification of new biomarkers for improving an early AD diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (C.A.); (I.T.); (M.B.); (C.E.); (F.M.)
| |
Collapse
|
43
|
Nelvagal HR, Lange J, Takahashi K, Tarczyluk-Wells MA, Cooper JD. Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165570. [DOI: 10.1016/j.bbadis.2019.165570] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
44
|
Bajaj L, Sharma J, di Ronza A, Zhang P, Eblimit A, Pal R, Roman D, Collette JR, Booth C, Chang KT, Sifers RN, Jung SY, Weimer JM, Chen R, Schekman RW, Sardiello M. A CLN6-CLN8 complex recruits lysosomal enzymes at the ER for Golgi transfer. J Clin Invest 2020; 130:4118-4132. [PMID: 32597833 PMCID: PMC7410054 DOI: 10.1172/jci130955] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
Lysosomal enzymes are synthesized in the endoplasmic reticulum (ER) and transferred to the Golgi complex by interaction with the Batten disease protein CLN8 (ceroid lipofuscinosis, neuronal, 8). Here we investigated the relationship of this pathway with CLN6, an ER-associated protein of unknown function that is defective in a different Batten disease subtype. Experiments focused on protein interaction and trafficking identified CLN6 as an obligate component of a CLN6-CLN8 complex (herein referred to as EGRESS: ER-to-Golgi relaying of enzymes of the lysosomal system), which recruits lysosomal enzymes at the ER to promote their Golgi transfer. Mutagenesis experiments showed that the second luminal loop of CLN6 is required for the interaction of CLN6 with the enzymes but dispensable for interaction with CLN8. In vitro and in vivo studies showed that CLN6 deficiency results in inefficient ER export of lysosomal enzymes and diminished levels of the enzymes at the lysosome. Mice lacking both CLN6 and CLN8 did not display aggravated pathology compared with the single deficiencies, indicating that the EGRESS complex works as a functional unit. These results identify CLN6 and the EGRESS complex as key players in lysosome biogenesis and shed light on the molecular etiology of Batten disease caused by defects in CLN6.
Collapse
Affiliation(s)
- Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Jaiprakash Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Alberto di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Pengcheng Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Aiden Eblimit
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Rituraj Pal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Dany Roman
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - John R. Collette
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Clarissa Booth
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Kevin T. Chang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Richard N. Sifers
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Sung Y. Jung
- Department of Biochemistry and Molecular Biology
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, and
- Department of Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Randy W. Schekman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
45
|
Oliva Trejo JA, Tanida I, Suzuki C, Kakuta S, Tada N, Uchiyama Y. Characterization of starvation-induced autophagy in cerebellar Purkinje cells of pHluorin-mKate2-human LC3B transgenic mice. Sci Rep 2020; 10:9643. [PMID: 32541814 PMCID: PMC7295967 DOI: 10.1038/s41598-020-66370-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
We generated a new transgenic mouse model that expresses a pHluorin-mKate2 fluorescent protein fused with human LC3B (PK-LC3 mice) for monitoring autophagy activity in neurons of the central nervous system. Histological analysis revealed fluorescent puncta in neurons of the cerebral cortex, hippocampus, cerebellar Purkinje cells, and anterior spinal regions. Using CLEM analysis, we confirmed that PK-LC3-positive puncta in the perikarya of Purkinje cells correspond to autophagic structures. To validate the usability of PK-LC3 mice, we quantified PK-LC3 puncta in Purkinje cells of mice kept in normal feeding conditions and of mice starved for 24 hours. Our results showed a significant increase in autophagosome number and in individual puncta areal size following starvation. To confirm these results, we used morphometry at the electron microscopic level to analyze the volume densities of autophagosomes and lysosomes/autolysosomes in Purkinje cells of PK-LC3 mice. The results revealed that the volume densities of autophagic structures increase significantly after starvation. Together, our data show that PK-LC3 mice are suitable for monitoring autophagy flux in Purkinje cells of the cerebellum, and potentially other areas in the central nervous system.
Collapse
Affiliation(s)
- Juan Alejandro Oliva Trejo
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Isei Tanida
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan.
| | - Chigure Suzuki
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Soichiro Kakuta
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Norihiro Tada
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan.
| |
Collapse
|
46
|
Nyuzuki H, Ito S, Nagasaki K, Nitta Y, Matsui N, Saitoh A, Matsui H. Degeneration of dopaminergic neurons and impaired intracellular trafficking in Atp13a2 deficient zebrafish. IBRO Rep 2020; 9:1-8. [PMID: 32529115 PMCID: PMC7283103 DOI: 10.1016/j.ibror.2020.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022] Open
Abstract
ATP13A2 is the autosomal recessive causative gene for juvenile-onset Parkinson’s disease (PARK9, Parkinson’s disease 9), also known as Kufor-Rakeb syndrome. The disease is characterized by levodopa-responsive Parkinsonism, supranuclear gaze palsy, spasticity, and dementia. Previously, we have reported that Atp13a2 deficient medaka fish showed dopaminergic neurodegeneration and lysosomal dysfunction, indicating that lysosome-autophagy impairment might be one of the key pathogeneses of Parkinson’s disease. Here, we established Atp13a2 deficient zebrafish using CRISPR/Cas9 gene editing. We found that the number of TH + neurons in the posterior tuberculum and the locus coeruleus significantly reduced (dopaminergic neurons, 64 % at 4 months and 37 % at 12 months, p < 0.001 and p < 0.05, respectively; norepinephrine neurons, 52 % at 4 months and 40 % at 12 months, p < 0.001 and p < 0.05, respectively) in Atp13a2 deficient zebrafish, proving the degeneration of dopaminergic neurons. In addition, we found the reduction (60 %, p < 0.05) of cathepsin D protein expression in Atp13a2 deficient zebrafish using immunoblot. Transmission electron microscopy analysis using middle diencephalon samples from Atp13a2 deficient zebrafish showed lysosome-like bodies with vesicle accumulation and fingerprint-like structures, suggesting lysosomal dysfunction. Furthermore, a significant reduction (p < 0.001) in protein expression annotated with vesicle fusion with Golgi apparatus in Atp13a2 deficient zebrafish by liquid-chromatography tandem mass spectrometry suggested intracellular trafficking impairment. Therefore, we concluded that Atp13a2 deficient zebrafish exhibited degeneration of dopaminergic neurons, lysosomal dysfunction and the possibility of intracellular trafficking impairment, which would be the key pathogenic mechanism underlying Parkinson’s disease.
Collapse
Affiliation(s)
- Hiromi Nyuzuki
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan.,Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shinji Ito
- Medical Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Nagasaki
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yohei Nitta
- Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Noriko Matsui
- Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan.,Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan.,Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
47
|
Liu W, Kleine-Holthaus SM, Herranz-Martin S, Aristorena M, Mole SE, Smith AJ, Ali RR, Rahim AA. Experimental gene therapies for the NCLs. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165772. [PMID: 32220628 DOI: 10.1016/j.bbadis.2020.165772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of rare monogenic neurodegenerative diseases predominantly affecting children. All NCLs are lethal and incurable and only one has an approved treatment available. To date, 13 NCL subtypes (CLN1-8, CLN10-14) have been identified, based on the particular disease-causing defective gene. The exact functions of NCL proteins and the pathological mechanisms underlying the diseases are still unclear. However, gene therapy has emerged as an attractive therapeutic strategy for this group of conditions. Here we provide a short review discussing updates on the current gene therapy studies for the NCLs.
Collapse
Affiliation(s)
- Wenfei Liu
- UCL School of Pharmacy, University College London, UK
| | | | - Saul Herranz-Martin
- UCL School of Pharmacy, University College London, UK; Centro de Biología Molecular Severo Ochoa (UAM-CSIC) and Departamento de Biología Molecular,Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 1EH, UK
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, University College London, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, UK.
| |
Collapse
|
48
|
Myocardial cathepsin D is downregulated in sudden cardiac death. PLoS One 2020; 15:e0230375. [PMID: 32176724 PMCID: PMC7075574 DOI: 10.1371/journal.pone.0230375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/27/2020] [Indexed: 11/19/2022] Open
Abstract
Cathepsins are the major lysosomal proteases that maintain intracellular homeostasis. Herein, we investigated the alterations in myocardial cathepsin expression during aging, cardiac hypertrophy, and sudden cardiac death (SCD). Cardiac tissue and blood were sampled from autopsy cases. Subjects were classified into three groups: SCD with cardiac hypertrophy (SCH), compensated cardiac hypertrophy (CCH), and control. Immunoblotting was performed for the major cardiac cathepsins and their targets: cathepsin B, D, and L (CTSB/D/L), p62, ATP synthase subunit c (ATPSC), and α-synuclein (ASNC). Immunohistochemical analysis and ELISA using serum samples were performed for CTSD. Cardiac CTSB and CTSD were upregulated with age (r = 0.63 and 0.60, respectively), whereas the levels of CTSL, p62, ATPSC, and ASNC remained unchanged. In age-matched groups, cardiac CTSD was significantly downregulated in SCH (p = 0.006) and CTSL was moderately downregulated in CCH (p = 0.021); however, p62, ATPSC, and ASNC were not upregulated in cardiac hypertrophy. Immunohistochemistry also revealed decreased myocardial CTSD levels in SCH, and serum CTSD levels were relatively lower in SCH cases. Overall, these results suggest that upregulation of cardiac CTSB and CTSD with age may compensate for the elevated proteolytic demand, and that downregulation of CTSD is potentially linked to SCH.
Collapse
|
49
|
Lysosomal Hydrolase Cathepsin D Non-proteolytically Modulates Dendritic Morphology in Drosophila. Neurosci Bull 2020; 36:1147-1157. [PMID: 32170568 PMCID: PMC7532236 DOI: 10.1007/s12264-020-00479-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023] Open
Abstract
The main lysosomal protease cathepsin D (cathD) is essential for maintaining tissue homeostasis via its degradative function, and its loss leads to ceroid accumulation in the mammalian nervous system, which results in progressive neurodegeneration. Increasing evidence implies non-proteolytic roles of cathD in regulating various biological processes such as apoptosis, cell proliferation, and migration. Along these lines, we here showed that cathD is required for modulating dendritic architecture in the nervous system independent of its traditional degradative function. Upon cathD depletion, class I and class III arborization (da) neurons in Drosophila larvae exhibited aberrant dendritic morphology, including over-branching, aberrant turning, and elongation defects. Re-introduction of wild-type cathD or its proteolytically-inactive mutant dramatically abolished these morphological defects. Moreover, cathD knockdown also led to dendritic defects in the adult mushroom bodies, suggesting that cathD-mediated processes are required in both the peripheral and central nervous systems. Taken together, our results demonstrate a critical role of cathD in shaping dendritic architecture independent of its proteolytic function.
Collapse
|
50
|
Stone S, Wu S, Nave KA, Lin W. The UPR preserves mature oligodendrocyte viability and function in adults by regulating autophagy of PLP. JCI Insight 2020; 5:132364. [PMID: 32053121 DOI: 10.1172/jci.insight.132364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/06/2020] [Indexed: 01/03/2023] Open
Abstract
Maintaining cellular proteostasis is essential for oligodendrocyte viability and function; however, its underlying mechanisms remain unexplored. Unfolded protein response (UPR), which comprises 3 parallel branches, inositol requiring enzyme 1 (IRE1), pancreatic ER kinase (PERK), and activating transcription factor 6α (ATF6α), is a major mechanism that maintains cellular proteostasis by facilitating protein folding, attenuating protein translation, and enhancing autophagy and ER-associated degradation. Here we report that impaired UPR in oligodendrocytes via deletion of PERK and ATF6α did not affect developmental myelination but caused late-onset mature oligodendrocyte dysfunction and death in young adult mice. The detrimental effects of the impaired UPR on mature oligodendrocytes were accompanied by autophagy impairment and intracellular proteolipid protein (PLP) accumulation and were rescued by PLP deletion. Data indicate that PLP was degraded by autophagy and that intracellular PLP accumulation was cytotoxic to oligodendrocytes. Thus, these findings imply that the UPR is required for maintaining cellular proteostasis and the viability and function of mature oligodendrocytes in adults by regulating autophagy of PLP.
Collapse
Affiliation(s)
- Sarrabeth Stone
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shuangchan Wu
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wensheng Lin
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|