1
|
Das SC, Schulmann A, Callor WB, Jerominski L, Panicker MM, Christensen ED, Bunney WE, Williams ME, Coon H, Vawter MP. Altered transcriptomes, cell type proportions, and dendritic spine morphology in hippocampus of suicide decedents. J Affect Disord 2024; 367:118-128. [PMID: 39191313 DOI: 10.1016/j.jad.2024.08.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/03/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Suicide is a manner of death resulting from complex environmental and genetic risks that affect millions of people globally. Both structural and functional studies identified the hippocampus as one of the vulnerable brain regions contributing to suicide risk. METHODS We have identified the hippocampal tissue transcriptomes, gene ontology, cell type proportions, and dendritic spine morphology in controls (n = 28) and suicide decedents (n = 22). In addition, the transcriptomic signature in iPSC-derived neuronal precursor cells (NPCs) and neurons were also investigated in controls (n = 2) and suicide decedents (n = 2). RESULTS The hippocampal tissue transcriptomic data revealed that NPAS4 gene expression was downregulated while ALDH1A2, NAAA, and MLXIPL gene expressions were upregulated in hippocampal tissue of suicide decedents. The gene ontology identified 29 significant pathways including NPAS4-associated gene ontology terms "excitatory post-synaptic potential", "regulation of postsynaptic membrane potential" and "long-term memory" indicating alteration of glutamatergic synapses in the hippocampus of suicide decedents. The cell type deconvolution identified decreased excitatory neuron proportion and an increased inhibitory neuron proportion providing evidence of excitation/inhibition imbalance in the hippocampus of suicide decedents. In addition, suicide decedents had increased dendric spine density in the hippocampus, due to an increase of thin (relatively unstable) dendritic spines, compared to controls. The transcriptomes of iPSC-derived hippocampal-like NPCs and neurons revealed 31 and 33 differentially expressed genes in NPC and neurons, respectively, of suicide decedents. CONCLUSIONS Our findings will provide new insights into the hippocampal neuropathology of suicide.
Collapse
Affiliation(s)
- Sujan C Das
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA
| | | | - William B Callor
- Office of Medical Examiner, Utah Department of Health and Human Services, Salt Lake City, UT, USA
| | - Leslie Jerominski
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mitradas M Panicker
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, USA
| | - Erik D Christensen
- Office of Medical Examiner, Utah Department of Health and Human Services, Salt Lake City, UT, USA
| | - William E Bunney
- Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA
| | - Megan E Williams
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, UT, USA
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Sun Y, Lin Y, Liang N, Xue Z, Xu J, Lin L, Shen Y, Li H, Liu J, Lu J. Methylome-wide association study of adolescent depressive episode with psychotic symptoms and childhood trauma. J Affect Disord 2024:S0165-0327(24)01691-4. [PMID: 39442698 DOI: 10.1016/j.jad.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Emerging evidence suggests that DNA methylation is crucial in the mental disorder pathophysiology. The current study attempted to identify the dysregulation of DNA methylation patterns in adolescent patients suffering from depressive episodes (DE) while considering the impact of various subtypes, including psychotic symptoms and a history of childhood trauma. METHODS The study included 67 patients with DE and 30 healthy controls (HCs) subjects. Severe depressive episode (SDE) patients were grouped according to psychotic symptoms, such as SDE with vs. SDE without psychotic symptoms (cases 29 vs. 21). The Childhood Trauma Questionnaire-Short Form helped assess childhood trauma among all patients. Thus, all the patients were divided into adolescent DE experiencing ≥ two trauma types vs. experiencing ≤ one trauma type (cases, 50 vs. 17). Methylome-wide analysis was conducted on peripheral blood to identify methylation differences in CpG sites for three comparisons: DE vs. HCs, SDE patients with vs. without psychotic symptoms, and DE patients having 0-1 type of childhood trauma vs. those having ≥two types of childhood trauma. RESULTS Adolescent DE patients demonstrated a predominant trend of lower methylation levels than HCs, with 259 hypermethylated and 3956 hypomethylated sites. Differentially hypomethylated sites involve related genes such as FKBP5, BDNF, NR3C1, GABRB3, SHANK1, SLC38A1, SLC6A18, CHRNB1, CTNNA2, CTTNBP2, etc. All these genes could be involved in DE pathogenesis. Significant DNA methylation changes could be observed in SDE subgroups with and without psychotic symptoms (e.g., genes like DTNB, CNTN1, CTNNA2), along with those DE patients having 0-1 type of childhood trauma compared to those with ≥2 types (e.g., VWA3B, SYT10, SDK2, CAMSAP3). Many significant methylated sites were associated with genes involved in brain development, highlighting the potential pathophysiological mechanisms linked with DE and its subtypes, such as psychotic symptoms and childhood trauma. CONCLUSION Our findings suggest that differential DNA methylation is associated with the pathophysiology of DE, as well as the presence of psychotic symptoms and a history of childhood trauma. These blood-based methylation patterns may serve as biomarkers for DE and shed light on underlying mechanisms across these subtypes.
Collapse
Affiliation(s)
- Yumeng Sun
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China
| | - Yuchen Lin
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nana Liang
- State Key Laboratory of Chemical Oncogenomics, Guandong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China; Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China
| | - Zhenpeng Xue
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China
| | - Jianchang Xu
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China
| | - Ling Lin
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China
| | - Yuan Shen
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China
| | - Huiyan Li
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China
| | - Jianbo Liu
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China.
| | - Jianping Lu
- Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China.
| |
Collapse
|
3
|
Morales-Martínez M, Andón-García D, Patiño-Santiago KA, Parga-Ortega JM, Hernández-Hernández A, Aquino-Jarquin G, Patino-Lopez G. Identification of potential new T cell activation molecules: a Bioinformatic Approach. Sci Rep 2024; 14:22219. [PMID: 39333573 PMCID: PMC11436975 DOI: 10.1038/s41598-024-73003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
T-cell activation is central for the initiation of T cell mediated adaptive immune response and is the result of the close communication between the Antigen Presenting Cell (APC) and the T lymphocyte. Although T-cell activation is currently well understood, and many intracellular pathways are well characterized, nevertheless new players are constantly identified, and this complements the known protein interactome. In this work we aimed to identify new proteins involved in T cell activation. We reviewed and analyzed results of microarray gene expression datasets reported in the public database GEO-NCBI. Using data from GSE136625, GSE50971, GSE13887, GSE11989 and GSE902 we performed different comparisons using R and other bioinformatic tools including GEO2R and we report here upregulated genes that have no previous reports in immune related functions and with potential participation upon T-cell activation. Our results indicate that RND3, SYT10, IgSF6 and PIN1 are potential new T-cell activation molecules.
Collapse
Affiliation(s)
- Mario Morales-Martínez
- Immunology and Proteomics Laboratory, Children's Hospital of Mexico, Mexico City, 06720, Mexico
| | - David Andón-García
- Immunology and Proteomics Laboratory, Children's Hospital of Mexico, Mexico City, 06720, Mexico
| | | | | | | | - Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section, Genomics, Genetics, and Bioinformatics Research Laboratory, 'Federico Gómez' Children's Hospital of Mexico, Mexico City, 06720, Mexico
| | - Genaro Patino-Lopez
- Immunology and Proteomics Laboratory, Children's Hospital of Mexico, Mexico City, 06720, Mexico.
| |
Collapse
|
4
|
Kim H, Melliti N, Breithausen E, Michel K, Colomer SF, Poguzhelskaya E, Nemcova P, Ewell L, Blaess S, Becker A, Pitsch J, Dietrich D, Schoch S. Paroxysmal dystonia results from the loss of RIM4 in Purkinje cells. Brain 2024; 147:3171-3188. [PMID: 38478593 DOI: 10.1093/brain/awae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 09/04/2024] Open
Abstract
Full-length RIM1 and 2 are key components of the presynaptic active zone that ubiquitously control excitatory and inhibitory neurotransmitter release. Here, we report that the function of the small RIM isoform RIM4, consisting of a single C2 domain, is strikingly different from that of the long isoforms. RIM4 is dispensable for neurotransmitter release but plays a postsynaptic, cell type-specific role in cerebellar Purkinje cells that is essential for normal motor function. In the absence of RIM4, Purkinje cell intrinsic firing is reduced and caffeine-sensitive, and dendritic integration of climbing fibre input is disturbed. Mice lacking RIM4, but not mice lacking RIM1/2, selectively in Purkinje cells exhibit a severe, hours-long paroxysmal dystonia. These episodes can also be induced by caffeine, ethanol or stress and closely resemble the deficits seen with mutations of the PNKD (paroxysmal non-kinesigenic dystonia) gene. Our data reveal essential postsynaptic functions of RIM proteins and show non-overlapping specialized functions of a small isoform despite high homology to a single domain in the full-length proteins.
Collapse
Affiliation(s)
- Hyuntae Kim
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Nesrine Melliti
- Synaptic Neuroscience Team, Institute of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Eva Breithausen
- Synaptic Neuroscience Team, Institute of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katrin Michel
- Synaptic Neuroscience Team, Institute of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Sara Ferrando Colomer
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Ekaterina Poguzhelskaya
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Paulina Nemcova
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Laura Ewell
- School of Medicine, UC Irvine, 92697 Irvine, USA
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Albert Becker
- Synaptic Neuroscience Team, Institute of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Dirk Dietrich
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Susanne Schoch
- Synaptic Neuroscience Team, Institute of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
5
|
Kwon OH, Choe J, Kim D, Kim S, Moon C. Sensory Stimulation-dependent Npas4 Expression in the Olfactory Bulb during Early Postnatal Development. Exp Neurobiol 2024; 33:77-98. [PMID: 38724478 PMCID: PMC11089401 DOI: 10.5607/en23037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 05/15/2024] Open
Abstract
The development of the olfactory system is influenced by sensory inputs, and it maintains neuronal generation and plasticity throughout the lifespan. The olfactory bulb contains a higher proportion of interneurons than other brain regions, particularly during the early postnatal period of neurogenesis. Although the relationship between sensory stimulation and olfactory bulb development during the postnatal period has been well studied, the molecular mechanisms have yet to be identified. In this study, we used western blotting and immunohistochemistry to analyze the expression of the transcription factor Npas4, a neuron-specific immediate-early gene that acts as a developmental regulator in many brain regions. We found that Npas4 is highly expressed in olfactory bulb interneurons during the early postnatal stages and gradually decreases toward the late postnatal stages. Npas4 expression was observed in all olfactory bulb layers, including the rostral migratory stream, where newborn neurons are generated and migrate to the olfactory bulb. Under sensory deprivation, the olfactory bulb size and the number of olfactory bulb interneurons were reduced. Furthermore, Npas4 expression and the expression of putative Npas4 downstream molecules were decreased. Collectively, these findings indicate that Npas4 expression induced by sensory input plays a role in the formation of neural circuits with excitatory mitral/tufted cells by regulating the survival of olfactory bulb interneurons during the early stages of postnatal development.
Collapse
Affiliation(s)
- Oh-Hoon Kwon
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jiyun Choe
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Dokyeong Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Sunghwan Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Cheil Moon
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
6
|
Zhu Y, Hui Q, Zhang Z, Fu H, Qin Y, Zhao Q, Li Q, Zhang J, Guo L, He W, Han C. Advancements in the study of synaptic plasticity and mitochondrial autophagy relationship. J Neurosci Res 2024; 102:e25309. [PMID: 38400573 DOI: 10.1002/jnr.25309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Synapses serve as the points of communication between neurons, consisting primarily of three components: the presynaptic membrane, synaptic cleft, and postsynaptic membrane. They transmit signals through the release and reception of neurotransmitters. Synaptic plasticity, the ability of synapses to undergo structural and functional changes, is influenced by proteins such as growth-associated proteins, synaptic vesicle proteins, postsynaptic density proteins, and neurotrophic growth factors. Furthermore, maintaining synaptic plasticity consumes more than half of the brain's energy, with a significant portion of this energy originating from ATP generated through mitochondrial energy metabolism. Consequently, the quantity, distribution, transport, and function of mitochondria impact the stability of brain energy metabolism, thereby participating in the regulation of fundamental processes in synaptic plasticity, including neuronal differentiation, neurite outgrowth, synapse formation, and neurotransmitter release. This article provides a comprehensive overview of the proteins associated with presynaptic plasticity, postsynaptic plasticity, and common factors between the two, as well as the relationship between mitochondrial energy metabolism and synaptic plasticity.
Collapse
Affiliation(s)
- Yousong Zhu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinlong Hui
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zheng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Hao Fu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yali Qin
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qiong Zhao
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinqing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Junlong Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Lei Guo
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Wenbin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Cheng Han
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
7
|
Das SC, Schulmann A, Callor WB, Jerominski L, Panicker MM, Christensen ED, Bunney WE, Williams ME, Coon H, Vawter MP. Altered transcriptomes, cell type proportions, and dendritic spine morphology in hippocampus of suicide deaths. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.28.23285121. [PMID: 36778310 PMCID: PMC9915834 DOI: 10.1101/2023.01.28.23285121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Suicide is a condition resulting from complex environmental and genetic risks that affect millions of people globally. Both structural and functional studies identified the hippocampus as one of the vulnerable brain regions contributing to suicide risk. Here, we have identified the hippocampal transcriptomes, gene ontology, cell type proportions, dendritic spine morphology, and transcriptomic signature in iPSC-derived neuronal precursor cells (NPCs) and neurons in postmortem brain tissue from suicide deaths. The hippocampal tissue transcriptomic data revealed that NPAS4 gene expression was downregulated while ALDH1A2, NAAA, and MLXIPL gene expressions were upregulated in tissue from suicide deaths. The gene ontology identified 29 significant pathways including NPAS4-associated gene ontology terms "excitatory post-synaptic potential", "regulation of postsynaptic membrane potential" and "long-term memory" indicating alteration of glutamatergic synapses in the hippocampus of suicide deaths. The cell type deconvolution identified decreased excitatory neuron proportion and an increased inhibitory neuron proportion providing evidence of excitation/inhibition imbalance in the hippocampus of suicide deaths. In addition, suicide deaths had increased dendric spine density, due to an increase of thin (relatively unstable) dendritic spines, compared to controls. The transcriptomes of iPSC-derived hippocampal-like NPCs and neurons revealed 31 and 33 differentially expressed genes in NPC and neurons, respectively, of suicide deaths. The suicide-associated differentially expressed genes in NPCs were RELN, CRH, EMX2, OXTR, PARM1 and IFITM2 which overlapped with previously published results. The previously-known suicide-associated differentially expressed genes in differentiated neurons were COL1A1, THBS1, IFITM2, AQP1, and NLRP2. Together, these findings would help better understand the hippocampal neurobiology of suicide for identifying therapeutic targets to prevent suicide.
Collapse
Affiliation(s)
- Sujan C. Das
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA
| | | | - William B. Callor
- Utah State Office of Medical Examiner, Utah Department of Health, Salt Lake City, UT, USA
| | - Leslie Jerominski
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mitradas M. Panicker
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, USA
| | - Erik D. Christensen
- Utah State Office of Medical Examiner, Utah Department of Health, Salt Lake City, UT, USA
| | - William E. Bunney
- Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA
| | - Megan E. Williams
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, UT, USA
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Marquis P. Vawter
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
8
|
Domingos C, Müller FE, Passlick S, Wachten D, Ponimaskin E, Schwarz MK, Schoch S, Zeug A, Henneberger C. Induced Remodelling of Astrocytes In Vitro and In Vivo by Manipulation of Astrocytic RhoA Activity. Cells 2023; 12:331. [PMID: 36672265 PMCID: PMC9856770 DOI: 10.3390/cells12020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Structural changes of astrocytes and their perisynaptic processes occur in response to various physiological and pathophysiological stimuli. They are thought to profoundly affect synaptic signalling and neuron-astrocyte communication. Understanding the causal relationship between astrocyte morphology changes and their functional consequences requires experimental tools to selectively manipulate astrocyte morphology. Previous studies indicate that RhoA-related signalling can play a major role in controlling astrocyte morphology, but the direct effect of increased RhoA activity has not been documented in vitro and in vivo. Therefore, we established a viral approach to manipulate astrocytic RhoA activity. We tested if and how overexpression of wild-type RhoA, of a constitutively active RhoA mutant (RhoA-CA), and of a dominant-negative RhoA variant changes the morphology of cultured astrocytes. We found that astrocytic expression of RhoA-CA induced robust cytoskeletal changes and a withdrawal of processes in cultured astrocytes. In contrast, overexpression of other RhoA variants led to more variable changes of astrocyte morphology. These induced morphology changes were reproduced in astrocytes of the hippocampus in vivo. Importantly, astrocytic overexpression of RhoA-CA did not alter the branching pattern of larger GFAP-positive processes of astrocytes. This indicates that a prolonged increase of astrocytic RhoA activity leads to a distinct morphological phenotype in vitro and in vivo, which is characterized by an isolated reduction of fine peripheral astrocyte processes in vivo. At the same time, we identified a promising experimental approach for investigating the functional consequences of astrocyte morphology changes.
Collapse
Affiliation(s)
- Cátia Domingos
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | | | - Stefan Passlick
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Martin K. Schwarz
- Institute of Experimental Epileptology and Cognition Research (EECR), Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Susanne Schoch
- Institute of Neuropathology, University of Bonn Medical School, 53127 Bonn, Germany
| | - André Zeug
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
9
|
Iannitelli AF, Kelberman MA, Lustberg DJ, Korukonda A, McCann KE, Mulvey B, Segal A, Liles LC, Sloan SA, Dougherty JD, Weinshenker D. The Neurotoxin DSP-4 Dysregulates the Locus Coeruleus-Norepinephrine System and Recapitulates Molecular and Behavioral Aspects of Prodromal Neurodegenerative Disease. eNeuro 2023; 10:ENEURO.0483-22.2022. [PMID: 36635251 PMCID: PMC9829100 DOI: 10.1523/eneuro.0483-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The noradrenergic locus coeruleus (LC) is among the earliest sites of tau and α-synuclein pathology in Alzheimer's disease (AD) and Parkinson's disease (PD), respectively. The onset of these pathologies coincides with loss of noradrenergic fibers in LC target regions and the emergence of prodromal symptoms including sleep disturbances and anxiety. Paradoxically, these prodromal symptoms are indicative of a noradrenergic hyperactivity phenotype, rather than the predicted loss of norepinephrine (NE) transmission following LC damage, suggesting the engagement of complex compensatory mechanisms. Because current therapeutic efforts are targeting early disease, interest in the LC has grown, and it is critical to identify the links between pathology and dysfunction. We employed the LC-specific neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), which preferentially damages LC axons, to model early changes in the LC-NE system pertinent to AD and PD in male and female mice. DSP-4 (two doses of 50 mg/kg, one week apart) induced LC axon degeneration, triggered neuroinflammation and oxidative stress, and reduced tissue NE levels. There was no LC cell death or changes to LC firing, but transcriptomics revealed reduced expression of genes that define noradrenergic identity and other changes relevant to neurodegenerative disease. Despite the dramatic loss of LC fibers, NE turnover and signaling were elevated in terminal regions and were associated with anxiogenic phenotypes in multiple behavioral tests. These results represent a comprehensive analysis of how the LC-NE system responds to axon/terminal damage reminiscent of early AD and PD at the molecular, cellular, systems, and behavioral levels, and provides potential mechanisms underlying prodromal neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Alexa F Iannitelli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Michael A Kelberman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Daniel J Lustberg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Anu Korukonda
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Katharine E McCann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Bernard Mulvey
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Arielle Segal
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - L Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
10
|
Takahashi H, Yamamoto T, Tsuboi A. Molecular mechanisms underlying activity-dependent ischemic tolerance in the brain. Neurosci Res 2023; 186:3-9. [PMID: 36244569 DOI: 10.1016/j.neures.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. The inhibition of cerebral blood flow triggers intertwined pathological events, resulting in cell death and loss of brain function. Interestingly, animals pre-exposed to short-term ischemia can tolerate subsequent severe ischemia. This phenomenon is called ischemic tolerance and is also triggered by other noxious stimuli. However, whether short-term exposure to non-noxious stimuli can induce ischemic tolerance remains unknown. Recently, we found that pre-exposing mice to an enriched environment for 40 min is sufficient to facilitate cell survival after a subsequent stroke. The neuroprotective process depends on the neuronal activity soon before stroke, of which the activity-dependent transcription factor Npas4 is essential. Excessive Ca2+ influx triggers Npas4 expression in ischemic neurons, leading to the activation of neuroprotective programs. Pre-induction of Npas4 in the normal brain effectively supports cell survival after stroke. Furthermore, our study revealed that Npas4 regulates L-type voltage-gated Ca2+ channels through expression of the small Ras-like GTPase Gem in ischemic neurons. Ischemic tolerance is a good model for understanding how to promote neuroprotective mechanisms in the normal and injured brain. Here, we highlight activity-dependent ischemic tolerance and discuss its role in promoting neuroprotection against stroke.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan.
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Akio Tsuboi
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
11
|
Mousa HH, Sharawy MH, Nader MA. Empagliflozin enhances neuroplasticity in rotenone-induced parkinsonism: Role of BDNF, CREB and Npas4. Life Sci 2022; 312:121258. [PMID: 36462721 DOI: 10.1016/j.lfs.2022.121258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
AIMS Parkinsonism is characterized by degeneration of dopaminergic neurons and impairment in neuroplasticity. Empagliflozin (EMPA) is an anti-diabetic drug that has been shown to improve cognitive dysfunctions and exerted antioxidant and anti-inflammatory effects in different models. This study aimed to determine the neuroprotective effects of EMPA against rotenone (ROT)-induced parkinsonism. MAIN METHODS ROT (1.5 mg/kg) was injected subcutaneously three times per week for two successive weeks. Mice were treated with EMPA (3 and 10 mg/kg, orally) for one week prior ROT administration and for another two weeks along with ROT. After that, motor functions and histopathological changes were assessed, and brains were isolated for biochemical analyses and immunohistochemical investigation. KEY FINDINGS Results indicated that, in a dose dependent manner, EMPA improved motor functions and histopathological changes induced by ROT, increased brain content of reduced glutathione (GSH), dopamine (DA), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), nuclear factor erythroid 2-related factor 2 (Nrf2), inositol trisphosphate (IP3), calcium (Ca2+), calcium/calmodulin-dependent protein kinase type IV (CaMKIV) and phospho-Protein kinase B (p-Akt) levels compared to ROT group. Additionally, EMPA decreased the levels of malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α), and inactivated glycogen synthase kinase-3 beta (GSK-3β). Improvement in neuroplasticity was also observed indicated by elevation in brain derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and neuronal PAS domain Protein 4 (Npas4). SIGNIFICANCE EMPA improved motor functions possibly through improving neuroplasticity markers and antioxidant, anti-inflammatory, and neuroprotective effects in a dose dependent manner.
Collapse
Affiliation(s)
- Hager H Mousa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
12
|
Brabec JL, Ouardouz M, Mahoney JM, Scott RC, Hernan AE. Differential regulation of gene expression pathways with dexamethasone and ACTH after early life seizures. Neurobiol Dis 2022; 174:105873. [PMID: 36152945 PMCID: PMC10048589 DOI: 10.1016/j.nbd.2022.105873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 10/31/2022] Open
Abstract
Early-life seizures (ELS) are associated with persistent cognitive deficits such as ADHD and memory impairment. These co-morbidities have a dramatic negative impact on the quality of life of patients. Therapies that improve cognitive outcomes have enormous potential to improve patients' quality of life. Our previous work in a rat flurothyl-induction model showed that administration of adrenocorticotropic hormone (ACTH) at time of seizure induction led to improved learning and memory in the animals despite no effect on seizure latency or duration. Administration of dexamethasone (Dex), a corticosteroid, did not have the same positive effect on learning and memory and has even been shown to exacerbate injury in a rat model of temporal lobe epilepsy. We hypothesized that ACTH exerted positive effects on cognitive outcomes through beneficial changes to gene expression and proposed that administration of ACTH at seizure induction would return gene-expression in the brain towards the normal pattern of expression in the Control animals whereas Dex would not. Twenty-six Sprague-Dawley rats were randomized into vehicle- Control, and ACTH-, Dex-, and vehicle- ELS. Rat pups were subjected to 60 flurothyl seizures from P5 to P14. After seizure induction, brains were removed and the hippocampus and PFC were dissected, RNA was extracted and sequenced, and differential expression analysis was performed using generalized estimating equations. Differential expression analysis showed that ACTH pushes gene expression in the brain back to a more normal state of expression through enrichment of pathways involved in supporting homeostatic balance and down-regulating pathways that might contribute to excitotoxic cell-damage post-ELS.
Collapse
Affiliation(s)
- Jeffrey L Brabec
- University of Vermont, Department of Neurological Sciences, 149 Beaumont Avenue, Burlington, VT 05401, USA.
| | - Mohamed Ouardouz
- Nemours Children's Health, Division of Neuroscience, 1600 Rockland Road, Wilmington, DE 19803, USA
| | - J Matthew Mahoney
- University of Vermont, Department of Neurological Sciences, 149 Beaumont Avenue, Burlington, VT 05401, USA; The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Rod C Scott
- Nemours Children's Health, Division of Neuroscience, 1600 Rockland Road, Wilmington, DE 19803, USA; Neurosciences Unit University College London, Institute of Child Health, London WC1N 1EH, UK; University of Delaware, Psychological and Brain Sciences, South College Avenue, Newark, DE 19716, USA
| | - Amanda E Hernan
- Nemours Children's Health, Division of Neuroscience, 1600 Rockland Road, Wilmington, DE 19803, USA; University of Delaware, Psychological and Brain Sciences, South College Avenue, Newark, DE 19716, USA
| |
Collapse
|
13
|
SCN1A overexpression, associated with a genomic region marked by a risk variant for a common epilepsy, raises seizure susceptibility. Acta Neuropathol 2022; 144:107-127. [PMID: 35551471 PMCID: PMC9217876 DOI: 10.1007/s00401-022-02429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/01/2022]
Abstract
Mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures is associated with common variation at rs7587026, located in the promoter region of SCN1A. We sought to explore possible underlying mechanisms. SCN1A expression was analysed in hippocampal biopsy specimens of individuals with mesial temporal lobe epilepsy with hippocampal sclerosis who underwent surgical treatment, and hippocampal neuronal cell loss was quantitatively assessed using immunohistochemistry. In healthy individuals, hippocampal volume was measured using MRI. Analyses were performed stratified by rs7587026 type. To study the functional consequences of increased SCN1A expression, we generated, using transposon-mediated bacterial artificial chromosome transgenesis, a zebrafish line expressing exogenous scn1a, and performed EEG analysis on larval optic tecta at 4 day post-fertilization. Finally, we used an in vitro promoter analysis to study whether the genetic motif containing rs7587026 influences promoter activity. Hippocampal SCN1A expression differed by rs7587026 genotype (Kruskal-Wallis test P = 0.004). Individuals homozygous for the minor allele showed significantly increased expression compared to those homozygous for the major allele (Dunn's test P = 0.003), and to heterozygotes (Dunn's test P = 0.035). No statistically significant differences in hippocampal neuronal cell loss were observed between the three genotypes. Among 597 healthy participants, individuals homozygous for the minor allele at rs7587026 displayed significantly reduced mean hippocampal volume compared to major allele homozygotes (Cohen's D = - 0.28, P = 0.02), and to heterozygotes (Cohen's D = - 0.36, P = 0.009). Compared to wild type, scn1lab-overexpressing zebrafish larvae exhibited more frequent spontaneous seizures [one-way ANOVA F(4,54) = 6.95 (P < 0.001)]. The number of EEG discharges correlated with the level of scn1lab overexpression [one-way ANOVA F(4,15) = 10.75 (P < 0.001]. Finally, we showed that a 50 bp promoter motif containing rs7587026 exerts a strong regulatory role on SCN1A expression, though we could not directly link this to rs7587026 itself. Our results develop the mechanistic link between rs7587026 and mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures. Furthermore, we propose that quantitative precision may be important when increasing SCN1A expression in current strategies aiming to treat seizures in conditions involving SCN1A haploinsufficiency, such as Dravet syndrome.
Collapse
|
14
|
Tsortouktzidis D, Tröscher AR, Schulz H, Opitz T, Schoch S, Becker AJ, van Loo KMJ. A Versatile Clustered Regularly Interspaced Palindromic Repeats Toolbox to Study Neurological CaV3.2 Channelopathies by Promoter-Mediated Transcription Control. Front Mol Neurosci 2022; 14:667143. [PMID: 35069110 PMCID: PMC8770422 DOI: 10.3389/fnmol.2021.667143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/15/2021] [Indexed: 11/15/2022] Open
Abstract
Precise genome editing in combination with viral delivery systems provides a valuable tool for neuroscience research. Traditionally, the role of genes in neuronal circuits has been addressed by overexpression or knock-out/knock-down systems. However, those techniques do not manipulate the endogenous loci and therefore have limitations. Those constraints include that many genes exhibit extensive alternative splicing, which can be regulated by neuronal activity. This complexity cannot be easily reproduced by overexpression of one protein variant. The CRISPR activation and interference/inhibition systems (CRISPRa/i) directed to promoter sequences can modulate the expression of selected target genes in a highly specific manner. This strategy could be particularly useful for the overexpression of large proteins and for alternatively spliced genes, e.g., for studying large ion channels known to be affected in ion channelopathies in a variety of neurological diseases. Here, we demonstrate the feasibility of a newly developed CRISPRa/i toolbox to manipulate the promoter activity of the Cacna1h gene. Impaired, function of the low-voltage-activated T-Type calcium channel CaV3.2 is involved in genetic/mutational as well as acquired/transcriptional channelopathies that emerge with epileptic seizures. We show CRISPR-induced activation and inhibition of the Cacna1h locus in NS20Y cells and primary cortical neurons, as well as activation in mouse organotypic slice cultures. In future applications, the system offers the intriguing perspective to study functional effects of gain-of-function or loss-of-function variations in the Cacna1h gene in more detail. A better understanding of CaV3.2 channelopathies might result in a major advancement in the pharmacotherapy of CaV3.2 channelopathy diseases.
Collapse
Affiliation(s)
- Despina Tsortouktzidis
- Institute of Neuropathology, Medical Faculty, Section for Translational Epilepsy Research, University of Bonn, Bonn, Germany
| | - Anna R. Tröscher
- Institute of Neuropathology, Medical Faculty, Section for Translational Epilepsy Research, University of Bonn, Bonn, Germany
- Department of Neurology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany
| | - Thoralf Opitz
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Susanne Schoch
- Institute of Neuropathology, Medical Faculty, Section for Translational Epilepsy Research, University of Bonn, Bonn, Germany
| | - Albert J. Becker
- Institute of Neuropathology, Medical Faculty, Section for Translational Epilepsy Research, University of Bonn, Bonn, Germany
| | - Karen M. J. van Loo
- Institute of Neuropathology, Medical Faculty, Section for Translational Epilepsy Research, University of Bonn, Bonn, Germany
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
- *Correspondence: Karen M. J. van Loo,
| |
Collapse
|
15
|
Kasai S, Li X, Torii S, Yasumoto KI, Sogawa K. Direct protein-protein interaction between Npas4 and IPAS mutually inhibits their critical roles in neuronal cell survival and death. Cell Death Discov 2021; 7:300. [PMID: 34675183 PMCID: PMC8531447 DOI: 10.1038/s41420-021-00690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibitory PAS domain protein (IPAS) is a bifunctional protein that acts as a transcriptional repressor in hypoxia and as a pro-apoptotic protein involved in neuronal cell death. Npas4 (NXF or LE-PAS) is a transcriptional factor that protects nerve cells from endogenous and foreign neurotoxins. Here we show that IPAS and Npas4 antagonize each other through their direct interaction. Coimmunoprecipitation experiments revealed that multiple binding sites on each protein were involved in the interaction. CoCl2 treatment of PC12 cells that induces IPAS repressed the transactivation activity of Npas4, and IPAS siRNA treatment reduced the CoCl2-induced repression. CoCl2-induced apoptosis was suppressed by the addition of KCl that induces Npas4. The protective effect of KCl was attenuated by siRNA-mediated gene silencing of Npas4. Npas4 and IPAS proteins were induced and localized in the cytoplasm of the dopaminergic neurons in the substantia nigra pars compacta after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Npas4−/− mice exhibited greater sensitivity to MPTP in nigral dopaminergic neurons. Together, these results strongly suggest that neuroprotective activity of Npas4 was, at least partly, exerted by inhibiting the pro-apoptotic activity of IPAS through direct interaction.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan.,Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Japan
| | - Xianyu Li
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Satoru Torii
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan.,Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ken-Ichi Yasumoto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Kazuhiro Sogawa
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
16
|
Zhang Y, Du Y, Ma W, Liu J, Jiang Y. The Transcriptomic Landscape of Molecular Effects after Sublethal Exposure to Dinotefuran on Apis mellifera. INSECTS 2021; 12:insects12100898. [PMID: 34680667 PMCID: PMC8537135 DOI: 10.3390/insects12100898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Apis mellifera is one of the most important pollinator communities in nature. Insecticide residues in pollen and nectar, due to their wide use, may harm bees. Thus, it is crucial to provide novel insights into the effects of neonicotinoid insecticides on pollinators for protecting bees and maintaining a long-term stable ecological environment. The aim of our study was to investigate the effect and the mechanisms underlying bees impaired by dinotefuran. In the present study, for the first time, we found the mRNA expression profile of bees changes after treatment with sublethal doses of dinotefuran. Overall, our findings enhance understanding of the molecular mechanisms that underly physiological and behavioural damage for bees after dinotefuran exposure. Abstract The decreasing number of bees is a global ecological problem. With the advancement of agricultural modernisation, the large-scale use of neonicotinoid insecticides is one of the main factors leading to the decline of bees. The aim of the present study was to investigate the effect and the mechanisms underlying bees impaired by dinotefuran. Acute (48 h) oral toxicity tests showed that a 5% lethal concentration (LC5) was 0.220 mg/L, and a 20% lethal concentration (LC20) was 0.458 mg/L. The gene expression profile shows that when compared with the control group, the LC5 group induced 206 significantly upregulated, differentially expressed genes (DEGs) and 363 significantly downregulated DEGs, while the LC20 group induced 180 significantly upregulated DEGs and 419 significantly downregulated DEGs. Significantly, transcriptomic analysis revealed DEGs involved in immunity, detoxification, and the nervous system, such as antimicrobial peptides, vitellogenin, synaptotagmin-10, AChE-2, and nAChRa9. Furthermore, Gene Ontology (GO) annotation and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis revealed that DEGs were enriched in amino acid and fatty acid biosynthesis and metabolism pathways. Collectively, our findings will help clarify the deleterious physiological and behavioural impacts of dinotefuran on bees and provide a basis for future research on the mechanisms underlying bees impaired by dinotefuran.
Collapse
|
17
|
Laighneach A, Desbonnet L, Kelly JP, Donohoe G, Morris DW. Meta-Analysis of Brain Gene Expression Data from Mouse Model Studies of Maternal Immune Activation Using Poly(I:C). Genes (Basel) 2021; 12:genes12091363. [PMID: 34573345 PMCID: PMC8471627 DOI: 10.3390/genes12091363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal immune activation (MIA) is a known risk factor for schizophrenia (SCZ) and autism spectrum disorder (ASD) and is often modelled in animal studies in order to study the effect of prenatal infection on brain function including behaviour and gene expression. Although the effect of MIA on gene expression are highly heterogeneous, combining data from multiple gene expression studies in a robust method may shed light on the true underlying biological effects caused by MIA and this could inform studies of SCZ and ASD. This study combined four RNA-seq and microarray datasets in an overlap analysis and ranked meta-analysis in order to investigate genes, pathways and cell types dysregulated in the MIA mouse models. Genes linked to SCZ and ASD and crucial in neurodevelopmental processes including neural tube folding, regulation of cellular stress and neuronal/glial cell differentiation were among the most consistently dysregulated in these ranked analyses. Gene ontologies including K+ ion channel function, neuron and glial cell differentiation, synaptic structure, axonal outgrowth, cilia function and lipid metabolism were also strongly implicated. Single-cell analysis identified excitatory and inhibitory cell types in the cortex, hippocampus and striatum that may be affected by MIA and are also enriched for genes associated with SCZ, ASD and cognitive phenotypes. This points to the cellular location of molecular mechanisms that may be consistent between the MIA model and neurodevelopmental disease, improving our understanding of its utility to study prenatal infection as an environmental stressor.
Collapse
Affiliation(s)
- Aodán Laighneach
- Centre for Neuroimaging, Cognition and Genomics, Discipline of Biochemistry and School of Psychology, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.L.); (G.D.)
| | - Lieve Desbonnet
- Discipline of Pharmacology and Therapeutics, National University of Ireland Galway, H91 TK33 Galway, Ireland; (L.D.); (J.P.K.)
| | - John P. Kelly
- Discipline of Pharmacology and Therapeutics, National University of Ireland Galway, H91 TK33 Galway, Ireland; (L.D.); (J.P.K.)
| | - Gary Donohoe
- Centre for Neuroimaging, Cognition and Genomics, Discipline of Biochemistry and School of Psychology, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.L.); (G.D.)
| | - Derek W. Morris
- Centre for Neuroimaging, Cognition and Genomics, Discipline of Biochemistry and School of Psychology, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.L.); (G.D.)
- Correspondence:
| |
Collapse
|
18
|
Takahashi H, Asahina R, Fujioka M, Matsui TK, Kato S, Mori E, Hioki H, Yamamoto T, Kobayashi K, Tsuboi A. Ras-like Gem GTPase induced by Npas4 promotes activity-dependent neuronal tolerance for ischemic stroke. Proc Natl Acad Sci U S A 2021; 118:e2018850118. [PMID: 34349016 PMCID: PMC8364162 DOI: 10.1073/pnas.2018850118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Ischemic stroke, which results in loss of neurological function, initiates a complex cascade of pathological events in the brain, largely driven by excitotoxic Ca2+ influx in neurons. This leads to cortical spreading depolarization, which induces expression of genes involved in both neuronal death and survival; yet, the functions of these genes remain poorly understood. Here, we profiled gene expression changes that are common to ischemia (modeled by middle cerebral artery occlusion [MCAO]) and to experience-dependent activation (modeled by exposure to an enriched environment [EE]), which also induces Ca2+ transients that trigger transcriptional programs. We found that the activity-dependent transcription factor Npas4 was up-regulated under MCAO and EE conditions and that transient activation of cortical neurons in the healthy brain by the EE decreased cell death after stroke. Furthermore, both MCAO in vivo and oxygen-glucose deprivation in vitro revealed that Npas4 is necessary and sufficient for neuroprotection. We also found that this protection involves the inhibition of L-type voltage-gated Ca2+ channels (VGCCs). Next, our systematic search for Npas4-downstream genes identified Gem, which encodes a Ras-related small GTPase that mediates neuroprotective effects of Npas4. Gem suppresses the membrane localization of L-type VGCCs to inhibit excess Ca2+ influx, thereby protecting neurons from excitotoxic death after in vitro and in vivo ischemia. Collectively, our findings indicate that Gem expression via Npas4 is necessary and sufficient to promote neuroprotection in the injured brain. Importantly, Gem is also induced in human cerebral organoids cultured under an ischemic condition, revealing Gem as a new target for drug discovery.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan;
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan
| | - Ryo Asahina
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan
| | - Masayuki Fujioka
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan
| | - Takeshi K Matsui
- Department of Future Basic Medicine, School of Medicine, Nara Medical University, Nara 634-8521, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, School of Medicine, Nara Medical University, Nara 634-8521, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Akio Tsuboi
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan;
- Laboratory for Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
19
|
Kim S, Park D, Kim J, Kim D, Kim H, Mori T, Jung H, Lee D, Hong S, Jeon J, Tabuchi K, Cheong E, Kim J, Um JW, Ko J. Npas4 regulates IQSEC3 expression in hippocampal somatostatin interneurons to mediate anxiety-like behavior. Cell Rep 2021; 36:109417. [PMID: 34289353 DOI: 10.1016/j.celrep.2021.109417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/11/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Activity-dependent GABAergic synapse plasticity is important for normal brain functions, but the underlying molecular mechanisms remain incompletely understood. Here, we show that Npas4 (neuronal PAS-domain protein 4) transcriptionally regulates the expression of IQSEC3, a GABAergic synapse-specific guanine nucleotide-exchange factor for ADP-ribosylation factor (ARF-GEF) that directly interacts with gephyrin. Neuronal activation by an enriched environment induces Npas4-mediated upregulation of IQSEC3 protein specifically in CA1 stratum oriens layer somatostatin (SST)-expressing GABAergic interneurons. SST+ interneuron-specific knockout (KO) of Npas4 compromises synaptic transmission in these GABAergic interneurons, increases neuronal activity in CA1 pyramidal neurons, and reduces anxiety behavior, all of which are normalized by the expression of wild-type IQSEC3, but not a dominant-negative ARF-GEF-inactive mutant, in SST+ interneurons of Npas4-KO mice. Our results suggest that IQSEC3 is a key GABAergic synapse component that is directed by Npas4 and ARF activity, specifically in SST+ interneurons, to orchestrate excitation-to-inhibition balance and control anxiety-like behavior.
Collapse
Affiliation(s)
- Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Dongwook Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Takuma Mori
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-86221, Japan
| | - Hyeji Jung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Dongsu Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sookyung Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jongcheol Jeon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Katsuhiko Tabuchi
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-86221, Japan; Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea.
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea.
| |
Collapse
|
20
|
Minge D, Domingos C, Unichenko P, Behringer C, Pauletti A, Anders S, Herde MK, Delekate A, Gulakova P, Schoch S, Petzold GC, Henneberger C. Heterogeneity and Development of Fine Astrocyte Morphology Captured by Diffraction-Limited Microscopy. Front Cell Neurosci 2021; 15:669280. [PMID: 34149361 PMCID: PMC8211899 DOI: 10.3389/fncel.2021.669280] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022] Open
Abstract
The fine processes of single astrocytes can contact many thousands of synapses whose function they can modulate through bi-directional signaling. The spatial arrangement of astrocytic processes and neuronal structures is relevant for such interactions and for the support of neuronal signaling by astrocytes. At the same time, the geometry of perisynaptic astrocyte processes is variable and dynamically regulated. Studying these fine astrocyte processes represents a technical challenge, because many of them cannot be fully resolved by diffraction-limited microscopy. Therefore, we have established two indirect parameters of astrocyte morphology, which, while not fully resolving local geometry by design, provide statistical measures of astrocyte morphology: the fraction of tissue volume that astrocytes occupy and the density of resolvable astrocytic processes. Both are straightforward to obtain using widely available microscopy techniques. We here present the approach and demonstrate its robustness across various experimental conditions using mainly two-photon excitation fluorescence microscopy in acute slices and in vivo as well as modeling. Using these indirect measures allowed us to analyze the morphology of relatively large populations of astrocytes. Doing so we captured the heterogeneity of astrocytes within and between the layers of the hippocampal CA1 region and the developmental profile of astrocyte morphology. This demonstrates that volume fraction (VF) and segment density are useful parameters for describing the structure of astrocytes. They are also suitable for online monitoring of astrocyte morphology with widely available microscopy techniques.
Collapse
Affiliation(s)
- Daniel Minge
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Cátia Domingos
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Petr Unichenko
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Charlotte Behringer
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Alberto Pauletti
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Stefanie Anders
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michel K Herde
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andrea Delekate
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Polina Gulakova
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Susanne Schoch
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, University Hospital Bonn, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
21
|
Hashikawa-Hobara N, Mishima S, Okujima C, Shitanishi Y, Hashikawa N. Npas4 impairs fear memory via phosphorylated HDAC5 induced by CGRP administration in mice. Sci Rep 2021; 11:7006. [PMID: 33772088 PMCID: PMC7997869 DOI: 10.1038/s41598-021-86556-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
The relationships among neuropeptide, calcitonin gene-related peptide (CGRP), and memory formation remain unclear. Here, we showed that the intracerebroventricular administration of CGRP impaired the traumatic fear memories, in a widely studied animal model of post-traumatic stress disorder. We found that CGRP administration suppressed fear memory by increasing neuronal PAS domain protein 4 (Npas4), phosphorylated histone deacetylase 5 (HDAC5), and protein kinase D (PKD). We also discovered that Npas4 knockdown inhibited CGRP-mediated fear memory. CGRP decreased the binding between HDAC5 and the Npas4 enhancer site and increased the binding between acetylated histone H3 and the Npas4 enhancer site. The pharmacological inhibition or knockdown of PKD attenuated the CGRP-mediated impairment of fear memory and the increased phosphorylation of HDAC5 and Npas4 expression. Our findings demonstrated that the CGRP-PKD pathway was associated with the histone H3 acetylation-Npas4 pathway. These results suggested a novel function for CGRP on fear memory, through epigenetic regulation.
Collapse
Affiliation(s)
- Narumi Hashikawa-Hobara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| | - Shuta Mishima
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Chihiro Okujima
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Youdai Shitanishi
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Naoya Hashikawa
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| |
Collapse
|
22
|
Fu J, Guo O, Zhen Z, Zhen J. Essential Functions of the Transcription Factor Npas4 in Neural Circuit Development, Plasticity, and Diseases. Front Neurosci 2020; 14:603373. [PMID: 33335473 PMCID: PMC7736240 DOI: 10.3389/fnins.2020.603373] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Signaling from the synapse to nucleus is mediated by the integration and propagation of both membrane potential changes (postsynaptic potentials) and intracellular second messenger cascades. The electrical propagation of postsynaptic potentials allows for rapid neural information processing, while propagating second messenger pathways link synaptic activity to the transcription of genes required for neuronal survival and adaptive changes (plasticity) underlying circuit formation and learning. The propagation of activity-induced calcium signals to the cell nucleus is a major synapse-to-nucleus communication pathway. Neuronal PAS domain protein 4 (Npas4) is a recently discovered calcium-dependent transcription factor that regulates the activation of genes involved in the homeostatic regulation of excitatory–inhibitory balance, which is critical for neural circuit formation, function, and ongoing plasticity, as well as for defense against diseases such as epilepsy. Here, we summarize recent findings on the neuroprotective functions of Npas4 and the potential of Npas4 as a therapeutic target for the treatment of acute and chronic diseases of the central nervous system.
Collapse
Affiliation(s)
- Jian Fu
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ouyang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Zhihang Zhen
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junli Zhen
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
23
|
Li T, Hu J, Wang S, Zhang H. Super-variants identification for brain connectivity. Hum Brain Mapp 2020; 42:1304-1312. [PMID: 33236465 PMCID: PMC7927294 DOI: 10.1002/hbm.25294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/25/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Identifying genetic biomarkers for brain connectivity helps us understand genetic effects on brain function. The unique and important challenge in detecting associations between brain connectivity and genetic variants is that the phenotype is a matrix rather than a scalar. We study a new concept of super‐variant for genetic association detection. Similar to but different from the classic concept of gene, a super‐variant is a combination of alleles in multiple loci but contributing loci can be anywhere in the genome. We hypothesize that the super‐variants are easier to detect and more reliable to reproduce in their associations with brain connectivity. By applying a novel ranking and aggregation method to the UK Biobank databases, we discovered and verified several replicable super‐variants. Specifically, we investigate a discovery set with 16,421 subjects and a verification set with 2,882 subjects, where they are formed according to release date, and the verification set is used to validate the genetic associations from the discovery phase. We identified 12 replicable super‐variants on Chromosomes 1, 3, 7, 8, 9, 10, 12, 15, 16, 18, and 19. These verified super‐variants contain single nucleotide polymorphisms that locate in 14 genes which have been reported to have association with brain structure and function, and/or neurodevelopmental and neurodegenerative disorders in the literature. We also identified novel loci in genes RSPO2 and TMEM74 which may be upregulated in brain issues. These findings demonstrate the validity of the super‐variants and its capability of unifying existing results as well as discovering novel and replicable results.
Collapse
Affiliation(s)
- Ting Li
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Jianchang Hu
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Shiying Wang
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Wolfes AC, Dean C. The diversity of synaptotagmin isoforms. Curr Opin Neurobiol 2020; 63:198-209. [PMID: 32663762 DOI: 10.1016/j.conb.2020.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
The synaptotagmin family of molecules is known for regulating calcium-dependent membrane fusion events. Mice and humans express 17 synaptotagmin isoforms, where most studies have focused on isoforms 1, 2, and 7, which are involved in synaptic vesicle exocytosis. Recent work has highlighted how brain function relies on additional isoforms, with roles in postsynaptic receptor endocytosis, vesicle trafficking, membrane repair, synaptic plasticity, and protection against neurodegeneration, for example, in addition to the traditional concept of synaptotagmin-mediated neurotransmitter release - in neurons as well as glia, and at different timepoints. In fact, it is not uncommon for the same isoform to feature several splice isoforms, form homo- and heterodimers, and function in different subcellular locations and cell types. This review aims to highlight the diversity of synaptotagmins, offers a concise summary of key findings on all isoforms, and discusses different ways of grouping these.
Collapse
Affiliation(s)
- Anne C Wolfes
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK; UK Dementia Research Institute at Imperial College, London, UK
| | - Camin Dean
- German Center for Neurodegenerative Diseases, Charité University of Medicine - Berlin, 10117 Berlin, Germany.
| |
Collapse
|
25
|
Abstract
IMPACT STATEMENT Brain development and degeneration are highly complex processes that are regulated by a large number of molecules and signaling pathways the identities of which are being unraveled. Accumulating evidence points to histone deacetylases and epigenetic mechanisms as being important regulators of these processes. In this review, we describe that histone deacetylase-3 (HDAC3) is a particularly crucial regulator of both neurodevelopment and neurodegeneration. In addition, HDAC3 regulates memory formation, synaptic plasticity, and the cognitive impairment associated with normal aging. Understanding how HDAC3 functions contributes to the normal development and functioning of the brain while also promoting neurodegeneration could lead to the development of therapeutic approaches for neurodevelopmental, neuropsychiatric, and neurodegenerative disorders.
Collapse
|
26
|
Coffman JA. Chronic stress, physiological adaptation and developmental programming of the neuroendocrine stress system. FUTURE NEUROLOGY 2020. [DOI: 10.2217/fnl-2019-0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chronic stress undermines physical and mental health, in part via dysregulation of the neuroendocrine stress system. Key to understand this dysregulation is recognizing that the problem is not stress per se, but rather its chronicity. The optimally functioning stress system is highly dynamic, and negative feedback regulation enforces transient responses to acute stressors. Chronic stress overrides this, and adaptation to the chronicity can result in persistent dysregulation by altering sensitivity thresholds critical for control of system dynamics. Such adaptation involves plasticity within the central nervous system (CNS) as well as epigenetic regulation. When it occurs during development, it can have persistent effects on neuroendocrine regulation. Understanding how chronic stress programs development of the neuroendocrine stress system requires elucidation of stress-responsive gene regulatory networks that control CNS plasticity and development.
Collapse
Affiliation(s)
- James A Coffman
- MDI Biological Laboratory, Kathryn W Davis Center for Regenerative Biology and Aging, Salisbury Cove, ME 04672, USA
| |
Collapse
|
27
|
Louis Sam Titus ASC, Sharma D, Kim MS, D'Mello SR. The Bdnf and Npas4 genes are targets of HDAC3-mediated transcriptional repression. BMC Neurosci 2019; 20:65. [PMID: 31883511 PMCID: PMC6935488 DOI: 10.1186/s12868-019-0546-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Background Histone deacetylase-3 (HDAC3) promotes neurodegeneration in various cell culture and in vivo models of neurodegeneration but the mechanism by which HDAC3 exerts neurotoxicity is not known. HDAC3 is known to be a transcriptional co-repressor. The goal of this study was to identify transcriptional targets of HDAC3 in an attempt to understand how it promotes neurodegeneration. Results We used chromatin immunoprecipitation analysis coupled with deep sequencing (ChIP-Seq) to identify potential targets of HDAC3 in cerebellar granule neurons. One of the genes identified was the activity-dependent and neuroprotective transcription factor, Neuronal PAS Domain Protein 4 (Npas4). We confirmed using ChIP that in healthy neurons HDAC3 associates weakly with the Npas4 promoter, however, this association is robustly increased in neurons primed to die. We find that HDAC3 also associates differentially with the brain-derived neurotrophic factor (Bdnf) gene promoter, with higher association in dying neurons. In contrast, association of HDAC3 with the promoters of other neuroprotective genes, including those encoding c-Fos, FoxP1 and Stat3, was barely detectable in both healthy and dying neurons. Overexpression of HDAC3 leads to a suppression of Npas4 and Bdnf expression in cortical neurons and treatment with RGFP966, a chemical inhibitor of HDAC3, resulted in upregulation of their expression. Expression of HDAC3 also repressed Npas4 and Bdnf promoter activity. Conclusion Our results suggest that Bdnf and Npas4 are transcriptional targets of Hdac3-mediated repression. HDAC3 inhibitors have been shown to protect against behavioral deficits and neuronal loss in mouse models of neurodegeneration and it is possible that these inhibitors work by upregulating neuroprotective genes like Bdnf and Npas4.
Collapse
Affiliation(s)
- Anto Sam Crosslee Louis Sam Titus
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA.,Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Dharmendra Sharma
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA.,Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Min Soo Kim
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA. .,, Dallas, TX, 75243, USA.
| |
Collapse
|
28
|
Kubánková M, Summers PA, López-Duarte I, Kiryushko D, Kuimova MK. Microscopic Viscosity of Neuronal Plasma Membranes Measured Using Fluorescent Molecular Rotors: Effects of Oxidative Stress and Neuroprotection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36307-36315. [PMID: 31513373 DOI: 10.1021/acsami.9b10426] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular mobility in neuronal plasma membranes is a crucial factor in brain function. Microscopic viscosity is an important parameter that determines molecular mobility. This study presents the first direct measurement of the microviscosity of plasma membranes of live neurons. Microviscosity maps were obtained using fluorescence lifetime imaging of environment-sensing dyes termed "molecular rotors". Neurons were investigated both in the basal state and following common neurodegenerative stimuli, excitotoxicity, or oxidative stress. Both types of neurotoxic challenges induced microviscosity decrease in cultured neurons, and oxidant-induced membrane fluidification was counteracted by the wide-spectrum neuroprotectant, the H3 peptide. These results provide new insights into molecular mobility in neuronal membranes, paramount for basic brain function, and suggest that preservation of membrane stability may be an important aspect of neuroprotection in brain insults and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Darya Kiryushko
- Centre for Neuroinflammation and Neurodegeneration , Imperial College London , Hammersmith Hospital Campus, Burlington Danes Building, 160 Du Cane Road , London W12 0NN , U.K
| | | |
Collapse
|
29
|
Copy number variation analysis in 83 children with early-onset developmental and epileptic encephalopathy after targeted resequencing of a 109-epilepsy gene panel. J Hum Genet 2019; 64:1097-1106. [DOI: 10.1038/s10038-019-0661-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/23/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
|
30
|
Zhao S, Zhang T, Liu Q, Wu H, Su B, Shi P, Chen H. Identifying Lineage-Specific Targets of Natural Selection by a Bayesian Analysis of Genomic Polymorphisms and Divergence from Multiple Species. Mol Biol Evol 2019; 36:1302-1315. [PMID: 30840083 DOI: 10.1093/molbev/msz046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We present a method that jointly analyzes the polymorphism and divergence sites in genomic sequences of multiple species to identify the genes under natural selection and pinpoint the occurrence time of selection to a specific lineage of the species phylogeny. This method integrates population genetics models using a Bayesian Poisson random field framework and combines information over all gene loci to boost the power for detecting selection. The method provides posterior distributions of the fitness effects of each gene along with parameters associated with the evolutionary history, including the species divergence time and effective population size of external species. The results of simulations demonstrate that our method achieves a high power to identify genes under positive selection for a wide range of selection intensity and provides reasonably accurate estimates of the population genetic parameters. The proposed method is applied to genomic sequences of humans, chimpanzees, gorillas, and orangutans and identifies a list of lineage-specific targets of positive selection. The positively selected genes in the human lineage are enriched in pathways of gene expression regulation, immune system and metabolism, etc. Our analysis provides insights into natural evolution in the coding regions of humans and great apes and thus serves as a basis for further molecular and functional studies.
Collapse
Affiliation(s)
- Shilei Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Qi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Hua Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
31
|
van de Vegte YJ, Tegegne BS, Verweij N, Snieder H, van der Harst P. Genetics and the heart rate response to exercise. Cell Mol Life Sci 2019; 76:2391-2409. [PMID: 30919020 PMCID: PMC6529381 DOI: 10.1007/s00018-019-03079-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/18/2019] [Indexed: 01/01/2023]
Abstract
The acute heart rate response to exercise, i.e., heart rate increase during and heart rate recovery after exercise, has often been associated with all-cause and cardiovascular mortality. The long-term response of heart rate to exercise results in favourable changes in chronotropic function, including decreased resting and submaximal heart rate as well as increased heart rate recovery. Both the acute and long-term heart rate response to exercise have been shown to be heritable. Advances in genetic analysis enable researchers to investigate this hereditary component to gain insights in possible molecular mechanisms underlying interindividual differences in the heart rate response to exercise. In this review, we comprehensively searched candidate gene, linkage, and genome-wide association studies that investigated the heart rate response to exercise. A total of ten genes were associated with the acute heart rate response to exercise in candidate gene studies. Only one gene (CHRM2), related to heart rate recovery, was replicated in recent genome-wide association studies (GWASs). Additional 17 candidate causal genes were identified for heart rate increase and 26 for heart rate recovery in these GWASs. Nine of these genes were associated with both acute increase and recovery of the heart rate during exercise. These genes can be broadly categorized into four categories: (1) development of the nervous system (CCDC141, PAX2, SOX5, and CAV2); (2) prolongation of neuronal life span (SYT10); (3) cardiac development (RNF220 and MCTP2); (4) cardiac rhythm (SCN10A and RGS6). Additional 10 genes were linked to long-term modification of the heart rate response to exercise, nine with heart rate increase and one with heart rate recovery. Follow-up will be essential to get functional insights in how candidate causal genes affect the heart rate response to exercise. Future work will be required to translate these findings to preventive and therapeutic applications.
Collapse
Affiliation(s)
- Yordi J van de Vegte
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Balewgizie S Tegegne
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
- Durrer Center for Cardiogenetic Research, Netherlands Heart Institute, 3511 GC, Utrecht, The Netherlands.
| |
Collapse
|
32
|
Marvin JS, Scholl B, Wilson DE, Podgorski K, Kazemipour A, Müller JA, Schoch S, Quiroz FJU, Rebola N, Bao H, Little JP, Tkachuk AN, Cai E, Hantman AW, Wang SSH, DePiero VJ, Borghuis BG, Chapman ER, Dietrich D, DiGregorio DA, Fitzpatrick D, Looger LL. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat Methods 2018; 15:936-939. [PMID: 30377363 PMCID: PMC6394230 DOI: 10.1038/s41592-018-0171-3] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/15/2018] [Indexed: 01/18/2023]
Abstract
Single-wavelength fluorescent reporters allow visualization of specific neurotransmitters with high spatial and temporal resolution. We report variants of intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) that are functionally brighter; detect submicromolar to millimolar amounts of glutamate; and have blue, cyan, green, or yellow emission profiles. These variants could be imaged in vivo in cases where original iGluSnFR was too dim, resolved glutamate transients in dendritic spines and axonal boutons, and allowed imaging at kilohertz rates.
Collapse
Affiliation(s)
- Jonathan S Marvin
- Howard Hughes Medical Institute (HHMI), Janelia Farm Research Campus, Ashburn, VA, USA
| | - Benjamin Scholl
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Daniel E Wilson
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Kaspar Podgorski
- Howard Hughes Medical Institute (HHMI), Janelia Farm Research Campus, Ashburn, VA, USA
| | - Abbas Kazemipour
- Howard Hughes Medical Institute (HHMI), Janelia Farm Research Campus, Ashburn, VA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | | | - Susanne Schoch
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Francisco José Urra Quiroz
- Unit of Dynamic Neuronal Imaging and Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Nelson Rebola
- Unit of Dynamic Neuronal Imaging and Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Huan Bao
- HHMI, Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin P Little
- Howard Hughes Medical Institute (HHMI), Janelia Farm Research Campus, Ashburn, VA, USA
- Department of Radiology, New York University Langone Health, New York, NY, USA
| | - Ariana N Tkachuk
- Howard Hughes Medical Institute (HHMI), Janelia Farm Research Campus, Ashburn, VA, USA
| | - Edward Cai
- Howard Hughes Medical Institute (HHMI), Janelia Farm Research Campus, Ashburn, VA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Adam W Hantman
- Howard Hughes Medical Institute (HHMI), Janelia Farm Research Campus, Ashburn, VA, USA
| | - Samuel S-H Wang
- Princeton Neuroscience Institute and Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Victor J DePiero
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Edwin R Chapman
- HHMI, Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Dirk Dietrich
- Department of Neurosurgery, University of Bonn, Bonn, Germany
| | - David A DiGregorio
- Unit of Dynamic Neuronal Imaging and Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | | | - Loren L Looger
- Howard Hughes Medical Institute (HHMI), Janelia Farm Research Campus, Ashburn, VA, USA.
| |
Collapse
|
33
|
Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS. Nat Chem Biol 2018; 14:861-869. [DOI: 10.1038/s41589-018-0108-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
|
34
|
Post-injury Nose-to-Brain Delivery of Activin A and SerpinB2 Reduces Brain Damage in a Mouse Stroke Model. Mol Ther 2018; 26:2357-2365. [PMID: 30093305 DOI: 10.1016/j.ymthe.2018.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 01/01/2023] Open
Abstract
Synaptic NMDA receptors activating nuclear calcium-driven adaptogenomics control a potent body-own neuroprotective mechanism, referred to as acquired neuroprotection. Viral vector-mediated gene transfer in conjunction with stereotactic surgery has previously demonstrated the proficiency of several nuclear calcium-regulated genes to protect in vivo against brain damage caused by toxic extrasynaptic NMDA receptor signaling following seizures or stroke. Here we used noninvasive nose-to-brain administration of Activin A and SerpinB2, two secreted nuclear calcium-regulated neuroprotectants, for post-injury treatment of brain damage following middle cerebral artery occlusion (MCAO) in C57BL/6N mice. The observed reduction of the infarct volume was comparable to the protection obtained by intracerebroventricular injection of recombinant Activin A or SerpinB2 or by stereotactic delivery 3 weeks prior to the injury of a recombinant adeno-associated virus containing an expression cassette for the potent neuroprotective transcription factor Npas4. These results establish post-injury, nose-to-brain delivery of Activin A and SerpinB2 as effective and possibly clinically applicable treatments of acute and chronic neurodegenerative conditions.
Collapse
|
35
|
Novati A, Hentrich T, Wassouf Z, Weber JJ, Yu-Taeger L, Déglon N, Nguyen HP, Schulze-Hentrich JM. Environment-dependent striatal gene expression in the BACHD rat model for Huntington disease. Sci Rep 2018; 8:5803. [PMID: 29643462 PMCID: PMC5895842 DOI: 10.1038/s41598-018-24243-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene which results in progressive neurodegeneration in the striatum, cortex, and eventually most brain areas. Despite being a monogenic disorder, environmental factors influence HD characteristics. Both human and mouse studies suggest that mutant HTT (mHTT) leads to gene expression changes that harbor potential to be modulated by the environment. Yet, the underlying mechanisms integrating environmental cues into the gene regulatory program have remained largely unclear. To better understand gene-environment interactions in the context of mHTT, we employed RNA-seq to examine effects of maternal separation (MS) and environmental enrichment (EE) on striatal gene expression during development of BACHD rats. We integrated our results with striatal consensus modules defined on HTT-CAG length and age-dependent co-expression gene networks to relate the environmental factors with disease progression. While mHTT was the main determinant of expression changes, both MS and EE were capable of modulating these disturbances, resulting in distinctive and in several cases opposing effects of MS and EE on consensus modules. This bivalent response to maternal separation and environmental enrichment may aid in explaining their distinct effects observed on disease phenotypes in animal models of HD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Arianna Novati
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Zinah Wassouf
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Jonasz J Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicole Déglon
- Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany. .,Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany.
| | | |
Collapse
|
36
|
Synapse development organized by neuronal activity-regulated immediate-early genes. Exp Mol Med 2018; 50:1-7. [PMID: 29628504 PMCID: PMC5938016 DOI: 10.1038/s12276-018-0025-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
Classical studies have shown that neuronal immediate-early genes (IEGs) play important roles in synaptic processes critical for key brain functions. IEGs are transiently activated and rapidly upregulated in discrete neurons in response to a wide variety of cellular stimuli, and they are uniquely involved in various aspects of synapse development. In this review, we summarize recent studies of a subset of neuronal IEGs in regulating synapse formation, transmission, and plasticity. We also discuss how the dysregulation of neuronal IEGs is associated with the onset of various brain disorders and pinpoint key outstanding questions that should be addressed in this field. Immediate-early genes (IEGs), genes that are rapidly and transiently activated by cellular stimuli, regulate the interactions between neurons and key brain functions. Ji Won Um and colleagues at Daegu Gyeongbuk Institute of Science and Technology in South Korea review recent studies on three IEGs that are activated by neuronal activity and highlight their contribution to neuronal excitability and cognitive behaviors. These genes rely on different molecular mechanisms to regulate neuronal receptors and the structure of synapses. Research in mice lacking any one of these IEGs reveals their contribution to learning and memory as well as to some behavioral abnormalities associated with neuropsychiatric disorders. Further research into the activity of IEGs will advance our understanding of how a neuron’s environment influences brain development and disease.
Collapse
|
37
|
Genetic study links components of the autonomous nervous system to heart-rate profile during exercise. Nat Commun 2018; 9:898. [PMID: 29497042 PMCID: PMC5832790 DOI: 10.1038/s41467-018-03395-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/09/2018] [Indexed: 01/01/2023] Open
Abstract
Heart rate (HR) responds to exercise by increasing during exercise and recovering after exercise. As such, HR is an important predictor of mortality that researchers believe is modulated by the autonomic nervous system. However, the mechanistic basis underlying inter-individual differences has yet to be explained. Here, we perform a large-scale genome-wide analysis of HR increase and HR recovery in 58,818 UK Biobank individuals. Twenty-five independent SNPs in 23 loci are identified to be associated (p < 8.3 × 10−9) with HR increase or HR recovery. A total of 36 candidate causal genes are prioritized that are enriched for pathways related to neuron biology. No evidence is found of a causal relationship with mortality or cardiovascular diseases. However, a nominal association with parental lifespan requires further study. In conclusion, the findings provide new biological and clinical insight into the mechanistic underpinnings of HR response to exercise. The results also underscore the role of the autonomous nervous system in HR recovery. Response of the heart rate (HR) to exercise is associated with cardiac fitness and risk of cardiac death. Here, in a genome-wide association study, Verweij et al. identify 23 loci for HR increase during exercise or HR recovery, and highlight pleiotropy with blood pressure by polygenic risk score analysis.
Collapse
|
38
|
Transcriptional regulators of redox balance and other homeostatic processes with the potential to alter neurodegenerative disease trajectory. Biochem Soc Trans 2017; 45:1295-1303. [PMID: 29150527 PMCID: PMC5730942 DOI: 10.1042/bst20170013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
Abstract
Diverse neurodegenerative diseases share some common aspects to their pathology, with many showing evidence of disruption to the brain's numerous homeostatic processes. As such, imbalanced inflammatory status, glutamate dyshomeostasis, hypometabolism and oxidative stress are implicated in many disorders. That these pathological processes can influence each other both up- and downstream makes for a complicated picture, but means that successfully targeting one area may have an effect on others. This targeting requires an understanding of the mechanisms by which homeostasis is maintained during health, in order to uncover strategies to boost homeostasis in disease. A case in point is redox homeostasis, maintained by antioxidant defences co-ordinately regulated by the transcription factor Nrf2, and capable of preventing not only oxidative stress but also inflammation and neuronal loss in neurodegenerative disease models. The emergence of other master regulators of homeostatic processes in the brain controlling inflammation, mitochondrial biogenesis, glutamate uptake and energy metabolism raises the question as to whether they too can be targeted to alter disease trajectory.
Collapse
|