1
|
Yu H, Wang W. Modulation of heteromeric glycine receptor function through high concentration clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618879. [PMID: 39464082 PMCID: PMC11507885 DOI: 10.1101/2024.10.17.618879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Ion channels are targeted by many drugs for treating neurological, musculoskeletal, renal and other diseases. These drugs bind to and alter the function of individual channels to achieve desired therapeutic effects. However, many ion channels function in high concentration clusters in their native environment. It is unclear if and how clustering modulates ion channel function. Human heteromeric glycine receptors (GlyRs) are the major inhibitory neurotransmitter receptors in the spinal cord and are active targets for developing chronic pain medications. We show that the α2β heteromeric GlyR assembles with the master postsynaptic scaffolding gephyrin (GPHN) into micron-sized clustered at the plasma membrane after heterologous expression. The inhibitory trans- synaptic adhesion protein neuroligin-2 (NL2) further increases both the cluster sizes and GlyR concentration. The apparent glycine affinity increases monotonically as a function of GlyR concentration but not with cluster size. We also show that ligand re-binding to adjacent GlyRs alters kinetics but not chemical equilibrium. A positively charged N- terminus sequence of the GlyR β subunit was further identified essential for glycine affinity modulation through clustering. Taken together, we propose a mechanism where clustering enhances local electrostatic potential, which in turn concentrates ions and ligands, modulating the function of GlyR. This mechanism is likely universal across ion channel clusters found ubiquitously in biology and provides new perspectives in possible pharmaceutical development.
Collapse
|
2
|
Liu X, Wang W. Gating mechanism of the human α1β GlyR by glycine. Structure 2024; 32:1621-1631.e3. [PMID: 39146932 DOI: 10.1016/j.str.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Glycine receptors (GlyRs) are members of the Cys-loop receptors that constitute a major portion of mammalian neurotransmitter receptors. Recent resolution of heteromeric GlyR structures in multiple functional states raised fundamental questions regarding the gating mechanism of GlyR, and generally the Cys-loop family receptors. Here, we characterized in detail equilibrium properties as well as the transition kinetics between functional states. We show that, while all allosteric sites bind cooperatively to glycine, occupation of 2 sites at the α-α interfaces is sufficient for activation and necessary for high-efficacy gating. Differential glycine concentration dependence of desensitization rate, extent, and its recovery suggests separate but concerted roles of ligand-binding and ionophore reorganization. Based on these observations and available structural information, we developed a quantitative gating model that accurately predicts both equilibrium and kinetical properties throughout the glycine gating cycle. This model likely applies generally to the Cys-loop receptors and informs on pharmaceutical endeavors.
Collapse
Affiliation(s)
- Xiaofen Liu
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiwei Wang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Zhao J, Chen AQ, Ryu J, del Mármol J. Structural basis of odor sensing by insect heteromeric odorant receptors. Science 2024; 384:1460-1467. [PMID: 38870275 PMCID: PMC11235583 DOI: 10.1126/science.adn6384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Most insects, including human-targeting mosquitoes, detect odors through odorant-activated ion channel complexes consisting of a divergent odorant-binding subunit (OR) and a conserved co-receptor subunit (Orco). As a basis for understanding how odorants activate these heteromeric receptors, we report here cryo-electron microscopy structures of two different heteromeric odorant receptor complexes containing ORs from disease-vector mosquitos Aedes aegypti or Anopheles gambiae. These structures reveal an unexpected stoichiometry of one OR to three Orco subunits. Comparison of structures in odorant-bound and unbound states indicates that odorant binding to the sole OR subunit is sufficient to open the channel pore, suggesting a mechanism of OR activation and a conceptual framework for understanding evolution of insect odorant receptor sensitivity.
Collapse
Affiliation(s)
- Jiawei Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
| | - Andy Q. Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
| | - Jaewook Ryu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
| | - Josefina del Mármol
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
- Howard Hughes Medical Institute; Boston, 02115, USA
| |
Collapse
|
4
|
Zhu S, Shen Z, Wu X, Han W, Jia B, Lu W, Zhang M. Demixing is a default process for biological condensates formed via phase separation. Science 2024; 384:920-928. [PMID: 38781377 DOI: 10.1126/science.adj7066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Excitatory and inhibitory synapses do not overlap even when formed on one submicron-sized dendritic protrusion. How excitatory and inhibitory postsynaptic cytomatrices or densities (e/iPSDs) are segregated is not understood. Broadly, why membraneless organelles are naturally segregated in cellular subcompartments is unclear. Using biochemical reconstitutions in vitro and in cells, we demonstrate that ePSDs and iPSDs spontaneously segregate into distinct condensed molecular assemblies through phase separation. Tagging iPSD scaffold gephyrin with a PSD-95 intrabody (dissociation constant ~4 nM) leads to mistargeting of gephyrin to ePSD condensates. Unexpectedly, formation of iPSD condensates forces the intrabody-tagged gephyrin out of ePSD condensates. Thus, instead of diffusion-governed spontaneous mixing, demixing is a default process for biomolecules in condensates. Phase separation can generate biomolecular compartmentalization specificities that cannot occur in dilute solutions.
Collapse
Affiliation(s)
- Shihan Zhu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zeyu Shen
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiandeng Wu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824, USA
| | - Bowen Jia
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824, USA
| | - Mingjie Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Wiessler AL, Hasenmüller AS, Fuhl I, Mille C, Cortes Campo O, Reinhard N, Schenk J, Heinze KG, Schaefer N, Specht CG, Villmann C. Role of the Glycine Receptor β Subunit in Synaptic Localization and Pathogenicity in Severe Startle Disease. J Neurosci 2024; 44:e0837232023. [PMID: 37963764 PMCID: PMC10860499 DOI: 10.1523/jneurosci.0837-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Startle disease is due to the disruption of recurrent inhibition in the spinal cord. Most common causes are genetic variants in genes (GLRA1, GLRB) encoding inhibitory glycine receptor (GlyR) subunits. The adult GlyR is a heteropentameric complex composed of α1 and β subunits that localizes at postsynaptic sites and replaces embryonically expressed GlyRα2 homomers. The human GlyR variants of GLRA1 and GLRB, dominant and recessive, have been intensively studied in vitro. However, the role of unaffected GlyRβ, essential for synaptic GlyR localization, in the presence of mutated GlyRα1 in vivo is not fully understood. Here, we used knock-in mice expressing endogenous mEos4b-tagged GlyRβ that were crossed with mouse Glra1 startle disease mutants. We explored the role of GlyRβ under disease conditions in mice carrying a missense mutation (shaky) or resulting from the loss of GlyRα1 (oscillator). Interestingly, synaptic targeting of GlyRβ was largely unaffected in both mouse mutants. While synaptic morphology appears unaltered in shaky animals, synapses were notably smaller in homozygous oscillator animals. Hence, GlyRβ enables transport of functionally impaired GlyRα1 missense variants to synaptic sites in shaky animals, which has an impact on the efficacy of possible compensatory mechanisms. The observed enhanced GlyRα2 expression in oscillator animals points to a compensation by other GlyRα subunits. However, trafficking of GlyRα2β complexes to synaptic sites remains functionally insufficient, and homozygous oscillator mice still die at 3 weeks after birth. Thus, both functional and structural deficits can affect glycinergic neurotransmission in severe startle disease, eliciting different compensatory mechanisms in vivo.
Collapse
Affiliation(s)
- Anna-Lena Wiessler
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Ann-Sofie Hasenmüller
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Isabell Fuhl
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Clémence Mille
- Institut National de la Santé et de la Recherche Médicale (Inserm U1195), Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Orlando Cortes Campo
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Nicola Reinhard
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Joachim Schenk
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University of Würzburg, 97080 Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University of Würzburg, 97080 Würzburg, Germany
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Christian G Specht
- Institut National de la Santé et de la Recherche Médicale (Inserm U1195), Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
6
|
Liu X, Wang W. Gating mechanism of the human α1β GlyR by glycine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552474. [PMID: 37609197 PMCID: PMC10441291 DOI: 10.1101/2023.08.08.552474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Glycine receptors (GlyRs) are members of the Cys-loop receptors that constitute a major portion of neurotransmitter receptors in the human nervous system. GlyRs are found in the spinal cord and brain mediating locomotive, sensory and cognitive functions, and are targets for pharmaceutical development. GlyRs share a general gating scheme with Cys-loop receptor family members, but the underlying mechanism is unclear. Recent resolution of heteromeric GlyRs structures in multiple functional states identified an invariable 4:1 α:β subunit stoichiometry and provided snapshots in the gating cycle, challenging previous beliefs and raising the fundamental questions of how α and β subunit functions in glycine binding and channel activation. In addition, how a single glycine-bound extracellular domain conformation leads to structurally and functionally different open and desensitized states remained enigmatic. In this study, we characterized in detail equilibrium properties as well as the transition kinetics between functional states. We show that while all allosteric sites bind cooperatively to glycine, occupation of 2 sites at the α-α interfaces is necessary and sufficient for GlyR activation. We also demonstrate differential glycine concentration dependence of desensitization rate, extent, and its recovery, which suggests separate but concerted roles of ligand-binding and ionophore reorganization. Based on these observations and available structural information, we developed a comprehensive quantitative gating model that accurately predicts both equilibrium and kinetical properties throughout glycine gating cycle. This model likely applies generally to the Cys-loop receptor family and informs on pharmaceutical endeavors in function modulation of this receptor family.
Collapse
|
7
|
Aguayo-Cerón KA, Sánchez-Muñoz F, Gutierrez-Rojas RA, Acevedo-Villavicencio LN, Flores-Zarate AV, Huang F, Giacoman-Martinez A, Villafaña S, Romero-Nava R. Glycine: The Smallest Anti-Inflammatory Micronutrient. Int J Mol Sci 2023; 24:11236. [PMID: 37510995 PMCID: PMC10379184 DOI: 10.3390/ijms241411236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Glycine is a non-essential amino acid with many functions and effects. Glycine can bind to specific receptors and transporters that are expressed in many types of cells throughout an organism to exert its effects. There have been many studies focused on the anti-inflammatory effects of glycine, including its abilities to decrease pro-inflammatory cytokines and the concentration of free fatty acids, to improve the insulin response, and to mediate other changes. However, the mechanism through which glycine acts is not clear. In this review, we emphasize that glycine exerts its anti-inflammatory effects throughout the modulation of the expression of nuclear factor kappa B (NF-κB) in many cells. Although glycine is a non-essential amino acid, we highlight how dietary glycine supplementation is important in avoiding the development of chronic inflammation.
Collapse
Affiliation(s)
- Karla Aidee Aguayo-Cerón
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de Mexico 11340, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de Mexico 14080, Mexico
| | | | | | - Aurora Vanessa Flores-Zarate
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de Mexico 11340, Mexico
| | - Fengyang Huang
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico
| | - Abraham Giacoman-Martinez
- Laboratorio de Framacología, Departamaneto de Ciencias de la Salud, DCBS, Universidad Autónoma Mteropolitana-Iztapalapa (UAM-I), Ciudad de Mexico 09340, Mexico
| | - Santiago Villafaña
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de Mexico 11340, Mexico
| | - Rodrigo Romero-Nava
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
8
|
Abstract
Super-resolution fluorescence microscopy allows the investigation of cellular structures at nanoscale resolution using light. Current developments in super-resolution microscopy have focused on reliable quantification of the underlying biological data. In this review, we first describe the basic principles of super-resolution microscopy techniques such as stimulated emission depletion (STED) microscopy and single-molecule localization microscopy (SMLM), and then give a broad overview of methodological developments to quantify super-resolution data, particularly those geared toward SMLM data. We cover commonly used techniques such as spatial point pattern analysis, colocalization, and protein copy number quantification but also describe more advanced techniques such as structural modeling, single-particle tracking, and biosensing. Finally, we provide an outlook on exciting new research directions to which quantitative super-resolution microscopy might be applied.
Collapse
Affiliation(s)
- Siewert Hugelier
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , ,
| | - P L Colosi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , ,
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , ,
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Scalisi S, Pisignano D, Cella Zanacchi F. Single-molecule localization microscopy goes quantitative. Microsc Res Tech 2023; 86:494-504. [PMID: 36601697 DOI: 10.1002/jemt.24281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023]
Abstract
In the last few years, single-molecule localization (SMLM) techniques have been used to address biological questions in different research fields. More recently, super-resolution has also been proposed as a quantitative tool for quantifying protein copy numbers at the nanoscale level. In this scenario, quantitative approaches, mainly based on stepwise photobleaching and quantitative SMLM assisted by calibration standards, offer an exquisite tool for investigating protein complexes. This primer focuses on the basic concepts behind quantitative super-resolution microscopy, also providing strategies to overcome the technical hurdles that could limit their application.
Collapse
Affiliation(s)
- Silvia Scalisi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Dario Pisignano
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Pisa, Italy
| | - Francesca Cella Zanacchi
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Pisa, Italy
| |
Collapse
|
10
|
Gibbs E, Klemm E, Seiferth D, Kumar A, Ilca SL, Biggin PC, Chakrapani S. Conformational transitions and allosteric modulation in a heteromeric glycine receptor. Nat Commun 2023; 14:1363. [PMID: 36914669 PMCID: PMC10011588 DOI: 10.1038/s41467-023-37106-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Glycine Receptors (GlyRs) provide inhibitory neuronal input in the spinal cord and brainstem, which is critical for muscle coordination and sensory perception. Synaptic GlyRs are a heteromeric assembly of α and β subunits. Here we present cryo-EM structures of full-length zebrafish α1βBGlyR in the presence of an antagonist (strychnine), agonist (glycine), or agonist with a positive allosteric modulator (glycine/ivermectin). Each structure shows a distinct pore conformation with varying degrees of asymmetry. Molecular dynamic simulations found the structures were in a closed (strychnine) and desensitized states (glycine and glycine/ivermectin). Ivermectin binds at all five interfaces, but in a distinct binding pose at the β-α interface. Subunit-specific features were sufficient to solve structures without a fiduciary marker and to confirm the 4α:1β stoichiometry recently observed. We also report features of the extracellular and intracellular domains. Together, our results show distinct compositional and conformational properties of α1βGlyR and provide a framework for further study of this physiologically important channel.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Emily Klemm
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - David Seiferth
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Arvind Kumar
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Serban L Ilca
- New York Structural Biology Center, New York, NY, 10027, USA
- Simons Electron Microscopy Center, New York, NY, 10027, USA
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
11
|
Hetero-pentamerization determines mobility and conductance of Glycine receptor α3 splice variants. Cell Mol Life Sci 2022; 79:540. [PMID: 36197517 PMCID: PMC9534812 DOI: 10.1007/s00018-022-04506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/05/2022]
Abstract
Glycine receptors (GlyRs) are ligand-gated pentameric chloride channels in the central nervous system. GlyR-α3 is a possible target for chronic pain treatment and temporal lobe epilepsy. Alternative splicing into K or L variants determines the subcellular fate and function of GlyR-α3, yet it remains to be shown whether its different splice variants can functionally co-assemble, and what the properties of such heteropentamers would be. Here, we subjected GlyR-α3 to a combined fluorescence microscopy and electrophysiology analysis. We employ masked Pearson’s and dual-color spatiotemporal correlation analysis to prove that GlyR-α3 splice variants heteropentamerize, adopting the mobility of the K variant. Fluorescence-based single-subunit counting experiments revealed a variable and concentration ratio dependent hetero-stoichiometry. Via cell-attached single-channel electrophysiology we show that heteropentamers exhibit currents in between those of K and L variants. Our data are compatible with a model where α3 heteropentamerization fine-tunes mobility and activity of GlyR-α3 channels, which is important to understand and tackle α3 related diseases.
Collapse
|
12
|
Sharma A, Chowdhury R, Musser SM. Oligomerization state of the functional bacterial twin-arginine translocation (Tat) receptor complex. Commun Biol 2022; 5:988. [PMID: 36123532 PMCID: PMC9485244 DOI: 10.1038/s42003-022-03952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
The twin-arginine translocation (Tat) system transports folded proteins across bacterial and plastid energy transducing membranes. Ion leaks are generally considered to be mitigated by the creation and destruction of the translocation conduit in a cargo-dependent manner, a mechanism that enables tight sealing around a wide range of cargo shapes and sizes. In contrast to the variable stoichiometry of the active translocon, the oligomerization state of the receptor complex is considered more consistently stable but has proved stubbornly difficult to establish. Here, using a single molecule photobleaching analysis of individual inverted membrane vesicles, we demonstrate that Tat receptor complexes are tetrameric in native membranes with respect to both TatB and TatC. This establishes a maximal diameter for a resting state closed pore. A large percentage of Tat-deficient vesicles explains the typically low transport efficiencies observed. This individual reaction chamber approach will facilitate examination of the effects of stochastically distributed molecules.
Collapse
Affiliation(s)
- Ankith Sharma
- Department of Molecular and Cellular Medicine, Texas A&M University, School of Medicine, 1114 TAMU, College Station, TX, 77843, USA
| | - Rajdeep Chowdhury
- Department of Molecular and Cellular Medicine, Texas A&M University, School of Medicine, 1114 TAMU, College Station, TX, 77843, USA
| | - Siegfried M Musser
- Department of Molecular and Cellular Medicine, Texas A&M University, School of Medicine, 1114 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
13
|
Salceda R. Glycine neurotransmission: Its role in development. Front Neurosci 2022; 16:947563. [PMID: 36188468 PMCID: PMC9525178 DOI: 10.3389/fnins.2022.947563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The accurate function of the central nervous system (CNS) depends of the consonance of multiple genetic programs and external signals during the ontogenesis. A variety of molecules including neurotransmitters, have been implied in the regulation of proliferation, survival, and cell-fate of neurons and glial cells. Among these, neurotransmitters may play a central role since functional ligand-gated ionic channel receptors have been described before the establishment of synapses. This review argues on the function of glycine during development, and show evidence indicating it regulates morphogenetic events by means of their transporters and receptors, emphasizing the role of glycinergic activity in the balance of excitatory and inhibitory signals during development. Understanding the mechanisms involved in these processes would help us to know the etiology of cognitive dysfunctions and lead to improve brain repair strategies.
Collapse
|
14
|
Zhu H. Structure and Mechanism of Glycine Receptor Elucidated by Cryo-Electron Microscopy. Front Pharmacol 2022; 13:925116. [PMID: 36016557 PMCID: PMC9395720 DOI: 10.3389/fphar.2022.925116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Glycine receptors (GlyRs) are pentameric ion channels that mediate fast inhibitory neurotransmission. GlyRs are found in the central nervous system including the spinal cord, brain stem, and cerebellum, as well as in the retina, sperm, macrophages, hippocampus, cochlea, and liver. Due to their crucial roles in counter-balancing excitatory signals and pain signal transmission, GlyR dysfunction can lead to severe diseases, and as a result, compounds that modify GlyR activity may have tremendous therapeutic potential. Despite this potential, the development of GlyR-specific small-molecule ligands is lacking. Over the past few years, high-resolution structures of both homomeric and heteromeric GlyRs structures in various conformations have provided unprecedented details defining the pharmacology of ligand binding, subunit composition, and mechanisms of channel gating. These high-quality structures will undoubtedly help with the development of GlyR-targeted therapies.
Collapse
|
15
|
Solntseva EI, Bukanova JV, Skrebitsky VG, Kudova E. Pregnane neurosteroids exert opposite effects on GABA and glycine-induced chloride current in isolated rat neurons. Hippocampus 2022; 32:552-563. [PMID: 35703084 DOI: 10.1002/hipo.23449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
The ability of endogenous neurosteroids (NSs) with pregnane skeleton modified at positions C-3 and C-5 to modulate the functional activity of inhibitory glycine receptors (GlyR) and ionotropic ɣ-aminobutyric acid receptors (GABAA R) was estimated. The glycine and GABA-induced chloride current (IGly and IGABA ) were measured in isolated pyramidal neurons of the rat hippocampus and in isolated rat cerebellar Purkinje cells, respectively. Our experiments demonstrated that pregnane NSs affected IGABA and IGly in a different manner. At low concentrations (up to 5 μM), tested pregnane NSs increased or did not change the peak amplitude of the IGABA , but reduced the IGly by decreasing the peak amplitude and/or accelerating desensitization. Namely, allopregnanolone (ALLO), epipregnanolone (EPI), pregnanolone (PA), pregnanolone sulfate (PAS) and 5β-dihydroprogesterone (5β-DHP) enhanced the IGABA in Purkinje cells. Dose-response curves plotted in the concentration range from 1 nM to 100 μM were smooth for EPI and 5β-DHP, but bell-shaped for ALLO, PA and PAS. The peak amplitude of the IGly was reduced by PA, PAS, and 5α- and 5β-DHP. In contrast, ALLO, ISO and EPI did not modulate it. Dose-response curves for the inhibition of the IGly peak amplitude were smooth for all active compounds. All NSs accelerated desensitization of the IGly . The dose-response relationship for this effect was smooth for ALLO, PA, PAS and 5β-DHP, but it was U-shaped for EPI, 5α-DHP and ISO. These results, together with our previous results on NSs with androstane skeleton, offer comprehensive overview for understanding the mechanisms of effects of NSs on IGly and IGABA .
Collapse
Affiliation(s)
- Elena I Solntseva
- Functional Synaptology Laboratory, Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Julia V Bukanova
- Functional Synaptology Laboratory, Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Vladimir G Skrebitsky
- Functional Synaptology Laboratory, Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
16
|
Bai G, Zhang M. Inhibitory postsynaptic density from the lens of phase separation. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac003. [PMID: 38596704 PMCID: PMC10913824 DOI: 10.1093/oons/kvac003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 04/11/2024]
Abstract
To faithfully transmit and decode signals released from presynaptic termini, postsynaptic compartments of neuronal synapses deploy hundreds of various proteins. In addition to distinct sets of proteins, excitatory and inhibitory postsynaptic apparatuses display very different organization features and regulatory properties. Decades of extensive studies have generated a wealth of knowledge on the molecular composition, assembly architecture and activity-dependent regulatory mechanisms of excitatory postsynaptic compartments. In comparison, our understanding of the inhibitory postsynaptic apparatus trails behind. Recent studies have demonstrated that phase separation is a new paradigm underlying the formation and plasticity of both excitatory and inhibitory postsynaptic molecular assemblies. In this review, we discuss molecular composition, organizational and regulatory features of inhibitory postsynaptic densities through the lens of the phase separation concept and in comparison with the excitatory postsynaptic densities.
Collapse
Affiliation(s)
- Guanhua Bai
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingjie Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China
| |
Collapse
|
17
|
Zlotos DP, Mandour YM, Jensen AA. Strychnine and its mono- and dimeric analogues: a pharmaco-chemical perspective. Nat Prod Rep 2022; 39:1910-1937. [PMID: 35380133 DOI: 10.1039/d1np00079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to November 2021Since its isolation in 1818, strychnine has attracted the attention of a plethora of chemists and pharmacologists who have established its structure, developed total syntheses, and examined its complex pharmacology. While numerous reviews on structure elucidation and total synthesis of strychnine are available, reports on structure-activity relationships (SARs) of this fascinating alkaloid are rare. In this review, we present and discuss structures, synthetic approaches, metabolic transformations, and the diverse pharmacological actions of strychnine and its mono- and dimeric analogues. Particular attention is given to its SARs at glycine receptors (GlyRs) in light of recently published high-resolution structures of strychnine-GlyR complexes. Other pharmacological actions of strychnine and its derivatives, such as their antagonistic properties at nicotinic acetylcholine receptors (nAChRs), allosteric modulation of muscarinic acetylcholine receptors as well as anti-cancer and anti-plasmodial effects are also critically reviewed, and possible future developments in the field are discussed.
Collapse
Affiliation(s)
- Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt.
| | - Yasmine M Mandour
- School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
18
|
Zhu H, Gouaux E. Architecture and assembly mechanism of native glycine receptors. Nature 2021; 599:513-517. [PMID: 34555840 PMCID: PMC8647860 DOI: 10.1038/s41586-021-04022-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Glycine receptors (GlyRs) are pentameric, 'Cys-loop' receptors that form chloride-permeable channels and mediate fast inhibitory signalling throughout the central nervous system1,2. In the spinal cord and brainstem, GlyRs regulate locomotion and cause movement disorders when mutated2,3. However, the stoichiometry of native GlyRs and the mechanism by which they are assembled remain unclear, despite extensive investigation4-8. Here we report cryo-electron microscopy structures of native GlyRs from pig spinal cord and brainstem, revealing structural insights into heteromeric receptors and their predominant subunit stoichiometry of 4α:1β. Within the heteromeric pentamer, the β(+)-α(-) interface adopts a structure that is distinct from the α(+)-α(-) and α(+)-β(-) interfaces. Furthermore, the β-subunit contains a unique phenylalanine residue that resides within the pore and disrupts the canonical picrotoxin site. These results explain why inclusion of the β-subunit breaks receptor symmetry and alters ion channel pharmacology. We also find incomplete receptor complexes and, by elucidating their structures, reveal the architectures of partially assembled α-trimers and α-tetramers.
Collapse
Affiliation(s)
- Hongtao Zhu
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
- Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
19
|
Fischhaber N, Faber J, Bakirci E, Dalton PD, Budday S, Villmann C, Schaefer N. Spinal Cord Neuronal Network Formation in a 3D Printed Reinforced Matrix-A Model System to Study Disease Mechanisms. Adv Healthc Mater 2021; 10:e2100830. [PMID: 34350717 PMCID: PMC11469053 DOI: 10.1002/adhm.202100830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/24/2021] [Indexed: 12/29/2022]
Abstract
3D cell cultures allow a better mimicry of the biological and mechanical environment of cells in vivo compared to 2D cultures. However, 3D cell cultures have been challenging for ultrasoft tissues such as the brain. The present study uses a microfiber reinforcement approach combining mouse primary spinal cord neurons in Matrigel with melt electrowritten (MEW) frames. Within these 3D constructs, neuronal network development is followed for 21 days in vitro. To evaluate neuronal development in 3D constructs, the maturation of inhibitory glycinergic synapses is analyzed using protein expression, the complex mechanical properties by assessing nonlinearity, conditioning, and stress relaxation, and calcium imaging as readouts. Following adaptation to the 3D matrix-frame, mature inhibitory synapse formation is faster than in 2D demonstrated by a steep increase in glycine receptor expression between days 3 and 10. The 3D expression pattern of marker proteins at the inhibitory synapse and the mechanical properties resemble the situation in native spinal cord tissue. Moreover, 3D spinal cord neuronal networks exhibit intensive neuronal activity after 14 days in culture. The spinal cord cell culture model using ultrasoft matrix reinforced by MEW fibers provides a promising tool to study and understand biomechanical mechanisms in health and disease.
Collapse
Affiliation(s)
- Natalie Fischhaber
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 597078WürzburgGermany
| | - Jessica Faber
- Department of Mechanical EngineeringInstitute of Applied MechanicsFriedrich‐Alexander‐University Erlangen‐NürnbergEgerlandstrasse 591058ErlangenGermany
| | - Ezgi Bakirci
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity Hospital WürzburgPleicherwall 297070WürzburgGermany
| | - Paul D. Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity Hospital WürzburgPleicherwall 297070WürzburgGermany
- Phil and Penny Knight Campus for Accelerating Scientific ImpactUniversity of Oregon1505 Franklin Blvd.EugeneOR97403USA
| | - Silvia Budday
- Department of Mechanical EngineeringInstitute of Applied MechanicsFriedrich‐Alexander‐University Erlangen‐NürnbergEgerlandstrasse 591058ErlangenGermany
| | - Carmen Villmann
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 597078WürzburgGermany
| | - Natascha Schaefer
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 597078WürzburgGermany
| |
Collapse
|
20
|
Piro I, Eckes AL, Kasaragod VB, Sommer C, Harvey RJ, Schaefer N, Villmann C. Novel Functional Properties of Missense Mutations in the Glycine Receptor β Subunit in Startle Disease. Front Mol Neurosci 2021; 14:745275. [PMID: 34630038 PMCID: PMC8498107 DOI: 10.3389/fnmol.2021.745275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Startle disease is a rare disorder associated with mutations in GLRA1 and GLRB, encoding glycine receptor (GlyR) α1 and β subunits, which enable fast synaptic inhibitory transmission in the spinal cord and brainstem. The GlyR β subunit is important for synaptic localization via interactions with gephyrin and contributes to agonist binding and ion channel conductance. Here, we have studied three GLRB missense mutations, Y252S, S321F, and A455P, identified in startle disease patients. For Y252S in M1 a disrupted stacking interaction with surrounding aromatic residues in M3 and M4 is suggested which is accompanied by an increased EC50 value. By contrast, S321F in M3 might stabilize stacking interactions with aromatic residues in M1 and M4. No significant differences in glycine potency or efficacy were observed for S321F. The A455P variant was not predicted to impact on subunit folding but surprisingly displayed increased maximal currents which were not accompanied by enhanced surface expression, suggesting that A455P is a gain-of-function mutation. All three GlyR β variants are trafficked effectively with the α1 subunit through intracellular compartments and inserted into the cellular membrane. In vivo, the GlyR β subunit is transported together with α1 and the scaffolding protein gephyrin to synaptic sites. The interaction of these proteins was studied using eGFP-gephyrin, forming cytosolic aggregates in non-neuronal cells. eGFP-gephyrin and β subunit co-expression resulted in the recruitment of both wild-type and mutant GlyR β subunits to gephyrin aggregates. However, a significantly lower number of GlyR β aggregates was observed for Y252S, while for mutants S321F and A455P, the area and the perimeter of GlyR β subunit aggregates was increased in comparison to wild-type β. Transfection of hippocampal neurons confirmed differences in GlyR-gephyrin clustering with Y252S and A455P, leading to a significant reduction in GlyR β-positive synapses. Although none of the mutations studied is directly located within the gephyrin-binding motif in the GlyR β M3-M4 loop, we suggest that structural changes within the GlyR β subunit result in differences in GlyR β-gephyrin interactions. Hence, we conclude that loss- or gain-of-function, or alterations in synaptic GlyR clustering may underlie disease pathology in startle disease patients carrying GLRB mutations.
Collapse
Affiliation(s)
- Inken Piro
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Anna-Lena Eckes
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Vikram Babu Kasaragod
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Robert J. Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Yu H, Bai XC, Wang W. Characterization of the subunit composition and structure of adult human glycine receptors. Neuron 2021; 109:2707-2716.e6. [PMID: 34473954 DOI: 10.1016/j.neuron.2021.08.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/23/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022]
Abstract
The strychnine-sensitive pentameric glycine receptor (GlyR) mediates fast inhibitory neurotransmission in the mammalian nervous system. Only heteromeric GlyRs mediate synaptic transmission, as they contain the β subunit that permits clustering at the synapse through its interaction with scaffolding proteins. Here, we show that α2 and β subunits assemble with an unexpected 4:1 stoichiometry to produce GlyR with native electrophysiological properties. We determined structures in multiple functional states at 3.6-3.8 Å resolutions and show how 4:1 stoichiometry is consistent with the structural features of α2β GlyR. Furthermore, we show that one single β subunit in each GlyR gives rise to the characteristic electrophysiological properties of heteromeric GlyR, while more β subunits render GlyR non-conductive. A single β subunit ensures a univalent GlyR-scaffold linkage, which means the scaffold alone regulates the cluster properties.
Collapse
Affiliation(s)
- Hailong Yu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weiwei Wang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
22
|
Bai G, Wang Y, Zhang M. Gephyrin-mediated formation of inhibitory postsynaptic density sheet via phase separation. Cell Res 2021; 31:312-325. [PMID: 33139925 PMCID: PMC8027005 DOI: 10.1038/s41422-020-00433-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/14/2020] [Indexed: 01/30/2023] Open
Abstract
Inhibitory synapses are also known as symmetric synapses due to their lack of prominent postsynaptic densities (PSDs) under a conventional electron microscope (EM). Recent cryo-EM tomography studies indicated that inhibitory synapses also contain PSDs, albeit with a rather thin sheet-like structure. It is not known how such inhibitory PSD (iPSD) sheet might form. Here, we demonstrate that the key inhibitory synapse scaffold protein gephyrin, when in complex with either glycine or GABAA receptors, spontaneously forms highly condensed molecular assemblies via phase separation both in solution and on supported membrane bilayers. Multivalent and specific interactions between the dimeric E-domain of gephyrin and the glycine/GABAA receptor multimer are essential for the iPSD condensate formation. Gephyrin alone does not form condensates. The linker between the G- and E-domains of gephyrin inhibits the iPSD condensate formation via autoinhibition. Phosphorylation of specific residues in the linker or binding of target proteins such as dynein light chain to the linker domain regulates gephyrin-mediated glycine/GABAA receptor clustering. Thus, analogous to excitatory PSDs, iPSDs are also formed by phase separation-mediated condensation of scaffold protein/neurotransmitter receptor complexes.
Collapse
Affiliation(s)
- Guanhua Bai
- grid.24515.370000 0004 1937 1450Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Yu Wang
- grid.24515.370000 0004 1937 1450Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Mingjie Zhang
- grid.24515.370000 0004 1937 1450Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China ,grid.24515.370000 0004 1937 1450Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
23
|
Sheipouri D, Gallagher CI, Shimmon S, Rawling T, Vandenberg RJ. A System for Assessing Dual Action Modulators of Glycine Transporters and Glycine Receptors. Biomolecules 2020; 10:E1618. [PMID: 33266066 PMCID: PMC7760315 DOI: 10.3390/biom10121618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Reduced inhibitory glycinergic neurotransmission is implicated in a number of neurological conditions such as neuropathic pain, schizophrenia, epilepsy and hyperekplexia. Restoring glycinergic signalling may be an effective method of treating these pathologies. Glycine transporters (GlyTs) control synaptic and extra-synaptic glycine concentrations and slowing the reuptake of glycine using specific GlyT inhibitors will increase glycine extracellular concentrations and increase glycine receptor (GlyR) activation. Glycinergic neurotransmission can also be improved through positive allosteric modulation (PAM) of GlyRs. Despite efforts to manipulate this synapse, no therapeutics currently target it. We propose that dual action modulators of both GlyTs and GlyRs may show greater therapeutic potential than those targeting individual proteins. To show this, we have characterized a co-expression system in Xenopus laevis oocytes consisting of GlyT1 or GlyT2 co-expressed with GlyRα1. We use two electrode voltage clamp recording techniques to measure the impact of GlyTs on GlyRs and the effects of modulators of these proteins. We show that increases in GlyT density in close proximity to GlyRs diminish receptor currents. Reductions in GlyR mediated currents are not observed when non-transportable GlyR agonists are applied or when Na+ is not available. GlyTs reduce glycine concentrations across different concentration ranges, corresponding with their ion-coupling stoichiometry, and full receptor currents can be restored when GlyTs are blocked with selective inhibitors. We show that partial inhibition of GlyT2 and modest GlyRα1 potentiation using a dual action compound, is as useful in restoring GlyR currents as a full and potent single target GlyT2 inhibitor or single target GlyRα1 PAM. The co-expression system developed in this study will provide a robust means for assessing the likely impact of GlyR PAMs and GlyT inhibitors on glycine neurotransmission.
Collapse
Affiliation(s)
- Diba Sheipouri
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (C.I.G.)
| | - Casey I. Gallagher
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (C.I.G.)
| | - Susan Shimmon
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.S.); (T.R.)
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.S.); (T.R.)
| | - Robert J. Vandenberg
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (C.I.G.)
| |
Collapse
|
24
|
The anticonvulsant zonisamide positively modulates recombinant and native glycine receptors at clinically relevant concentrations. Neuropharmacology 2020; 182:108371. [PMID: 33122032 DOI: 10.1016/j.neuropharm.2020.108371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/04/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022]
Abstract
GABAA and glycine receptors mediate fast synaptic inhibitory neurotransmission. Despite studies showing that activation of cerebral glycine receptors could be a potential strategy in the treatment of epilepsy, few studies have assessed the effects of existing anticonvulsant therapies on recombinant or native glycine receptors. We, therefore, evaluated the actions of a series of anticonvulsants at recombinant human homo-oligomeric glycine receptor α1, α2 and α3 subtypes expressed in Xenopus oocytes using two-electrode voltage-clamp methods, and then assessed the most effective drug at native glycine receptors from entorhinal cortex neurons using whole-cell voltage-clamp recordings. Ganaxolone, tiagabine and zonisamide positively modulated glycine induced currents at recombinant homomeric glycine receptors. Of these, zonisamide was the most efficacious and exhibited an EC50 value ranging between 450 and 560 μM at α1, α2 and α3 subtypes. These values were not significantly different indicating a non-selective modulation of glycine receptors. Using a therapeutic concentration of zonisamide (100 μM), the potency of glycine was significantly shifted from 106 to 56 μM at α1, 185 to 112 μM at α2, and 245 to 91 μM at α3 receptors. Furthermore, zonisamide (100 μM) potentiated exogenous homomeric and heteromeric glycine mediated currents from layer II pyramidal cells of the lateral or medial entorhinal cortex. As therapeutic concentrations of zonisamide positively modulate recombinant and native glycine receptors, we propose that the anticonvulsant effects of zonisamide may, at least in part, be mediated via this action.
Collapse
|
25
|
Tian Y, Chen S, Shan Q. Charged residues at the pore extracellular half of the glycine receptor facilitate channel gating: a potential role played by electrostatic repulsion. J Physiol 2020; 598:4643-4661. [PMID: 32844405 DOI: 10.1113/jp279288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS The Arg271Gln mutation of the glycine receptor (GlyR) causes hereditary hyperekplexia. This mutation dramatically compromises GlyR function; however, the underlying mechanism is not yet known. This study, by employing function and computation methods, proposes that charged residues (including the Arg residue) at the pore extracellular half from each of the five subunits of the homomeric α1 GlyR, create an electrostatic repulsive potential to widen the pore, thereby facilitating channel opening. This mechanism explains how the Arg271Gln mutation, in which the positively charged Arg residue is substituted by the neutral Gln residue, compromises GlyR function. This study furthers our understanding of the biophysical mechanism underlying the Arg271Gln mutation compromising GlyR function. ABSTRACT The R271(19')Q mutation in the α1 subunit of the glycine receptor (GlyR) chloride channel causes hereditary hyperekplexia. This mutation dramatically compromises channel function; however, the underlying mechanism is not yet known. The R271 residue is located at the extracellular half of the channel pore. In this study, an Arg-scanning mutagenesis was performed at the pore extracellular half from the 262(10') to the 272(20') position on the background of the α1 GlyR carrying the hyperekplexia-causing mutation R271(19')Q. It was found that the placement of the Arg residue rescued channel function to an extent inversely correlated with the distance between the residue and the pore central axis (perpendicular to the plane of the lipid bilayer). Accordingly, it was hypothesized that the placed Arg residues from each of the five subunits of the homomeric α1 GlyR create an electrostatic repulsive potential to widen the pore, thereby facilitating channel opening. This hypothesis was quantitatively verified by theoretical computation via exploiting basic laws of electrostatics and thermodynamics, and further supported by more experimental findings that the placement of another positively charged Lys residue or even a negatively charged Asp residue also rescued channel function in the same manner. This study provides a novel mechanism via which charged residues in the pore region facilitate channel gating, not only for the disease-causing 19'R residue in the GlyR, but also potentially for charged residues in the same region of other ion channels.
Collapse
Affiliation(s)
- Yao Tian
- Chern Institute of Mathematics, Nankai University, Tianjin, 300071, China
| | - Shijie Chen
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| |
Collapse
|
26
|
Rossokhin A. The general anesthetic etomidate and fenamate mefenamic acid oppositely affect GABA AR and GlyR: a structural explanation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:591-607. [PMID: 32940715 DOI: 10.1007/s00249-020-01464-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022]
Abstract
GABA and glycine act as inhibitory neurotransmitters in the CNS. Inhibitory neurotransmission is mediated via activation of ionotropic GABAA and glycine receptors. We used a modeling approach to explain the opposite effects of the general anesthetic etomidate (ETM) and fenamate mefenamic acid (MFA) on GABA- and glycine-activated currents recorded in isolated cerebellar Purkinje cells and hippocampal pyramidal neurons, respectively. These drugs potentiated GABAARs but blocked GlyRs. We built a homology model of α1β GlyR based on the cryo-EM structure of open α1 GlyR, used the α1β3γ2 GABAAR structure from the PDB, and applied Monte-Carlo energy minimization to optimize models of receptors and ligand-receptor complexes. In silico docking suggests that ETM/MFA bind at the transmembrane β( +)/α( -) intersubunit interface in GABAAR. Our models predict that the bulky side chain of the highly conserved Arg19' residue at the plus interface side wedges the interface and maintains the conducting receptor state. We hypothesized that MFA/ETM binding at the β( +)/α( -) interface leads to prolongation of receptor life-time in the open state. Having analyzed different GABAAR and GlyR structures available in the PDB, we found that mutual arrangement of the Arg19' and Gln-26' side chains at the plus and minus interface sides, respectively, plays an important role when the receptor switches from the open to closed state. We show that this process is accompanied by narrowing of the intersubunit interfaces, leading to extrusion of the Arg19' side chain from the interface. Our models allow us to explain the lack of GlyR potentiation in our electrophysiological experiments.
Collapse
|
27
|
Schaefer N, Signoret-Genest J, von Collenberg CR, Wachter B, Deckert J, Tovote P, Blum R, Villmann C. Anxiety and Startle Phenotypes in Glrb Spastic and Glra1 Spasmodic Mouse Mutants. Front Mol Neurosci 2020; 13:152. [PMID: 32848605 PMCID: PMC7433344 DOI: 10.3389/fnmol.2020.00152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
A GWAS study recently demonstrated single nucleotide polymorphisms (SNPs) in the human GLRB gene of individuals with a prevalence for agoraphobia. GLRB encodes the glycine receptor (GlyRs) β subunit. The identified SNPs are localized within the gene flanking regions (3' and 5' UTRs) and intronic regions. It was suggested that these nucleotide polymorphisms modify GlyRs expression and phenotypic behavior in humans contributing to an anxiety phenotype as a mild form of hyperekplexia. Hyperekplexia is a human neuromotor disorder with massive startle phenotypes due to mutations in genes encoding GlyRs subunits. GLRA1 mutations have been more commonly observed than GLRB mutations. If an anxiety phenotype contributes to the hyperekplexia disease pattern has not been investigated yet. Here, we compared two mouse models harboring either a mutation in the murine Glra1 or Glrb gene with regard to anxiety and startle phenotypes. Homozygous spasmodic animals carrying a Glra1 point mutation (alanine 52 to serine) displayed abnormally enhanced startle responses. Moreover, spasmodic mice exhibited significant changes in fear-related behaviors (freezing, rearing and time spent on back) analyzed during the startle paradigm, even in a neutral context. Spastic mice exhibit reduced expression levels of the full-length GlyRs β subunit due to aberrant splicing of the Glrb gene. Heterozygous animals appear normal without an obvious behavioral phenotype and thus might reflect the human situation analyzed in the GWAS study on agoraphobia and startle. In contrast to spasmodic mice, heterozygous spastic animals revealed no startle phenotype in a neutral as well as a conditioning context. Other mechanisms such as a modulatory function of the GlyRs β subunit within glycinergic circuits in neuronal networks important for fear and fear-related behavior may exist. Possibly, in human additional changes in fear and fear-related circuits either due to gene-gene interactions e.g., with GLRA1 genes or epigenetic factors are necessary to create the agoraphobia and in particular the startle phenotype.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Jérémy Signoret-Genest
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany.,Department of Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Cora R von Collenberg
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Britta Wachter
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center for Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, Julius Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Ferrini F, Perez-Sanchez J, Ferland S, Lorenzo LE, Godin AG, Plasencia-Fernandez I, Cottet M, Castonguay A, Wang F, Salio C, Doyon N, Merighi A, De Koninck Y. Differential chloride homeostasis in the spinal dorsal horn locally shapes synaptic metaplasticity and modality-specific sensitization. Nat Commun 2020; 11:3935. [PMID: 32769979 PMCID: PMC7414850 DOI: 10.1038/s41467-020-17824-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
GABAA/glycine-mediated neuronal inhibition critically depends on intracellular chloride (Cl-) concentration which is mainly regulated by the K+-Cl- co-transporter 2 (KCC2) in the adult central nervous system (CNS). KCC2 heterogeneity thus affects information processing across CNS areas. Here, we uncover a gradient in Cl- extrusion capacity across the superficial dorsal horn (SDH) of the spinal cord (laminae I-II: LI-LII), which remains concealed under low Cl- load. Under high Cl- load or heightened synaptic drive, lower Cl- extrusion is unveiled in LI, as expected from the gradient in KCC2 expression found across the SDH. Blocking TrkB receptors increases KCC2 in LI, pointing to differential constitutive TrkB activation across laminae. Higher Cl- lability in LI results in rapidly collapsing inhibition, and a form of activity-dependent synaptic plasticity expressed as a continuous facilitation of excitatory responses. The higher metaplasticity in LI as compared to LII differentially affects sensitization to thermal and mechanical input. Thus, inconspicuous heterogeneity of Cl- extrusion across laminae critically shapes plasticity for selective nociceptive modalities.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Turin, Italy.
- CERVO Brain Research Centre, Québec, QC, Canada.
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada.
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada.
| | - Jimena Perez-Sanchez
- CERVO Brain Research Centre, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Samuel Ferland
- CERVO Brain Research Centre, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | | | - Antoine G Godin
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Isabel Plasencia-Fernandez
- CERVO Brain Research Centre, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | | | | | - Feng Wang
- CERVO Brain Research Centre, Québec, QC, Canada
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Nicolas Doyon
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Mathematics and Statistics, Université Laval, Québec, QC, Canada
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| |
Collapse
|
29
|
Determining the correct stoichiometry of Kv2.1/Kv6.4 heterotetramers, functional in multiple stoichiometrical configurations. Proc Natl Acad Sci U S A 2020; 117:9365-9376. [PMID: 32284408 DOI: 10.1073/pnas.1916166117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The electrically silent (KvS) members of the voltage-gated potassium (Kv) subfamilies Kv5, Kv6, Kv8, and Kv9 selectively modulate Kv2 subunits by forming heterotetrameric Kv2/KvS channels. Based on the reported 3:1 stoichiometry of Kv2.1/Kv9.3 channels, we tested the hypothesis that Kv2.1/Kv6.4 channels express, in contrast to the assumed 3:1, in a 2:2 stoichiometry. We investigate the Kv2.1/Kv6.4 stoichiometry using single subunit counting and functional characterization of tetrameric concatemers. For selecting the most probable stoichiometry, we introduce a model-selection method that is applicable for any multimeric complex by investigating the stoichiometry of Kv2.1/Kv6.4 channels. Weighted likelihood calculations bring rigor to a powerful technique. Using the weighted-likelihood model-selection method and analysis of electrophysiological data, we show that Kv2.1/Kv6.4 channels express, in contrast to the assumed 3:1, in a 2:2 stoichiometry. Within this stoichiometry, the Kv6.4 subunits have to be positioned alternating with Kv2.1 to express functional channels. The variability in Kv2/KvS assembly increases the diversity of heterotetrameric configurations and extends the regulatory possibilities of KvS by allowing the presence of more than one silent subunit.
Collapse
|
30
|
Lorenzo LE, Godin AG, Ferrini F, Bachand K, Plasencia-Fernandez I, Labrecque S, Girard AA, Boudreau D, Kianicka I, Gagnon M, Doyon N, Ribeiro-da-Silva A, De Koninck Y. Enhancing neuronal chloride extrusion rescues α2/α3 GABA A-mediated analgesia in neuropathic pain. Nat Commun 2020; 11:869. [PMID: 32054836 PMCID: PMC7018745 DOI: 10.1038/s41467-019-14154-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Spinal disinhibition has been hypothesized to underlie pain hypersensitivity in neuropathic pain. Apparently contradictory mechanisms have been reported, raising questions on the best target to produce analgesia. Here, we show that nerve injury is associated with a reduction in the number of inhibitory synapses in the spinal dorsal horn. Paradoxically, this is accompanied by a BDNF-TrkB-mediated upregulation of synaptic GABAARs and by an α1-to-α2GABAAR subunit switch, providing a mechanistic rationale for the analgesic action of the α2,3GABAAR benzodiazepine-site ligand L838,417 after nerve injury. Yet, we demonstrate that impaired Cl- extrusion underlies the failure of L838,417 to induce analgesia at high doses due to a resulting collapse in Cl- gradient, dramatically limiting the benzodiazepine therapeutic window. In turn, enhancing KCC2 activity not only potentiated L838,417-induced analgesia, it rescued its analgesic potential at high doses, revealing a novel strategy for analgesia in pathological pain, by combined targeting of the appropriate GABAAR-subtypes and restoring Cl- homeostasis.
Collapse
Affiliation(s)
- Louis-Etienne Lorenzo
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Antoine G Godin
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Department of Psychiatry & Neuroscience, Université Laval, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Francesco Ferrini
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Department of Psychiatry & Neuroscience, Université Laval, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Karine Bachand
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
| | - Isabel Plasencia-Fernandez
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Simon Labrecque
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
| | - Alexandre A Girard
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Dominic Boudreau
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Irenej Kianicka
- Chlorion Pharma, Laval, Québec, QC, Canada
- Laurent Pharmaceuticals Inc., Montreal, QC, Canada
| | - Martin Gagnon
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Centre for Innovation, University of Otago, Dunedin, New Zealand
| | - Nicolas Doyon
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada
- Finite Element Interdisciplinary Research Group (GIREF), Université Laval, Québec, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Quebec Mental Health Institute, Québec, QC, Canada.
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada.
- Department of Psychiatry & Neuroscience, Université Laval, Québec, QC, Canada.
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada.
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.
| |
Collapse
|
31
|
Petazzi RA, Aji AK, Chiantia S. Fluorescence microscopy methods for the study of protein oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:1-41. [DOI: 10.1016/bs.pmbts.2019.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Dawson A, Trumper P, de Souza JO, Parker H, Jones MJ, Hales TG, Hunter WN. Engineering a surrogate human heteromeric α/β glycine receptor orthosteric site exploiting the structural homology and stability of acetylcholine-binding protein. IUCRJ 2019; 6:1014-1023. [PMID: 31709057 PMCID: PMC6830221 DOI: 10.1107/s205225251901114x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Protein-engineering methods have been exploited to produce a surrogate system for the extracellular neurotransmitter-binding site of a heteromeric human ligand-gated ion channel, the glycine receptor. This approach circumvents two major issues: the inherent experimental difficulties in working with a membrane-bound ion channel and the complication that a heteromeric assembly is necessary to create a key, physiologically relevant binding site. Residues that form the orthosteric site in a highly stable ortholog, acetylcholine-binding protein, were selected for substitution. Recombinant proteins were prepared and characterized in stepwise fashion exploiting a range of biophysical techniques, including X-ray crystallography, married to the use of selected chemical probes. The decision making and development of the surrogate, which is termed a glycine-binding protein, are described, and comparisons are provided with wild-type and homomeric systems that establish features of molecular recognition in the binding site and the confidence that the system is suited for use in early-stage drug discovery targeting a heteromeric α/β glycine receptor.
Collapse
Affiliation(s)
- Alice Dawson
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paul Trumper
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Juliana Oliveira de Souza
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Holly Parker
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Mathew J. Jones
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Tim G. Hales
- Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
33
|
Single-molecule localization to study cytoskeletal structures, membrane complexes, and mechanosensors. Biophys Rev 2019; 11:745-756. [PMID: 31529362 DOI: 10.1007/s12551-019-00595-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
In the last decades, a promising breakthrough in fluorescence imaging was represented by the advent of super-resolution microscopy (SRM). Super-resolution techniques recently became a popular method to study sub-cellular structures, providing a successful approach to observe cytoskeletal and focal adhesion proteins. Among the SR techniques, single-molecule localization microscopy plays a significant role due to its ability to unveil structures and molecular organizations in biological systems. Furthermore, since they provide information at the molecular level, these techniques are increasingly being used to study the stoichiometry and interaction between several membrane channel proteins and their accessory subunits. The aim of this review is to describe the single-molecule localization-based techniques and their applications relevant to cytoskeletal structures and membrane complexes in order to provide as future prospective an overall picture of their correlation with the mechanosensor channel expression and activity.
Collapse
|
34
|
Alvarez LD, Pecci A. Mapping the neurosteroid binding sites on glycine receptors. J Steroid Biochem Mol Biol 2019; 192:105388. [PMID: 31176751 DOI: 10.1016/j.jsbmb.2019.105388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/27/2019] [Accepted: 05/30/2019] [Indexed: 11/18/2022]
Abstract
Glycine is a major inhibitory neurotransmitter in the CNS, where it modulates both sensory and motor transduction throughout its binding to glycine receptors (GlyRs), pentameric chloride channels that share structural and functional properties with type A γ-aminobutyric acid receptors (GABAAR). A large number of structurally diverse organic compounds have been identified as GlyR and GABAAR allosteric modulators, making these receptors attractive pharmacological targets. Taking into account the recent resolved crystal structures of GABAAR/neurosteroid complexes, and due to the high sequence identity between the GABAAR and GlyR transmembrane domains, in this work we applied molecular modeling methods to explore the neurosteroid binding to GlyR. Our results indicated that neurosteroid binding sites of GABAARs are also conserved in the GlyRs. Furthermore, docking and molecular dynamics simulations predicted that neurosteroids are stably recognized at these sites, providing precise information on the molecular basis of the neurosteroid binding mode to GlyR. The comparison of how allopregnanolone and pregnanolone 3-OH moieties are recognized by the GlyR binding pocket revealed significant differences that may be associated to opposite effects of these isomers on the GlyR response.
Collapse
Affiliation(s)
- Lautaro D Alvarez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina; CONICET - Universidad de Buenos Aires, UMYMFOR, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina.
| | - Adali Pecci
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina; CONICET - Universidad de Buenos Aires, IFIBYNE, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
35
|
Principal Neurons in the Anteroventral Cochlear Nucleus Express Cell-Type Specific Glycine Receptor α Subunits. Neuroscience 2019; 415:77-88. [PMID: 31325562 DOI: 10.1016/j.neuroscience.2019.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022]
Abstract
Signal processing in the principal neurons of the anteroventral cochlear nucleus (AVCN) is modulated by glycinergic inhibition. The kinetics of IPSCs are specific to the target neurons. It remains unclear what glycine receptor subunits are involved in generating such target-specific IPSC kinetics in AVCN principal neurons. We investigated the expression patterns of glycine receptor α (GlyRα) subunits in AVCN using immunohistochemical labeling of four isoforms of GlyRα subunits (GlyRα1-α4), and found that AVCN neurons express GlyRα1 and GlyRα4, but not GlyRα2 and GlyRα3 subunits. To further identify the cell type-specific expression patterns of GlyRα subunits, we combined whole-cell patch clamp recording with immunohistochemistry by recording from all three types of AVCN principal neurons, characterizing the synaptic properties of their glycinergic inhibition, dye-filling the neurons, and processing the slice for immunostaining of different GlyRα subunits. We found that AVCN bushy neurons express both GlyRα1 and GlyRα4 subunits that underlie their slow IPSC kinetics, whereas both T-stellate and D-stellate neurons express only GlyRα1 subunit that underlies their fast IPSC kinetics. In conclusion, AVCN principal neurons express cell-type specific GlyRα subunits that underlie their distinct IPSC kinetics, which enables glycinergic inhibition from the same source to exert target cell-specific modulation of activity to support the unique physiological function of these neurons.
Collapse
|
36
|
Zhang X, Cheng D, Liu Y, Wu Y, He Z. Gephyrin suppresses lung squamous cell carcinoma development by reducing mTOR pathway activation. Cancer Manag Res 2019; 11:5333-5341. [PMID: 31239782 PMCID: PMC6560210 DOI: 10.2147/cmar.s204358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/24/2019] [Indexed: 11/23/2022] Open
Abstract
Background: The mTOR pathway is altered in a multitude of cancers, including lung cancer; however, abnormal activation in this pathway is less common in lung adenocarcinoma (LUAD) than in lung squamous cell carcinoma (LUSC). Gephyrin is a highly conserved and widely expressed ancient protein in vertebrate tissues. Its role and molecular mechanism in lung cancer development are largely unknown. Method: We analyzed the expression profile of gephyrin and overall survival rates in LUAD and LUSC. The LUSC cells (H520 and SK-MES-1) were transfected with pLV-gephyrin to establish gephyrin stable overexpression cell lines. Real-time quantitative PCR and Western blot were performed to detect the mRNA and protein levels. The cell growth and cell cycle were detected by the MTT assay and flow cytometry. Finally, a xenograft tumor model was established to determine cell tumorigenesis in vivo. Results: Our results show that gephyrin was reduced in LUAD and LUSC, and its low expression in LUSC patients indicated poor prognosis. Gephyrin overexpression suppressed LUSC cell proliferation, arrested cell cycle progression, and decreased the expression of cell-cycle related proteins such as cyclin D1, cyclin-dependent kinase-2 (CDK2), and proliferation-related protein proliferating cell nuclear antigen (PCNA). Conversely, knockdown of gephyrin promoted LUSC cell growth. Moreover, gephyrin reduced mTOR pathway activation to inhibit cyclin D1 and CDK2 translation. Mechanistically, gephyrin suppressed mTOR pathway activation by promoting mTOR degradation. Furthermore, gephyrin overexpression suppressed LUSC tumorigenesis. Conclusion: Gephyrin suppressed LUSC development by reducing mTOR pathway activation, implicating gephyrin as a potential molecular target for LUSC management.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.,Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Dezhi Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.,Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Yu Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.,Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Yuanbo Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Zhifeng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.,Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
37
|
Quantifying Protein Copy Number in Super Resolution Using an Imaging-Invariant Calibration. Biophys J 2019; 116:2195-2203. [PMID: 31103226 DOI: 10.1016/j.bpj.2019.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 01/28/2023] Open
Abstract
The use of super-resolution microscopy in recent years has revealed that proteins often form small assemblies inside cells and are organized in nanoclusters. However, determining the copy number of proteins within these nanoclusters constitutes a major challenge because of unknown labeling stoichiometries and complex fluorophore photophysics. We previously developed a DNA-origami-based calibration approach to extract protein copy number from super-resolution images. However, the applicability of this approach is limited by the fact that the calibration is dependent on the specific labeling and imaging conditions used in each experiment. Hence, the calibration must be repeated for each experimental condition, which is a formidable task. Here, using cells stably expressing dynein intermediate chain fused to green fluorescent protein (HeLa IC74 cells) as a reference sample, we demonstrate that the DNA-origami-based calibration data we previously generated can be extended to super-resolution images taken under different experimental conditions, enabling the quantification of any green-fluorescent-protein-fused protein of interest. To do so, we first quantified the copy number of dynein motors within nanoclusters in the cytosol and along the microtubules. Interestingly, this quantification showed that dynein motors form assemblies consisting of more than one motor, especially along microtubules. This quantification enabled us to use the HeLa IC74 cells as a reference sample to calibrate and quantify protein copy number independently of labeling and imaging conditions, dramatically improving the versatility and applicability of our approach.
Collapse
|
38
|
Samarut E, Chalopin D, Riché R, Allard M, Liao M, Drapeau P. Individual knock out of glycine receptor alpha subunits identifies a specific requirement of glra1 for motor function in zebrafish. PLoS One 2019; 14:e0216159. [PMID: 31048868 PMCID: PMC6497278 DOI: 10.1371/journal.pone.0216159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/15/2019] [Indexed: 11/18/2022] Open
Abstract
Glycine receptors (GlyRs) are ligand-gated chloride channels mediating inhibitory neurotransmission in the brain stem and spinal cord. They function as pentamers composed of alpha and beta subunits for which 5 genes have been identified in human (GLRA1, GLRA2, GLRA3, GLRA4, GLRB). Several in vitro studies showed that the pentameric subtype composition as well as its stoichiometry influence the distribution and the molecular function of the receptor. Moreover, mutations in some of these genes are involved in different human conditions ranging from tinnitus to epilepsy and hyperekplexia, suggesting distinct functions of the different subunits. Although the beta subunit is essential for synaptic clustering of the receptor, the specific role of each alpha subtype is still puzzling in vivo. The zebrafish genome encodes for five glycine receptor alpha subunits (glra1, glra2, glra3, glra4a, glra4b) thus offering a model of choice to investigate the respective role of each subtype on general motor behaviour. After establishing a phylogeny of GlyR subunit evolution between human and zebrafish, we checked the temporal expression pattern of these transcripts during embryo development. Interestingly, we found that glra1 is the only maternally transmitted alpha subunit. We also showed that the expression of the different GlyR subunits starts at different time points during development. Lastly, in order to decipher the role of each alpha subunit on the general motor behaviour of the fish, we knocked out individually each alpha subunit by CRISPR/Cas9-targeted mutagenesis. Surprisingly, we found that knocking out any of the alpha2, 3, a4a or a4b subunit did not lead to any obvious developmental or motor phenotype. However, glra1-/- (hitch) embryos depicted a strong motor dysfunction from 3 days, making them incapable to swim and thus leading to their premature death. Our results infer a strong functional redundancy between alpha subunits and confirm the central role played by glra1 for proper inhibitory neurotransmission controlling locomotion. The genetic tools we developed here will be of general interest for further studies aiming at dissecting the role of GlyRs in glycinergic transmission in vivo and the hitch mutant (hic) is of specific relevance as a new model of hyperekplexia.
Collapse
Affiliation(s)
- Eric Samarut
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- DanioDesign Inc., Montréal, QC, Canada
- Modelis Inc., Montréal, QC, Canada
- * E-mail:
| | - Domitille Chalopin
- UnivLyon, ENS de Lyon, Université de Lyon, CNRS UMR5239, INSERM U1210, Lyon, France
| | - Raphaëlle Riché
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Marc Allard
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Meijiang Liao
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Pierre Drapeau
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- DanioDesign Inc., Montréal, QC, Canada
| |
Collapse
|
39
|
Hikida M, Shimada S, Kurata R, Shigetou S, Ihara M, Sattelle DB, Matsuda K. Combined effects of mutations in loop C and the loop D-E-G triangle on neonicotinoid interactions with Drosophila Dα1/chicken β2 hybrid nAChRs. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 151:47-52. [PMID: 30704712 DOI: 10.1016/j.pestbp.2018.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/01/2018] [Accepted: 03/21/2018] [Indexed: 06/09/2023]
Abstract
Neonicotinoid insecticides interact with the orthosteric sites of nicotinic acetylcholine receptors (nAChRs) formed at the interfaces of (a) two adjacent α subunits and (b) α and non-α subunits. However, little is known of the detailed contributions of these two orthosteric sites to neonicotinoid actions. We therefore applied voltage-clamp electrophysiology to the Dα1/chicken β2 hybrid nAChR expressed in Xenopus laevis oocytes to explore the agonist actions of imidacloprid and thiacloprid on wild type receptors and following binding site mutations. First, we studied the S221E mutation in loop C of the ACh binding site of the Dα1 subunit. Secondly, we explored the impact of combining this mutation in loop C with others in the loop D-E-G triangle (R57S; E78K; K140T; S221E). The S221E loop C mutation alone reduced the affinity of the neonicotinoids tested, while hardly affecting the concentration-response curve for acetylcholine. Addition of the three R57S; E78K; K140T mutations in the loop D-E-G triangle led to a further reduction in neonicotinoid sensitivity, suggesting that all four binding site loops (C, D, E, G) in the Dα1 subunit, which are located upstream of loop B in the N-terminal, extracellular domain, contribute to the selective actions of neonicotinoid insecticides.
Collapse
Affiliation(s)
- Mai Hikida
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Shota Shimada
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Ryo Kurata
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Sho Shigetou
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Rayne Building, University College London, London WC1E 6JF, United Kingdom
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
40
|
Groeneweg FL, Trattnig C, Kuhse J, Nawrotzki RA, Kirsch J. Gephyrin: a key regulatory protein of inhibitory synapses and beyond. Histochem Cell Biol 2018; 150:489-508. [DOI: 10.1007/s00418-018-1725-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2018] [Indexed: 12/26/2022]
|
41
|
Low SE, Ito D, Hirata H. Characterization of the Zebrafish Glycine Receptor Family Reveals Insights Into Glycine Receptor Structure Function and Stoichiometry. Front Mol Neurosci 2018; 11:286. [PMID: 30323738 PMCID: PMC6130310 DOI: 10.3389/fnmol.2018.00286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/30/2018] [Indexed: 11/28/2022] Open
Abstract
To study characterization of zebrafish glycine receptors (zGlyRs), we assessed expression and function of five α- and two ß-subunit encoding GlyR in zebrafish. Our qPCR analysis revealed variable expression during development, while in situ hybridizations uncovered expression in the hindbrain and spinal cord; a finding consistent with the reported expression of GlyR subunits in these tissues from other organisms. Electrophysiological recordings using Xenopus oocytes revealed that all five α subunits form homomeric receptors activated by glycine, and inhibited by strychnine and picrotoxin. In contrast, ß subunits only formed functional heteromeric receptors when co-expressed with α subunits. Curiously, the second transmembranes of both ß subunits were found to lack a phenylalanine at the sixth position that is commonly associated with conferring picrotoxin resistance to heteromeric receptors. Consistent with the absence of phenylalanines at the sixth position, heteromeric zGlyRs often lacked significant picrotoxin resistance. Subsequent efforts revealed that resistance to picrotoxin in both zebrafish and human heteromeric GlyRs involves known residues within transmembrane 2, as well as previously unknown residues within transmembrane 3. We also found that a dominant mutation in human GlyRα1 that gives rise to hyperekplexia, and recessive mutations in zebrafish GlyRßb that underlie the bandoneon family of motor mutants, result in reduced receptor function. Lastly, through the use of a concatenated construct we demonstrate that zebrafish heteromeric receptors assemble with a stoichiometry of 3α:2ß. Collectively, our findings have furthered our knowledge regarding the assembly of heteromeric receptors, and the molecular basis of ß subunit-conferred picrotoxin resistance. These results should aid in future investigations of glycinergic signaling in zebrafish and mammals.
Collapse
Affiliation(s)
- Sean Eric Low
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Sagamihara, Japan
| | - Daishi Ito
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Sagamihara, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Sagamihara, Japan
| |
Collapse
|
42
|
Schaefer N, Roemer V, Janzen D, Villmann C. Impaired Glycine Receptor Trafficking in Neurological Diseases. Front Mol Neurosci 2018; 11:291. [PMID: 30186111 PMCID: PMC6110938 DOI: 10.3389/fnmol.2018.00291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Ionotropic glycine receptors (GlyRs) enable fast synaptic neurotransmission in the adult spinal cord and brainstem. The inhibitory GlyR is a transmembrane glycine-gated chloride channel. The immature GlyR protein undergoes various processing steps, e.g., folding, assembly, and maturation while traveling from the endoplasmic reticulum to and through the Golgi apparatus, where post-translational modifications, e.g., glycosylation occur. The mature receptors are forward transported via microtubules to the cellular surface and inserted into neuronal membranes followed by synaptic clustering. The normal life cycle of a receptor protein includes further processes like internalization, recycling, and degradation. Defects in GlyR life cycle, e.g., impaired protein maturation and degradation have been demonstrated to underlie pathological mechanisms of various neurological diseases. The neurological disorder startle disease is caused by glycinergic dysfunction mainly due to missense mutations in genes encoding GlyR subunits (GLRA1 and GLRB). In vitro studies have shown that most recessive forms of startle disease are associated with impaired receptor biogenesis. Another neurological disease with a phenotype similar to startle disease is a special form of stiff-person syndrome (SPS), which is most probably due to the development of GlyR autoantibodies. Binding of GlyR autoantibodies leads to enhanced receptor internalization. Here we focus on the normal life cycle of GlyRs concentrating on assembly and maturation, receptor trafficking, post-synaptic integration and clustering, and GlyR internalization/recycling/degradation. Furthermore, this review highlights findings on impairment of these processes under disease conditions such as disturbed neuronal ER-Golgi trafficking as the major pathomechanism for recessive forms of human startle disease. In SPS, enhanced receptor internalization upon autoantibody binding to the GlyR has been shown to underlie the human pathology. In addition, we discuss how the existing mouse models of startle disease increased our current knowledge of GlyR trafficking routes and function. This review further illuminates receptor trafficking of GlyR variants originally identified in startle disease patients and explains changes in the life cycle of GlyRs in patients with SPS with respect to structural and functional consequences at the receptor level.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Vera Roemer
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Dieter Janzen
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
43
|
Fox-Loe AM, Moonschi FH, Richards CI. Organelle-specific single-molecule imaging of α4β2 nicotinic receptors reveals the effect of nicotine on receptor assembly and cell-surface trafficking. J Biol Chem 2017; 292:21159-21169. [PMID: 29074617 DOI: 10.1074/jbc.m117.801431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/20/2017] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) assemble in the endoplasmic reticulum (ER) and traffic to the cell surface as pentamers composed of α and β subunits. Many nAChR subtypes can assemble with varying subunit ratios, giving rise to multiple stoichiometries exhibiting different subcellular localization and functional properties. In addition to the endogenous neurotransmitter acetylcholine, nicotine also binds and activates nAChRs and influences their trafficking and expression on the cell surface. Currently, no available technique can specifically elucidate the stoichiometry of nAChRs in the ER versus those in the plasma membrane. Here, we report a method involving single-molecule fluorescence measurements to determine the structural properties of these membrane proteins after isolation in nanoscale vesicles derived from specific organelles. These cell-derived nanovesicles allowed us to separate single membrane receptors while maintaining them in their physiological environment. Sorting the vesicles according to the organelle of origin enabled us to determine localized differences in receptor structural properties, structural influence on transport between organelles, and changes in receptor assembly within intracellular organelles. These organelle-specific nanovesicles revealed that one structural isoform of the α4β2 nAChR was preferentially trafficked to the cell surface. Moreover, nicotine altered nAChR assembly in the ER, resulting in increased production of the receptor isoform that traffics more efficiently to the cell surface. We conclude that the combined effects of the increased assembly of one nAChR stoichiometry and its preferential trafficking likely drive the up-regulation of nAChRs on the cell surface upon nicotine exposure.
Collapse
Affiliation(s)
- Ashley M Fox-Loe
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Faruk H Moonschi
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | | |
Collapse
|
44
|
Söderpalm B, Lidö HH, Ericson M. The Glycine Receptor-A Functionally Important Primary Brain Target of Ethanol. Alcohol Clin Exp Res 2017; 41:1816-1830. [PMID: 28833225 DOI: 10.1111/acer.13483] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022]
Abstract
Identification of ethanol's (EtOH) primary molecular brain targets and determination of their functional role is an ongoing, important quest. Pentameric ligand-gated ion channels, that is, the nicotinic acetylcholine receptor, the γ-aminobutyric acid type A receptor, the 5-hydroxytryptamine3 , and the glycine receptor (GlyR), are such targets. Here, aspects of the structure and function of these receptors and EtOH's interaction with them are briefly reviewed, with special emphasis on the GlyR and the importance of this receptor and its ligands for EtOH pharmacology. It is suggested that GlyRs are involved in (i) the dopamine-activating effect of EtOH, (ii) regulating EtOH intake, and (iii) the relapse preventing effect of acamprosate. Exploration of the GlyR subtypes involved and efforts to develop subtype specific agonists or antagonists may offer new pharmacotherapies for alcohol use disorders.
Collapse
Affiliation(s)
- Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Helga H Lidö
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
45
|
Janzen D, Schaefer N, Delto C, Schindelin H, Villmann C. The GlyR Extracellular β8-β9 Loop - A Functional Determinant of Agonist Potency. Front Mol Neurosci 2017; 10:322. [PMID: 29062270 PMCID: PMC5640878 DOI: 10.3389/fnmol.2017.00322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/22/2017] [Indexed: 01/07/2023] Open
Abstract
Ligand-binding of Cys-loop receptors results in rearrangements of extracellular loop structures which are further translated into the tilting of membrane spanning helices, and finally opening of the ion channels. The cryo-EM structure of the homopentameric α1 glycine receptor (GlyR) demonstrated an involvement of the extracellular β8–β9 loop in the transition from ligand-bound receptors to the open channel state. Recently, we identified a functional role of the β8–β9 loop in a novel startle disease mouse model shaky. The mutation of residue GlyRα1Q177 to lysine present in shaky mice resulted in reduced glycine potency, reduced synaptic expression, and a disrupted hydrogen network at the structural level around position GlyRα1Q177. Here, we investigated the role of amino acid volume, side chain length, and charge at position Q177 to get deeper insights into the functional role of the β8–β9 loop. We used a combined approach of in vitro expression analysis, functional electrophysiological recordings, and GlyR modeling to describe the role of Q177 for GlyR ion channel function. GlyRα1Q177 variants do not disturb ion channel transport to the cellular surface of transfected cells, neither in homomeric nor in heteromeric GlyR configurations. The EC50 values were increased for all GlyRα1Q177 variants in comparison to the wild type. The largest decrease in glycine potency was observed for the variant GlyRα1Q177R. Potencies of the partial agonists β-alanine and taurine were also reduced. Our data are further supported by homology modeling. The GlyRα1Q177R variant does not form hydrogen bonds with the surrounding network of residue Q177 similar to the substitution with a basic lysine present in the mouse mutant shaky. Among all investigated Q177 mutants, the neutral exchange of glutamine to asparagine as well as the introduction of the closely related amino acid glutamic acid preserve the hydrogen bond network. Introduction of amino acids with small side chains or larger volume resulted in a loss of their hydrogen bonds to neighboring residues. The β8–β9 loop is thus an important structural and functional determinant of the inhibitory GlyR.
Collapse
Affiliation(s)
- Dieter Janzen
- Institute for Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Carolyn Delto
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
46
|
Alpha subunit-dependent glycine receptor clustering and regulation of synaptic receptor numbers. Sci Rep 2017; 7:10899. [PMID: 28883437 PMCID: PMC5589798 DOI: 10.1038/s41598-017-11264-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/21/2017] [Indexed: 02/08/2023] Open
Abstract
Accumulation of glycine receptors at synapses requires the interaction between the beta subunit of the receptor and the scaffold protein gephyrin. Here, we questioned whether different alpha subunits could modulate the receptors' diffusion and propensity to cluster at spinal cord synapses. Using quantitative photoactivated localisation microscopy we found that alpha-1 and alpha-3 containing glycine receptors display the same α3:β2 stoichiometry and gephyrin binding. Despite these similarities, alpha-3 containing receptors are less mobile and cluster at higher density compared to alpha-1, with 1500 versus 1100 complexes µm-2, respectively. Furthermore, we identified a subunit-specific regulation of glycine receptor copy numbers at synapses: when challenged with interleukin 1β, the synaptic occupancy of alpha-1 but not alpha-3 receptors was reduced. This mechanism may play a role in the cell-type dependent regulation of glycinergic currents in response to interleukin 1β and highlights the capacity of the alpha subunits to affect receptor-gephyrin binding at synapses.
Collapse
|
47
|
Signalling assemblies: the odds of symmetry. Biochem Soc Trans 2017; 45:599-611. [PMID: 28620024 DOI: 10.1042/bst20170009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
The assembly of proteins into complexes is fundamental to nearly all biological signalling processes. Symmetry is a dominant feature of the structures of experimentally determined protein complexes, observed in the vast majority of homomers and many heteromers. However, some asymmetric structures exist, and asymmetry also often forms transiently, intractable to traditional structure determination methods. Here, we explore the role of protein complex symmetry and asymmetry in cellular signalling, focusing on receptors, transcription factors and transmembrane channels, among other signalling assemblies. We highlight a recurrent tendency for asymmetry to be crucial for signalling function, often being associated with activated states. We conclude with a discussion of how consideration of protein complex symmetry and asymmetry has significant potential implications and applications for pharmacology and human disease.
Collapse
|
48
|
Gaitán-Peñas H, Gradogna A, Laparra-Cuervo L, Solsona C, Fernández-Dueñas V, Barrallo-Gimeno A, Ciruela F, Lakadamyali M, Pusch M, Estévez R. Investigation of LRRC8-Mediated Volume-Regulated Anion Currents in Xenopus Oocytes. Biophys J 2017; 111:1429-1443. [PMID: 27705766 PMCID: PMC5052465 DOI: 10.1016/j.bpj.2016.08.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 12/31/2022] Open
Abstract
Volume-regulated anion channels (VRACs) play an important role in controlling cell volume by opening upon cell swelling. Recent work has shown that heteromers of LRRC8A with other LRRC8 members (B, C, D, and E) form the VRAC. Here, we used Xenopus oocytes as a simple system to study LRRC8 proteins. We discovered that adding fluorescent proteins to the C-terminus resulted in constitutive anion channel activity. Using these constructs, we reproduced previous findings indicating that LRRC8 heteromers mediate anion and osmolyte flux with subunit-dependent kinetics and selectivity. Additionally, we found that LRRC8 heteromers mediate glutamate and ATP flux and that the inhibitor carbenoxolone acts from the extracellular side, binding to probably more than one site. Our results also suggest that the stoichiometry of LRRC8 heteromers is variable, with a number of subunits ≥6, and that the heteromer composition depends on the relative expression of different subunits. The system described here enables easy structure-function analysis of LRRC8 proteins.
Collapse
Affiliation(s)
- Héctor Gaitán-Peñas
- Unitat de Fisiología, Departament de Ciències Fisiològiques II, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; U-750, CIBERER, ISCIII, Spain
| | | | - Lara Laparra-Cuervo
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Carles Solsona
- Unitat de Neurobiologia, Departament Patologia i Terapèutica Experimental IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat
| | - Victor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat
| | - Alejandro Barrallo-Gimeno
- Unitat de Fisiología, Departament de Ciències Fisiològiques II, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; U-750, CIBERER, ISCIII, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat
| | - Melike Lakadamyali
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | | | - Raúl Estévez
- Unitat de Fisiología, Departament de Ciències Fisiològiques II, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; U-750, CIBERER, ISCIII, Spain.
| |
Collapse
|
49
|
Redefining progressive encephalomyelitis with rigidity and myoclonus after the discovery of antibodies to glycine receptors. Curr Opin Neurol 2017; 30:310-316. [DOI: 10.1097/wco.0000000000000450] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Zhang Y, Ho TNT, Harvey RJ, Lynch JW, Keramidas A. Structure-Function Analysis of the GlyR α2 Subunit Autism Mutation p.R323L Reveals a Gain-of-Function. Front Mol Neurosci 2017; 10:158. [PMID: 28588452 PMCID: PMC5440463 DOI: 10.3389/fnmol.2017.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/08/2017] [Indexed: 11/17/2022] Open
Abstract
Glycine receptors (GlyRs) containing the α2 subunit regulate cortical interneuron migration. Disruption of the GlyR α2 subunit gene (Glra2) in mice leads to disrupted dorsal cortical progenitor homeostasis, leading to a depletion of projection neurons and moderate microcephaly in newborn mice. In humans, rare variants in GLRA2, which is located on the X chromosome, are associated with autism spectrum disorder (ASD) in the hemizygous state in males. These include a microdeletion (GLRA2∆ex8-9) and missense mutations in GLRA2 (p.N109S and p.R126Q) that impair cell-surface expression of GlyR α2, and either abolish or markedly reduce sensitivity to glycine. We report the functional characterization of a third missense variant in GLRA2 (p.R323L), associated with autism, macrocephaly, epilepsy and hypothyroidism in a female proband. Using heterosynapse and macroscopic current recording techniques, we reveal that GlyR α2R323L exhibits reduced glycine sensitivity, but significantly increased inhibitory postsynaptic current (IPSC) rise and decay times. Site-directed mutagenesis revealed that the nature of the amino acid switch at position 323 is critical for impairment of GlyR function. Single-channel recordings revealed that the conductance of α2R323Lβ channels was higher than α2β channels. Longer mean opening durations induced by p.R323L may be due to a change in the gating pathway that enhances the stability of the GlyR open state. The slower synaptic decay times, longer duration active periods and increase in conductance demonstrates that the GlyR α2 p.R323L mutation results in an overall gain of function, and that GlyR α2 mutations can be pathogenic in the heterozygous state in females.
Collapse
Affiliation(s)
- Yan Zhang
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Thi Nhu Thao Ho
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Robert J Harvey
- Department of Pharmacology, UCL School of PharmacyLondon, United Kingdom
| | - Joseph W Lynch
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia.,School of Biomedical Sciences, The University of QueenslandBrisbane, QLD, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|