1
|
Zhang J, Cao W, Xie J, Pang C, Gao L, Zhu L, Li Y, Yu H, Du L, Fan D, Deng B. Metabolic Syndrome and Risk of Amyotrophic Lateral Sclerosis: Insights from a Large-Scale Prospective Study. Ann Neurol 2024; 96:788-801. [PMID: 38934512 DOI: 10.1002/ana.27019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Although metabolic abnormalities are implicated in the etiology of neurodegenerative diseases, their role in the development of amyotrophic lateral sclerosis (ALS) remains a subject of controversy. We aimed to identify the association between metabolic syndrome (MetS) and the risk of ALS. METHODS This study included 395,987 participants from the UK Biobank to investigate the relationship between MetS and ALS. Cox regression model was used to estimate hazard ratios (HR). Stratified analyses were performed based on gender, body mass index (BMI), smoking status, and education level. Mediation analysis was conducted to explore potential mechanisms. RESULTS In this study, a total of 539 cases of ALS were recorded after a median follow-up of 13.7 years. Patients with MetS (defined harmonized) had a higher risk of developing ALS after adjusting for confounding factors (HR: 1.50, 95% CI: 1.19-1.89). Specifically, hypertension and high triglycerides were linked to a higher risk of ALS (HR: 1.53, 95% CI: 1.19-1.95; HR: 1.31, 95% CI: 1.06-1.61, respectively). Moreover, the quantity of metabolic abnormalities showed significant results. Stratified analysis revealed that these associations are particularly significant in individuals with a BMI <25. These findings remained stable after sensitivity analysis. Notably, mediation analysis identified potential metabolites and metabolomic mediators, including alkaline phosphatase, cystatin C, γ-glutamyl transferase, saturated fatty acids to total fatty acids percentage, and omega-6 fatty acids to omega-3 fatty acids ratio. INTERPRETATION MetS exhibits a robust association with an increased susceptibility to ALS, particularly in individuals with a lower BMI. Furthermore, metabolites and metabolomics, as potential mediators, provide invaluable insights into the intricate biological mechanisms. ANN NEUROL 2024;96:788-801.
Collapse
Affiliation(s)
- Junwei Zhang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Jiali Xie
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyang Pang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingfei Gao
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luyi Zhu
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaojia Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huan Yu
- Department of Pediatrics, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lihuai Du
- College of Mathematics and Physics, Wenzhou University, Wenzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Chen CW, Yeh WL, Charoensaensuk V, Lin C, Yang LY, Chen MK, Yeh T, Tsai CF, Lu DY. Oral administration of osthole mitigates maladaptive behaviors through PPARα activation in mice subjected to repeated social defeat stress. Neurochem Int 2024; 179:105811. [PMID: 39053771 DOI: 10.1016/j.neuint.2024.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Psychological stress induces neuroinflammatory responses, which are associated with the pathogenesis of various psychiatric disorders, such as posttraumatic stress disorder and anxiety. Osthole-a natural coumarin isolated from the seeds of the Chinese herb Cnidium monnieri-exerts anti-inflammatory and antioxidative effects on the central nervous system. However, the therapeutic benefits of osthole against psychiatric disorders remain largely unknown. We previously demonstrated that mice subjected to repeated social defeat stress (RSDS) in the presence of aggressor mice exhibited symptoms of posttraumatic stress disorder, such as social avoidance and anxiety-like behaviors. In this study, we investigated the therapeutic effects of osthole and the underlying molecular mechanisms. Osthole exerted therapeutic effects on cognitive behaviors, mitigating anxiety-like behaviors and social avoidance in a mouse model of RSDS. The anti-inflammatory response induced by the oral administration of osthole was strengthened through the upregulation of heme oxygenase-1 expression. The expression of PPARα was inhibited in mice subjected to RSDS. Nonetheless, osthole treatment reversed the inhibition of PPARα expression. We identified a positive correlation between heme oxygenase-1 expression and PPARα expression in osthole-treated mice. In conclusion, osthole has potential as a Chinese herbal medicine for anxiety disorders. When designing novel drugs for psychiatric disorders, researchers should consider targeting the activation of PPARα.
Collapse
Affiliation(s)
- Chao-Wei Chen
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Kai Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Tong Yeh
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Lescouzères L, Patten SA. Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update. Expert Opin Drug Discov 2024; 19:1213-1233. [PMID: 39115327 DOI: 10.1080/17460441.2024.2387791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/30/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Several animal models have been generated to understand ALS pathogenesis. They have provided valuable insight into disease mechanisms and the development of therapeutic strategies. AREAS COVERED In this review, the authors provide a concise overview of simple genetic model organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been generated to study ALS. They emphasize the benefits of each model and their application in translational research for discovering new chemicals, gene therapy approaches, and antibody-based strategies for treating ALS. EXPERT OPINION Significant progress is being made in identifying new therapeutic targets for ALS. This progress is being enabled by promising animal models of the disease using increasingly effective genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve improved success rates for translating drugs from animal models to clinics for treating ALS. Several promising future directions include the establishment of novel preclinical protocol standards, as well as the combination of animal models with human induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
- Léa Lescouzères
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Shunmoogum A Patten
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Departement de Neurosciences, Université de Montréal, Montreal, Canada
| |
Collapse
|
4
|
Thakur K, Khan H, Grewal AK, Singh TG. Nuclear orphan receptors: A novel therapeutic agent in neuroinflammation. Int Immunopharmacol 2023; 124:110845. [PMID: 37690241 DOI: 10.1016/j.intimp.2023.110845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023]
Abstract
Orphan receptors constitute a historically varied subsection of a superfamily of nuclear receptors. Nuclear receptors regulate gene expression in response to ligand signals and are particularly alluring therapeutic targets for chronic illnesses. Neuroinflammation and neurodegenerative diseases have been linked to these orphan nuclear receptors. Preclinical and clinical evidence suggests that orphan receptors could serve as future targets in neuroinflammation, such as Parkinson's disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Multiple Sclerosis (MS), and Cerebral Ischemia. Given the therapeutic relevance of certain orphan receptors in a variety of disorders, their potential in neuroinflammation remains unproven. There is substantial evidence that ligand-activated transcription factors have great promise for preventing neurodegenerative and neurological disorders, with certain orphan nuclear receptors i.e., PPARγ, NR4As, and orphan GPCRs holding particularly high potential. Based on previous findings, we attempted to determine the contribution of PPAR, NR4As, and orphan GPCRs-regulated neuroinflammation to the pathogenesis of these disorders and their potential to become novel therapeutic targets.
Collapse
Affiliation(s)
- Kiran Thakur
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | | | | |
Collapse
|
5
|
Ludolph A, Dupuis L, Kasarskis E, Steyn F, Ngo S, McDermott C. Nutritional and metabolic factors in amyotrophic lateral sclerosis. Nat Rev Neurol 2023; 19:511-524. [PMID: 37500993 DOI: 10.1038/s41582-023-00845-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease that is classically thought to impact the motor system. Over the past 20 years, research has started to consider the contribution of non-motor symptoms and features of the disease, and how they might affect ALS prognosis. Of the non-motor features of the disease, nutritional status (for example, malnutrition) and metabolic balance (for example, weight loss and hypermetabolism) have been consistently shown to contribute to more rapid disease progression and/or earlier death. Several complex cellular changes observed in ALS, including mitochondrial dysfunction, are also starting to be shown to contribute to bioenergetic failure. The resulting energy depletion in high energy demanding neurons makes them sensitive to apoptosis. Given that nutritional and metabolic stressors at the whole-body and cellular level can impact the capacity to maintain optimal function, these factors present avenues through which we can identify novel targets for treatment in ALS. Several clinical trials are now underway evaluating the effectiveness of modifying energy balance in ALS, making this article timely in reviewing the evidence base for metabolic and nutritional interventions.
Collapse
Affiliation(s)
- Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Site Ulm, Ulm, Germany
| | - Luc Dupuis
- Université de Strasbourg, Inserm, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR-S1118, Centre de Recherches en Biomédecine, Strasbourg, France
| | - Edward Kasarskis
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Frederik Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
6
|
Pizcueta P, Vergara C, Emanuele M, Vilalta A, Rodríguez-Pascau L, Martinell M. Development of PPARγ Agonists for the Treatment of Neuroinflammatory and Neurodegenerative Diseases: Leriglitazone as a Promising Candidate. Int J Mol Sci 2023; 24:ijms24043201. [PMID: 36834611 PMCID: PMC9961553 DOI: 10.3390/ijms24043201] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence suggests that the peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, plays an important role in physiological processes in the central nervous system (CNS) and is involved in cellular metabolism and repair. Cellular damage caused by acute brain injury and long-term neurodegenerative disorders is associated with alterations of these metabolic processes leading to mitochondrial dysfunction, oxidative stress, and neuroinflammation. PPARγ agonists have demonstrated the potential to be effective treatments for CNS diseases in preclinical models, but to date, most drugs have failed to show efficacy in clinical trials of neurodegenerative diseases including amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. The most likely explanation for this lack of efficacy is the insufficient brain exposure of these PPARγ agonists. Leriglitazone is a novel, blood-brain barrier (BBB)-penetrant PPARγ agonist that is being developed to treat CNS diseases. Here, we review the main roles of PPARγ in physiology and pathophysiology in the CNS, describe the mechanism of action of PPARγ agonists, and discuss the evidence supporting the use of leriglitazone to treat CNS diseases.
Collapse
Affiliation(s)
- Pilar Pizcueta
- Minoryx Therapeutics SL, 08302 Barcelona, Spain
- Correspondence:
| | | | - Marco Emanuele
- Minoryx Therapeutics BE, Gosselies, 6041 Charleroi, Belgium
| | | | | | - Marc Martinell
- Minoryx Therapeutics SL, 08302 Barcelona, Spain
- Minoryx Therapeutics BE, Gosselies, 6041 Charleroi, Belgium
| |
Collapse
|
7
|
Fu SP, Chen SY, Pang QM, Zhang M, Wu XC, Wan X, Wan WH, Ao J, Zhang T. Advances in the research of the role of macrophage/microglia polarization-mediated inflammatory response in spinal cord injury. Front Immunol 2022; 13:1014013. [PMID: 36532022 PMCID: PMC9751019 DOI: 10.3389/fimmu.2022.1014013] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
It is often difficult to regain neurological function following spinal cord injury (SCI). Neuroinflammation is thought to be responsible for this failure. Regulating the inflammatory response post-SCI may contribute to the recovery of neurological function. Over the past few decades, studies have found that macrophages/microglia are one of the primary effector cells in the inflammatory response following SCI. Growing evidence has documented that macrophages/microglia are plastic cells that can polarize in response to microenvironmental signals into M1 and M2 macrophages/microglia. M1 produces pro-inflammatory cytokines to induce inflammation and worsen tissue damage, while M2 has anti-inflammatory activities in wound healing and tissue regeneration. Recent studies have indicated that the transition from the M1 to the M2 phenotype of macrophage/microglia supports the regression of inflammation and tissue repair. Here, we will review the role of the inflammatory response and macrophages/microglia in SCI and repair. In addition, we will discuss potential molecular mechanisms that induce macrophage/microglia polarization, with emphasis on neuroprotective therapies that modulate macrophage/microglia polarization, which will provide new insights into therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Ming Pang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xue Wan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei-Hong Wan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,*Correspondence: Tao Zhang,
| |
Collapse
|
8
|
Díaz-García D, Ferrer-Donato Á, Méndez-Arriaga JM, Cabrera-Pinto M, Díaz-Sánchez M, Prashar S, Fernandez-Martos CM, Gómez-Ruiz S. Design of Mesoporous Silica Nanoparticles for the Treatment of Amyotrophic Lateral Sclerosis (ALS) with a Therapeutic Cocktail Based on Leptin and Pioglitazone. ACS Biomater Sci Eng 2022; 8:4838-4849. [PMID: 36240025 PMCID: PMC9667463 DOI: 10.1021/acsbiomaterials.2c00865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Amyotrophic lateral sclerosis (ALS) is a devasting neurodegenerative
disease with no cure to date. Therapeutic agents used to treat ALS
are very limited, although combined therapies may offer a more effective
treatment strategy. Herein, we have studied the potential of nanomedicine
to prepare a single platform based on mesoporous silica nanoparticles
(MSNs) for the treatment of an ALS animal model with a cocktail of
agents such as leptin (neuroprotective) and pioglitazone (anti-inflammatory),
which have already demonstrated promising therapeutic ability in other
neurodegenerative diseases. Our goal is to study the potential of
functionalized mesoporous materials as therapeutic agents against
ALS using MSNs as nanocarriers for the proposed drug cocktail leptin/pioglitazone
(MSN-LEP-PIO). The nanostructured materials have been
characterized by different techniques, which confirmed the incorporation
of both agents in the nanosystem. Subsequently, the effect, in vivo, of the proposed drug cocktail, MSN-LEP-PIO, was used in the murine model of TDP-43 proteinopathy (TDP-43A315T mice). Body weight loss was studied, and using the rotarod
test, motor performance was assessed, observing a continuous reduction
in body weight and motor coordination in TDP-43A315T mice
and wild-type (WT) mice. Nevertheless, the disease progression was
slower and showed significant improvements in motor performance, indicating
that TDP-43A315T mice treated with MSN-LEP-PIO seem to have less energy demand in the late stage of the symptoms
of ALS. Collectively, these results seem to indicate the efficiency
of the systems in vivo and the usefulness of their
use in neurodegenerative models, including ALS.
Collapse
Affiliation(s)
- Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Águeda Ferrer-Donato
- Neurometabolism Group, Research Unit of the National Hospital of Paraplegics (UDI-HNP), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - José M Méndez-Arriaga
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Marta Cabrera-Pinto
- Neurometabolism Group, Research Unit of the National Hospital of Paraplegics (UDI-HNP), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Miguel Díaz-Sánchez
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Carmen M Fernandez-Martos
- Neurometabolism Group, Research Unit of the National Hospital of Paraplegics (UDI-HNP), Finca La Peraleda s/n, 45071 Toledo, Spain.,Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| |
Collapse
|
9
|
Cui C, Sun J, McKay KA, Ingre C, Fang F. Medication use and risk of amyotrophic lateral sclerosis-a systematic review. BMC Med 2022; 20:251. [PMID: 35927763 PMCID: PMC9354307 DOI: 10.1186/s12916-022-02442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Studying whether medications act as potential risk factors for amyotrophic lateral sclerosis (ALS) can contribute to the understanding of disease etiology as well as the identification of novel therapeutic targets. Therefore, we conducted a systematic review to summarize the existing evidence on the association between medication use and the subsequent ALS risk. METHODS A systematic review was conducted in Medline, Embase, and Web of Science from the date of database establishment to December 10, 2021. References of identified articles were further searched for additional relevant articles. Studies were included if (1) published in English, (2) explored medication use as exposure and development of ALS as outcome, and (3) the design was a human observational study. Clinical trials, reviews, comments, editorials, and case reports were excluded. Quality assessment was performed using a pre-validated tool for non-randomized studies, the Newcastle-Ottawa Assessment Scale (NOS). RESULTS Of the 4760 studies identified, 25 articles, including 13 case-control studies, five nested case-control studies, six cohort studies, and one retrospective chart review, were included in the review. Among these studies, there were 22 distinct study populations that included 171,407 patients with ALS, seven classes of medication examined, and 23 studies with a NOS ≥ 5. There was a general lack of agreement between studies on the associations of cholesterol-lowering drugs, anti-inflammatory drugs, immunosuppressants, antibiotics, oral contraceptives (OCs) or hormone replacement therapy (HRT), antihypertensive drugs, antidiabetics, and drugs for psychiatric and neurological disorders with the subsequent risk of ALS. However, it appeared that statins, aspirin, OCs/HRT, antihypertensives, and antidiabetics were unlikely related to a higher risk of ALS. The positive associations noted for antibiotics, antidepressants, and skeletal muscle relaxants might be attributable to prodromal symptoms of ALS. CONCLUSIONS There is currently no strong evidence to link any medication use with ALS risk.
Collapse
Affiliation(s)
- Can Cui
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Jiangwei Sun
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kyla A McKay
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Neurology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Shcherbakova K, Schwarz A, Apryatin S, Karpenko M, Trofimov A. Supplementation of Regular Diet With Medium-Chain Triglycerides for Procognitive Effects: A Narrative Review. Front Nutr 2022; 9:934497. [PMID: 35911092 PMCID: PMC9334743 DOI: 10.3389/fnut.2022.934497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 01/09/2023] Open
Abstract
It is now widely accepted that ketosis (a physiological state characterized by elevated plasma ketone body levels) possesses a wide range of neuroprotective effects. There is a growing interest in the use of ketogenic supplements, including medium-chain triglycerides (MCT), to achieve intermittent ketosis without adhering to a strict ketogenic diet. MCT supplementation is an inexpensive and simple ketogenic intervention, proven to benefit both individuals with normal cognition and those suffering from mild cognitive impairment, Alzheimer's disease, and other cognitive disorders. The commonly accepted paradigm underlying MCT supplementation trials is that the benefits stem from ketogenesis and that MCT supplementation is safe. However, medium-chain fatty acids (MCFAs) may also exert effects in the brain directly. Moreover, MCFAs, long-chain fatty acids, and glucose participate in mutually intertwined metabolic pathways. Therefore, the metabolic effects must be considered if the desired procognitive effects require administering MCT in doses larger than 1 g/kg. This review summarizes currently available research on the procognitive effects of using MCTs as a supplement to regular feed/diet without concomitant reduction of carbohydrate intake and focuses on the revealed mechanisms linked to particular MCT metabolites (ketone bodies, MCFAs), highlighting open questions and potential considerations.
Collapse
Affiliation(s)
- Ksenia Shcherbakova
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia,*Correspondence: Ksenia Shcherbakova
| | - Alexander Schwarz
- Laboratory of the Molecular Mechanisms of Neuronal Interactions, Institute of Evolutionary Physiology and Biochemistry (RAS), Saint Petersburg, Russia
| | - Sergey Apryatin
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Marina Karpenko
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexander Trofimov
- I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
11
|
Nelson AT, Trotti D. Altered Bioenergetics and Metabolic Homeostasis in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2022; 19:1102-1118. [PMID: 35773551 PMCID: PMC9587161 DOI: 10.1007/s13311-022-01262-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 01/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that primarily affects motor neurons and causes muscle atrophy, paralysis, and death. While a great deal of progress has been made in deciphering the underlying pathogenic mechanisms, no effective treatments for the disease are currently available. This is mainly due to the high degree of complexity and heterogeneity that characterizes the disease. Over the last few decades of research, alterations to bioenergetic and metabolic homeostasis have emerged as a common denominator across many different forms of ALS. These alterations are found at the cellular level (e.g., mitochondrial dysfunction and impaired expression of monocarboxylate transporters) and at the systemic level (e.g., low BMI and hypermetabolism) and tend to be associated with survival or disease outcomes in patients. Furthermore, an increasing amount of preclinical evidence and some promising clinical evidence suggests that targeting energy metabolism could be an effective therapeutic strategy. This review examines the evidence both for and against these ALS-associated metabolic alterations and highlights potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Andrew T Nelson
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, JHN Bldg., 4th floor, room 416, Philadelphia, PA, 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, JHN Bldg., 4th floor, room 416, Philadelphia, PA, 19107, USA.
| |
Collapse
|
12
|
Mittal N, Mittal R. Repurposing old molecules for new indications: Defining pillars of success from lessons in the past. Eur J Pharmacol 2021; 912:174569. [PMID: 34653378 DOI: 10.1016/j.ejphar.2021.174569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Drug repurposing or studying existing drugs for potential therapeutic utility in newer indications has been identified as an attractive option for treating a number of diseases. Various strategies of drug repurposing include serendipitous observation of drug's unexpected effects, directing the failed investigational drugs to new indications and currently adopted systematic approach to identify, screen and develop existing drug molecules for new off-label indications. Drug repurposing is able to constructively overcome the bottleneck restraints encountered during traditional de novo drug development process in grounds of timelines, cost and resources. However, success rates of drug repurposing programs are not very impressive. Through a meticulous examination of some failed repurposing attempts we aimed to identify key factors leading to high attrition rate in such studies. Based on the fundamental elements of knowledge and evaluation, we have defined four pillars toward improving success rate in drug repurposing programs viz. sound knowledge of the repurposed drug's pharmacological characteristics (pillar 1: drug pharmacology); drug formulation considerations in new indication (pillar 2: drug formulation); evaluation in representative biological assays with translational potential (pillar 3: evaluation in biological assays); and robust clinical trial methodologies including biomarker driven approach to provide conclusive evidence of repurposed drug's efficacy in new indication (pillar 4: clinical evaluation). In addition to the pharmacological challenges, certain regulatory concerns, including lack of clear guidelines for evaluation and market exclusivity pose hurdles in the application of drug repurposing, which may however be overcome to a great extent by adopting some strategies as discussed in this review.
Collapse
Affiliation(s)
- Niti Mittal
- Dept. of Pharmacology, Postgraduate Institute of Medical Sciences, Rohtak, 124001, India.
| | - Rakesh Mittal
- Dept. of Pharmacology, Postgraduate Institute of Medical Sciences, Rohtak, 124001, India
| |
Collapse
|
13
|
Lin C, Lai SW, Shen CK, Chen CW, Tsai CF, Liu YS, Lu DY, Huang BR. Fenofibrate inhibits hypoxia-inducible factor-1 alpha and carbonic anhydrase expression through activation of AMP-activated protein kinase/HO-1/Sirt1 pathway in glioblastoma cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:2551-2561. [PMID: 34520103 DOI: 10.1002/tox.23369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Cancer and its associated conditions have significant impacts on public health at many levels worldwide, and cancer is the leading cause of death among adults. Peroxisome proliferator-activated receptor α (PPARα)-specific agonists, fibrates, have been approved by the Food and Drug Administration for managing hyperlipidemia. PPARα-specific agonists exert anti-cancer effects in many human cancer types, including glioblastoma (GBM). Recently, we have reported that the hypoxic state in GBM stabilizes hypoxia-inducible factor-1 alpha (HIF-1α), thus contributing to tumor escape from immune surveillance by activating the expression of the pH-regulating protein carbonic anhydrase IX (CA9). In this study, we aimed to study the regulatory effects of the PPARα agonist fibrate on the regulation of HIF-1α expression and its downstream target protein in GBM. Our findings showed that fenofibrate is the high potency compound among the various fibrates that inhibit hypoxia-induced HIF-1α and CA9 expression in GBM. Moreover, fenofibrate-inhibited HIF-1α expression is mediated by HO-1 activation in GBM cells through the AMP-activated protein kinase (AMPK) pathway. In addition, fenofibrate-enhanced HO-1 upregulation activates SIRT1 and leads to subsequent accumulation of SIRT1 in the nucleus, which further promotes HIF-1α deacetylation and inhibits CA9 expression. Using a protein synthesis inhibitor, cycloheximide, we also observed that fenofibrate inhibited HIF-1α protein synthesis. In addition, the administration of the proteasome inhibitor MG132 showed that fenofibrate promoted HIF-1α protein degradation in GBM. Hence, our results indicate that fenofibrate is a useful anti-GBM agent that modulates hypoxia-induced HIF-1α expression through multiple cellular pathways.
Collapse
Affiliation(s)
- Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Wei Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chao-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
14
|
PPAR-γ activation enhances myelination and neurological recovery in premature rabbits with intraventricular hemorrhage. Proc Natl Acad Sci U S A 2021; 118:2103084118. [PMID: 34462350 DOI: 10.1073/pnas.2103084118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Intraventricular hemorrhage (IVH) results in periventricular inflammation, hypomyelination of the white matter, and hydrocephalus in premature infants. No effective therapy exists to prevent these disorders. Peroxisome proliferator activated receptor-γ (PPAR-γ) agonists reduce inflammation, alleviate free radical generation, and enhance microglial phagocytosis, promoting clearance of debris and red blood cells. We hypothesized that activation of PPAR-γ would enhance myelination, reduce hydrocephalus, and promote neurological recovery in newborns with IVH. These hypotheses were tested in a preterm rabbit model of IVH; autopsy brain samples from premature infants with and without IVH were analyzed. We found that IVH augmented PPAR-γ expression in microglia of both preterm human infants and rabbit kits. The treatment with PPAR-γ agonist or PPAR-γ overexpression by adenovirus delivery further elevated PPAR-γ levels in microglia, reduced proinflammatory cytokines, increased microglial phagocytosis, and improved oligodendrocyte progenitor cell (OPC) maturation in kits with IVH. Transcriptomic analyses of OPCs identified previously unrecognized PPAR-γ-induced genes for purinergic signaling, cyclic adenosine monophosphate generation, and antioxidant production, which would reprogram these progenitors toward promoting myelination. RNA-sequencing analyses of microglia revealed PPAR-γ-triggered down-regulation of several proinflammatory genes and transcripts having roles in Parkinson's disease and amyotrophic lateral sclerosis, contributing to neurological recovery in kits with IVH. Accordingly, PPAR-γ activation enhanced myelination and neurological function in kits with IVH. This also enhanced microglial phagocytosis of red blood cells but did not reduce hydrocephalus. Treatment with PPAR-γ agonist might enhance myelination and neurological recovery in premature infants with IVH.
Collapse
|
15
|
Intrinsic Innate Immune Responses Control Viral Growth and Protect against Neuronal Death in an Ex Vivo Model of West Nile Virus-Induced Central Nervous System Disease. J Virol 2021; 95:e0083521. [PMID: 34190599 DOI: 10.1128/jvi.00835-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recruitment of immune cells from the periphery is critical for controlling West Nile virus (WNV) growth in the central nervous system (CNS) and preventing subsequent WNV-induced CNS disease. Neuroinflammatory responses, including the release of proinflammatory cytokines and chemokines by CNS cells, influence the entry and function of peripheral immune cells that infiltrate the CNS. However, these same cytokines and chemokines contribute to tissue damage in other models of CNS injury. Rosiglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) agonist that inhibits neuroinflammation. We used rosiglitazone in WNV-infected ex vivo brain slice cultures (BSC) to investigate the role of neuroinflammation within the CNS in the absence of peripheral immune cells. Rosiglitazone treatment inhibited WNV-induced expression of proinflammatory chemokines and cytokines, interferon beta (IFN-β), and IFN-stimulated genes (ISG) and also decreased WNV-induced activation of microglia. These decreased neuroinflammatory responses were associated with activation of astrocytes, robust viral growth, increased activation of caspase 3, and increased neuronal loss. Rosiglitazone had a similar effect on in vivo WNV infection, causing increased viral growth, tissue damage, and disease severity in infected mice, even though the number of infiltrating peripheral immune cells was higher in rosiglitazone-treated, WNV-infected mice than in untreated, infected controls. These results indicate that local neuroinflammatory responses are capable of controlling viral growth within the CNS and limiting neuronal loss and may function to keep the virus in check prior to the infiltration of peripheral immune cells, limiting both virus- and immune-mediated neuronal damage. IMPORTANCE West Nile virus is the most common cause of epidemic encephalitis in the United States and can result in debilitating CNS disease. There are no effective vaccines or treatments for WNV-induced CNS disease in humans. The peripheral immune response is critical for protection against WNV CNS infections. We now demonstrate that intrinsic immune responses also control viral growth and limit neuronal loss. These findings have important implications for developing new therapies for WNV-induced CNS disease.
Collapse
|
16
|
Rodríguez-Pascau L, Vilalta A, Cerrada M, Traver E, Forss-Petter S, Weinhofer I, Bauer J, Kemp S, Pina G, Pascual S, Meya U, Musolino PL, Berger J, Martinell M, Pizcueta P. The brain penetrant PPARγ agonist leriglitazone restores multiple altered pathways in models of X-linked adrenoleukodystrophy. Sci Transl Med 2021; 13:13/596/eabc0555. [PMID: 34078742 DOI: 10.1126/scitranslmed.abc0555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/06/2020] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD), a potentially fatal neurometabolic disorder with no effective pharmacological treatment, is characterized by clinical manifestations ranging from progressive spinal cord axonopathy [adrenomyeloneuropathy (AMN)] to severe demyelination and neuroinflammation (cerebral ALD-cALD), for which molecular mechanisms are not well known. Leriglitazone is a recently developed brain penetrant full PPARγ agonist that could modulate multiple biological pathways relevant for neuroinflammatory and neurodegenerative diseases, and particularly for X-ALD. We found that leriglitazone decreased oxidative stress, increased adenosine 5'-triphosphate concentration, and exerted neuroprotective effects in primary rodent neurons and astrocytes after very long chain fatty acid-induced toxicity simulating X-ALD. In addition, leriglitazone improved motor function; restored markers of oxidative stress, mitochondrial function, and inflammation in spinal cord tissues from AMN mouse models; and decreased the neurological disability in the EAE neuroinflammatory mouse model. X-ALD monocyte-derived patient macrophages treated with leriglitazone were less skewed toward an inflammatory phenotype, and the adhesion of human X-ALD monocytes to brain endothelial cells decreased after treatment, suggesting the potential of leriglitazone to prevent the progression to pathologically disrupted blood-brain barrier. Leriglitazone increased myelin debris clearance in vitro and increased myelination and oligodendrocyte survival in demyelination-remyelination in vivo models, thus promoting remyelination. Last, leriglitazone was clinically tested in a phase 1 study showing central nervous system target engagement (adiponectin increase) and changes on inflammatory biomarkers in plasma and cerebrospinal fluid. The results of our study support the use of leriglitazone in X-ALD and, more generally, in other neuroinflammatory and neurodegenerative conditions.
Collapse
Affiliation(s)
| | - Anna Vilalta
- Minoryx Therapeutics S.L., Barcelona 08302, Spain
| | - Marc Cerrada
- Minoryx Therapeutics S.L., Barcelona 08302, Spain
| | | | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Stephan Kemp
- Department of Clinical Chemistry and Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Guillem Pina
- Minoryx Therapeutics S.L., Barcelona 08302, Spain
| | | | - Uwe Meya
- Minoryx Therapeutics S.L., Barcelona 08302, Spain
| | - Patricia L Musolino
- Neurosciences Intensive Care Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | | | | |
Collapse
|
17
|
Chen L, Xu L, Tang L, Xia K, Tian D, Zhang G, Wang Y, Yu Z, Ma J, Zhang Y, Wang F, Sun C, Zhang G, Fu J, Jiao L, Yilihamu M, Wang S, Zhan S, Fan D. Trends in the clinical features of amyotrophic lateral sclerosis: A 14-year Chinese cohort study. Eur J Neurol 2021; 28:2893-2900. [PMID: 34048130 DOI: 10.1111/ene.14943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE The aim was to determine the transitional patterns in the clinical characteristics, treatments and comorbidities in amyotrophic lateral sclerosis (ALS) patients over the past 14 years using data from a large clinical cohort in mainland China. METHODS Sporadic ALS patients who visited the Peking University Third Hospital from January 2005 to December 2018 were included in this study. The 14 years were divided into three periods, and changes in the baseline characteristics of the participants were analyzed at 5-year intervals. RESULTS In total, 3410 patients with sporadic ALS were recruited: 2181 were men and 1229 were women. The proportion of patients with bulbar-onset ALS increased from 13.0% in 2005-2009 to 19.5% in 2015-2018 (p < 0.001). The mean (standard deviation) age at onset increased from 49.5 (11.4) years in 2005-2009 to 53.0 (11.0) years in 2015-2018 (p < 0.001). ALS patients with diabetes or hypertension showed a delay in ALS onset, and the delay was even more apparent when the patients had both comorbidities. The proportion of riluzole users in 2015-2018 was approximately 2.5-fold of that in 2005-2009 (p < 0.001). CONCLUSIONS In the context of a lack of clinical data on ALS in mainland China, this study evaluated a large cohort of patients diagnosed over a 14-year period. The age at onset and percentage of patients who used riluzole both increased over the study period. Additionally, it was found that patients with comorbidities such as diabetes and hypertension had a delayed age of ALS onset.
Collapse
Affiliation(s)
- Lu Chen
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Lu Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Kailin Xia
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Danyang Tian
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Gan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Yajun Wang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Zhou Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Jingyue Ma
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Yixuan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Fan Wang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Can Sun
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Gaoqi Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Jiayu Fu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Lin Jiao
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Mubalake Yilihamu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Shengfeng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.,Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China.,Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
18
|
Diabetes Mellitus and Amyotrophic Lateral Sclerosis: A Systematic Review. Biomolecules 2021; 11:biom11060867. [PMID: 34200812 PMCID: PMC8230511 DOI: 10.3390/biom11060867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder which affects the motor neurons. Growing evidence suggests that ALS may impact the metabolic system, including the glucose metabolism. Several studies investigated the role of Diabetes Mellitus (DM) as risk and/or prognostic factor. However, a clear correlation between DM and ALS has not been defined. In this review, we focus on the role of DM in ALS, examining the different hypotheses on how perturbations of glucose metabolism may interact with the pathophysiology and the course of ALS. METHODS We undertook an independent PubMed literature search, using the following search terms: ((ALS) OR (Amyotrophic Lateral Sclerosis) OR (Motor Neuron Disease)) AND ((Diabetes) OR (Glucose Intolerance) OR (Hyperglycemia)). Review and original articles were considered. RESULTS DM appears not to affect ALS severity, progression, and survival. Contrasting data suggested a protective role of DM on the occurrence of ALS in elderly and an opposite effect in younger subjects. CONCLUSIONS The actual clinical and pathophysiological correlation between DM and ALS is unclear. Large longitudinal prospective studies are needed. Achieving large sample sizes comparable to those of common complex diseases like DM is a challenge for a rare disease like ALS. Collaborative efforts could overcome this specific issue.
Collapse
|
19
|
Celia's Encephalopathy ( BSCL2-Gene-Related): Current Understanding. J Clin Med 2021; 10:jcm10071435. [PMID: 33916074 PMCID: PMC8037292 DOI: 10.3390/jcm10071435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022] Open
Abstract
Seipin, encoded by the BSCL2 gene, is a protein that in humans is expressed mainly in the central nervous system. Uniquely, certain variants in BSCL2 can cause both generalized congenital lipodystrophy type 2, upper and/or lower motor neuron diseases, or progressive encephalopathy, with a poor prognosis during childhood. The latter, Celia's encephalopathy, which may or may not be associated with generalized lipodystrophy, is caused by the c.985C >T variant. This cytosine to thymine transition creates a cryptic splicing zone that leads to intronization of exon 7, resulting in an aberrant form of seipin, Celia seipin. It has been proposed that the accumulation of this protein, both in the endoplasmic reticulum and in the nucleus of neurons, might be the pathogenetic mechanism of this neurodegenerative condition. In recent years, other variants in BSCL2 associated with generalized lipodystrophy and progressive epileptic encephalopathy have been reported. Interestingly, most of these variants could also lead to the loss of exon 7. In this review, we analyzed the molecular bases of Celia's encephalopathy and its pathogenic mechanisms, the clinical features of the different variants, and a therapeutic approach in order to slow down the progression of this fatal neurological disorder.
Collapse
|
20
|
Jamwal S, Blackburn JK, Elsworth JD. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Ther 2021; 219:107705. [PMID: 33039420 PMCID: PMC7887032 DOI: 10.1016/j.pharmthera.2020.107705] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases represent some of the most devastating neurological disorders, characterized by progressive loss of the structure and function of neurons. Current therapy for neurodegenerative disorders is limited to symptomatic treatment rather than disease modifying interventions, emphasizing the desperate need for improved approaches. Abundant evidence indicates that impaired mitochondrial function plays a crucial role in pathogenesis of many neurodegenerative diseases and so biochemical factors in mitochondria are considered promising targets for pharmacological-based therapies. Peroxisome proliferator-activated receptors-γ (PPARγ) are ligand-inducible transcription factors involved in regulating various genes including peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC1α). This review summarizes the evidence supporting the ability of PPARγ-PGC1α to coordinately up-regulate the expression of genes required for mitochondrial biogenesis in neurons and provide directions for future work to explore the potential benefit of targeting mitochondrial biogenesis in neurodegenerative disorders. We have highlighted key roles of NRF2, uncoupling protein-2 (UCP2), and paraoxonase-2 (PON2) signaling in mediating PGC1α-induced mitochondrial biogenesis. In addition, the status of PPARγ modulators being used in clinical trials for Parkinson's disease (PD), Alzheimer's disease (AD) and Huntington's disease (HD) has been compiled. The overall purpose of this review is to update and critique our understanding of the role of PPARγ-PGC1α-NRF2 in the induction of mitochondrial biogenesis together with suggestions for strategies to target PPARγ-PGC1α-NRF2 signaling in order to combat mitochondrial dysfunction in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jennifer K Blackburn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - John D Elsworth
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
21
|
Rodríguez-Cueto C, García-Toscano L, Santos-García I, Gómez-Almería M, Gonzalo-Consuegra C, Espejo-Porras F, Fernández-Ruiz J, de Lago E. Targeting the CB 2 receptor and other endocannabinoid elements to delay disease progression in amyotrophic lateral sclerosis. Br J Pharmacol 2021; 178:1373-1387. [PMID: 33486755 DOI: 10.1111/bph.15386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids form a singular group of plant-derived compounds, endogenous lipids and synthetic derivatives with multiple therapeutic effects exerted by targeting different elements of the endocannabinoid system. One of their therapeutic applications is the preservation of neuronal integrity exerted by attenuating the multiple neurotoxic events that kill neurons in neurodegenerative disorders. In this review, we will address the potential of cannabinoids as neuroprotective agents in amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disorder characterized by muscle denervation, atrophy and paralysis, and progressive deterioration in upper and/or lower motor neurons. The emphasis will be paid on the cannabinoid type 2 (CB2 ) receptor, whose activation limits glial reactivity, but the potential of additional endocannabinoid-related targets will be also addressed. The evidence accumulated so far at the preclinical level supports the need to soon move towards the patients and initiate clinical trials to confirm the potential of cannabinoid-based medicines as disease modifiers in ALS. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Laura García-Toscano
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Irene Santos-García
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Marta Gómez-Almería
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Claudia Gonzalo-Consuegra
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Francisco Espejo-Porras
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Eva de Lago
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
22
|
Dani C, Pratesi S, Mannaioni G, Gerace E. Neurotoxicity of Unconjugated Bilirubin in Neonatal Hypoxic-Ischemic Brain Injury in vitro. Front Pediatr 2021; 9:659477. [PMID: 33959576 PMCID: PMC8093500 DOI: 10.3389/fped.2021.659477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The pathophysiology of bilirubin neurotoxicity in course of hypoxic-ischemic encephalopathy (HIE) in term and preterm infants is still poorly understood. We hypothesized that oxidative stress may be a common mechanism that link hyperbilirubinemia and HIE. Objectives: The objective of the present study was to evaluate whether unconjugated bilirubin (UCB) may enhance the HI brain injury by increasing oxidative stress and to test pioglitazone and allopurinol as new antioxidant therapeutic drugs in vitro. Methods: The effects of UCB were tested on organotypic hippocampal slices subjected to 30 min oxygen-glucose deprivation (OGD), used as in vitro model of HIE. The experiments were performed on mature (14 days in culture) and immature (7 days in culture) slices, to mimic the brains of term and preterm infants, respectively. Mature and immature slices were exposed to UCB, human serum albumin (HSA), pioglitazone, and/or allopurinol for 24 h, immediately after 30 min OGD. Neuronal injury was assessed using propidium iodide (PI) fluorescence. ROS formation was quantified by using the 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA) method. Results: In mature slices, we found that the neurotoxicity, as well as oxidative stress, induced by OGD were enhanced by UCB. HSA significantly prevented UCB-increased neurotoxicity, but had a slight reduction on ROS production. Allopurinol, but not pioglitazone, significantly reduced UCB-increased neurotoxicity induced by OGD. In immature slices exposed to OGD, no increase of neuronal death was observed, whereas oxidative stress was detected after UCB exposure. HSA, pioglitazone and allopurinol have no protective effects on both OGD-induced neuronal death and on UCB-induced oxidative stress. For this reason, UCB, pioglitazone and allopurinol was also tested on ischemic preconditioning protocol. We found that UCB abolished the neuroprotection induced by preconditioning and increased oxidative stress. These effects were restored by allopurinol but not pioglitazone. Conclusions: UCB characterized a different path of neuronal damage and oxidative stress in mature and immature hippocampal slice model of HIE. Management of hyperbilirubinemia in a complex pathological condition, such as HIE and hyperbilirubinemia, should be very careful. Allopurinol could deserve attention as a novel pharmacological intervention for hyperbilirubinemia and HIE.
Collapse
Affiliation(s)
- Carlo Dani
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Simone Pratesi
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Elisabetta Gerace
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
23
|
Gunay A, Shin HH, Gozutok O, Gautam M, Ozdinler PH. Importance of lipids for upper motor neuron health and disease. Semin Cell Dev Biol 2020; 112:92-104. [PMID: 33323321 DOI: 10.1016/j.semcdb.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/12/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
Building evidence reveals the importance of maintaining lipid homeostasis for the health and function of neurons, and upper motor neurons (UMNs) are no exception. UMNs are critically important for the initiation and modulation of voluntary movement as they are responsible for conveying cerebral cortex' input to spinal cord targets. To maintain their unique cytoarchitecture with a prominent apical dendrite and a very long axon, UMNs require a stable cell membrane, a lipid bilayer. Lipids can act as building blocks for many biomolecules, and they also contribute to the production of energy. Therefore, UMNs require sustained control over the production, utilization and homeostasis of lipids. Perturbations of lipid homeostasis lead to UMN vulnerability and progressive degeneration in diseases such as hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS). Here, we discuss the importance of lipids, especially for UMNs.
Collapse
Affiliation(s)
- Aksu Gunay
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Heather H Shin
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Oge Gozutok
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Mukesh Gautam
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - P Hande Ozdinler
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611.
| |
Collapse
|
24
|
McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Front Cell Neurosci 2020; 14:581907. [PMID: 33328890 PMCID: PMC7671971 DOI: 10.3389/fncel.2020.581907] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervous system (CNS), suggesting that there is a molecule that spreads from cell-to-cell. There is strong evidence that the onset and progression of ALS pathology is a consequence of protein misfolding and aggregation. In line with this, a hallmark pathology of ALS is protein deposition and inclusion formation within motor neurons and surrounding glia of the proteins TAR DNA-binding protein 43, superoxide dismutase-1, or fused in sarcoma. Collectively, the observed protein aggregation, in conjunction with the spatiotemporal spread of symptoms, strongly suggests a prion-like propagation of protein aggregation occurs in ALS. In this review, we discuss the role of protein aggregation in ALS concerning protein homeostasis (proteostasis) mechanisms and prion-like propagation. Furthermore, we examine the experimental models used to investigate these processes, including in vitro assays, cultured cells, invertebrate models, and murine models. Finally, we evaluate the therapeutics that may best prevent the onset or spread of pathology in ALS and discuss what lies on the horizon for treating this currently incurable disease.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas John Geraghty
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Justin John Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Dash BP, Naumann M, Sterneckert J, Hermann A. Genome Wide Analysis Points towards Subtype-Specific Diseases in Different Genetic Forms of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:E6938. [PMID: 32967368 PMCID: PMC7555318 DOI: 10.3390/ijms21186938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Amyotropic lateral sclerosis (ALS) is a lethally progressive and irreversible neurodegenerative disease marked by apparent death of motor neurons present in the spinal cord, brain stem and motor cortex. While more and more gene mutants being established for genetic ALS, the vast majority suffer from sporadic ALS (>90%). It has been challenging, thus, to model sporadic ALS which is one reason why the underlying pathophysiology remains elusive and has stalled the development of therapeutic strategies of this progressive motor neuron disease. To further unravel these pathological signaling pathways, human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs) from FUS- and SOD1 ALS patients and healthy controls were systematically compared to independent published datasets. Here through this study we created a gene profile of ALS by analyzing the DEGs, the Kyoto encyclopedia of Genes and Genomes (KEGG) pathways, the interactome and the transcription factor profiles (TF) that would identify altered molecular/functional signatures and their interactions at both transcriptional (mRNAs) and translational levels (hub proteins and TFs). Our findings suggest that FUS and SOD1 may develop from dysregulation in several unique pathways and herpes simplex virus (HSV) infection was among the topmost predominant cellular pathways connected to FUS and not to SOD1. In contrast, SOD1 is mainly characterized by alterations in the metabolic pathways and alterations in the neuroactive-ligand-receptor interactions. This suggests that different genetic ALS forms are singular diseases rather than part of a common spectrum. This is important for patient stratification clearly pointing towards the need for individualized medicine approaches in ALS.
Collapse
Affiliation(s)
- Banaja P. Dash
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (B.P.D.); (M.N.)
| | - Marcel Naumann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (B.P.D.); (M.N.)
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01069 Dresden, Germany;
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; (B.P.D.); (M.N.)
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| |
Collapse
|
26
|
Prashantha Kumar BR, Kumar AP, Jose JA, Prabitha P, Yuvaraj S, Chipurupalli S, Jeyarani V, Manisha C, Banerjee S, Jeyabalan JB, Mohankumar SK, Dhanabal SP, Justin A. Minutes of PPAR-γ agonism and neuroprotection. Neurochem Int 2020; 140:104814. [PMID: 32758586 DOI: 10.1016/j.neuint.2020.104814] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-γ) is one of the ligand-activated transcription factors which regulates a number of central events and considered as a promising target for various neurodegenerative disease conditions. Numerous reports implicate that PPAR-γ agonists have shown neuroprotective effects by regulating genes transcription associated with the pathogenesis of neurodegeneration. In regards, this review critically appraises the recent knowledge of PPAR-γ receptors in neuroprotection in order to hypothesize potential neuroprotective mechanism of PPAR-γ agonism in chronic neurological conditions. Of note, the PPAR-γ's interaction dynamics with PPAR-γ coactivator-1α (PGC-1α) has gained significant attention for neuroprotection. Likewise, a plethora of studies suggest that the PPAR-γ pathway can be actuated by the endogenous ligands present in the CNS and thus identification and development of novel agonist for the PPAR-γ receptor holds a vow to prevent neurodegeneration. Together, the critical insights of this review enlighten the translational possibilities of developing novel neuroprotective therapeutics targeting PPAR-γ for various neurodegenerative disease conditions.
Collapse
Affiliation(s)
- B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, Karnataka, India
| | - Ashwini Prem Kumar
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Jincy A Jose
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - P Prabitha
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, Karnataka, India
| | - S Yuvaraj
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, Karnataka, India
| | - Sandhya Chipurupalli
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Victoria Jeyarani
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Chennu Manisha
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Sayani Banerjee
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Jeyaram Bharathi Jeyabalan
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Suresh Kumar Mohankumar
- TIFAC CORE in HD, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - S P Dhanabal
- TIFAC CORE in HD, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Antony Justin
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India.
| |
Collapse
|
27
|
Wobst HJ, Mack KL, Brown DG, Brandon NJ, Shorter J. The clinical trial landscape in amyotrophic lateral sclerosis-Past, present, and future. Med Res Rev 2020; 40:1352-1384. [PMID: 32043626 PMCID: PMC7417284 DOI: 10.1002/med.21661] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/08/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease marked by progressive loss of muscle function. It is the most common adult-onset form of motor neuron disease, affecting about 16 000 people in the United States alone. The average survival is about 3 years. Only two interventional drugs, the antiglutamatergic small-molecule riluzole and the more recent antioxidant edaravone, have been approved for the treatment of ALS to date. Therapeutic strategies under investigation in clinical trials cover a range of different modalities and targets, and more than 70 different drugs have been tested in the clinic to date. Here, we summarize and classify interventional therapeutic strategies based on their molecular targets and phenotypic effects. We also discuss possible reasons for the failure of clinical trials in ALS and highlight emerging preclinical strategies that could provide a breakthrough in the battle against this relentless disease.
Collapse
Affiliation(s)
- Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Merck & Co, Inc, Kenilworth, New Jersey
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Nicholas J Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Buratti E. Targeting TDP-43 proteinopathy with drugs and drug-like small molecules. Br J Pharmacol 2020; 178:1298-1315. [PMID: 32469420 DOI: 10.1111/bph.15148] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Following the discovery of the involvement of the ribonucleoprotein TDP-43 in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), a major research focus has been to develop treatments that can prevent or alleviate these disease conditions. One pharmacological approach has been to use TDP-43-based disease models to test small molecules and drugs already known to have some therapeutic effect in a variety of neurodegenerative conditions. In parallel, various disease models have been used to perform high-throughput screens of drugs and small compound libraries. The aim of this review will be to provide a general overview of the compounds that have been described to alter pathological characteristics of TDP-43. These include expression levels, cytoplasmic mis-localization, post-translational modifications, cleavage, stress granule recruitment and aggregation. In parallel, this review will also address the use of compounds that modify the autophagic/proteasome systems that are known to target TDP-43 misfolding and aggregation. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
29
|
Peroxisome Proliferator Activator Receptor Gamma Coactivator-1α Overexpression in Amyotrophic Lateral Sclerosis: A Tale of Two Transgenics. Biomolecules 2020; 10:biom10050760. [PMID: 32414179 PMCID: PMC7277592 DOI: 10.3390/biom10050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder manifesting with upper and lower neuron loss, leading to impairments in voluntary muscle function and atrophy. Mitochondrial dysfunction in metabolism and morphology have been implicated in the pathogenesis of ALS, including atypical oxidative metabolism, reduced mitochondrial respiration in muscle, and protein aggregates in the mitochondrial outer membrane. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) plays an essential role in the regulation of mitochondrial biogenesis, the process by which existing mitochondria grow and divide. PGC-1α has been previously reported to be downregulated in the spinal cord of individuals with ALS. Towards targeting PGC-1α as a therapeutic mechanism, we have previously reported improved motor function and survival in the SOD1G93A mouse model of ALS by neuron-specific over-expression of PGC-1α under a neuron-specific enolase (NSE) promoter. As pharmacological intervention targeting PGC-1α would result in whole-body upregulation of this transcriptional co-activator, in the current study we investigated whether global expression of PGC-1α is beneficial in a SOD1G93A mouse model, by generating transgenic mice with PGC-1α transgene expression driven by an actin promoter. Actin-PGC-1α expression levels were assayed and confirmed in spinal cord, brain, muscle, liver, kidney, and spleen. To determine the therapeutic effects of global expression of PGC-1α, wild-type, actin-PGC-1α, SOD1G93A, and actin-PGC-1α/SOD1G93A animals were monitored for weight loss, motor performance by accelerating rotarod test, and survival. Overexpression of actin-PGC-1α did not confer significant improvement in these assessed outcomes. A potential explanation for this difference is that the actin promoter may not induce levels of PGC-1α relevant to disease pathophysiology in the cells that are specifically relevant to the pathogenesis of ALS. This evidence strongly supports future therapeutic approaches that target PGC-1α primarily in neurons.
Collapse
|
30
|
McDonald TS, McCombe PA, Woodruff TM, Lee JD. The potential interplay between energy metabolism and innate complement activation in amyotrophic lateral sclerosis. FASEB J 2020; 34:7225-7233. [PMID: 32307753 DOI: 10.1096/fj.201901781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing motor neuron disease without effective treatment. Although the precise mechanisms leading to ALS are yet to be determined, there is now increasing evidence implicating the defective energy metabolism and components of the innate immune complement system in the onset and progression of its motor phenotypes. This review will survey the mechanisms by which the energy metabolism and the complement system are altered during the disease progression of ALS and how it can contribute to disease. Furthermore, it will also examine how complement activation can modify the energy metabolism in metabolic disorders, in order to highlight how the complement system and energy metabolism may be linked in ALS.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Pamela A McCombe
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Herston, QLD, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia.,University of Queensland Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
31
|
Clout AE, Della Pasqua O, Hanna MG, Orlu M, Pitceathly RDS. Drug repurposing in neurological diseases: an integrated approach to reduce trial and error. J Neurol Neurosurg Psychiatry 2019; 90:1270-1275. [PMID: 31171583 DOI: 10.1136/jnnp-2019-320879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Identifying effective disease-modifying therapies for neurological diseases remains an important challenge in drug discovery and development. Drug repurposing attempts to determine new indications for pre-existing compounds and represents a major opportunity to address this clinically unmet need. It is potentially more cost-effective and time-efficient than de novo drug development and has yielded notable successes in neurological disorders. However, across all medical disciplines, only 30% of repurposed drugs, and 10% of novel candidate molecules, gain market approval. One potentially significant contributor towards this limited success rate is an incomplete knowledge of the exposure-response relationships for the compounds of interest, and how these relate to the new indication, prior to commencing a new trial. We provide an overview of the current approach to early-stage drug repurposing and consider the issues contributing to inconclusive, or possibly falsely negative, Phase II and III trial outcomes in neurological diseases by highlighting examples that illustrate the limitations of empirical evidence generation without a strong scientific basis for the dose rationale. We conclude with a framework suggesting a translational, iterative approach, that integrates pharmacological, pharmaceutical and clinical expertise, towards preclinical and early clinical drug development. This ensures appropriate dosing regimen, route of administration and/or formulation are selected for the new indication before their evaluation in prospective clinical trials.
Collapse
Affiliation(s)
| | - Oscar Della Pasqua
- Clinical Pharmacology and Therapeutics Group, UCL School of Pharmacy, London, UK.,Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, Uxbridge, UK
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
| | - Robert D S Pitceathly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK .,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
32
|
Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JYH, Tan NS. Exploration and Development of PPAR Modulators in Health and Disease: An Update of Clinical Evidence. Int J Mol Sci 2019; 20:E5055. [PMID: 31614690 PMCID: PMC6834327 DOI: 10.3390/ijms20205055] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that govern the expression of genes responsible for energy metabolism, cellular development, and differentiation. Their crucial biological roles dictate the significance of PPAR-targeting synthetic ligands in medical research and drug discovery. Clinical implications of PPAR agonists span across a wide range of health conditions, including metabolic diseases, chronic inflammatory diseases, infections, autoimmune diseases, neurological and psychiatric disorders, and malignancies. In this review we aim to consolidate existing clinical evidence of PPAR modulators, highlighting their clinical prospects and challenges. Findings from clinical trials revealed that different agonists of the same PPAR subtype could present different safety profiles and clinical outcomes in a disease-dependent manner. Pemafibrate, due to its high selectivity, is likely to replace other PPARα agonists for dyslipidemia and cardiovascular diseases. PPARγ agonist pioglitazone showed tremendous promises in many non-metabolic disorders like chronic kidney disease, depression, inflammation, and autoimmune diseases. The clinical niche of PPARβ/δ agonists is less well-explored. Interestingly, dual- or pan-PPAR agonists, namely chiglitazar, saroglitazar, elafibranor, and lanifibranor, are gaining momentum with their optimistic outcomes in many diseases including type 2 diabetes, dyslipidemia, non-alcoholic fatty liver disease, and primary biliary cholangitis. Notably, the preclinical and clinical development for PPAR antagonists remains unacceptably deficient. We anticipate the future design of better PPAR modulators with minimal off-target effects, high selectivity, superior bioavailability, and pharmacokinetics. This will open new possibilities for PPAR ligands in medicine.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Charlie Marvalim
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Justin Yin Hao Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| |
Collapse
|
33
|
Tang BL. Targeting the Mitochondrial Pyruvate Carrier for Neuroprotection. Brain Sci 2019; 9:brainsci9090238. [PMID: 31540439 PMCID: PMC6770198 DOI: 10.3390/brainsci9090238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023] Open
Abstract
The mitochondrial pyruvate carriers mediate pyruvate import into the mitochondria, which is key to the sustenance of the tricarboxylic cycle and oxidative phosphorylation. However, inhibition of mitochondria pyruvate carrier-mediated pyruvate transport was recently shown to be beneficial in experimental models of neurotoxicity pertaining to the context of Parkinson’s disease, and is also protective against excitotoxic neuronal death. These findings attested to the metabolic adaptability of neurons resulting from MPC inhibition, a phenomenon that has also been shown in other tissue types. In this short review, I discuss the mechanism and potential feasibility of mitochondrial pyruvate carrier inhibition as a neuroprotective strategy in neuronal injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
34
|
Salehi A, Loganathan N, Belsham DD. Bisphenol A induces Pomc gene expression through neuroinflammatory and PPARγ nuclear receptor-mediated mechanisms in POMC-expressing hypothalamic neuronal models. Mol Cell Endocrinol 2019; 479:12-19. [PMID: 30149043 DOI: 10.1016/j.mce.2018.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022]
Abstract
Endocrine disrupting chemicals, such as bisphenol A (BPA), have been linked to obesity. However, the direct effect of BPA on the hypothalamic pro-opiomelanocortin (POMC) neurons, which regulate energy homeostasis, remains unexplored. We define the effect of BPA on functionally characterized, POMC-expressing cell models, mHypoA-POMC/GFP-2 and mHypoE-43/5. Exposure to BPA significantly induced the mRNA levels of Pomc in both primary culture and the cell lines. Neuroinflammatory and steroid receptor mRNA levels were assessed to delineate the potential mechanisms, including inflammatory markers Nfκb, Il6 and Iκba, and steroid receptors Esr1, Esr2, Gpr30, Esrrg, and Pparg. Pre-treatment with anti-inflammatory compounds gonadotropin-releasing hormone, and PS1145, an IκB kinase inhibitor, abrogated the BPA-mediated Pomc induction. Furthermore, T0070907, a PPARγ antagonist, abolished Pomc induction, while the GPR30 antagonist G15 had no effect. These findings indicate that BPA may have direct effects on POMC neurons in the hypothalamus, utilizing neuroinflammatory mechanisms and through PPARγ nuclear receptors.
Collapse
Affiliation(s)
- Ashkan Salehi
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
35
|
Abstract
Background Pioglitazone is a promising compound for treatment of core autism spectrum disorder (ASD) symptoms as it targets multiple relevant pathways, including immune system alterations. Objective This pilot study aimed to elucidate the maximum tolerated dose, safety, preliminary evidence of efficacy, and appropriate outcome measures in autistic children ages 5–12 years old. Methods We conducted a 16-week prospective cohort, single blind, single arm, 2-week placebo run-in, dose-finding study of pioglitazone. Twenty-five participants completed treatment. A modified dose finding method was used to determine safety and dose response among three dose levels: 0.25 mg/kg, 0.5 mg/kg, and 0.75 mg/kg once daily. Results Maximum tolerated dose: there were no serious adverse events (SAEs) and as such the maximum tolerated dose within the range tested was 0.75 mg/Kg once daily. Safety: overall, pioglitazone was well tolerated. Two participants discontinued intervention due to perceived non-efficacy and one due to the inability to tolerate interim blood work. Three participants experienced mild neutropenia. Early evidence of efficacy: statistically significant improvement was observed in social withdrawal, repetitive behaviors, and externalizing behaviors as measured by the Aberrant Behavior Checklist (ABC), Child Yale-Brown Obsessive Compulsive Scale (CY-BOCS), and Repetitive Behavior Scale–Revised (RBS-R). Forty-six percent of those enrolled were deemed to be global responders. Conclusions and relevance Pioglitazone is well-tolerated and shows a potential signal in measures of social withdrawal, repetitive, and externalizing behaviors. Randomized controlled trials using the confirmed dose are warranted. Trial registration ClinicalTrials.gov, NCT01205282. Registration date: September 20, 2010. Electronic supplementary material The online version of this article (10.1186/s13229-018-0241-5) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Moutinho M, Codocedo JF, Puntambekar SS, Landreth GE. Nuclear Receptors as Therapeutic Targets for Neurodegenerative Diseases: Lost in Translation. Annu Rev Pharmacol Toxicol 2018; 59:237-261. [PMID: 30208281 DOI: 10.1146/annurev-pharmtox-010818-021807] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized by a progressive loss of neurons that leads to a broad range of disabilities, including severe cognitive decline and motor impairment, for which there are no effective therapies. Several lines of evidence support a putative therapeutic role of nuclear receptors (NRs) in these types of disorders. NRs are ligand-activated transcription factors that regulate the expression of a wide range of genes linked to metabolism and inflammation. Although the activation of NRs in animal models of neurodegenerative disease exhibits promising results, the translation of this strategy to clinical practice has been unsuccessful. In this review we discuss the role of NRs in neurodegenerative diseases in light of preclinical and clinical studies, as well as new findings derived from the analysis of transcriptomic databases from humans and animal models. We discuss the failure in the translation of NR-based therapeutic approaches and consider alternative and novel research avenues in the development of effective therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel Moutinho
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Juan F Codocedo
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Shweta S Puntambekar
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Gary E Landreth
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| |
Collapse
|
37
|
PGC-1α sparks the fire of neuroprotection against neurodegenerative disorders. Ageing Res Rev 2018; 44:8-21. [PMID: 29580918 DOI: 10.1016/j.arr.2018.03.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/30/2022]
Abstract
Recently, growing evidence has demonstrated that peroxisome proliferator activated receptor γ (PPARγ) coactivator-1α (PGC-1α) is a superior transcriptional regulator that acts via controlling the expression of anti-oxidant enzymes and uncoupling proteins and inducing mitochondrial biogenesis, which plays a beneficial part in the central nervous system (CNS). Given the significance of PGC-1α, we summarize the current literature on the molecular mechanisms and roles of PGC-1α in the CNS. Thus, in this review, we first briefly introduce the basic characteristics regarding PGC-1α. We then depict some of its important cerebral functions and discuss upstream modulators, partners, and downstream effectors of the PGC-1α signaling pathway. Finally, we highlight recent progress in research on the involvement of PGC-1α in certain major neurodegenerative disorders (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Collectively, the data presented here may be useful for supporting the future potential of PGC-1α as a therapeutic target.
Collapse
|
38
|
Chedrawe MAJ, Holman SP, Lamport AC, Akay T, Robertson GS. Pioglitazone is superior to quetiapine, clozapine and tamoxifen at alleviating experimental autoimmune encephalomyelitis in mice. J Neuroimmunol 2018; 321:72-82. [PMID: 29957391 DOI: 10.1016/j.jneuroim.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
Recent evidence suggests that clozapine and quetiapine (atypical antipsychotics), tamoxifen (selective-estrogen receptor modulator) and pioglitazone (PPARγ agonist) may improve functional recovery in multiple sclerosis (MS). We have compared the effectiveness of oral administration of these drugs, beginning at peak disease, at reducing ascending paralysis, motor deficits and demyelination in mice subjected to experimental autoimmune encephalomyelitis (EAE). Mice were immunized with an immunogenic peptide corresponding to amino acids 35-55 of the myelin oligodendrocyte glycoprotein (MOG35-55) in complete Freund's adjuvant and injected with pertussis toxin to induce EAE. Unlike clozapine, quetiapine and tamoxifen, administration of pioglitazone beginning at peak disease decreased both clinical scores and lumbar white matter loss in EAE mice. Using kinematic gait analysis, we found that pioglitazone also maintained normal movement of the hip, knee and ankle joints for at least 44 days after MOG35-55 immunization. This long-lasting preservation of hindleg joint movements was accompanied by reduced white matter loss, microglial and macrophage activation and the expression of pro-inflammatory genes in the lumbar spinal cords of EAE mice. These results support clinical findings that suggest pioglitazone may reduce the progressive loss of motor function in MS by decreasing inflammation and myelin damage.
Collapse
Affiliation(s)
- Matthew A J Chedrawe
- Department of Pharmacology, Brain Repair Centre, Faculty of Medicine, 2nd floor, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Scott P Holman
- Department of Pharmacology, Brain Repair Centre, Faculty of Medicine, 2nd floor, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Anna-Claire Lamport
- Department of Pharmacology, Brain Repair Centre, Faculty of Medicine, 2nd floor, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Turgay Akay
- Department of Medical Neuroscience, Brain Repair Centre, Faculty of Medicine, 3rd floor, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - George S Robertson
- Department of Pharmacology, Brain Repair Centre, Faculty of Medicine, 2nd floor, Life Sciences Research Institute, 1348 Summer Street, P.O. Box 15000, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Psychiatry, 5909 Veterans' Memorial Lane, 8th floor, Abbie J. Lane Memorial Building, QEII Health Sciences Centre, Halifax, Nova Scotia B3H 2E2, Canada.
| |
Collapse
|
39
|
The Role of Macrophages in Neuroinflammatory and Neurodegenerative Pathways of Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis: Pathogenetic Cellular Effectors and Potential Therapeutic Targets. Int J Mol Sci 2018. [PMID: 29533975 PMCID: PMC5877692 DOI: 10.3390/ijms19030831] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In physiological conditions, different types of macrophages can be found within the central nervous system (CNS), i.e., microglia, meningeal macrophages, and perivascular (blood-brain barrier) and choroid plexus (blood-cerebrospinal fluid barrier) macrophages. Microglia and tissue-resident macrophages, as well as blood-borne monocytes, have different origins, as the former derive from yolk sac erythromyeloid precursors and the latter from the fetal liver or bone marrow. Accordingly, specific phenotypic patterns characterize each population. These cells function to maintain homeostasis and are directly involved in the development and resolution of neuroinflammatory processes. Also, following inflammation, circulating monocytes can be recruited and enter the CNS, therefore contributing to brain pathology. These cell populations have now been identified as key players in CNS pathology, including autoimmune diseases, such as multiple sclerosis, and degenerative diseases, such as Amyotrophic Lateral Sclerosis and Alzheimer’s disease. Here, we review the evidence on the involvement of CNS macrophages in neuroinflammation and the advantages, pitfalls, and translational opportunities of pharmacological interventions targeting these heterogeneous cellular populations for the treatment of brain diseases.
Collapse
|
40
|
Ruiz M, Bégou M, Launay N, Ranea-Robles P, Bianchi P, López-Erauskin J, Morató L, Guilera C, Petit B, Vaurs-Barriere C, Guéret-Gonthier C, Bonnet-Dupeyron MN, Fourcade S, Auwerx J, Boespflug-Tanguy O, Pujol A. Oxidative stress and mitochondrial dynamics malfunction are linked in Pelizaeus-Merzbacher disease. Brain Pathol 2017; 28:611-630. [PMID: 29027761 PMCID: PMC8028267 DOI: 10.1111/bpa.12571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/23/2022] Open
Abstract
Pelizaeus‐Merzbacher disease (PMD) is a fatal hypomyelinating disorder characterized by early impairment of motor development, nystagmus, choreoathetotic movements, ataxia and progressive spasticity. PMD is caused by variations in the proteolipid protein gene PLP1, which encodes the two major myelin proteins of the central nervous system, PLP and its spliced isoform DM20, in oligodendrocytes. Large duplications including the entire PLP1 gene are the most frequent causative mutation leading to the classical form of PMD. The Plp1 overexpressing mouse model (PLP‐tg66/66) develops a phenotype very similar to human PMD, with early and severe motor dysfunction and a dramatic decrease in lifespan. The sequence of cellular events that cause neurodegeneration and ultimately death is poorly understood. In this work, we analyzed patient‐derived fibroblasts and spinal cords of the PLP‐tg66/66 mouse model, and identified redox imbalance, with altered antioxidant defense and oxidative damage to several enzymes involved in ATP production, such as glycolytic enzymes, creatine kinase and mitochondrial proteins from the Krebs cycle and oxidative phosphorylation. We also evidenced malfunction of the mitochondria compartment with increased ROS production and depolarization in PMD patient's fibroblasts, which was prevented by the antioxidant N‐acetyl‐cysteine. Finally, we uncovered an impairment of mitochondrial dynamics in patient's fibroblasts which may help explain the ultrastructural abnormalities of mitochondria morphology detected in spinal cords from PLP‐tg66/66 mice. Altogether, these results underscore the link between redox and metabolic homeostasis in myelin diseases, provide insight into the pathophysiology of PMD, and may bear implications for tailored pharmacological intervention.
Collapse
Affiliation(s)
- Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Mélina Bégou
- Inserm, UMR 1107, NEURO-DOL, F-63001 Clermont-Ferrand, France.,Université Clermont Auvergne, NEURO-DOL, BP 10448, F-63000 Clermont-Ferrand, France
| | - Nathalie Launay
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Pablo Ranea-Robles
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Patrizia Bianchi
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Jone López-Erauskin
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Laia Morató
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Cristina Guilera
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Bérengère Petit
- Université Clermont Auvergne, GReD, BP 10448, F-63000 Clermont-Ferrand, France
| | | | | | | | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Station 15, CH-1015 Lausanne, Switzerland
| | - Odile Boespflug-Tanguy
- Assistance Publique des Hopitaux de Paris (APHP), Reference Center for Rare Diseases "Leukodystrophies," Child Neurology and Metabolic Disorders Department, Robert Debré University Hospital, Paris, France.,Inserm, Paris Diderot University UMR 1141, DHU PROTECT, Sorbonne Paris-Cite, Robert Debré University Hospital, Paris, France
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain.,Institute of Neuropathology, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
41
|
Sekulic-Jablanovic M, Petkovic V, Wright MB, Kucharava K, Huerzeler N, Levano S, Brand Y, Leitmeyer K, Glutz A, Bausch A, Bodmer D. Effects of peroxisome proliferator activated receptors (PPAR)-γ and -α agonists on cochlear protection from oxidative stress. PLoS One 2017; 12:e0188596. [PMID: 29182629 PMCID: PMC5705132 DOI: 10.1371/journal.pone.0188596] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/09/2017] [Indexed: 01/22/2023] Open
Abstract
Various insults cause ototoxicity in mammals by increasing oxidative stress leading to apoptosis of auditory hair cells (HCs). The thiazolidinediones (TZDs; e.g., pioglitazone) and fibrate (e.g., fenofibrate) drugs are used for the treatment of diabetes and dyslipidemia. These agents target the peroxisome proliferator-activated receptors, PPARγ and PPARα, which are transcription factors that influence glucose and lipid metabolism, inflammation, and organ protection. In this study, we explored the effects of pioglitazone and other PPAR agonists to prevent gentamicin-induced oxidative stress and apoptosis in mouse organ of Corti (OC) explants. Western blots showed high levels of PPARγ and PPARα proteins in mouse OC lysates. Immunofluorescence assays indicated that PPARγ and PPARα proteins are present in auditory HCs and other cell types in the mouse cochlea. Gentamicin treatment induced production of reactive oxygen species (ROS), lipid peroxidation, caspase activation, PARP-1 cleavage, and HC apoptosis in cultured OCs. Pioglitazone mediated its anti-apoptotic effects by opposing the increase in ROS induced by gentamicin, which inhibited the subsequent formation of 4-hydroxy-2-nonenal (4-HNE) and activation of pro-apoptotic mediators. Pioglitazone mediated its effects by upregulating genes that control ROS production and detoxification pathways leading to restoration of the reduced:oxidized glutathione ratio. Structurally diverse PPAR agonists were protective of HCs. Pioglitazone (PPARγ-specific), tesaglitazar (PPARγ/α-specific), and fenofibric acid (PPARα-specific) all provided >90% protection from gentamicin toxicity by regulation of overlapping subsets of genes controlling ROS detoxification. This study revealed that PPARs play important roles in the cochlea, and that PPAR-targeting drugs possess therapeutic potential as treatment for hearing loss.
Collapse
Affiliation(s)
| | - Vesna Petkovic
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Krystsina Kucharava
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nathan Huerzeler
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Soledad Levano
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Yves Brand
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| | - Katharina Leitmeyer
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrea Glutz
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Daniel Bodmer
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
42
|
Paterniti I, Campolo M, Cordaro M, Impellizzeri D, Siracusa R, Crupi R, Esposito E, Cuzzocrea S. PPAR-α Modulates the Anti-Inflammatory Effect of Melatonin in the Secondary Events of Spinal Cord Injury. Mol Neurobiol 2017; 54:5973-5987. [PMID: 27686077 DOI: 10.1007/s12035-016-0131-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/14/2016] [Indexed: 12/25/2022]
Abstract
Melatonin is the principal secretory product of the pineal gland, and its role as an immunomodulator is well established. Recent evidence shows that melatonin is a scavenger of oxyradicals and peroxynitrite and reduces the development of inflammation and tissue injury events associated with spinal cord trauma. Previous results suggest that peroxisome proliferator-activated receptor α (PPAR-α), a nuclear receptor protein that functions as a transcription factor activated by fatty acids, plays a role in control of secondary inflammatory process associated with spinal cord injury (SCI).With the aim to characterize the role of PPAR-α in melatonin-mediated anti-inflammatory activity, we tested the efficacy of melatonin (30 mg/kg) in an experimental model of spinal cord trauma, induced in mice, by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy, and comparing mice lacking PPAR-α (PPAR-α KO) with wild-type (WT) mice.The results obtained indicate that melatonin-mediated anti-inflammatory activity is weakened in PPAR-α KO mice, as compared to WT controls. In particular, melatonin was less effective in PPAR-α KO, compared to WT mice, as evaluated by inhibition of the degree of spinal cord inflammation and tissue injury, neutrophil infiltration, pro-inflammatory cytokine expression, nuclear factor κB (NF-κB) activation, and inducible nitric oxide synthase (iNOS) expression. This study indicates that PPAR-α can contribute to the anti-inflammatory activity of melatonin in SCI.
Collapse
Affiliation(s)
- I Paterniti
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - M Campolo
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - M Cordaro
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - D Impellizzeri
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - R Siracusa
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - R Crupi
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - E Esposito
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - S Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy.
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, 63103, USA.
| |
Collapse
|
43
|
Khalil B, Liévens JC. Mitochondrial quality control in amyotrophic lateral sclerosis: towards a common pathway? Neural Regen Res 2017; 12:1052-1061. [PMID: 28852382 PMCID: PMC5558479 DOI: 10.4103/1673-5374.211179] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by loss of upper and lower motor neurons. Different mechanisms contribute to the disease initiation and progression, including mitochondrial dysfunction which has been proposed to be a central determinant in ALS pathogenesis. Indeed, while mitochondrial defects have been mainly described in ALS-linked SOD1 mutants, it is now well established that mitochondria become also dysfunctional in other ALS conditions. In such context, the mitochondrial quality control system allows to restore normal functioning of mitochondria and to prevent cell death, by both eliminating and replacing damaged mitochondrial components or by degrading the entire organelle through mitophagy. Recent evidence shows that ALS-related genes interfere with the mitochondrial quality control system. This review highlights how ineffective mitochondrial quality control may render motor neurons defenseless towards the accumulating mitochondrial damage in ALS.
Collapse
Affiliation(s)
- Bilal Khalil
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | | |
Collapse
|
44
|
Wang H, Zhou J, Liu QZ, Wang LL, Shang J. Simvastatin and Bezafibrate ameliorate Emotional disorder Induced by High fat diet in C57BL/6 mice. Sci Rep 2017; 7:2335. [PMID: 28539670 PMCID: PMC5443827 DOI: 10.1038/s41598-017-02576-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
High fat diet (HFD)-induced metabolic disorders may lead to emotional disorders. This study aimed to explore the effect of simvastatin (SMV) and bezafibrate (BZ) on improving HFD-induced emotional changes, and tried to identify their different mechanisms. The intraperitoneal glucose tolerance test (IPGTT) was used to evaluate glucose control ability; and behavior tests including open field tests (OFT), forced swimming tests (FST), tail suspension tests (TST) and sucrose preference (SPT), were then performed to evaluate emotional changes. Serum samples were collected for the LC-MS based metabolomics analysis to explore the emotional-related differential compounds; we then evaluated the effect of the drugs. The abnormal serum metabolic profiling and emotional changes caused by HFD in mice was alleviated by SMV treatment, whereas BZ only affected the emotional disorder. The improvement of cannabinoid analogues and then produced influences on the endocannabinoid system, which may be a potential mechanism SMV action. BZ promoted tryptophan-serotonin pathway and inhibited tryptophan-kynurenine pathway, which may be its mechanism of action. Here, we proposed a shed light on the biological mechanisms underlying the observed effects, and identified an important drug candidate for the treatment of emotional disorders induced by HFD.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Jia Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiong Zhen Liu
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai Province, P.R. China
| | - Lu Lu Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Jing Shang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China. .,Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
45
|
Metabolic Dysregulation in Amyotrophic Lateral Sclerosis: Challenges and Opportunities. CURRENT GENETIC MEDICINE REPORTS 2017; 5:108-114. [PMID: 29057168 DOI: 10.1007/s40142-017-0123-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease for which there is no cure and treatments are at best palliative. Several genes have been linked to ALS, which highlight defects in multiple cellular processes including RNA processing, proteostasis and metabolism. Clinical observations have identified glucose intolerance and dyslipidemia as key features of ALS however the causes of these metabolic alterations remain elusive. RECENT FINDINGS Recent studies reveal that motor neurons and muscle cells may undergo cell type specific metabolic changes that lead to utilization of alternate fuels. For example, ALS patients' muscles exhibit reduced glycolysis and increased reliance on fatty acids. In contrast, ALS motor neurons contain damaged mitochondria and exhibit impaired lipid beta oxidation, potentially leading to increased glycolysis as a compensatory mechanism. SUMMARY These findings highlight the complexities of metabolic alterations in ALS and provide new opportunities for designing therapeutic strategies based on restoring cellular energetics.
Collapse
|
46
|
Therapeutic Strategies Under Development Targeting Inflammatory Mechanisms in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2017; 55:2789-2813. [DOI: 10.1007/s12035-017-0532-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
47
|
Ringer C, Tune S, Bertoune MA, Schwarzbach H, Tsujikawa K, Weihe E, Schütz B. Disruption of calcitonin gene-related peptide signaling accelerates muscle denervation and dampens cytotoxic neuroinflammation in SOD1 mutant mice. Cell Mol Life Sci 2017; 74:339-358. [PMID: 27554772 PMCID: PMC11107523 DOI: 10.1007/s00018-016-2337-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Neuronal vacuolization and glial activation are pathologic hallmarks in the superoxide dismutase 1 (SOD1) mouse model of ALS. Previously, we found the neuropeptide calcitonin gene-related peptide (CGRP) associated with vacuolization and astrogliosis in the spinal cord of these mice. We now show that CGRP abundance positively correlated with the severity of astrogliosis, but not vacuolization, in several motor and non-motor areas throughout the brain. SOD1 mice harboring a genetic depletion of the βCGRP isoform showed reduced CGRP immunoreactivity associated with vacuolization, while motor functions, body weight, survival, and astrogliosis were not altered. When CGRP signaling was completely disrupted through genetic depletion of the CGRP receptor component, receptor activity-modifying protein 1 (RAMP1), hind limb muscle denervation, and loss of muscle performance were accelerated, while body weight and survival were not affected. Dampened neuroinflammation, i.e., reduced levels of astrogliosis in the brain stem already in the pre-symptomatic disease stage, and reduced microgliosis and lymphocyte infiltrations during the late disease phase were additional neuropathology features in these mice. On the molecular level, mRNA expression levels of brain-derived neurotrophic factor (BDNF) and those of the anti-inflammatory cytokine interleukin 6 (IL-6) were elevated, while those of several pro-inflammatory cytokines found reduced in the brain stem of RAMP1-deficient SOD1 mice at disease end stage. Our results thus identify an important, possibly dual role of CGRP in ALS pathogenesis.
Collapse
Affiliation(s)
- Cornelia Ringer
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strasse 8, 35037, Marburg, Germany
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Sarah Tune
- Department of Physiology, University of Lübeck, Lübeck, Germany
| | - Mirjam A Bertoune
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Eberhard Weihe
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strasse 8, 35037, Marburg, Germany.
| | - Burkhard Schütz
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strasse 8, 35037, Marburg, Germany.
| |
Collapse
|
48
|
Targeting Extracellular Cyclophilin A Reduces Neuroinflammation and Extends Survival in a Mouse Model of Amyotrophic Lateral Sclerosis. J Neurosci 2016; 37:1413-1427. [PMID: 28011744 DOI: 10.1523/jneurosci.2462-16.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/24/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is a major hallmark of amyotrophic lateral sclerosis (ALS), which is currently untreatable. Several anti-inflammatory compounds have been evaluated in patients and in animal models of ALS, but have been proven disappointing in part because effective targets have not yet been identified. Cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), as a foldase is beneficial intracellularly, but extracellularly has detrimental functions. We found that extracellular PPIA is a mediator of neuroinflammation in ALS. It is a major inducer of matrix metalloproteinase 9 and is selectively toxic for motor neurons. High levels of PPIA were found in the CSF of SOD1G93A mice and rats and sporadic ALS patients, suggesting that our findings may be relevant for familial and sporadic cases. A specific inhibitor of extracellular PPIA, MM218, given at symptom onset, rescued motor neurons and extended survival in the SOD1G93A mouse model of familial ALS by 11 d. The treatment resulted in the polarization of glia toward a prohealing phenotype associated with reduced NF-κB activation, proinflammatory markers, endoplasmic reticulum stress, and insoluble phosphorylated TDP-43. Our results indicates that extracellular PPIA is a promising druggable target for ALS and support further studies to develop a therapy to arrest or slow the progression of the disease in patients.SIGNIFICANCE STATEMENT We provide evidence that extracellular cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), is a mediator of the neuroinflammatory reaction in amyotrophic lateral sclerosis (ALS) and is toxic for motor neurons. Supporting this, a specific extracellular PPIA inhibitor reduced neuroinflammation, rescued motor neurons, and extended survival in the SOD1G93A mouse model of familial ALS. Our findings suggest selective pharmacological inhibition of extracellular PPIA as a novel therapeutic strategy, not only for SOD1-linked ALS, but possibly also for sporadic ALS. This approach aims to address the neuroinflammatory reaction that is a major hallmark of ALS. However, given the complexity of the disease, a combination of therapeutic approaches may be necessary.
Collapse
|
49
|
Role of Microglia in Neurological Disorders and Their Potentials as a Therapeutic Target. Mol Neurobiol 2016; 54:7567-7584. [DOI: 10.1007/s12035-016-0245-0] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023]
|
50
|
Xu MX, Yu R, Shao LF, Zhang YX, Ge CX, Liu XM, Wu WY, Li JM, Kong LD. Up-regulated fractalkine (FKN) and its receptor CX3CR1 are involved in fructose-induced neuroinflammation: Suppression by curcumin. Brain Behav Immun 2016; 58:69-81. [PMID: 26765996 DOI: 10.1016/j.bbi.2016.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/08/2015] [Accepted: 01/01/2016] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that diet-induced fractalkine (FKN) stimulates neuroinflammation in animal models of obesity, yet how it occurs is unclear. This study investigated the role of FKN and it receptor, CX3CR1, in fructose-induced neuroinflammation, and examined curcumin's beneficial effect. Fructose feeding was found to induce hippocampal microglia activation with neuroinflammation through the activation of the Toll-like receptor 4 (TLR4)/nuclear transcription factor κB (NF-κB) signaling, resulting in the reduction of neurogenesis in the dentate gyrus (DG) of mice. Serum FKN levels, as well as hypothalamic FKN and CX3CR1 gene expression, were significantly increased in fructose-fed mice with hypothalamic microglia activation. Hippocampal gene expression of FKN and CX3CR1 was also up-regulated at 14d and normalized at 56d in mice fed with fructose, which were consistent with the change of GFAP. Furthermore, immunostaining showed that GFAP and FKN expression was increased in cornu amonis 1, but decreased in DG in fructose-fed mice. In vitro studies showed that GFAP and FKN expression was stimulated in astrocytes, and suppressed in mixed glial cells exposed to 48h-fructose, with the continual increase of pro-inflammatory cytokines. Thus, increased FKN and CX3CR1 may cause a cross-talk between activated glial cells and neurons, playing an important role in the development of neuroinflammation in fructose-fed mice. Curcumin protected against neuronal damage in hippocampal DG of fructose-fed mice by inhibiting microglia activation and suppressed FKN/CX3CR1 up-regulation in the neuronal network. These results suggest a new therapeutic approach to protect against neuronal damage associated with dietary obesity-associated neuroinflammation.
Collapse
Affiliation(s)
- Min-Xuan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Rong Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Li-Fei Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yan-Xiu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Chen-Xu Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Xin-Meng Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Wen-Yuan Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|